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I. INTRODUCTION  

 

     Statistical tests are often labelled as “parametric tests”, or 

“non-parametric tests” or “distribution free tests”.    

     Parametric tests make an assumption about the functional 

form of an underlying distribution.  This assumption allows 

the development of mathematical theory to draw inferences 

about a parameter of that distribution.  The distribution could 

be, for instance, the normal distribution or the exponential 

distribution or one of many countless distributions.  The 

parameters are constants that appear in the probability density 

function.  However, in a wider sense other quantities or 

distributional properties such as the mean or median or 

variance could be regarded as a parameter of the distribution.    

        Distribution free tests are tests that relate to a parameter 

of a distribution (such as the mean or median) but the 

statistical test would be derived without specifying the 

underlying distribution.   Randomisation tests and some 

bootstrapping tests would fall into this category.  

     Ranked based nonparametric tests are concerned with 

testing equality of distributions (rather than specific 

parameters) without specifying the functional form of the 

distributions. 

     The most commonly used parametric tests are statistical 

tests which are based on an assumption using the normal 

distribution, and example tests would include the 

independent samples t-test or the paired samples test, or the 

one-way between-subjects ANOVA.   

     It is worthwhile to note that a normal distribution is a 

theoretical distribution and perfect normality will not be 

obtained in any dataset.  However, sample distributions of 

data might have characteristics which indicate that the 

underlying distribution might approximate a normal 

distribution.  In these latter situations of approximate 

normality, the parametric tests that assume normality might 

work perfectly well.  In fact, the normal assumed parametric 

tests might work reasonably well if sample data is clearly 

non-normal providing sample sizes are sufficiently large.    

     In this brief note, we will take a step back, and consider 

what is meant by a normal distribution [Section 2] and in 

Section 3 we will ask the question why an assumption of 

normality was made in the first place (i.e. why this 

distribution was picked on to develop theory and not one of 

the countless other distributions).  A big part of all of this, is 

the word “assumption”. An assumption is something, which 

is tentatively advanced, as opposed to a presumption, which 

is taken as a ground truth.   We will therefore delve into 

whether the assumption should be examined, how might do 

this, and the consequences of doing so.  Let’s start with what 

is a normal distribution.         

II. NORMAL DISTRIBUTIONS  

 

      A normal distribution is a uni-modal symmetric 

distribution for a continuous random variable, which, in a 

certain qualitative sense, may be described as having a bell-

shaped appearance.   Of course, bells come in a variety of 

shapes, so this might not be a good analogy.  Normal 

distributions are also known as Gaussian distributions after 

Carl Friedrich Gauss who first described the distribution in 

1809.    Figure 1 gives a graphical illustration of the functional 

form of some example normal distributions.  

     There are two parameters which control the normal 

distribution; one parameter is the mean (which locates the 

central position of the distribution) and the other parameter is 

the standard deviation (which depicts the amount of spread in 

the distribution).  If we know the mean and the standard 

deviation of a normal distribution then we know everything 

about it.  Of course, there is an infinite number of values for 

either the mean or the standard deviation and as such there 

are infinitely many different normal distributions.  However, 

it follows that if we know the mean of the distribution and if 

we know its standard deviation then we have precisely 

identified which normal distribution is being considered.   
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     Note that any normal distribution is symmetric around the 

mean value (mean = median = mode), but not all symmetric 

distributions are normal distributions.  Note that greater and 

greater deviations in either direction from the mean become 

increasingly less likely, and the degree of spread in a normal 

curve is quantified by the standard deviation.  The two points 

at plus and minus one standard deviation from the mean are 

the points of inflexion of the normal distribution (i.e. the 

change between the curve being convex and concave).    

 

 
Figure 1 Probability density function for example normal 

distributions 

 

Note that, 

  

(a) the normal distribution is an example of a 

distribution for a theoretically continuous random 

variable [a continuous random variable is a random 

variable in which there are infinitely many values in 

any finite interval]   

(b) the theoretical normal curve covers the entire real 

number line running from minus infinity to plus 

infinity 

     A moment’s thought on these two points reveals that a 

perfect normal distribution will not be encountered in any 

real practical context arising in empirical research.   

     For instance, consider point (a).  Suppose we are interested 

in the head circumference of neonates.  Head circumference 

is a length, which, conceptually could be determined to any 

degree of precision by using better and better measuring 

equipment.  In practice head circumference would be 

measured to the nearest millimetre.  Accordingly, if 

recording neonatal head circumference then the data would 

be recorded to a finite number of decimal places and strictly 

speaking this data would be discrete (a discrete random 

variable is one in which there are a finite number of possible 

values in any finite interval). Of course, in practice, if the 

number of possible discrete outcomes was large and if the 

underlying measure is inherently continuous then we may 

argue that we are dealing with a continuous random variable 

and use statistical methods designed for continuous data 

without loss of accuracy. 

     Likewise, consider point (b).  Again, suppose we consider 

neonatal head circumference.  Clearly, we cannot have a 

negative head circumferences (but the normal distribution 

covers the negative number line) or very small positive head 

circumferences or very large head circumferences.  In other 

words, in practice, there is a restricted range for neonatal head 

circumference.  However, the normal distribution covers the 

entire number line and consequently neonatal head 

circumference could not have a perfect normal distribution.   

     Pedantic considerations of these aspects indicate that a 

perfect normal distribution will not be encountered in any real 

practical context arising in empirical research, and this is why 

Geary [1], as far back as 1947, suggested that the first page 

of every statistical textbook should contain the words 

“Normality is a myth.  There never was and will never be a 

normal distribution”.   

     However, this finite range restriction and the real word use 

of finite precision data does not invalidate the use of a normal 

model in a practical sense.  A model in this sense is an attempt 

to describe a phenomenon of interest and is recognised to be 

an approximation (hopefully a good approximation) to 

reality. This idea is paraphrased by the statistician George 

Box who writes “Essentially, all models are wrong but some 

are useful” [2] and “ … all models are wrong; the practical 

question is how wrong do they have to be to not be useful” 

(ibid, p74).   

 

III. WHY CONSIDER NORMALITY?  

     Many statistical tests are developed through postulating a 

statistical model composed of a systematic (aka deterministic 

or structural) component such as a trend or a difference and a 

random (aka stochastic or error) component to capture natural 

variation.  Statistical scientists will make assumptions 

regarding the random component and then proceed to develop 

the best test for a given set of assumptions.  

     Many of the commonly used “parametric” statistical tests 

have been developed assuming the random component is 

normally distributed. Examples of these tests include t-tests, 

ANOVA tests, linear regression models, MANOVA, and 

linear discriminant analysis. In any practical situation, the 

assumption of normality will not be perfectly satisfied.  

However, computer simulations show that these commonly 

used parametric tests are robust to minor departures from 

normality.  That is to say, these parametric tests still work 

very well in practice providing the assumption of normality 

has not been grossly violated.  Moreover, in general it is fair 
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to say that increasing reliance can be placed on the validity of 

statistical conclusions from these tests with increasing sample 

size. This however does not answer the question “why would 

a statistical scientist assume normality in the first place?”.  

The answer to this lies in a theorem known as the Central 

Limit Theorem.    

 

IV.  THE CENTRAL LIMIT THEOREM 

 

     Here comes the technical bit!  Imagine a process whereby 

a random sample of size n is taken from a distribution that has 

a finite mean 𝜇 and a finite standard deviation 𝜎 (let’s call 

this the parent distribution).  The mean of this sample, �̅�1 , 

could be recorded.  Now consider repeating this process 

taking another random sample from the parent distribution, 

again with the same sample size n, and again with the mean 

of the second sample being recorded  �̅�2.  Conceptually this 

process could be repeated indefinitely giving a series of 

means  �̅�1, �̅�2 , �̅�3 , �̅�4 , �̅�5  …., each based on the same 

sample size n.  We might ask the question: “What distribution 

could approximate the distribution of the sample means?”  

(This is the child distribution.)  The answer to this question is 

that, irrespective of the functional form of the original parent 

distribution, we have the following results: 

i. the expected value of the means �̅� is 𝜇 where 𝜇 is 

the mean of the original parent distribution (this 

seems reasonable, i.e. the average of averages is the 

average) 

ii. the standard deviation of the means is 𝜎
√𝑛⁄   where 

𝜎  is the standard deviation of the original parent 

distribution;  this seems reasonable too, since  𝜎
√𝑛⁄  

will tend towards zero as n increases; i.e. averaging 

is a smoothing process and with very large samples 

we would expect a sample mean to closely reflect 

the true theoretical mean and hence with large 

samples, the sample means would closely cluster 

around the true mean much more closely than the 

clustering of individual observations or means based 

on small samples 

iii. the distribution of the means can be approximated 

by a normal distribution with mean 𝜇 and standard 

deviation 𝜎
√𝑛⁄     

 

     In point iii) the quality of the approximation depends on 

both the functional form of the original parent distribution 

and on the sample size.  If the parent distribution is a normal 

distribution then the child distribution is also normal.   

Statistical simulations show that if the parent distribution is 

quite heavily skewed then sample sizes of n > 60 may be 

needed for means to have an approximate normal 

distribution; if the original parent distribution is moderately  

skewed then sample sizes of n > 30 might be needed for the 

means to have an approximate normal distribution; if the 

original parent distribution is symmetric then the 

approximation may still be deemed a good approximation 

with sample sizes smaller than n = 30.  Of course, in practice, 

a researcher will only have one data set and therefore one 

mean.  However, by virtue of the Central Limit Theorem, this 

mean can be considered to be a sample from a distribution 

which approximates the normal distribution and the quality 

of the approximation can be gauged by the above rules of 

thumb.  

     This is all well and good, but more importantly it is the 

consequence of the Central Limit Theorem (i.e. averages 

have a distribution which can be modelled using a normal 

distribution) which motivates theoretical statisticians to make 

a normality assumption in deriving what are now commonly 

used parametric statistical tests.  For instance, consider 

neonatal head circumference. Neonatal head circumference 

for an individual is likely to be influenced by many naturally 

varying factors e.g. genetic or hereditary factors, nutritional 

factors, environmental factors and so on, including factors we 

might not know about.  If these factors act in an independent 

additive manner, then this will induce variation across a 

population producing an averaging effect over individuals 

and hence by the Central Limit Theorem we would not be 

overly surprised if the resulting distribution could be 

approximated by a normal distribution without loss of too 

much accuracy.  In other words, in a relatively homogeneous 

population, an outcome measure, which is affected by a large 

number of unrelated equipotent factors, will produce a 

distribution with some central target value (the mean) with 

extreme values consistently occurring less frequently. This 

might take some time to digest! The point is, under certain 

conditions there is prior reasoning to expect some outcome 

measures to be normally distributed and it is this reasoning 

that motivated the development of so many tests predicated 

on an assumption of normality. Examples of this would 

include height of boys aged 8 to 9, or weights of packets of 

crisps.   

 

V. ASSESSING NORMALITY    

 

      There are three main approaches for assessing normality.  

In this note these approaches will be referred to as “mental 

imagery”, “graphical and descriptive” and “formal 

inferential” 

 

Mental Imagery  

     The first thing to do when assessing data for normality is 

to simply ask the question “how would I imagine the data to 

look?”.  This should be done prior to data collection.  Some 
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simple reasoning about the form of the data might lead to an 

outright rejection of using a normal probability for that data.  

Some examples will make this clear. 

 

Example 1   

     Suppose we are interested in the obstetrical history of 

women aged 16 to 21 and wish to record parity (i.e. number 

of pregnancies beyond 20 weeks gestation).  Parity of each 

woman would be recorded; for each woman we would record 

whether they are nulliparous (parity = 0), whether they have 

been pregnant once beyond 20 weeks (parity = 1), whether 

they have been pregnant twice beyond 20 weeks (parity = 2), 

and so on,   (i.e. for each woman there would be a count of  

either 0, 1, 2, 3, … ).  Now visualise the distribution of data 

that is likely to be collected for this population of women 

aged 16 to 21.   Would you expect this data to be normally 

distributed? Of course, you would not.  In all likelihood, the 

most frequent parity recorded for this population would be 

parity = 0 (nulliparous women), followed by parity = 1 (one 

pregnancy), followed by parity = 2 (two pregnancies).  At the 

outset we would argue that we have a highly discrete 

distribution (taking numbers 0, 1, 2, 3, 4, 5 and fractional 

numbers e.g. 1.53 would not be possible), with a very 

restricted domain (e.g. the count cannot be negative and high 

numbers would be impossible), and that the distribution 

would be skewed to the right (aka positively skewed).  

Therefore, the distribution is discrete arising from counting 

whereas the normal distribution is for an inherently 

continuous variable usually arising from measurement.  The 

domain of the distribution is over a very restricted range 

whereas the normal distribution is unrestricted.  The 

distribution is positively skewed but the normal distribution 

is symmetric.  These reasons would suggest that parity is not 

normally distributed.  [As an aside, lack of normality does not 

mean that parametric tests such as t-tests cannot be used as 

other considerations; they still might be appropriate as 

discussed later.]  

    

Example 2 

     Suppose we worked in a factory which produces nails with 

a target length of 50mm.  Length is an inherently continuous 

measurement. We do not expect all of the nails to be exactly 

50mm (or even any one of them to be exactly 50mm) instead 

we would expect some natural variation.  We could anticipate 

a mean value of about 50mm with some lengths above 50mm, 

some lengths beneath 50mm, and unusually large deviations 

away from 50mm being less frequent. If you visualise the 

histogram of the above lengths you will obtain something 

resembling the classic church-bell shaped curve and in this 

instance, the assumption of normality might not seem too 

unreasonable to make.  In this case, we would not be too 

surprised if the data turned out to be approximately normally 

distributed.    This example also suggests we could use 

graphical techniques to help assess normality. 

 

 

Graphical Techniques (“Chi-by-Eye”) 

     A popular way to assess normality is to “eyeball” the data.  

John Tukey is a strong advocate for always producing 

graphical displays writing “there is no excuse for failing to 

plot and look” and specifically argues that graphical methods 

are a “useful starting point for assessing the normality of 

data” (see [3]).   One commonly used graphical approach is 

to create a histogram of the sample data and to use the 

histogram to make a subjective appraisal as to whether 

normality seems reasonable.  Figure 2 is an example 

histogram for some computer-generated data sampled from a 

normal distribution.   

     If data has been sampled from a normal distribution, then 

we might expect the shape of the sample data to be symmetric 

with the highest frequency in the centre and lower 

frequencies heading towards the extremes of the plot.   

 

 
Figure 2: Histogram of normal data including the normal 

curve 

 

However, there is a problem with histograms.  Firstly, it is 

commonly recognised that the shape displayed in a histogram 

can be highly dependent on the histogram class width and the 

location of histogram boundaries.  Changing class width or 

changing the class boundaries can greatly alter the shape of 

the histogram particularly when dealing with samples of size 

n < 100.  Secondly, there is some doubt about the validity of 

subjective human assessments of histograms for judging 
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normality.  For instance, suppose you had the time and 

inclination to write a computer program to generate say 1000 

data sets each of size n = 50 each taken from a theoretical 

normal distribution and for each of these data sets you create 

a histogram (i.e. 1000 histograms).  Inspection of these 1000 

histograms would then give you some indication of the natural 

variability in histogram shapes that could be obtained when 

dealing with samples of size n = 50.  By way of example, 

Figure 3a gives four sample histograms each based on n = 50 

with all data sampled from a normal distribution.  Do the 

histograms in these panels look as if they represent data 

sampled from a normal distribution?  Would other people 

make the same judgement?  The same data is also given in 

Figure 3b, this time with a different number of histogram bins.  

Do these histograms suggest the data has been sampled from 

a normal distribution? 

 

 

 

     Figure 3a Each histogram is based on n = 50 sampled 

from the standard normal distribution. 

 
 

 

 

Figure 3b Each histogram is based on n = 50 sampled 

from the standard normal distribution. 

 

In general histograms could be used to help form an 

opinion on normality but the visual effect of histograms are 

themselves dependent on chosen bin widths and we might not 

be trained to known what we are looking for.   

In Figure 3b, the number of histogram bars is small (b = 

5).  What would be the minimum number of bars needed to 

capture detail?  Perhaps 10, or 20?  For arguments sake, let’s 

say 10.   There is no one fixed rule for the number of histogram 

bars (bins) in a histogram.  One rule of thumb is the number 

bars, b, is 𝑏 =  √𝑛  (the square root rule).  Hence, under this 

rule we would need a sample size, n, of at least 100 justify 

using 10 histogram bars.  Alternatively, the rule developed at 

Rice University [4] is to have  𝑏 = 2 × ∛𝑛 (i.e. 2 times the 

cube root of n). For b = 10, this implies a minimum sample 

size of n = 125.  Likewise, using the rule given by Sturges, 

𝑏 = 𝑙𝑜𝑔2𝑛 + 1  which implies for 10 histogram bars a 

minimum sample size would be n = 512.  The rule by Rice is 

probably better than the rule given by Sturges, but either way, 

these rules indicate that sample sizes of in excess of 100 are 

needed to justifiably have at least ten histogram bars, and that 

might be the minimum number of bars needed to see the detail 

in a histogram.     

For these reasons a number of practitioners would inspect 

a box-and-whiskers plot (aka a “box plot”) to help form an 

opinion on normality rather than using a histogram. Broadly 

speaking, a box plot is a graphical representation of the five-

figure summary (minimum, lower quartile, median, upper 

quartile, maximum) of a sample distribution. The box-and-

whiskers plot greatly assists in determining whether a sample 

is skewed and in screening for the presence of potential 

outliers.  Detailed information on the creation and 

interpretation of box-and-whisker plots is given by Tukey [3] 

and will not be covered here.  

A box plot created from a normal distribution should have 

equal proportions around the median. For a distribution that is 

positively skewed the box plot will show the median and both 

of its quartiles closer to the lower bound of the graph, leaving 

a large line (whisker) to the maximum value from the data. 

Negatively skewed data would show the opposite effect with 

the majority of points being in the upper section of the plot 

boundaries. It is expected that some outliers will occur which 

are shown by points either ends of the whisker lines.  Figure 

4a gives some sample box-plots for the normal distribution, a 

positively skewed distribution, a negatively skewed 

distribution and a distribution which has a very large central 

peak with very few observations in the tail of the distribution 

(i.e. a “peaked” distribution with a high degree of kurtosis).   

Box-and-whisker plots are good visual devices for 

assessing symmetry in a distribution and this is a property of 
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the normal distribution (but not the only property).  These 

plots also allow outliers to be quickly spotted.  A major 

drawback of the box-and-whisker plot is that it does not 

readily convey information on sample size.  An alternative 

graphical display to overcome the limitations of histograms 

(and to a lesser extent the limitations of box-plots) is the 

normal probability plot.  A normal probability plot comes in 

two flavours: - either the Q-Q plot (quantile-quantile plot) or 

the P-P plot (percentile-percentile plot).      

 

 

Figure 4a: Box Plot for normal data (upper left quadrant), 

positively skewed data (upper right quadrant), negatively 

skewed data (lower left quadrant) and a peaked distribution 

(lower right quadrant).  

 

 

 

 

 

Figure 4b Schematic representation of distributions 
displaying a noticeable degree of skew.  

 

Gaussian Q-Q and P-P Plots 

     The most common graphical tool to assess the normality 

of the data is a Quantile-Quantile (Q-Q) plot [5]. In a Q-Q 

plot, the quantile values of a theoretical distribution are 

plotted against the quantile values of the observed sample 

distribution (x axis). In a normal Q-Q plot the quantiles of the 

theoretical normal distribution are used. Thereafter the aim is 

to make a judgement as to whether the two quantiles are 

produced from the same distribution; if this was the case then 

the plotted points would create a straight diagonal line. Any 

systematic deviations from a straight line, other than natural 

random fluctuations, suggest that the distributions cannot be 

considered to be the same.  

     Closely related to the normal Q-Q plot is the normal 

percentile-percentile plot (P-P plot) which is a plot of the 

theoretical percentiles of a normal distribution (y-axis) 

against the observed sample percentiles (x-axis).  If the 

sample data has been sampled from a normal distribution 

then, like the Q-Q plot, it is expected that the plotted points 

will fall along a straight line. If the data has been sampled 

from a non-normal distribution then systematic deviations 

from this line are expected (e.g. banana shaped plots for 

skewed distributions or S-shaped plots from distributions 

with tails which differ from the tails of the normal 

distribution. Figure 5 gives example P-P plots for the data 

previously displayed in Figure 4a.   

     Normal Q-Q and Normal P-P plots are preferred to 

histograms and box-plots for helping to make a subjective 

assessment of normality.  Histograms suffer from an element 

of arbitrariness in choice of bins, possibly being sensitive in 

visual appearance to bin choice, and from not having a 

reference capturing what can be expected within the confines 

of natural sampling variation (although superimposing a best 

fitting normal curve on the histogram would helpfully assist 

interpretation).   Similarly, box-plots are excellent for judging 

symmetry but symmetry is not the only feature of a normal 

distribution. In contrast the Normal Q-Q plot and the Normal 

P-P plot are specifically designed to visually assess normality 

and incorporate a theoretical normal distribution in their 

creation.  However, it is conceded that both Normal Q-Q plots 

and Normal P-P plots are open to subjective interpretation.  

For these reasons, some may want to statistically test for 

normality using an inferential test.   

 
Figure 5 Normal (Gaussian) P-P plots for normal data (upper 

left quadrant), positively skewed data (upper right quadrant), 

negatively skewed data (lower left quadrant) and a peaked 

distribution (lower right quadrant). 

 

     It is worth noting that lack of normality is often shown in 

the tails of a distribution.  The Normal -Q-Q plot would tend 

to pick this up.  In contrast the Normal PP plot is constrained 

between 0% and 100% and is, therefore, less likely to show 
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deviations from the tails of a normal distribution.   This 

precious distinction is worth bearing in mind. [Cynically, it 

has been suggested to use Normal Q-Q plots to show non-

normality and Normal P-P plots to show normality!] 

 

Tests of normality 

     There are countless tests of normality. Example tests 

include the Kolmogrov-Smirnov test, or its modification 

known as Lillefor’s test, or the D’Agostino test, or the Jarque-

Bera test, or the Cramer von Mises test, or the Shapiro-Wilk 

test, or the Epps and Pulley test.  The list goes on.  There is 

no one single “best test” for testing normality and there never 

will be.    The monograph [6] compares and contrasts the 

properties of 40 tests of normality but even this monograph 

does not provide comprehensive coverage and it omits a 

number of normality tests that are well known to the statistics 

community.  

     In testing for normality, the statistical hypotheses are of 

the form: 

 

𝑆0  The data are an independent identically distributed 

(iid) random sample from a normal distribution 

 The data are not iid normally distributed 

or 

𝐻0  Underlying distribution is a normal distribution with 

some unknown mean 𝜇 and some unknown variance 

𝜎2 

 The underlying distribution is not a single normal 

distribution.  

     In practice the main use of tests of normality is to 

investigate whether assumptions underpinning the so called 

“parametric” tests are justifiable.  Often there is a strong 

desire by the research community to use standard parametric 

tests and in these cases a researcher would be looking for a 

confirmation of the appropriate normality assumption.  In 

these situations, the researcher would not want to reject the 

null hypotheses as stated above.  However, if we take the 

view that a perfect normal distribution will not be 

encountered in any real practical context then it follows that 

𝐻0  must be false.  Indeed, if normality does not exist in 

practice and if we take a sufficiently large sample then 

statistical tests of normality will lead to the rejection of
 
𝐻0.  

On the other hand, a failure to reject 𝐻0  would be a Type II 

error!     

     The above problem is compounded further by the general 

desire to have good powerful statistical tests.  Accordingly, 

statistical scientists have developed tests such as the Lin-

Mudholkar test of normality which is very powerful for 

detecting lack of normality when the distribution is skewed, 

or the Shapiro-Wilk test which is very powerful when sample 

sizes are < 50, or the Jarque-Bera test which is powerful for 

detecting changes in skewness and/or kurtosis, and so on.   

     A question that we can consider is “Do we really want to 

use a test of normality which is powerful?” i.e. do we want to 

use a test which is very good at detecting lack of normality 

and therefore having a high chance of rejecting  𝐻0?  We 

might, we might not.  From a theoretical perspective the 

parametric tests such as t-tests, regression, ANOVA, etc are 

the best tests available if data is normally distributed and in 

general these tests are robust to minor departures from 

normality.  Accordingly, if assessing assumptions for 

normality then there is a line of reasoning to use a statistical 

test of normality which will pick up large departures from 

normality but be less sensitive to minor deviations from 

normality.  This line of reasoning suggests using a valid test 

but one which is not overly powerful.  One such test is the 

Kolmogorov-Smirnov test which can be used to statistically 

test for normality.  

     Given the robustness of the parametric t-tests and similar, 

it would be preferable to test a null hypothesis 

        

 𝐻0 Underlying distribution is approximately normal  

 

     However, this is not a point null hypothesis; the word 

“approximately” is too vague.  In null hypothesis testing, 

there is no formal statistical test of approximately normal. 

    If there is a desire to test for normality then a common 

problem is a failure to understand what to precisely test. What 

precisely should be “normal”? 

 

VI.  WHAT SHOULD BE TESTED? THE IID 

ASSUMPTION 

     The commonly encountered parametric statistical 

techniques (e.g. independent samples t-test, one-way between 

subjects ANOVA, two-way between subjects ANOVA, 

linear regression etc) have a theoretical development based 

on assumptions that errors are independent identically 

distributed normal random abbreviated to “iid normal”.   For 

instance, in a linear regression model, the model under 

consideration would have the form  

 

𝑌𝑖  =   𝛽0 +  𝛽1𝑥𝑖 +  𝜀𝑖  
 

with the assumption that the error terms, 𝜀𝑖 ,  are independent 

identically distributed (iid) normal random variables with a 

mean of zero, i.e. 𝜀𝑖  ~ 𝑁(0, 𝜎2).   Note that we are NOT 

saying the data (x) is (iid) normal but we are making 

assumption that the errors are iid normal random variables 

with a mean of zero and some unknown standard deviation 𝜎.  

In any practical situation, the errors will be unknown and they 

will be approximated by the sample residuals.    

     For another example, consider the one-way between-

subjects ANOVA.  The model usually used for the one-way 

ANOVA has the form  

1S

1H
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𝑌𝑖,𝑗 =   𝜇 +   𝜏𝑗 +  𝜀𝑖,𝑗  

where 𝑌𝑖.𝑗 is the outcome (dependent variable) for the i-th 

observation in the j-th group, where 𝜇 denotes some overall 

mean, 𝜏𝑗  denotes the effect of the  j-th group, and 𝜀𝑖𝑗  denotes 

a random error for the i-th observation in the j-th group.  For 

development purposes, the error terms, 𝜀𝑖𝑗 ,  are assumed to 

be iid normal (and not the “data”). For instance, suppose a 

computer package is used to generate 100,000 independent 

normal random deviates, sampling from a normal distribution 

with mean zero and a standard deviation 1.  Let’s call this 

data “data from group 1”.  A histogram of the group 1 data is 

given in Figure 6.  Note that the data in Figure 6 is an example 

of iid normal data (i.e. each data point is independent of any 

other data point, and each data point has been sampled from 

the same normal distribution).   

 

 
Figure 6  Histogram of n = 100,000 iid normal deviates  

 

Let’s suppose this computer exercise is repeated but this time 

taking a sample of n = 100,000 but from a normal distribution 

with a mean of 3 and standard deviation of 1.  Again, this 

sample (data from group 2) would be iid normal.  Further 

suppose this exercise is repeated but this time taking a sample 

of n = 100,000 but from a normal distribution with a mean of 

6 and standard deviation of 1.  Again, this sample (data from 

group 3) would be iid normal.  And finally, suppose this 

exercise is repeated, again taking a sample of n = 100,000 but 

this time from a normal distribution with a mean of 12 and 

standard deviation of 1.  Again, this sample (data from group 

4) would be iid normal.  Figure 7 shows the four sample 

histograms; in each group the data certainly look to be 

normally distributed.    Figure 8 is a normal PP-plot for the 

four sets of data and this graphic too aligns with the notion 

that the data in each group is iid normal.     

 

 
Figure 7 N = 100,000 normal deviates with constant 

variance but with differences in location  

 

 
 

Figure 8 Normal P-P plot with N= 100,000 deviates per 

group 

 

     Now suppose the four sets of data are put together into one 

data set.  The resulting data is shown in Figure 9a and Figure 

9b.    

     A cursory inspection of Figure 9a or Figure 9b would 

indicate that the “data” is not iid normal (in fact the data is 

from a mixture of four different normal distributions).  The 

normal probability plot of the combined sample (Figure 10) 

clearly shows non-normality.     
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Figure 9a Histogram with N = 100,000 deviates per group 

 

 
Figure 9b Histogram of N = 400,000 deviates (a mixture 

distribution) 

 

      

     All of this demonstrates that data combined over different 

groups may not be iid normal even if data within each group 

is iid normal.  Consequently, if aiming to “test” or examine 

the assumptions underpinning an ANOVA (or a regression, 

or a t-test) then it is not the combined data that should be 

assessed for normality. Instead, it would be either (a) examine 

each group separately for iid normality or (b) examine the 

residuals for normality.  Approach (a) involves multiple 

testing or multiple examining .  Approach (b) is the preferred 

approach; after all that is the statistical assumption being 

made.       

     The point is, there is a need to be precise over what is 

assumed to be normally distributed.  The parametric 

statistical tests have an underlying mathematical (systematic, 

deterministic, structural) component coupled with a statistical 

(stochastic, error, random) component.  This later component 

is quantified by “residuals”.  The takeaway message, is, if an 

assessment of normality is being made then the assessment is 

done on the residuals and not the “data”.         

 

    
Figure 10.  N= 400,000 deviates from a mixture 

distribution 

 

      

 

VII. PRELIMINARY TESTING 

     In general, statistical tests performed to test assumptions 

and to inform the choice of the analytical technique for the 

main analysis, are known as preliminary tests. An example 

preliminary test, is when Levene’s test is used to assess 

equality of variance between two independent scale samples, 

with a view to determining whether to use the independent 

samples t-test or the separate variances t-test (aka Welch’s 

test).  Another example of a preliminary test would be to test 

for normality in two independent samples to help decide as to 

whether to analyse the data assuming normality (e.g. 

independent samples t-test) or not (e.g. use the Mann 

Whitney Wilcoxon test).   There is some debate over this 

practice.   

     Some analysts would use preliminary tests with a nominal 

alpha = 0.05 significance level.  It is not clear whether this is 

a sensible choice.  The logic of preliminary hypothesis testing 

of assumptions is different from the logic of drawing 

scientific conclusions in superiority contrasts.  For instance 

some might argue, because of the robustness of some 

parametric tests to violation of assumptions, then they might 

only consider an underpinning assumption to not be tenable 

if they obtain a significant result at the alpha = 0.001 level (or 

lower).  Or, alternatively, if using Levene’s test to effectively 

choose between a default position of the independent samples 

t-test (i.e. equal variances assumed) or Welch’s test then an 

alpha = 0.20 (or higher) might be used arguing no harm is 

done if Welch’s test is used (and also arguing that an 

assumption of equal variances should not necessarily be the 

default).   In summary, amongst those who assess 

assumptions using formal statistical tests there is no 

consensus on the nominal significance level to be used.   

     There is also an unintended statistical consequence of 

preliminary testing.  Preliminary testing is a way of letting 

the data select the test that will be used in its analysis;  this 
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process can adversely affect the statistical error rate. For 

instance, suppose we consider a situation where we have two 

independent groups with scale data.  An analyst might 

employ a strategy of formally assessing the sample data for 

normality and  

     (a) if a statistically significant result is not obtained then 

use the independent samples t-test to compare the two 

samples or  

     (b) if a statistically significant result is obtained (i.e. a 

statistically significant departure from normality in the 

sample) then use the Mann Whitney test to compare the two 

samples.   

     Under this strategy, the analyst is allowing the data and 

preliminary test to pick the statistical test.   

     Suppose we use computer simulation to analyse this 

strategy.  In our simulation, we will sample from normal 

distributions.  In our simulation, we will make the null 

hypothesis of equal means to be true too.  There are two 

situations to consider.   

     Situation A.  …. In any one instance, we fail to reject the 

null hypothesis “the errors are iid normal” and in these cases 

we proceed to use the independent samples t-test to test for 

mean differences. 

     Situation B   … We reject the null hypothesis “the errors 

are iid normal” and in these cases we proceed to use Mann 

Whitney test to test for distributional differences in location.   

     Unfortunately, in Situation A, the Type I error rate [false 

positive rate] for the resulting independent samples t-tests 

would be lower than the normal Type I error rate.      

     Unfortunately, in Situation B, the Type I error rate [false 

positive rate] for the resulting Mann Whitney tests would be 

much higher than the normal Type I error rate. 

     Fortunately, the over and under estimation in Situation A 

and Situation B tend to cancel one another out. However, it 

does remain an unintended consequence that error rates and 

power can be affected by preliminary testing.  Some have 

suggested that if formal testing does cause these unintended 

consequences then perhaps formal testing should not be done 

and informal assessments, such as QQ plots be used instead.  

However, this does not overcome the problem; it merely 

replaces one set of formal tests with another set of informal 

tests.  How can this perceived problem be resolved?  A partial 

answer is to plan, plan and plan beforehand i.e. prior to any 

data collection, to really think through all of the relevant 

analyses and justify them; the more that can be pushed 

upstream to a formal statistical analysis plan the better. Of 

course this is not always possible but there are benefits to 

actively staying in the statistical analysis stage.                     

 

VIII.  SUMMARY  

     The consequences of the Central Limit Theorem suggest 
that approximate normality is likely to occur in some facets 

of nature and society.  Approximate normality is conceptually 

useful but it presents mathematically intractable challenges 

for developing theory.    For this reason, the mathematical 
development of the commonly used parametric tests is based 

on an assumption of (precise) normality.  It turns out that the 

derived statistical tests are not overly dependent on this 

precise assumption being satisfied.  In any event, t-tests and 

ANOVA only require means to be normally distributed or 

approximately so.  This latter requirement might be satisfied 

if the parent distribution is symmetric and sample sizes Are 

between 10 and 30 per subgroup;  or sample sizes of 30 and 

above per subgroup for mild degrees of skewness;  or sample 

sizes greater than 60 per subgroup for moderate levels of 

skewness.   

     Sometimes there is a need to assess normality.  The 
assessment should be done on the residuals.  The null 

hypothesis concerning normality is a precise null hypothesis 

and it is always wrong.  For this reason there are calls to not 

formally test for normality.  Certainly, the null hypothesis 

concerning normality would be rejected if sample sizes are 

sufficiently large.  There is an argument that such formal tests 

might have some merit if sample sizes are small and the tests 

are simply being used to screen for large non-normality.  The 

use of normal Q-Q may be a better way of appraising the 

extent of departure from normality. However, both formal 

and informal assessments of normality are forms of 
preliminary testing.  Preliminary testing could be helpful in 

avoiding the use of an undesirable test but could also have an 

unintended consequence by failing to adequately control 

statistical error rates.  The best remedy for this, is to carefully 

construct the study investigation and statistical analysis plan 

at the outset.  This does not detract from exploring the data 

(and there may be a scientific duty to do a full forensic 

examination of the data, and a moral duty to your participants 

to fully examine the data set).  However, the more pre-study 

preparation the better and this will minimize the problems 

associated with that assumption of normality.              
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