
Community analysis of dental plaque and endotracheal tube biofilms from mechanically 

ventilated patients 

 

Poala J Marino1,  

1School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, 

Cardiff, United Kingdom; paola_marino@hotmail.com 

 

Matt P Wise2,  

2University Hospital of Wales, Heath Park, Cardiff, United Kingdom; mattwise@doctors.org.uk 

 

Ann Smith3,  

3School of Biosciences, Cardiff University, Park Place, Cardiff, United Kingdom; 

SmithA53@cardiff.ac.uk 

 

Julian R Marchesi3, 4,  

 3School of Biosciences, Cardiff University, Park Place, Cardiff, United Kingdom; 4Centre for 

Digestive and Gut Health, Imperial College London, Exhibition Road, London, UK; 

MarchesiJR@cardiff.ac.uk 

 

Marcello P Riggio5,  

4Dental School, University of Glasgow, 378 Sauchiehall Street, Glasgow, United Kingdom; 

marcello.riggio@glasgow.ac.uk 

 

Michael AO Lewis1, 

1School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, 

Cardiff, United Kingdom; lewismao@cardiff.ac.uk  

 

David W Williams1* 

1School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, 

Cardiff, United Kingdom; williamsdd@cardiff.ac.uk 

 

* Corresponding author: 



Address: School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath 

Park, Cardiff, CF144XY UK 

e-mail: williamsdd@cardiff.ac.uk   

Tel: 02920742548 

 



Abstract 

Purpose: Mechanically ventilated patients are at risk of developing ventilator-associated 

pneumonia and it has been reported that dental plaque provides a reservoir of respiratory 

pathogens that may aspirate to the lungs and endotracheal tube (ETT) biofilms. For the first 

time, metataxonomics was used to simultaneously characterise the microbiome of dental 

plaque, ETTs and non-directed bronchial lavages (NBL) in mechanically ventilated patients to 

determine similarities in respective microbial communities and therefore likely associations. 

Material and Methods: Bacterial 16S rRNA gene sequences from 34 samples of dental plaque, 

NBLs and ETTs from 12 adult mechanically ventilated patients were analysed. 

Results: No significant differences in the microbial communities of these samples were 

evident. Detected bacteria were primarily oral species (e.g. Fusobacterium nucleatum, 

Streptococcus salivarius, Prevotella melaninogenica) with respiratory pathogens 

(Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae and 

Haemophilus influenzae) also in high abundance. 

Conclusion: The high similarity between the microbiomes of dental plaque, NBLs and ETTs 

suggests that the oral cavity is indeed an important site involved in microbial aspiration to the 

lower airway and ETT. As such, maintenance of good oral hygiene is likely to be highly 

important in limiting aspiration of bacterial in this vulnerable patient group. 
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Introduction 

Mechanical ventilation (MV) is an essential intervention in many critically ill patients and an 

endotracheal tube (ETT) is a key interface in this process. Unfortunately, patients receiving 

MV are at higher risk of nosocomial infection, and of particular concern is ventilator-

associated pneumonia (VAP) [1]. 

VAP is the most prevalent hospital-acquired infection in critical care, with an incidence of 9-

24% in patients who are mechanically ventilated for longer than 48 h [2, 3]. In addition, 

depending on patient group, VAP has a high attributable mortality of around 13% [4], and 

leads to longer hospital stay (mean 6.1 days) and increased healthcare costs [5]. A wide range 

of microorganisms may be present in the lower respiratory tract of hospitalised patients, and 

as part of VAP surveillance and diagnosis, specimens from the lower airways are frequently 

analysed to monitor pathogenic colonisation [6]. The least invasive interventions to obtain 

such specimens are non-directed bronchial lavages (NBLs), with the current diagnostic 

threshold based on microbial growth exceeding 104 CFU/ml [7]. These colonising 

microorganisms frequently exhibit multidrug resistance and if resistant microorganisms are 

involved in VAP, effective treatment becomes even more problematic with higher risk of 

treatment failure [8]. 

The microorganisms associated with VAP are wide ranging, but most frequently encountered 

are Gram-negative bacteria including Pseudomonas aeruginosa, Stenotrophomonas 

maltophilia, Citrobacter species, Klebsiella pneumoniae, and Acinetobacter baumannii. 

Staphylococcus aureus (including methicillin-resistant Staphylococcus aureus; MRSA) is the 

most prevalent Gram-positive bacterial species [9, 10]. 

The precise origin of VAP-causing bacteria is unclear, but upper airway colonisation by 

pathogens is considered a risk factor. It is thought that the microorganisms accumulate within 

subglottic secretions above the inflated ETT cuff and enter the lower airway below the cuff, 

either due to cuff displacement from the tracheal wall or via microchannels that develop 

within the cuff material [6]. Microorganisms may also be drawn into the inner lumen of the 

ETT, where they grow as biofilms, which may also serve as sources of VAP-causing agents, 

which are largely protected from host defence mechanisms [11].  

Recent evidence has indicated that a microbial change may also occur in the dental plaque of 

MV patients [12]. Such a microbial ‘shift’ sees the colonisation of dental plaque with bacteria 

associated with VAP and these species are ones not normally found in ‘healthy’ mouths. As a 



consequence and similar to ETT biofilms, the dental plaque itself would then be a source of 

VAP pathogens. The reason for the microbial change in dental plaque during mechanical 

ventilation is currently not known. Dental plaque contains many bacteria adept at biofilm 

development and these may assist recruitment of microorganisms less able to attach directly 

to the teeth, such as respiratory pathogens. Similarly, this same phenomenon could occur 

within the ETT lumen. To fully, appreciate the potential role of oral microorganisms in 

promoting ETT biofilm formation and lower airway contamination, characterisation of the 

microbial populations at these sites is an important undertaking.  

The majority of bacteria have often been considered unculturable using currently available 

microbiological media and methodology, and studies indicate that over 98% of environmental 

bacteria are currently unculturable in vitro [13]. In clinical samples, the numbers of 

unculturable bacteria, whilst lower, can still exceed 90% [14-16]. In the oral cavity, there are 

an estimated 500 to 600 species, and it is thought that approximately half of these have not 

yet been cultivated [17]. In contrast, a novel approach that combines whole-genome and 

metagenomic sequencing, with computational and phenotypic analysis recently showed that 

90% of the gut bacterial microbiome are in fact culturable [18]. As such, it is impractical to 

fully determine the microbial composition of communities including those in the oral cavity, 

lower airway and ETT without use of culture-independent molecular techniques.  

In recent years, molecular approaches have been developed that combine the sensitivity of 

PCR with the specificity of sequencing in order to gain detailed information and understanding 

of microbial species interactions in particular communities. Microbiomics is a collective term, 

which encompasses the molecular tools available to achieve profiling of microbial 

communities, including uncultivable components [19]. One aspect of this toolkit uses 

inventories of 16S rRNA genes to provide a ‘snapshot’ of bacterial diversity and relative 

abundance within a sample [20, 21]. 

In this present study, we report for the first time the metataxonomic characterisation of the 

bacterial microbiota at three separate, but potentially linked sites within individual MV 

patients. Analysed clinical samples were dental plaque, ETT biofilms and non-directed 

bronchial lavages (NBLs). It was envisaged that through this investigation, insight into 

microbial links between the oral cavity, the ETT and the lower respiratory tract would be 

achieved. Should components of the oral microbiota contribute to the ETT biofilm, and/or 



respiratory pathogens found to colonise the dental plaque, further supporting evidence for 

maintaining high levels of oral hygiene in MV patients will have been provided.  



Materials and Methods 

Collection and processing of clinical specimens 

Ethical approval for collection of clinical samples was obtained from the Research Ethics 

Committee for Wales (Reference # 08044240). A total of 21 patients were recruited (Trial 

registration: Clinical Trials.Gov NCT01154257 14th June 2010) [22] and following receipt of 

informed and written consent from patients or relatives complying with the Mental Capacity 

Act 2005, these patients provided dental plaque, NBLs and ETT samples for analyses. Inclusion 

criteria were that patients had to be aged >18 years, had >20 teeth, and an expectation of 

mechanical ventilation with an endotracheal tube for >24 h. At the start of the study, oral 

hygiene status was assessed using a plaque and gingival index [23]. During the study, routine 

oral care was delivered by mechanical tooth brushing using the modified Bass technique [23] 

with each side of the mouth cleaned for 1 min. Chlorhexidine was not part of the routine oral 

care in the critical care unit and was not administered to these patients. Samples from 12 

patients (7 male and 5 female, aged 23 to 70 years old; Table 1) were selected for next 

generation sequencing. Patients were recruited for the study for between 2 and 7 days.  

Dental plaque was obtained from the upper and lower first molars, first bicuspid and central 

incisors on each side of the mouth using sterile endodontic paper points (size ISO45). 

Sampling was initiated at the distal part of the buccal aspect of the tooth with 1 mm of paper 

point placed into the gingival sulcus. Using a slow and continuous motion, the paper point 

collected dental plaque by being drawn towards the operator. Paper points were placed in 1 

ml of microbiological transport medium (Reduced Transport Fluid) [24] prior to processing for 

DNA extraction. 

NBL specimens were obtained twice weekly from patients and the ETT itself was recovered 

for analysis after extubation. The ETT was wrapped in a sterile paper towel dampened with 

saline solution and sealed; the samples were all processed within 4 h. The central part of the 

ETT was cut to provide a 1 cm section from which the biofilm was recovered by scraping with 

a sterile surgical blade. Recovered biofilm was resuspended in 1 ml of phosphate saline buffer 

(PBS). All samples were stored at -80°C prior to DNA extraction.  

 

DNA extraction 

DNA was extracted from all samples using the Gentra Puregene® Yeast/Bacteria kit employing 

the Gram-positive bacterial protocol as described by the manufacturer (Qiagen, Manchester, 



UK). Pre-treatment of highly viscous NBLs and ETT biofilms involved addition of an equal 

volume of Sputasol® (Oxoid, Altrincham, UK) to the specimen, which was incubated at 37°C 

whilst being rotated at 100 rev/min for 2 h. Samples that remained viscous following 

Sputasol® treatment had 50 μl sterile glass beads (425-600 μm in diameter, Sigma) added and 

were homogenised for 30 s in a mini bead beater (Stratech Scientific, Newmarket, UK) before 

proceeding with the DNA extraction protocol. Purified DNA was stabilised in a DNA eluting 

solution (Qiagen). 

DNA extraction was confirmed by PCR amplification of the bacterial 16S rRNA gene using the 

bacterial primers GAGAGTTTGATYMTGGCTCAG (D88) and GAAGGAGGTGWTCCARCCGCA 

(E94) [25]. The PCR mixes (25 μl) contained 12.5 μl of PCR master mix (Promega), 1 µl of DNA 

template, and 0.5 μl of each forward and reverse primers at 50 μM. PCR thermal cycling 

parameters were an initial denaturation step of 95°C for 1 min, followed by 26 cycles of 94°C 

for 45 s, 50°C for 45 s and 72°C for 90 s (Thermocycler G-Storm). Amplicons were visualised 

by agarose gel electrophoresis. 

 

MiSeq sequencing 

DNA sequencing was undertaken by Research and Testing Laboratory (Austin, USA) using the 

Illumina MiSeq. Bacterial primers (GAGTTTGATCNTGGCTCAG [28F] and 

TGCTGCCTCCCGTAGGAGT [388R]) were used to generate multiple sequences of 

approximately 250 base pairs, overlapping within the V4 region of the 16S rRNA gene. 

 

Phylogenetic identification and data analysis 

The 16S rRNA gene sequences were analysed using the bioinformatics software package 

Mothur [26] and the MiSeq SOP Pipeline. 16S rRNA gene sequence reads were quality checked 

and normalised to the lowest number of reads in Mothur. To maintain normalisation and 

minimise artefacts, singletons and any Operational Taxonomic Units (OTUs), which were not 

found on more than 454 occasions in any sample, were collated as OTU singletons and 

OTU_rare phylotypes. Using the Vegan package of the R statistical package (R Development 

Core Team, 2008), analysis was performed on the datasets contained within the files 

generated by Mothur (all OTUs were defined using a cut off value of 97%). The Unifrac 

weighted distance matrix was analysed in R using non-metric multidimensional scaling 

(NMDS) ordination and the shared OTU file was used to determine the number of times that 



an OTU was observed in multiple samples, and was used for multivariate analysis in R. OTU 

taxonomies (from phylum to genus) were determined using the RDP MultiClassifier script to 

generate the RDP taxonomy [27]. Alpha and beta indices were calculated from these datasets 

with Mothur and R using the Vegan package. 



Results 

From the 12 participating patients, 34 samples were obtained (Table 2) with one dental 

plaque sample from each patient, 12 ETTs from 10 patients, and 10 NBLs from 7 patients. 

There were samples from all three sites for 5 patients (P05, P10, P14, P20 and P21). The 

number of raw sequence reads was 2248956 and this was subsampled down to 9385 per 

sample. The number of OTUs for plaque was 127, for ETTs was 125 and for NBL was 83. 

 

Evaluation of microbiome diversity between samples sites 

Chao, Shannon, and ANOVA were used to measure diversity in the whole microbiome of 

dental plaque, NBLs and ETTs. Analyses revealed no significant differences in the microbiomes 

at the three different sites (Shannon P=0.306, Chao P=0.685; Fig. 1). Additionally, NMDS was 

used to visualise the position of each sample’s community in a multidimensional space and 

showed clear overlaps between the microbial communities of dental plaque, NBLs and ETTs 

(Fig. 2). 

 

Similarities between samples 

Similarities between samples were analysed using the Bray-Curtis index. A constructed 

dendrogram (Fig. 3) showed identification of four major sample clusters, and each cluster 

contained dental plaque, ETT and/or NBL samples. There were 10 sub-clusters of five pairs, 

where the microbial composition of dental plaque and either NBL or ETT from the same 

patient was indistinguishable (P28, P03, P24, P27). Moreover, the same level of similarity was 

observed for samples from different patients on 7 occasions, forming pairs between dental 

plaque and NBLs (N=2), dental plaque and ETT (N=1), ETT and NBL (N=1), and grouping same 

site samples from different patients NBLs (N=2) and ETT (N=1). One cluster of three ‘identical’ 

dental plaque samples (P10, P14, P20) and a further 4 pairs of closely related samples from 

the same patient were apparent. Interestingly, samples from all three sites for patients 10, 14 

and 21, appeared distantly related. 

 

Bacterial composition  

Analysis of the most representative species was based on the 100 most abundant species; 

with 58.5% of species identified at a cut off value of 97%. Analyses of the top 20 species 

showed that overall, the most commonly detected species was Staphylococcus aureus, 



followed by Pseudomonas aeruginosa, Streptococcus pneumoniae and Haemophilus 

influenza. Importantly all of these species are potential respiratory pathogens. This group was 

followed by species normally associated with the urinary (Enterococcus hirae) and 

gastrointestinal (Shigella dysenteriae) tracts. The remaining 13 species were typical oral 

microorganisms. 

The top 100 species were further analysed per sample site. In dental plaque (Fig. 4), S. 

pneumoniae was the most abundant species followed by E. hirae, (although most OTUs for 

this species originated from only one patient; P27) and Fusobacterium nucleatum, an oral 

microorganism recognised for its role in bacterial coaggregation. Importantly, the respiratory 

pathogens S. aureus and P. aeruginosa were also abundant in dental plaque samples. For 

ETTs, S. aureus, H. influenzae and S. pneumoniae were the three most abundant species, but 

the presence of oral microorganisms in these biofilms was also evident (Fig 5). Finally, in NBLs, 

the most prevalent species were S. aureus and P. aeruginosa and similar to the ETTs, typical 

oral species such as F. nucleatum, S. oralis and P. melaninogenica were detected (Fig. 6).  

The top 20 species per individual patient was analysed by heat maps, and revealed that most 

microorganisms were simultaneously present in all available samples. Interestingly, in some 

cases (S. aureus in P14, P20 and P21) the OTUs were higher in the NBL and/or the ETTs than 

in dental plaque (data not shown).  



Discussion 

Amongst critically ill patients who are mechanically ventilated for more than 48 h, there is a 

risk of developing VAP (between 4 and 13 cases per 1000 ventilator days; [28]) of VAP. VAP 

also has an associated attributable high mortality, extends hospital stay, and increases 

economic burden [29-31]. Multiple factors contribute to the occurrence of VAP [32] and 

included amongst these is the oral microbiome. The oral microbiota could play a role in VAP 

in several ways. Firstly, microorganisms commonly encountered in the mouth could directly 

instigate VAP following aspiration to the lungs [33]. In addition, accepted respiratory 

pathogens that are not normally present within the oral microbiota may colonise the mouth 

and again, move to the lungs, thereby resulting in infection [34]. Interestingly, after cessation 

of mechanical ventilation, respiratory pathogens that were colonising dental plaque are often 

lost from the plaque [34]. As well as movement between the mouth and lower airways, 

microorganisms may also grow as biofilms within the lumen of the ETT [12]. These biofilms 

may harbour typical oral microorganisms together with respiratory pathogens, with the 

former potentially facilitating pathogen presence.  

The aim of this research was to use metataxonomics involving 16S rRNA gene sequencing as 

a means to compare the microbiome of the dental plaque, lower airway (NBL) and ETT lumen 

from mechanically ventilated patients. Metataxonomics is a widely used technique that 

exploits both conserved and variable regions within the bacterial 16S rRNA gene to enable 

comprehensive analysis of microbial communities [35, 36]. In this manner, microbial 

associations between these sites may be drawn, thereby highlighting likely movement of 

microorganisms within mechanically ventilated patients, which could have importance in VAP 

occurrence, its management and prevention. Whilst traditional culture methods remain the 

gold standard in clinical diagnostics, there are limitations to such approaches, primarily 

relating to the inability of culture media to allow growth of all microorganisms and logistical 

restraints of using selective media for each species. Within a given microbial community an 

oversight of completely novel pathogens or those that are currently unculturable could 

therefore occur using culture-based methods [37]. 

The microbiome at separate sites was analysed for 12 mechanically ventilated patients. 

Dental plaque was obtained from all patients along with an NBL and or an ETT, when possible. 

It was not possible to obtain all samples simultaneously for a single patient, but given that 

biofilms develop over time, we did not consider this to be detrimental in our comparison of 



dental plaque and ETT biofilm communities. It could be argued NBL samples might be more 

variable with temporal change, which that could be regarded as a potential limitation to the 

study. Whilst metataxonomics have previously been used to characterise the microbiology in 

ETTs [38], dental plaque [13] or lavage samples [39], this is the first study that has 

simultaneously compared all three sites within a given patient.  

An important finding was that dental plaque contained bacteria not normally associated with 

healthy mouths, but recognised as pathogens in respiratory infection. Amongst the top 20 

species in dental plaque were S. aureus, P. aeruginosa, S. pneumoniae and H. influenzae, 

which are all respiratory pathogens and at least one of these species was found in the dental 

plaque of all patients. The typically low prevalence of these species in the dental plaque of 

healthy individuals has previously been shown. Molecular studies revealed a S. aureus 

prevalence in plaque of 3% [40] and an absence of S. pneumoniae in the mouths of 265 

individuals [41]. Significantly, in a recent study employing real-time PCR analysis of samples 

from 120 patients with suspected VAP, these respiratory pathogens were also found to be the 

most prevalent in ETT aspirates and bronchoalveolar lavages [42]. Culture-based analyses 

have shown a change in dental plaque during mechanical ventilation leading to respiratory 

pathogen (including P. aeruginosa and S. aureus) colonisation [13, 43, 44]. These findings once 

again implicate dental plaque as a reservoir of VAP pathogens in mechanically ventilated 

patients. The respiratory pathogens were also amongst the top 20 species present in NBLs 

and ETT biofilms, and of note was the observation that they were accompanied by bacteria 

normally associated with the oral environment e.g. Streptococcus anginosus, Streptococcus 

oralis and Fusobacterium nucleatum. Fusobacterium nucleatum is a common oral bacterium 

associated with co-aggregation of bacteria and biofilm stability [45], and its presence in ETTs 

could therefore conceivably enhance colonisation by respiratory pathogens. 

Interestingly, E. hirae was in the top 5 species found overall, however it was only found in two 

patients, one of whom had very high OTU reads in their dental plaque (71730) and NBL (9808). 

This microorganism is mainly associated with disease in mammals and birds and is considered 

a rare pathogen in humans [46]. However, there have been recent reports of urinary tract 

infections and severe bacteraemia caused by this species [47, 48]. These reports combined 

with an understanding that other members of the Enterococcus family (E. faecalis and E. 

faecium) behave as opportunistic pathogens [49], makes E. hirae colonisation clinically 

relevant. 



Overall, the results revealed a high level of similarity between the bacterial microbiomes of 

the three sample types, strongly implying common origins for the microorganisms present. In 

addition, it was evident that when all community profiles were compared, for 4 patients (P03, 

P24, P28, P27), the microbiome of either the ETT or the NBL had highest similarity to the 

dental plaque from the same patient. This would suggest that any inter-patient variation 

between dental plaque communities was on occasion greater than the variation between 

different sample types from the same patient. These findings again suggest microbial links 

between the sample types analysed. NMDS showed that the microbiome of dental plaque 

and the ETT were most similar, with higher variability evident for NBLs. This could reflect the 

relative ability of different species to persist at these particular sites. 

Given the clear associations between dental plaque communities and bacterial biofilms in the 

ETT and lower airways (NBLs), this study highlights the need to improve oral hygiene in 

mechanically ventilated patients to limit the bioburden that can subsequently aspirate to the 

lungs and ETT [50]. The reported decline in oral hygiene in mechanically ventilated patients 

would likely lead to an exacerbation of this microbial translocation and increase the risk of 

VAP. Appropriate oral care interventions can improve oral hygiene in these patients and this 

study highlights the importance of such practices. 

 

Conclusion 

The microbiomes of dental plaque, NBL and ETT were similar in terms of diversity, it was noted 

that the similarities between samples of the same patient were higher than for sample type. 

Oral species were most frequently found in all sample types and a high abundance of 

respiratory pathogens was evident in dental plaque, ETT and NBL. This work highlights the 

importance of the oral microbiome in the intensive care setting where patients are at high 

risk of developing life-threatening infections such as VAP.  
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Table 1. Demographics of the 12 patients participating in this study 

Patient Sex Age 

(yrs) 

Diagnosis Days between 

hospital and 

critical care 

admission  

Days intubated 

at time of 

recruitment 

Antibiotic 

therapy* 

 

P01 M 53 Sepsis 2 2 Y 

P03 M 70 Pneumonia/Pneumocystis 

Pneumonia (PCP) 

 

4 2 Y 

P05 M 43 Substance 

overdose/aspiration 

pneumonia 

 

0 2 N 

P08 F 26 Ventricular fibrillation 

arrest postpartum 

 

0 9 Y 

P10 F 68 Head injury 0 0 N 

P14 M 29 Head injury 0 0 N 

P20 F 23 Alcoholic liver disease and 

pneumonia 

 

10 0 Y 

P21 M 32 Cardiac arrest 0 4 N 

P24 F 44 Sepsis 3 1 Y 

P25 F 49 Cardiogenic shock 0 3 Y 

P27 M 39 Type 1 respiratory failure 1 5 Y 

P28 M 52 Septic shock 13 0 Y 

 *, at time of recruitment 



Table 2. Sampling details and oral health indicators from recruited patients 

  
No. of samples (days of mechanical 

ventilation when collected) Oral health status 

Patient  Plaque NBL ETT 
DMFT 

Plaque 

Index 

Gingival 

index 

P01 1 (6) 0 1 (10) 8 1.8 1.7 

P03 1 (7) 2 (3, 6) 0 13 2.2 1.6 

P05 1 (4) 1 (3) 1 (5) 7 1.5 1.4 

P08 1 (12) 0 2 (13) 8 2.1 2.2 

P10 1 (4) 1 (3) 1 (11) 17 1.6 1.7 

P14 1 (3) 1 (1) 2 (2, 4) 6 2.7 2.8 

P20 1 (3) 2 (1) 1 (8) 4 1.9 1.8 

P21 1 (6) 1 (6) 1 (12) 10 1.4 2.0 

P24 1 (4) 0 1 (6) 4 3.0 3.0 

P25 1 (6) 0 1 (12) 9 2.3 1.8 

P27 1 (8) 2 (7) 0 9 2.0 1.6 

P28 1 (2) 0 1 (3) 9 2.3 2.0 

   Mean 8.6 2.1 2.0 

   SD 3.7 0.47 0.49 

NBL, non-directed bronchial lavage; ETT endotracheal tube; DMFT, number of 

Decayed/Missing/Filled Teeth; Plaque and gingival indices were as defined by Silness and Löe 

[23] where scores range between 0 to 3, with 0 being equal to health and a score of 3 

indicating gross plaque deposits or marked gingival inflammation. 

  



Fig. 1a. Chao analysis of similarities in the diversity of the microbiomes of dental plaque, non-

directed bronchial lavages (NBLs) and endotracheal tubes (ETTs). 

 

Fig. 1b. Shannon analysis of similarities in the diversity of the microbiomes of dental plaque, 

non-directed bronchial lavages (NBLs) and endotracheal tubes (ETTs). 

 

Fig. 2. NMDS analysis illustrating position of microbial communities of dental plaque, non-

directed bronchial lavages (NBLs) and endotracheal tubes (ETTs) in a multidimensional space.  

 

Fig. 3. Dendrogram demonstrating four major sample clusters each containing communities 

from dental plaque, non-directed bronchial lavages and endotracheal tubes. 

 

Patient number corresponds to those in Table 1; suffix indicates samples type (P=plaque; 

T=endotracheal tube; N=non-directed bronchial lavage); when two samples of a given type 

were obtained this is shown by lettering ‘a’ and ‘b’. 

 

Fig. 4. Most abundant species detected in dental plaque. 

 

Fig. 5. Most abundant species detected in endotracheal tube (ETT) biofilms. 

 

Fig. 6. Most abundant species detected non-directed bronchial lavages (NBLs). 
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Fig. 4. Most abundant species detected in dental plaque. 

  



 

Fig. 5. Most abundant species detected in endotracheal tube (ETT) biofilms. 

  



 

Fig. 6. Most abundant species detected non-directed bronchial lavages (NBLs). 


