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Abstract. Automatic identification and selective spraying of weeds (such as 

dock) in grass can provide very significant long-term ecological and cost bene-

fits. Although machine vision (with interface to suitable automation) provides an 

effective means of achieving this, the associated challenges are formidable, due 

to the complexity of the images. This results from factors such as the percentage 

of dock in the image being low, the presence of other plants such as clover and 

changes in the level of illumination. Here, these challenges are addressed by the 

application of Convolutional Neural Networks (CNNs) to images containing 

grass and dock; and grass, dock and white clover. The performance of conven-

tionally-trained CNNs and those trained using ‘Transfer Learning’ was com-

pared. This was done for increasingly small datasets, to assess the viability of 

each approach for projects where large amounts of training data are not available. 

Results show that CNNs provide considerable improvements over previous 

methods for classification of weeds in grass. While previous work has reported 

best accuracies of around 83%, here a conventionally-trained CNN attained 

95.6% accuracy for the two-class dataset, with 94.9% for the three-class dataset 

(i.e. dock, clover and grass). Interestingly, use of Transfer learning, with as few 

as 50 samples per class, still provides accuracies of around 84%. This is very 

promising for agricultural businesses that, due to the high cost of collecting and 

processing large amounts of data, have not yet been able to employ Neural Net-

work models. Therefore, the employment of CNNs, particularly when incorpo-

rating Transfer Learning, is a very powerful method for classification of weeds 

in grassland, and one that is worthy of further research. 

Keywords: Weed Detection in Grass, Convolutional Neural Networks, Trans-

fer Learning, Machine Vision. 

1 Introduction 

The presence of weeds in grass reduces productivity and weed consumption by grazing 

animals can constitute a considerable threat to their health. To combat this the agricul-

tural industry often employs weed control in the form of ‘blanket spraying’, where 

herbicides such as glyphosate are spayed across the land irrespective of where the 



 

weeds actually are. As well as being expensive and detrimental to the environment 

(causing contamination of watercourses and negative effects on surrounding plants and 

wildlife), this practice also kills other broad-leaf plants, such as white clover, which are 

desirable since they can reduce fertilizer requirement, as well as comprising a valuable 

source of nutrition. One of the most common and invasive weeds is the broad-leaf weed 

known as dock leaf (Rumex obtusifolius). One way of controlling this is to employ 

‘selective spraying’, where herbicide is manually sprayed on areas with high weed den-

sities. However, since this is highly laborious, it is an expensive procedure. There are, 

therefore, strong motivators for the development of systems that are able to automati-

cally implement such selective spraying with good precision. The obvious way to direct 

such an operation is through use of a vision system, and when the weed is of a different 

color to surrounding soil [1] (or where the weed rises above the surrounding plants), 

this can be readily achieved. However, “in-pasture” weed detection is considerably 

harder as the weeds and grass are both predominantly green; and the images are gener-

ally busy, with the grass often obscuring the weed [1]. For situations where the amount 

of weed in the image is relatively small (e.g. less than 5%), its identification is a non-

trivial task, even for human observers. The task can however be achieved by machine 

vision systems that employ conventional image analysis algorithms. For example, use 

of Local Binary Patterns (LBP) to extract features from local textures from dock leaves 

in pasture, with a Support Vector Machine (SVM) as the classifier, has been reported 

to provide an accuracy of just over 80% [1]. In a previous paper [2], we described how 

we replicated this finding on a large dataset; and how we employed deep learning to 

increase the accuracy to above 90% while ensuring the system is capable of detecting 

weeds in different pastures under various representative outdoor lighting conditions. 

This paper further extends the work by again training a CNN using a large set of images 

and confirming accuracies of dock detection of around 95%; and then experimenting 

with ‘Transfer Learning’. This is a recently emerging method that allows the creation 

of very complex CNN models with relatively little training data and low computational 

requirements. This was achieved by employing networks previously trained on the 

ImageNet dataset [3]. The creation of reliable models from restricted datasets is cer-

tainly something worth investigating, since a traditional problem with machine learning 

approaches has been the large amount of data that is generally required to train a model 

of sufficient sophistication for the task. This paper describes work we have done in this 

area; and starts with an outline of relevant background research. 

2 Background Research 

2.1 Automated Weeding 

Although modern automation hardware can facilitate the building of an automated 

herbicide spraying system, the main challenge is how to selectively control the spray-

ing. This requires a vision system capable of accurately and reliably locating weed po-

sition. While this is possible using fairly simple machine vision techniques for weeds 

in bare earth, creating a reliable model for detecting weeds in grassland has proved a 

much harder task. A few research works have investigated weed detection/recognition 



 

in grasslands by using conventional machine learning methods [4, 5, 6]. More recently, 

Binch and Fox [1] presented a comparison of the current state of the art in weed detec-

tion techniques, using a single ‘Rumex vs Grass’ dataset to train and evaluate them on. 

They use a classifier which looks to maximize the margin by which a hyperplane sep-

arates two classes in feature space. One gap or weakness in these works is the omission 

of any Neural Network based approaches, in particular ‘deep’ Convolutional Neural 

Networks (CNNs), which have shown significant advantages over ‘traditional’ machine 

learning methods in recent years. 

2.2 Machine Learning 

Machine Learning is a subfield of Artificial Intelligence that allows us to solve prob-

lems that cannot be solved with explicit programming or conventional mathematical 

techniques. Taking ideas from the fields of Artificial Intelligence, Computer Science 

and Computational Statistics, it uses algorithms that can learn from data through a pro-

cess of self-improvement. Relevant algorithms include Local Binary Patterns (which 

describe local textures as a feature extractor) and a Support Vector Machine as the clas-

sifier. The resulting models produced can then be used to make predictions on similar, 

domain specific data. Machine learning has been providing effective vision system so-

lutions for a wide range of object detection tasks. Generally, desirable features can be 

readily extracted from indoor and structured environments. However, when it comes to 

outdoor environments where there exist variations that cannot be modelled explicitly, 

conventional machine learning methods can struggle to maintain good performance. 

This calls upon investigations and comparisons of different methods that can obtain 

reliable features (hand crafted or automatically learned) regardless of the complexity of 

data acquired. One such method is Neural Networks, which is a class of machine learn-

ing algorithm/model based loosely on neuronal processes in the biological brain, where 

a number of neurons are connected together by ‘weights’ (where the model is stored). 

While the first studies involving artificial ‘neurons’ were in the 1940s, perhaps the first 

paper to receive widespread interest was the introduction of the Perceptron by Frank 

Rosenblatt in 1958 [7]. However, at this time it was thought that this approach was not 

suitable for solving non-linear problems, which led to a long period of limited research 

in this area. It was not until the 1980s that there was wide realization and exploitation 

of the capabilities of multi-layer Neural Networks to model any relationship between 

inputs and outputs, whether linear or non-linear, (provided there is sufficient data from 

which to generalize). In 1980, Fukushima [8] proposed an architecture inspired by the 

human visual receptive fields that he named the ‘Neocognitron’. It described alternating 

layers that convolved and sub-sampled an input image. However, its usefulness was 

limited without a robust approach to learning the weights. A significant advance was 

made in 1986 by Rumelhart et al., who presented a new method of weight optimization 

called ‘Backpropagation’ [9] that allowed several layers of neurons to be stacked to-

gether to form a multi-layered network. Backpropagation uses the chain rule to propa-

gate the error signal at the output back through each layer of the network, for calculation 



 

of weights that tend to minimize the error. The work of Fukushima and Rumelhart ef-

fectively inspired and enabled the development of the powerful machine learning tech-

nique known as the Convolutional Neural Network (CNN). 

 

Convolutional Neural Networks. The CNN is a method that was developed for image 

recognition tasks by taking inspiration from the biological brain, in particular the con-

nective topology of neurons in the visual cortex. In 1999 LeCun described ‘LeNet-5’ 

[10], a 7-layer CNN that recognized hand written digits; and the power of the new ap-

proach was proven when it was used for an automated check reading system that has 

been used by banks ever since. A useful/intuitive way to think of convolution is as an 

operation that takes as input two functions: an input signal, and a filter; and outputs a 

third function that is a modified or ‘filtered’ version of the input. This idea has been 

used for some time in image processing, where specialized ‘filters’, also called convo-

lutional kernels, have been designed to perform a number of tasks such as image 

smoothing, sharpening and edge detection; and the generation of specialized, system 

specific ‘feature detectors’. The function output from this operation is often called a 

‘feature map’ and can be used as the input to traditional machine learning/classification 

algorithms for feature detection - to enhance the performance of the model. The CNN 

was a new type of Neural Network, that was trained using backpropagation and which 

had a new architecture. It consisted of several ‘convolutional layers’, each containing 

several separate convolutional filters that each output a feature map from the layer’s 

input image. These are then stacked together and sent to the next layer. Also, the net-

work had several ‘fully connected layers’, similar to those traditionally found in Neural 

Networks. This created a powerful image classification model that combined the fea-

ture detection properties of convolutional filters with the versatility of Neural Net-

works. The final development, in 2009, was to employ Graphical Processing Units 

(GPUs) as general-purpose processors for training large machine learning models [11]. 

This enabled great reductions in training times, where a network that would previously 

take months to train could now be trained in days. This meant that the use of exception-

ally large networks was possible; and led to a period of rapid development of CNN 

architectures. The result was a dramatic increase in the performance of vision systems, 

and the subsequent research into the application of CNNs across a wide range of sec-

tors, that we see today. There has been only one significant drawback to the CNN ap-

proach – traditionally very large amounts of training data have been required to train 

networks that are sufficiently complex to accurately and reliably perform useful tasks 

in the real world. 

 

Transfer Learning and the ImageNet Data-Set. The method known as ‘Transfer 

Learning’ involves combining a ‘pre-trained’ network with a limited amount of appli-

cation specific data. The result is a CNN that has a performance comparable to that of 

a conventionally fully trained CNN, but a much smaller requirement for training data. 

In Transfer Learning, the lower convolutional layers of the pre-trained network (with 

‘frozen’ weights), are combined with several, untrained, ‘fully connected’ layers. The 

resulting model is then trained on an application specific dataset, resulting in the train-

ing of only the ‘fully connected’ layers. The pre-trained network can be generated by 



 

employing the ImageNet dataset, which contains over 1,000,000 images in 1000 classes 

(examples include animals, types of vehicles, household objects and many more). In 

2012 Krizhevsky et al. developed AlexNet [12], which was a slightly deeper, more 

complex version of Lecun’s original CNN model, LeNet. When analyzing ImageNet, 

AlexNet outperformed all other approaches by wide a margin: 15.3% error versus the 

next best of 26.2% error. Subsequently this method was universally accepted and 

largely adopted by the machine vision community. In 2014 Ali Sharif Razavian et al. 

released a paper that explored the following idea: Since the ImageNet dataset is so di-

verse, the lower convolutional layers of a CNN, trained on this dataset, would contain 

very general feature detectors that could be used as the low-level feature detectors for 

a number of machine vision tasks [13]. This theory proved to be true and ImageNet 

trained CNNs have shown strong performance when compared to other more sophisti-

cated methods. There are now a number of the best performing models, pre-trained on 

the ImageNet dataset, available to download and use freely. Implementing Transfer 

Learning in this way has become a very useful tool for creating high performing models 

without the large data and computational requirements that are often needed to train 

complex networks. This is important since, for large amounts of data, much effort is 

required for both the capturing and accurate labelling. The tests described below were 

undertaken to determine the extent to which Transfer Learning could provide these 

CNN benefits for automatic detection of weeds in grass. 

3 Methodology 

The work undertaken comprised three parts. The first was to design a CNN based clas-

sifier for the task of classifying weeds in grassland, trained from scratch on the subject 

dataset. This model was based on the ResNet architecture, since it employs a powerful 

yet simple learning model [14]. The second part compared the performance of several 

pre-trained CNNs, as pre-trained feature detectors for the task of classifying weeds in 

grassland, and built a ‘Transfer Learning’ based classifier, using the best model found. 

The third part compared the performance of Transfer Learning models with conven-

tional CNNs for small datasets. To do this, the two network designs, identified in the 

first two stages, were trained on increasingly small datasets, to see how their perfor-

mance varies with the data available. 

3.1 Dataset Processing and Usage 

The first dataset used was a two-class dataset, consisting of Rumex and grass, with each 

class consisting of 2025 images, resulting in a total dataset size of 4050 samples. Im-

ages were labelled as Rumex if over 5% of their pixels contained Rumex, with the 

remainder of the image being filled with grass. This dataset was used for much of the 

initial testing because, as the two datasets are so similar, it should yield quicker results 

than the ‘Rumex vs grass vs clover’ dataset and give almost as good an assessment. 

The second dataset used was a three-class dataset consisting of Rumex, grass and clo-



 

ver. Due to fewer clover samples being available, and balanced datasets generally yield-

ing less biased models, each class only consists of 1600 samples, resulting in a total 

dataset size of 4800 samples. Each dataset was divided, with an 85/15% split, into a 

training set (used to train the models on), and a validation set (solely used to test the 

model’s performance on unseen data). This allows the assessment of the model’s true 

performance and the detection of overfitting. All tests conducted, including those with 

varying size training datasets, use the same validation datasets, ensuring a fair compar-

ison. This results in a training set of 3442 samples and validation set of 608 samples 

for the two-class problem (Rumex vs grass), and a training set of 4080 samples and 

validation set of 720 samples for the three-class problem (Rumex vs grass vs clover). 

Data augmentation was used to artificially enlarge the dataset being used by applying 

random transformations such as zooming or rotating the image. This can help to reduce 

the problems from overfitting that are often present when modelling small yet complex 

datasets. The Keras TensorFlow library provided a useful tool for real-time image aug-

mentation. An augmentation regime was chosen that consists of the following: First the 

pixel values are scaled between zero and one; a process that yields slightly better train-

ing results. Next the images are randomly rotated in the range of -10° to 10°. The im-

ages are then randomly shifted in both width and height in the range of 0-2.5%. A ran-

dom zoom is then applied, zooming in on the images in the range of 0-10%. The final 

augmentation technique used is to randomly flip images horizontally and vertically. 

The resulting image is then resized to 224x224 pixels before being presented to the 

network for training. Fig. 1 shows several examples of augmented images (without 

pixel scaling applied). 

Fig. 1. Original and augmented images of: Grass, Rumex and Clover. 



 

3.2 Testing 

There is not space here to give detailed descriptions of all the tests undertaken; and 

therefore this section will focus on the testing of the Transfer Learning. Here the per-

formance of Transfer Learning based CNNs are compared to that of ‘conventional’ 

CNNs (trained from scratch on the subject dataset), while the amount of data available 

(or the size of the training dataset), is varied. Of particular interest is how each method’s 

performance degrades when trained on increasingly restricted datasets; since an ability 

to create complex models with small amounts of data is very useful. The best conven-

tional ResNet network and the best Transfer Learning based network were trained on 

several training datasets of varying size, while being tested on the same validation da-

tasets used throughout. The training details, the training and validation accuracy, and 

training and validation loss, were recorded for assessment. The conventional ResNet 

network was trained from scratch, and the other network was trained using Transfer 

Learning. Each network was trained on data batches of 64 samples at a time, for 200 

epochs, and employed the same learning rate decay strategy as was used in previous 

sections, with the initial learning rate being divided by ten after the first 150 epochs. 

The initial learning rate was taken from previous tests. The ‘Stochastic Gradient De-

scent’ optimization algorithm, with a momentum of 0.9, and ‘L1’ loss function was also 

be used, as in previous tests. Six dataset sizes were tested, based on the number of 

samples in each class, and the class sizes used were 10, 25, 50, 250, 500 and 1721 / 

1360 samples (full training dataset). This resulted in full training dataset sizes of 20, 

50, 100, 500, 1000 and 3442 samples for the two-class problem (Rumex vs grass); and 

full training dataset sizes of 30, 75, 150, 750, 1500 and 4080 samples for the three-class 

problem (Rumex vs grass vs clover). This gave a good idea of how performance de-

grades with the loss of training data, for each method tested. 

4 Results 

4.1 Final Models 

The best conventionally trained model identified was a 26-layer ResNet network with 

16 filters in the first convolutional layer and dropout applied to convolutional layers 

with a dropout rate of 0.15. The best Transfer Learning based model used the convolu-

tional layers of an ImageNet pre-trained MobileNet network [15], which is a stream-

lined version of Xception [16] that was developed by Google for use in their mobile 

devices. This model is being included because Xception was an important architecture 

that introduced a new model for convolutional layers. Also, since any weed detection 

model would have to run on mobile hardware, it is useful to see how a mobile architec-

ture could perform. The MobileNet network employed two ‘dense’ layers of 1024 and 

N neurons, where N is the number of classes in the dataset, and dropout was applied to 

the dense layers with a dropout rate of 0.7. These models were trained for the Rumex 

vs grass dataset and for the Rumex vs grass vs clover dataset. For the first dataset the 

best validation accuracy achieved by the ResNet network was 95.6% and the best 

achieved by the MobileNet network was 93.2%. For the second dataset, the ResNet 



 

network achieved a validation accuracy of 94.9% and the MobileNet networked 

achieved 91.1%. The conventionally trained ResNet network still outperformed the 

MobileNet network, providing the best classifier for both datasets presented. 

4.2 Transfer Learning vs Conventional Networks 

The performance of conventionally trained neural networks was compared to that of 

Transfer Learning based approaches, as the data available for the models to learn from 

was reduced. The two models identified above were trained on several datasets of di-

minishing size while being tested on a single validation dataset. Fig. 2 shows the vali-

dation accuracy achieved by each model plotted against the number of data samples per 

class in the training dataset used. 

 
 

Fig. 2. CNN (Fully Trained ResNet26 vs Transfer Learned MobileNet) validation 

accuracy against Samples per class for identification of Rumex (Dock) in Grass and 

with Grass and Clover. 

 

While the conventionally trained network achieved higher accuracy scores if there were 

over 250-500 data samples per class in the dataset, this performance quickly dropped 

as the data available was reduced, and for the smaller dataset the ResNet network was 

able to achieve little more than random guessing. The pre-trained MobileNet network 

on the other hand was far more robust towards reduction in dataset size; and was able 

to achieve competitive results with as little as 25 samples per class in the dataset, 

thereby showing the true strengths of this method. 

5 Discussion 

One of the main questions posed here has been what performance gains are possible by 

using Convolutional Neural Networks for weed classification in grasslands - in partic-

ular identifying Rumex in grass. A review of the current state of the art (non-CCN) 



 

techniques for this weed detection stated that: ‘... In their study, the single best algo-

rithm had a classification accuracy of 82.88% and the best ensemble of models had a 

classification accuracy of 83.4%.’ In our work, the best classification accuracy achieved 

was 95.6%, from the 26-layer ResNet network, showing considerable improvements 

over previous techniques. However even more impressive is the fact that the best ‘trans-

fer learning’ based model achieved a classification accuracy of 83.5% using a dataset 

of just 50 samples. This shows higher results than previous techniques of [1], while 

only requiring a training dataset that could be collected and processed by a single per-

son in a day - clearly showing the advantages possible with these methods.  

 

Initial testing conducted on training a ResNet network from scratch on the subject da-

tasets showed that a smaller architecture, in both depth and width, led to a higher vali-

dation accuracy from the resulting model. Two possible reasons for this are that the 

network could either be overfitting the dataset and may yield better results from tech-

niques such as dropout, or that the network is so big that it learns exceptionally slowly 

so that, given time, it may lead to a superior model. One interesting result to come from 

these tests was that applying dropout to the convolutional layers of the network, with a 

very small dropout rate, produced gains in validation accuracy- a technique that is gen-

erally believed to only yield positive results when applied to dense layers. Out of the 

ImageNet pre-trained models, MobileNet showed significantly superior results to any 

other model assessed. The main problem found with using this model was its tendency 

to over-fit the dataset it is being trained on. While this problem was significantly re-

duced with the use of dropout in the dense layers, it was still present for the Rumex vs 

grass vs clover dataset. 

 

In the tests that looked at the performance of both conventionally trained networks and 

Transfer Learning’ based networks when trained on increasingly small datasets, the 

clear advantage of Transfer Learning was illustrated. Where the conventionally trained 

network’s performance sharply dropped as the data available was reduced, the Transfer 

Learning based model continued to give competitive results from very small datasets. 

This is a very useful feature for small businesses and projects where acquiring and pro-

cessing the large amounts of data required for conventionally trained networks is not 

always possible. 

6 Conclusion 

This work has addressed the problem of building a model for classifying weeds in 

grasslands - a problem that has stalled the development of autonomous ‘selective’ herb-

icide spraying systems for some time. The recent leaps in image classification accuracy 

made using Convolutional Neural Networks, combined with the potential substantial 

ecological and cost savings of automated selective spraying, have provided the motiva-

tion for this work. 

  

The main goals were to: 



 

 

 Assess the performance of Convolutional Neural Networks for weed classifi-

cation, looking at the gains possible over the previous state-of-the-art, taken 

from [1].  

 Examine the performance of both conventionally trained networks, and the 

use of networks pre-trained on the ImageNet dataset - a process known as 

‘Transfer Learning’.  

 

From the testing conducted two models were identified for the task of weed classifica-

tion: a 26-layer ResNet network that was trained from scratch on the subject datasets, 

and a Transfer Learning based model that used the convolutional layers of an ImageNet 

pre-trained MobileNet network in conjunction with two ‘dense’ layers trained on the 

subject datasets. While both models showed improved classification accuracy when 

compared to previous techniques, it was the conventionally trained ResNet network 

that provided the best results, with a classification accuracy of 95.6% on the two-class 

dataset and 94.9% on the three-class dataset. This shows a considerable step in perfor-

mance when compared to ‘traditional’ models and opens many options for agricultural 

automation. The final observation was how little data was required to create Transfer 

Learning based models using ImageNet pre-trained networks. This method showed 

competitive results when trained on as few as 25 samples per-class in the dataset and 

substantially reduces the data required to train complex models. This method therefore 

comprises a viable option for businesses that, due to the high costs of collecting and 

processing large amounts of data, previously could not employ the use of Neural Net-

work based models. 

 

To summarize, the tests conducted in this work have shown the improvements possible 

for weed classification models when using Convolutional Neural Networks and Trans-

fer Learning. The results suggest that these methods have potential to provide reliable 

and practical multi-species weed classification in real time in-the-field; thereby ena-

bling development of automated selective weed eradication systems, and realization of 

all the important associated long-term benefits. 
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