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Abstract 

For over 100 years, Microbial Fuel Cells (MFCs) have been developed as 

eco-friendly alternatives for generating electricity via the oxidation of organic 

matter by bacteria. In the early 2000s, collectives of MFCs were proven fea-

sible energy providers for low-power robots such as Gastrobot and EcoBots. 

Even though individual MFC units are low in power, significant progress has 

been achieved in terms of MFC materials and configurations, enabling them 

to generate higher output levels. However, up to this date, MFCs are pro-

duced and matured using conventional laboratory methods that can take up 

to three months to bring the MFCs to their maximum power aptitudes.  

In this work, an approach to use a low-cost (£1.5k) RepRap liquid handling 

robot called EvoBot was employed with the aim to bring the MFCs to their 

maximum power ability in a shorter time span. Initially, the work focused on 

establishing an interface and interconnection between the living cells (in the 

MFC) and the robotic platform, and investigating whether the MFC voltage 

can trigger a feedback loop feeding mechanism. It was shown that the robot 

successfully matured the MFCs in 6 days and, they were also 1.4 times more 

powerful than conventionally matured MFCs (from 19.1 mW/m2 to 26.5 

mW/m2).  

This work took a rounded approach in improving the overall MFC perfor-

mance. 3D-printable materials that can be produced from EvoBot were in-



   

 

vestigated for fabricating MFCs. MFCs employing these printable materials 

had almost 50% improved power output (from 66μW to 130 μW) compared 

to the ones based on conventional, fluorinated materials. Furthermore, Evo-

Bot was able to improve the fuel supply frequency and composition using 

evolutionally algorithms. For the first time, this project has demonstrated that 

the fabrication and maintenance of MFCs can be automated using a dedicat-

ed robotic system which can result in optimised power generation of MFCs. 
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Chapter 1 Introduction 

1.1 Overview 

Nowadays robotic systems and artificial intelligence are changing the way we 

interact with the world around us. Robotic systems can be considered as one 

of humankind’s greatest accomplishments, with manufacturers developing 

robots that make our life easier. Already, robots exist in our households (e.g. 

iRobot vacuum cleaner and Amazon Alexa), and our interaction with them 

improves our everyday tasks.  

Many scientific and technological advancements that can be traced back to 

the beginning of the 1st century, have contributed to the development of ro-

botics as we know it today. Since the introduction of the first human-like ro-

bot (ELEKTRO) in 1939, many notable discoveries showcasing the robotic 

progress have been made. In particular, the creation of the two “turtle ro-

bots”, Elmer and Elsie, developed by W. Grey Walter in 1948 opened the 

way to the field of autonomous robots. These two robots were able to per-

form phototaxis and find their charging station before running out of battery. 

In the past 80 years, robotics and disciplines associated with robotics (i.e. 

Artificial Intelligence) have come such a long way that now many individuals, 

industries and research areas are benefiting from these advances.  

Unlike robots, Microbial Fuel Cells (MFC) were invented more than 100 

years ago and have not faced the same trajectory in success. MFCs are en-

ergy transducers that convert liquid organic matter into electricity through 

microbial digestion and respiration. MFCs have been successfully incorpo-
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rated into field trials and laboratory based trials around the world for power-

ing among others; LED lights, gadgets and sensors. Despite some ad-

vancements especially over the past 30 years, research still relies on con-

ventional and outdated methods for maintaining these systems. More specif-

ically the low power of the MFC units (power output in μW and mW) along 

with the long time they require for maturing (inoculation) and reaching maxi-

mum power output levels, are a hindrance to the advancement of the tech-

nology. 

However, robotic automation might be an innovative approach to advance 

MFC research, and the technology itself, even further. This approach has 

been explored as part of the EVOBLISS project, an EU funded interdiscipli-

nary project, which sponsored this PhD work. The main apparatus of the pro-

ject was EvoBot, a customisable liquid handling robot, which was trialled as 

an automated maintenance platform to carry out MFC experiments. This the-

sis therefore investigates the contention that:  

By responding to changes in MFC voltage, the EvoBot platform can ma-

ture and maintain the MFC systems whilst optimising their power out-

put.  

1.2 Thesis outline 

Chapter 2 presents a literature review survey addressing the background of 

MFC technology from its invention until now. This is followed by a breakdown 

of the various MFC components, detailing their role in the system and the 

pioneering advancements up to date. Then an overview of the relevant MFC 

practical applications to date is given, highlighting the development of MFCs 

for low-power autonomous robots. Finally, the chapter brings into context the 
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relevance of MFCs to the EVOBLISS project and outlines the research aims 

and objectives. 

Chapter 3 presents the materials and methods employed throughout the 

thesis including the make-up of MFCs, peripherals used and analysis meth-

ods. This chapter acts as a reference point to the experimental work carried 

out in the following empirical chapters. 

Chapter 4 reports on the suite of experiments carried out to develop and in-

vestigate 3D-printable materials as novel MFC components. This chapter is 

divided into three subsections that describe the main three elements of fo-

cus; separators and membrane electrode assemblies (MEAs), substrates 

and cathode electrodes. Concomitantly with the power output analysis, this 

chapter will discuss the economics of MFCs and how the cost effective mate-

rials tested here can lead to a widely affordable MFC that could cost £1 per 

unit. 

Chapter 5 starts with the history behind EvoBot and describes the character-

istics and abilities of the robot. Then, the series of five interactive experi-

ments are presented, highlighting the interaction between EvoBot robot and 

MFCs and how these lead to the improved power output of the lat-

ter.Chapter 6 summarises the findings of the study, outlines the novelty of 

the project and identifies directions for future research. In an effort to stand-

ardise the results, the specific advancements towards the MFC technology 

made through this study (in terms of price and performance) are highlighted 

in the executive summary. Furthermore, even though this is beyond the 

scope of this thesis, in this chapter the power output of the advanced MFCs 

is compared against the power requirements of the EvoBot. This approach 

aims to inform future studies by putting into context the power requirements 

of a robot such EvoBot and the power output of the MFCs themselves. Final-
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ly, this chapter also includes a list of publications derived from work present-

ed in this thesis. 



 

 

Chapter 2 Background 

This chapter aims to present a background overview of the Microbial Fuel 

Cell (MFC) technology, through a literature review, starting from its creation 

and leading to noteworthy breakthroughs, providing an explanation for the 

principles of operation. The chapter then finishes with an overview of MFC 

practical applications.  

2.1 Microbial Fuel Cells 

Microbial Fuel Cells (MFCs) are bio-electrochemical transducers that use the 

catalytic activity of microorganisms to convert chemical energy (stored in or-

ganic matter) into electricity (Bennetto, 1990). MFCs can utilise a vast collec-

tion of organics including organic waste, due to the diverse metabolism of the 

bacterial communities within the MFC system (Pant et al., 2010). This char-

acteristic has led into a rapidly expanding international interest around the 

subject of MFCs for its potential to treat wastewater and harvest green ener-

gy (Gajda et al., 2016; Ahn and Logan, 2010). 

2.1.1 Chronological development 

Even though the MFC research interest has bloomed over the recent 20 

years, as reflected from the number of publications around the subject 

(Figure 2.1), it was, in fact, more than 100 years ago that the fundamental 

MFC concept was first reported by Potter (Potter, 1911).  
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Figure 2.1 - Quantitative analysis of the literature focusing on “microbial fuel cell/s”. 

(Google Scholar, January 2019). 

In his pioneering study, Potter was the first to exploit the microbial ability of 

decomposing organic matter and liberating electrons. In the aforementioned 

study, he managed to produce 0.3-0.5V of electrical energy using Saccha-

romyces cerevisiae (baker’s yeast) and pure culture of Escherichia coli, 

grown on platinum electrodes (Potter, 1911). Although Potter with his dis-

covery established the stepping stones for microbial electricity, historically 

the first ever mention of bioelectricity occurred in the 18th century by Luigi 

Galvani who proved the flow of electrons in biological organisms and 

demonstrated this using dead frog legs  (Figure 2.2) (Whittaker, 1910).   
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Figure 2.2 - Drawing illustration of Galvani's experiment on “animal electricity” using 

frog legs.  

This experiment proved that electrons could flow in biological organisms. In his 

experiment, Galvani plugged a zinc wire with the muscle of the leg, and a copper wire 

with the nerves and showed than when the two wires are connected an instantaneous 

convulsion takes place (Wells, 1859).  

 

Potter’s discovery was underappreciated at the time, perhaps due to the neg-

ligible amount of power (units of nanoWatts) that his MFC prototype pro-

duced. Even when 20 years later Cohen managed to produce more than 35 

V, by connecting MFCs in series (Cohen, 1931), still there was not a lot of 

interest in the technology. The years that followed recorded the nadir of the 

MFC research. However, that attitude changed in the 1960s when the Na-

tional Aeronautics and Space Administration (NASA) wanted to assess MFC 

applications in space missions (Canfield, Goldner and Lutwack, 1963). De-

spite the promising technology, the understanding around fuel oxidation and 

MFC reactions were limited back then, thus, the outcome from this work was 

not enough to encourage NASA to continue the studies.  
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Even though NASA’s attempt to utilise MFCs for its explorations proved un-

successful at the time, the fact that it even attracted their attention fuelled the 

MFC research and many breakthroughs followed. A key set of findings came 

from Allen and Bennetto’s research in the 1980s. This gave new insights into 

the technology by demonstrating a better capability from MFCs, to produce 

power, which could be greatly enhanced with the use of synthetic electron 

mediators (Bennetto, 1990). Their approach made possible the extraction 

and transfer of electrons from bacterial cells, which were otherwise incapable 

of directly transferring electrons, to the anode electrode. Even though it was 

shown through this study that synthetic mediators can accelerate the elec-

tron transfer process within the anode,  it was an unsafe approach due to 

toxicity and instability issues of the synthetic mediators (Allen and Bennetto, 

1993). Regardless, this study led to the development of the widely used 

“analytical type MFC” design which has been extensively used in MFC re-

search since then, and inspired the development of the MFCs of today 

(Figure 2.3).  

Contemporary of Bennetto’s work, Habermann and Pommer designed MFCs 

which were able to treat two types of wastewaters (sewage and landfill efflu-

ent) continuously for 5 years (Habermann and Pommer, 1991). Their MFCs 

were based on sulphate-reducing bacteria species Desulfovibrio 

desulfuricans which were forming sulphide as a metabolic by-product after 

reducing the sulphate found in wastewater (sulphate was used as the end 

terminal electron acceptor). Subsequently, the sulphide was then anodically 

oxidised to electrons and sulphate (Habermann and Pommer, 1991). Thus 

this study showed that in this type of MFCs the sulphate / sulphide redox 

couple acted as soluble electroactive metabolite (mediator) between the bac-

terial cells and the electrode surface, eliminating the need to add exogenous 

synthetic mediators. 
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A few years later Bond and Lovley (2003) reported that some microbes can 

directly transfer electrons to the anode. These bacteria were named as 

“anodophiles” or “anodophilic organisms” due to their ability to attach to the 

anodic electrode and use it as an electron acceptor. In 2005 another type of 

direct electron transfer was reported and this time it was through the con-

struction of bacterial conductive extracellular appendages (bacterial “nan-

owires”) (Reguera et al., 2005). These discoveries led to the creation of 

mediator-less MFC for electricity generations and encouraged the continua-

tion of the research around MFC systems without the need for exogenous 

mediators that required constant replenishing; this marked the start of a 

modern era for MFCs. The mediator-less / direct electron transfer (DET) will 

be discussed in more detail in the following section 2.1.2.1.  
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Figure 2.3 - Re-drawn version of the Microbial Fuel Cell prototype as created by Allen 

and Bennetto in 1993.  

This design is the foundation of the development of the “analytical type” MFC that has been 

used extensively in MFC research up to now. (Allen and Bennetto, 1993) – Illustrations Cop-

yright© Dean Madden, 2001 - NCBE, University of Reading. 

2.1.2 Operation 

Structurally, MFCs consist of two electrodes, a positive cathode and a nega-

tive anode, which are separated by a semi-permeable membrane such as a 

cation exchange polymeric based membranes or a salt bridge (Figure 2.4). 

Microorganisms are inoculated into the anodic compartment and are growing 

as a biofilm on the electrode. A biofilm is a syntrophic consortium of bacteria 

which can grow on different surfaces. Within that consortium of bacteria, in 

the anode compartment, the electroactive organisms are the ones capable of 

oxidising the substrate by electron abstraction. The electrons are released to 
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the anode electrode either directly, or indirectly (using natural or synthetic 

chemical mediators) (Gralnick and Newman, 2007). The biofilm formation 

within an MFC is of great importance as without a biofilm, the harvesting of 

electrons from bacteria will not be possible. Biofilms will be described in de-

tail in section 2.1.2.1. The anodic and cathodic electrodes are connected by 

an external circuit, which allows the flow of electrons from the anode to the 

cathode side. Here, the reduction of oxygen occurs as will be explained in 

section 2.1.2.2.2 (Figure 2.4). 

 

 

Figure 2.4 - Schematic representation of a Microbial Fuel Cell showing the reduction 

and oxidation (Redox) processes in each compartment. 
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2.1.2.1 The microcosm within an MFC system 

Microorganisms can be nutritionally classified based on; their source of en-

ergy (chemical [chemo-], light [photo-]), their source of electrons (organic 

[organo-]), inorganic [litho-]) and their source of carbon (organic [hetero-], 

inorganic [auto-]-trophic). Microbial cells within an MFC acquire their energy, 

electrons, and carbon through the oxidation of organic molecules. This ability 

has given them the name of chemoorganoheterotrophs.   

During the oxidation process (Figure 2.4), microbial cells obtain energy 

which is stored chemically in the form of adenosine triphosphate (ATP) and 

enables cell growth and multiplication (Willey, Sherwood and Woolverton, 

2009). Also through their metabolic pathways, bacteria release electrons that 

are transferred to NAD+, reducing it to NADH + H+. Subsequently, NADH 

molecules donate the electrons to facilitate electron-requiring processes in 

the cells (i.e. synthesis of cellular components) (Comeau, 2008). However, 

there is a net amount of electrons that is harvested by MFCs and is turned 

into electricity. This process continues indefinitely as long as there is an elec-

tron donor (organic matter) and an electron acceptor present. The latter is 

needed in order to receive the electrons and close the exchange loop. 

In the case of aerobic metabolism, this electron acceptor will be dissolved 

oxygen. However, for anaerobic respiration, this will be an alternative end-

terminal electron acceptor compound such as nitrate, sulphate, organic acids 

or carbon dioxide, with the exception of anodophiles that may use solid 

phase electron acceptors such as metal oxides or conductive materials. The 

latter is the case for microbes in MFC systems where electrons are trans-

ferred from external electron donors (carbon energy sources) to external 

electron acceptors (conductive surfaces), this process is described as extra-

cellular electron transfer (EET) (Haluk and Jerome, 2015).  
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Bacteria cells within an MFC anodic environment can be found both living in 

a planktonic state (free-floating) and/or as part of a biofilm which has been 

defined as: 

“a structured community of bacterial cells enclosed in a self-produced poly-
meric matrix and adherent to an inert or living surface “  

(Costerton, Stewart and Greenberg, 1999) 

 

As mentioned above, the key element in an MFC system is the biofilm for-

mation on the anode electrode (Figure 2.5), composed of microorganisms 

with current generating abilities known as anodophiles or anodophilic. In the 

literature, these biofilms, due to their capabilities, are often referred to as 

electroactive or electrochemically-active biofilms (Haluk and Jerome, 2015).  
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Figure 2.5 – Stages of an electroactive biofilm formation on conductive surfaces.  

Free-floating bacterial cells (planktonic) attach to and grow on a surface, producing extracel-

lular polymers that facilitate attachment and matrix formation. Initially they form monolayers 

which then become multilayers as the biofilm grows, until a full mature biofilm is formed. As 

the cells multiply and divide, some of them detach from the biofilm (daughter cells) and can 

then go on to produce other biofilms.  

 

The biofilm-forming microorganisms can achieve electron transfer to the an-

ode electrode through three different mechanisms which are illustrated in 

Figure 2.6 and can be categorised as direct and indirect electron transfers 

(Patil, Hägerhäll and Gorton, 2012). Anodophilic organisms achieve direct 

transfer of electrons either by direct contact of the outer membrane of the 

bacterial cell with the surface of the anode electrode (via the cytochrome c 

membrane proteins) (Figure 2.6A), or through electrically conductive nan-

owires (molecular pili) which are connected to those cytochromes (Figure 

2.6B) (Reguera et al., 2005). The latter has been observed in studies with 

the model organisms Shewanella oneidensis (MR-1) (Beveridge et al., 2009), 
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proving the ability of those cells to establish physical electrical connection 

with neighbouring cells or electrodes (Figure 2.7). Apart from anodophilic or 

anodophiles, in the literature these bacteria have been also described as 

“electroactive” (Dulon et al., 2007), “exoelectrogenic” (Logan, 2009), 

“electricigens” (Yousaf et al., 2017), “exoelectrogens” (Kumar et al., 2015), 

“electrogenic”(Feng et al., 2009) and “anode-respiring” (Torres, Kato Marcus 

and Rittmann, 2007). 

Indirect or mediated electron transfer facilitates the transfer of electrons out-

side of bacteria cells via the oxidation and reduction (redox) of artificial (ex-

ogenous) mediators or via microbe secreted (endogenous) mediators also 

known as electron shuttles (Figure 2.6C). This is the only way non-

anodophilic bacteria can donate electrons outside of their cell as their outer 

membrane consists of lipids, peptidoglycans, and lipopolysaccharides that 

act as insulator which prevents electron flow (Reguera et al., 2006). To be 

efficient, artificial mediators (e.g. methylene blue, neutral red) need to have 

the following characteristics; i) be capable of achieving physical contact with 

the electrode, ii) be electrochemically active, iii) have similar redox potential 

to the substrate, iv) be stable in both the oxidised and reduced form and v) 

be soluble in aqueous systems in order to pass through or get absorbed by 

the bacterial cytoplasmic membrane (Allen and Bennetto, 1993; Park and 

Zeikus, 2000). However, as mentioned above, exogenous mediators have 

many disadvantages over endogenous ones, due to their toxicity and con-

stant need for replenishment. Endogenous mediators (e.g. sulphide) are ex-

creted by the bacteria itself, as secondary metabolites, they are constantly 

synthesised (do not require any replenishment) and their production can be 

regulated based on the biocatalytic activity of the anodic microorganisms. 

Moreover, metabolites produced by electroactive species such as Pseudo-

monas can enable non-electroactive to achieve EET (Pham et al., 2008) 
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which emphasises on the importance of using a mixed culture of bacteria in 

inoculating and operating MFCs for achieving higher power output levels 

(Nevin et al., 2008).  

 

Figure 2.6 - Schematic representation of direct (A & B) and indirect (C) electron trans-

fer between bacterial cells and anode electrodes.  

A. Direct electron transfer via membrane-bound c-cytochrome proteins B. Direct transfer 

through conductive pili or nanowires C. Indirect/mediated transfer via artificial (exogenous) 

or microbe secreted (endogenous) mediators. 

 

Knowledge on biofilm formation and electron transfer mechanisms enable 

researchers to take an educated decision regarding the type of bacteria that 

their MFC will employ and the type of mediators. This needs to be decided at 

the beginning of the study as it will dictate the inoculation process, as ex-

plained below. Throughout the whole duration of this study, the MFCs were 

operating without any artificial mediators, as a mixed inoculum was used. 
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Figure 2.7 - Photographic evidence of electrically conductive nanowires.  

A. SEM image of the wild-type strain Shewanella oneidensis (MR-1)i (Beveridge et al., 

2009). Copyright© National Academy of Sciences B. Image of a Shewanella oneidensis 

biofilmii. The electron-conducting nanowires extend the length of the bacterium and form an 

electric circuit within the biofilm and the electron acceptor. (Alivisatos et al., 2015). Copy-

right© U.S Department of Energy 

2.1.2.1.1 Inoculation  

Inoculation of the microorganisms in the anodic compartment of an MFC is 

the crucial process that initiates the selection of the electroactive microbial 

community and the formation of the electroactive biofilm.  The source of bac-

teria is equally crucial but differs among studies. Some studies employ mon-

oculture organisms such as Shewanella oneidensis (Ringeisen et al., 2006) 

and Geobacter sulfurreducens  (Katuri et al., 2010) whereas others employ a 

mixed culture of organisms sourced from activated sludge which consists of 

a diverse community of bacteria (Rulkens, 2008).  

The latter is the source of inoculum that has been used throughout this study 

as its’ mixed consortium of bacteria have been proven to exhibit both direct 

electron transfer and endogenous mediated electron transfer; and because 

biocatalytically it is more versatile than monocultures (Fernandez et al., 

1999; Snaidr et al., 1997; Watanabe et al., 1998).  
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2.1.2.1.2 Feeding modes and bacterial growth 

Following the inoculation process, the bacteria need to be supplied with sub-

strate rich in carbon energy sources in order to survive and thrive. In MFC 

operations there are two frequent modes of feeding used, batch feeding (a 

close system) and continuous feeding (an open system). During the batch 

feeding mode, the substrate is replaced when depleted. In contrast, in con-

tinuous feeding, the substrate is supplied constantly with the use of peripher-

al pumps at different flow rates that dictate the hydraulic retention time (HRT) 

of the fresh medium into the anodic chamber. 

Bacterial growth is of great importance within an MFC as it is directly related 

to the amount of fuel (substrate) that is being utilised which is reflected by 

the amount of current that is being generated (Ledezma, Greenman and 

Ieropoulos, 2012). Thus by controlling the bacterial growth, it is possible to 

keep the power performance at optimum levels. Bacterial growth is an ele-

ment that this study attempted to optimise through the use of EvoBot by 

providing on-demand feeding to the MFCs, as presented in Chapter 5. In a 

closed system, planktonic bacteria grow in a well-defined lifecycle that is il-

lustrated as a microbial growth curve with four different phases (Figure 2.8). 
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Figure 2.8 - Microbial growth curve in a batch (closed) system. 

The initial phase is called the lag phase and reflects the initial response of 

bacteria to the introduction of fresh substrate. The duration of the lag phase 

depends on the complexity of the substrate, as new enzymes might need to 

be synthesised by bacteria in order to utilise different nutrients (Willey, 

Sherwood and Woolverton, 2009). Following that, the bacteria start to grow 

and divide at a constant rate which is called exponential (log) phase. The 

rate of growth depends upon the nutrient concentration until saturation 

reaches a sufficiently high nutrient levels. In a batch fed system, population 

growth eventually comes to an end and the growth curve becomes horizontal 

marking the stationary phase of microbial growth (Willey, Sherwood and 

Woolverton, 2009). However during that phase, the cells may remain meta-

bolically active for some time but eventually, go into decline. Microbial cells 

may enter stationary phase because of nutrient limitation, and/or accumula-

tion of toxic waste products. Eventually, after the stationary phase, microbial 
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cells enter the death phase where starving cells show an exponential de-

cline in viability. Some cells lyse while others may remain viable for years. In 

the absence of fresh nutrients, death phase can last for a long time with the 

overall population size remaining constant (Willey, Sherwood and 

Woolverton, 2009). This occurs due to the “altruistic” nature of some micro-

bial cells that die and disintegrate releasing sufficient nutrients to allow the 

survival of the rest of the microbial population. The surviving population con-

stantly evolves and reproduces cells that are best able to consume the nutri-

ents released from dead cells or can better cope in an environment with high 

accumulation of toxic waste. This altruistic behaviour is highly observed in 

biofilm bacteria too and this may allow the biofilm to survive starvation for 

years (Prakash, Veeregowda and Krishnappa, 2003). The fact that biofilms 

can withstand long term starvation adds an extra value to the MFC system 

as it can remain “hibernated” until fresh medium is available to be added and 

awaken the system (Winfield et al., 2015a).  

In open systems, the growth rate of planktonic bacterial cells can be deter-

mined using continuous culture systems such as chemostats. In a chemo-

stat, fresh nutrient-limited medium is supplied to the cells at a constant rate 

while keeping all the other environmental conditions the same. Through this 

approach, the system can maintain a microbial population in “steady state” 

exponential growth for a prolonged period of time (Willey, Sherwood and 

Woolverton, 2009).  

Similarly, in MFC open systems, continuous flow of fresh medium in the an-

ode is important in order to achieve a steady-state which results in stable 

MFC power outputs (Ieropoulos, Winfield and Greenman, 2010b). A continu-

ous feeding mode involves the constant inflow of fresh medium and the sub-

sequent outflow of an equal volume of fluid. The outflow or effluent consists 
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of a mixture of old, and fresh medium and a proportion of biomass (daughter 

cells). Once a steady-state is achieved the concentration of biomass within 

the culture vessel (anode) remains constant (Singleton and Sainsbury, 

2006). It has been reported in the literature that in continuously fed systems 

the growth rate of the anodic biofilm is directly correlated to the resulted cur-

rent and hence the power output of the MFC (Greenman et al., 2011). The 

latter can be maximised by controlling the biofilm’s growth rate (Ledezma, 

Greenman and Ieropoulos, 2012).  

A continuous flow system is beneficial for biofilm research as it allows the 

development of biofilms under different flow rates (substrate supply rate) that 

can determine their thickness. The development of a thick biofilm can limit 

the nutrient diffusion in all its layers whereas a thin biofilm can achieve high-

er metabolic growth rates due to greater diffusion of substrate to the anode 

surface-attached biofilm (Ieropoulos, Winfield and Greenman, 2010b; 

Greenman et al., 2011). Regardless of the advantageous operation of an 

open system, continuously fed MFCs render a rarely reported issue of sys-

tem blockage. Blockages can be caused in the inlet and/or outlet either due 

to the overgrowth of bacteria in the anode wall (You et al., 2015) or the build-

up of struvite in the case of urine-fed MFCs (You et al., 2016). This can have 

a temporary negative effect on the MFC performance which can be resolved 

following the clean-up of the system (You et al., 2015).   

In laboratory scale studies the feeding mode depends on the experimental 

set-up and the purpose of the study. Investigations that are focused on 

wastewater treatment solutions are usually tested under continuous high flow 

rate feedings (Ahn and Logan, 2010; Min and Logan, 2004) whereas investi-

gations of new MFC materials are most often tested in batch modes (Behera 

and Ghangrekar, 2011). However experiments that are aimed to be used in 
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field applications where only intermittent feeding will be available, are tested 

in semi-continuous/batch mode called pulse feeding (Walter et al., 2016b).  

2.1.2.2 Materials consisting an MFC system 

Even though biofilms are the integral part of the MFC system, the efficiency 

of these to harvest the electrons and generate electricity is greatly affected 

by the design-components, structuring and environmental surroundings of 

the MFC units. The collective factors of integration are otherwise known as 

system configuration.  Each and every one of the components within an MFC 

configuration is of great importance and needs to be identified or designed 

so that it interacts harmonically with the peripheral materials and does not 

hinder the power output and performance of the system. Another major chal-

lenge in designing MFCs is the associated cost that comes from each mate-

rial. Ideally, this needs to be kept at a minimum in order to make MFCs an 

economical alternative method of energy production (cost per watt).  An 

overview of the significance of these core MFC materials is presented below.  

2.1.2.2.1 Anode Electrode 

First and foremost, apart from its ability to conduct electricity, the choice of 

anodic electrode material needs to be made based on its ability to encourage 

biofilm formation on its surface. Equally, it needs to possess the following 

characteristics; high mechanical strength, large surface area, corrosion resis-

tivity, biocompatibility, eco-friendliness and be cost-effective.  

Materials that fulfill the criteria above include carbon-based (e.g. carbon veil, 

carbon cloth, carbon paper, carbon fibre, carbon and graphite nanotubes) 

(Wei, Liang and Huang, 2011) and non-corrosive metals (stainless-steel 

mesh) (Pocaznoi et al., 2012) thus, they have been extensively used in la-
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boratory (Zhou et al., 2011) and field-based, MFC studies (Ieropoulos et al., 

2015). Each of these materials has been proven suitable for MFC purposes 

although there are some disadvantages associated with each of them, as 

summarised in Table 1 , that make them unsuitable for universal usage. The 

selection of the anode material is highly dependent on the application that 

the MFC is intended to perform. For example, some materials are not ideal 

for scaled up MFC units (e.g. graphite plate) due to their low surface area 

and high cost, but are suitable for laboratory-based MFC applications such 

as microbial analysis of electroactive biofilms (Shewa, Chaganti and Lalman, 

2014). 

The porosity of the anode material is the main contribution to higher power 

per surface area, compared to smoother materials (Wei, Liang and Huang, 

2011). This is attributed to the larger surface area for bacteria to attach, per 

unit of volume in the anodic chamber. Many studies showed that folded po-

rous anode material in a three-dimensional (3D) pack shape have a great 

impact on the power performance as it is increasing the available surface 

area and are maximising bacterial colonisation (Ieropoulos, Greenman and 

Melhuish, 2008). In the same context some studies attempted to fill those 

packs with carbon-based granules to increase even greater the specific area 

(Rabaey et al., 2005) however such a configuration can cause clogging in 

the long term as the porosity of the electrode is decreasing (Rabaey et al., 

2009).  

In an effort to improve bacterial adhesion and maximise the electron transfer 

between bacteria and electrode surfaces, the focus of anodic electrode has 

been recently turned to surface modification (Fiset and Puig, 2015). This has 

been achieved using physical and/or chemical methods such as coating with 

nanomaterials (You et al., 2014) or treatment with electrochemical oxidation 
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of electrolytes (Li et al., 2014), this approach has been proven to be effective 

for laboratory scale experiments. A similar approach was used for an exper-

iment presented in this thesis, where carbon nanoparticles were coated on 

anodic surface areas and their impact on the power output was assessed, 

more details on that experiment are presented in Chapter 5.6. 

The bioelectrochemical processes that take place in the anodic compartment 

are important element of an MFC which in order to be optimised needs to be 

fully understood. Hence, there is a large body of knowledge invested in im-

proving the understanding around electrochemical communication between 

biofilms and conductive surfaces (Pankratova and Gorton, 2017) as well as 

optimising anode electrode materials (Zhou et al., 2011), electron transfer 

(Patil, Hägerhäll and Gorton, 2012) and anode inoculum for achieving maxi-

mum chemical to electrical energy conversion (Pandey et al., 2016).  Ad-

vancing the bio-electrochemical processes in the anode compartment was 

not the main focus of this thesis hence it is an element that this study only 

touched upon briefly. As mentioned above, in an effort to increase the anode 

surface area carbon veil was coated with carbon nanoparticles. Following the 

reviewing of the materials that are in the market and have been used for 

similar studies, all the MFC for this study contained carbon veil as their an-

ode electrode of preference, due to the advantages presented in Table 1. 
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Anode Material Advantage Disadvantage Reference 

Carbon fibre veil Low cost, Large surface 
area, high electrical con-
ductivity, high porosity  

Fragile (If not folded 
in a 3D shape) 

Ieropoulos, 
Greenman 
and Melhuish, 
2008 

Carbon paper Relatively porous, con-
ductive, good for small 
scale MFCs 

Thin, stiff, slightly 
brittle, high cost 

Logan, 2008 

Carbon cloth Foldable, durable, po-
rous, large surface area, 
high porosity, high elec-
trical conductivity 

Expensive Guerrini et 
al., 2014  

Carbon brush High surface area, high  
electrical conductivity 

Expensive (due to 
titanium central rod) 

Santoro et al., 
2013 

Carbon mesh Low cost, foldable Low electrical con-
ductivity, low dura-
bility 

Wu et al., 
2017 

Carbon felt Low cost, Thick, fiberous 
- porous, loose texture, 
high electrical conductivi-
ty  

It is restricting bac-
terial growth on the 
inner surface. 

Chaudhuri 
and Lovley, 
2003 

Graphite plate High strength Low surface area, 
high cost, not suita-
ble for scale-up 
MFCs 

Taskan and 
Hasar, 2014 

Stainless Steel plate High mechanical 
strength, Relatively low 
cost, high electrical con-
ductivity 

Low surface area, 
biocompatibility is-
sues, corrosion 

Dumas et al., 
2007 

Stainless Steel 
mesh 

high conductivity, relative-
ly low cost 

biocompatibility is-
sues, corrosion 

Zheng et al., 
2015 

Table 1 Advantages and disadvantages of the most commonly used anode electrode 

materials on MFCs. 
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2.1.2.2.2 Cathode Electrode 

Imperfect cathode configurations and cathodic reactions (that are governed 

by the cathode electrode), can hinder the  power output of the MFC systems 

(Logan, 2009). This study will work towards optimising the cathode electrode 

by using novel conductive materials that can increase the power output, as 

described in Chapter 4.  

In smaller scale MFCs, similar to those used in this study, cathodes can work 

better than in large MFCs, due to an optimised surface area to volume ratio. 

In the most recent MFC configurations, the anodic electrode is coupled with 

a porous air-breathing cathode electrode which provides the system with the 

unending ability to use atmospheric oxygen as the electron acceptor 

(Papaharalabos et al., 2013; Santoro et al., 2015). Consequently, the MFCs 

used in this study will employ air-breathing cathodes as, up to date, it has 

being proven to be the most eco-friendly, cost effective and low mainte-

nance. By having oxygen as the final electron acceptor it provides the cath-

ode with a high redox potential (0.82V). The two processes underlying the 

cathodic oxygen reduction reaction (ORR) are: 

a) O2 + 4H+ +4e- → H20  (E0 = 0.816 V vs SHE)  

b) O2 + 2H+ +2e- → H202 (E0 = 0.295 V vs SHE) 

with a) being the desired reaction for the production of water through a four-

electron pathway and b) the alternative pathway which consists of two-

electron reaction and leads to hydrogen peroxide formation. Incomplete re-

duction of oxygen can result in low energy conversion and production of de-

structive intermediates (Rismani-Yazdi et al., 2008). 

Subsequently, ideal cathode electrodes are the ones with high redox poten-

tial and the ability to readily capture protons. Materials that fulfill those re-
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quirements are carboneous materials and non-corrosive metals, same as 

those mentioned above (Table 1 ) which were used as anode electrodes. 

Conversely, in the case of the cathode electrode, a catalyst is usually added 

to improve the ORR. The air-breathing cathode electrodes consist of three 

components:  

i. a gas diffusion layer (hydrophobic coating layer) exposed to the air 

which restricts water loss through the electrode while ensuring high 

oxygen fluxes from outside to inside.  

ii. a conductive supporting material which can double as the current col-

lector (e.g. stainless steel mesh) 

iii. a catalyst-binder layer to speed up the ORR process 

Current collectors are very important in securing high cathode performances 

too. Usually, they are of the same nature as the electrodes described in Ta-

ble 1 , with corrosion proof stainless steel meshes being the most popular 

due to their mechanical strength (Walter et al., 2016b). 

As briefly mentioned above, in this research study, alternative materials to 

those conventional ones have been explored in order to offer a degree of 

freedom in the design and material make-up of the next generation of MFCs 

which are envisaged to rise monolithically from 3D-printers in the near future. 

A literature overview on the development of 3D printable MFC parts as well 

as the experimental work carried in identifying novel alternatives is presented 

in Chapter 4.   

Anodic and cathodic electrodes are physically separated by a semi-

permeable membrane to avoid; short-circuitingand  substrate crossover while 

allowing proton diffusion. The distance between the two electrodes needs to 

be kept at a minimum in order to avoid high Ohmic resistances. These re-
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sistances are positively correlated with the distance that the ions (cations or 

anions) have to travel from the membrane to the cathode (Rismani-Yazdi et 

al., 2008). Thus membrane selection, and the subsequent distance between 

the two electrodes is a vital parameter in minimising the internal resistance of 

the MFC system. For this reason, this study will explore alternative mem-

brane materials that can improve the power output by decreasing internal 

resistance and overall MFC costs (Chapter 4). 

2.1.2.2.3 Membrane 

In electrochemical and bio-electrochemical systems, membranes act as a 

physical barrier between the anolyte and the catholyte. Membranes have 

been considered as the main contributor towards the high cost of the system 

and the bottleneck for its scale-up. Initially, as the MFC field emerged it was 

mainly influenced by the field of chemical fuel cells, thus the membrane ma-

terial used were Nafion based (Bennetto, 1990; Allen and Bennetto, 1993). 

Nafion is a commercially available perfluorinated ion exchange membrane 

developed by Dupont in early 60s as part of their collaboration with General 

Electric (Parthasarathy, Martin and Srinivasan, 1990). Apart from Nafion, in-

terpolymer cation exchange membranes (CEM) with added crosslinking 

agents, were then investigated as separators in mediator-less-MFCs 

(Grzebyk and Poźniak, 2005) which showed an increase in performance but 

were unstable for long term operation. Those two commonly used materials 

have been proven to be unsuitable for use in bio-electrochemical systems as 

their interaction with electro-active bacteria is non-favourable (e.g. oxygen 

flux to the anode). Apart from that, it has been also reported in the literature 

that even though membrane materials such as Hyflon can produce 1.5 times 

higher power output than standard CEM in individual MFCs, when connected 
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together (as a stack) the system can exhibit instability and cell reversal 

(Ieropoulos, Greenman and Melhuish, 2010). 

In selecting membrane materials for practical implementation of MFCs; the 

cost, structure and physical properties need to be considered. Therefore a 

tremendous amount of studies have focused on finding alternative materials, 

either bespoke or readily available, that can be used as viable successors of 

the expensive and commercially available CEM (Li et al., 2011; Yousefi, 

Mohebbi-Kalhori and Samimi, 2017; Winfield et al., 2013a, 2016; Kondaveeti 

et al., 2014). A short list of alternative materials that have been tested in 

MFC systems is shown below (Table 2 ). Among those mentioned, the most 

popular has proven to be ceramic based membranes which are; easily ac-

cessible, relatively cheap, structurally rigid and have beneficial porosity. Most 

importantly they have been proven to be ideal for scaled-up and scaled-down 

MFC systems that have been tested both in laboratory and field conditions 

(Ieropoulos et al., 2016; Walter et al., 2016b; Gajda et al., 2016).  

Ceramics is a versatile material and can have a double functionality within an 

MFC system, as due to its mechanical characteristics can serve both as a 

separator and as the structural component of the overall MFC housing, 

minimising even further the manufacturing costs. For this reason, ceramics 

were core materials in the context of this research study, however alternative 

clay based materials were investigated for their potential to be extruded and 

cure in the air without additional firing requirements, making them suitable for 

monolithically MFC printing. The experimental work on these materials is 

presented in Chapter 4. 
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Materials References 

Biodegradable shopping bags Winfield, Chambers, et al., 2013 

Natural  rubber Winfield, Ieropoulos, et al., 2013 

Ceramics Park and Zeikus, 2003; 
Behera and Ghangrekar, 2011 

J-cloth Fan, Hu and Liu, 2007 

Laboratory gloves Winfield et al., 2014 

3D-printed ion exchange membrane Philamore et al., 2015 

Photocopy paper Fraiwan and Choi, 2014, 2016; 
Winfield et al., 2015 

Table 2 Alternative materials tested as membranes for Microbial Fuel Cells.  

2.1.2.2.4 MFC housing 

MFC housing refers to the enclosure that houses the core MFC components 

explained above; microorganisms, anode electrode, membrane and cathode 

electrode.  MFC housings need to be long lasting, structurally rigid and most 

importantly inert in order to avoid any electrical conflict with the system (i.e. 

avoidance of ionically conductive pathways (fluidic conductance) which can 

cause a short circuit).  

Based on these characteristics there are numerous materials which qualify 

(i.e. glass, plastic, acrylic, ceramic). One can argue that the aspect of MFC 

housings can form the core of a review study on its own rights since there 
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have been a plethora of materials and configurations that have been exam-

ined so far. This is one of the beauties of this technology as it is versatile and 

can be adapted in any form and shape.  One of the most traditional configu-

rations used by many groups around the world is following Benetto’s design 

(Figure 2.3) where cut-to-size acrylic sheets can be assembled together 

forming the MFC housing. The second most popular design is the universally 

known H-type MFC where two laboratory glass bottles are connected by a 

tube that houses the cation exchange membrane (Figure 2.9A). The latter is 

unable to be used for practical implementation due to its large footprint and 

design instability. MFC housings are designed and selected based on the 

intended use of the MFC system. Optimisation of those designs are still in 

development but many steps have been taken forward using the 3D printed 

custom made housings, which are described in this thesis, and reviewed in 

more detail in Chapter 4. For the purpose of this chapter a photographic 

overview of the different MFC housings and configurations that have been 

used so far in different laboratories including BBiC, is presented in Figure 

2.9. This figure gives a visual idea of the versatility of the MFC design.  
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Figure 2.9 - Examples of different MFC designs with different housing materials. 

 A. H-type MFC using glass bottlesiii (Logan et al., 2006) Copyright© American Chemical 

Society, B. Cylindrical MFCs in a stack assembly (Ieropoulos et al., 2013a), C. Small scale 

MFCs out of ABS materialiv (Ieropoulos, Greenman and Melhuish, 2010) Copyright© Else-

vier, D. Miniature (1.4 mL) MFC made out of  Nanocure® materialv (Ieropoulos, Greenman 

and Melhuish, 2013) Copyright© Elsevier, E. Miniature MFC (64 μL) made out of Perspex 

material (Chouler et al., 2016), F. Ceramic based flat MFC (Walter et al., 2016a), G. Twist n’ 

Play MFCs using Nanocure®vi (Papaharalabos et al., 2015a) Copyright© Elsevier, H. Finger 

size MFCs made out of PLA and natural rubber (Winfield et al., 2015b)vii Copyright© John 

Wiley and Sons, I. Nanocure® based MFCs for robotic applicationsviii (Ieropoulos, Greenman 

and Melhuish, 2013) Copyright© Elsevier, J. Photograph of a tubular membrane electrode 

assembly MFCix (Kim et al., 2009) Copyright© Elsevier, K. 3D-printed MFC designed by 

tomislav available for download from PinShape (https://bit.ly/2xOExSC) L. Tubular type MFC 

with inclined membrane, anode below and cathode abovex (Logan et al., 2006) Copyright© 

American Chemical Society, M. Schematic of a tubular shape - single chamber MFCxi 

(Rabaey et al., 2005) Copyright© American Chemical Society, N. Single chamber MFC con-

taining eight graphite electrodes and a single air cathodexii (Liu, Ramnarayanan and Logan, 

2004) Copyright© American Chemical Society,  O. Single chamber 25 mL MFCxiii (Liu and 

Logan, 2004) Copyright© American Chemical Society, P. Coin size mini-MFC (1.2 mL) 

(Ringeisen et al., 2006). 

  

As mentioned above (section 2.1.2.2.3), in the recent years ceramics have 

been proven a promising structural material and separator for MFCs 

(Winfield et al., 2016). Clay materials such as terracotta and earthenware 

have been surrounding our everyday lives since 250 BC and have been used 

for various household purposes (structural, functional and decorative). This 

can be attributed to their versatility as their chemical composition, porosity, 

thickness, shape and geometry can be controlled based on specific applica-

tions (Yousefi, Mohebbi-Kalhori and Samimi, 2017). This kind of flexibility in 

design is very beneficial for an MFC system which is the reason ceramics 

have been dominating the MFC field since 2011 (Behera and Ghangrekar, 
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2011). These inexpensive materials made possible the practical implementa-

tion of MFC units in impactful field trial studies both nationally and interna-

tionally (Ieropoulos et al., 2016). Clay based MFCs have the potential to 

make the technology widely affordable by achieving a low cost per MFC unit 

(£1 per single MFC). Minimising the costs of MFCs was the main challenge 

that influenced the experimental work presented in Chapter 4. 

2.1.3 Applications  

The pre-existing notion that MFC systems were just an invention for scientific 

curiosity that was deemed to be limited in the laboratory has been disproven 

in the last 10 years. Improved materials, configurations and reduction in ma-

terial costs advanced the power output capabilities of MFCs and have made 

them capable of practical implementation, providing off-grid electricity and 

supplying power to autonomous robots. Biosensing is another noteworthy 

example of MFC application which has been successfully performing in la-

boratory conditions but is not deployed fully in the field yet; however, it will be 

mentioned in this chapter due to its significance on the rest of the thesis. 

2.1.3.1 Wastewater treatment and renewable energy pro-

duction  

MFC’s capabilities of converting complex biomass such as waste effluents, 

into electricity have made the technology popular lately. This enabled the 

technology to come a long way since its invention due to a substantial 

amount of research invested in improving every aspect of the MFC system. 

The ultimate aims were to increase the power density and reduce the asso-

ciated manufacturing costs in order to make MFC a viable alternative energy 

source.  
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The massive turn into alternative and renewable energy sources has been 

fuelled by the global shortage of fossil fuels and climate change. Renewable 

energy production from waste using MFC technology is attracting growing 

attention as the ever-increasing worldwide energy demand is projected to 

increase 28% by 2040 (International Energy Agency, 2017). MFCs are not 

only proven to be a viable net electricity generating technology but also can 

be used as a technology for saving electricity especially in the case of waste 

water (WW) treatment plants (Du, Li and Gu, 2007). There is an undisputed 

global need for improved waste management systems and MFC cascades 

(multiple MFCs connected electrically and/or fluidically) can complement WW 

treatment processes by treating WW effluent and recovering energy simulta-

neously (Pandey et al., 2016; Ahn and Logan, 2010; Pant et al., 2012; 

Winfield, Ieropoulos and Greenman, 2012).  

MFCs were first tested as WW treatment solutions in 1991 (Habermann and 

Pommer, 1991) due to the plethora of organics within WW that can fuel 

MFCs. Current WW treatment methods (i.e. pumping air to aerate the 

sludge) require high inputs of energy, therefore employing MFCs not only 

can save energy but can also facilitate the clean-up of waste streams 

(Holzman, 2005). MFCs treating WW could result in 50-90% less solids to be 

disposed of (Holzman, 2005) and MFC cascades fed with urine waste have 

been shown to reduce the chemical oxygen demand (COD) by up to 95% in 

real life field applications (Ieropoulos et al., 2016), making it nearly suitable 

for discharge in the field (UK government threshold: 125 mg/L (GOV.UK, 

2019) - PeePower™ effluent: 128 mg/L). 
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2.1.3.2 MFCs as biosensors 

MFCs have the potential to be used as microbial biosensors for monitoring 

target contaminants (Su et al., 2011). The production of electricity from an 

MFC reflects on the metabolic activity of the in situ microorganisms consum-

ing the given organic compound. In cases where the supplied compound is 

toxic, the bacterial metabolic pathway(s) can be inhibited resulting in lower 

electricity production of the system. This capability allows MFCs to be used 

as in situ microbial biosensors for detecting toxic compounds in water 

(Chouler et al., 2018). Apart from toxic waste, human waste (i.e. faeces and 

urine) is another large contaminant of water streams, especially in off-grid 

locations such as slums. It is critical to be able to evaluate polluted water 

streams (via a monitoring system) in order to provide those in remote areas 

better water quality that can benefit their health and livelihood prosperity. 

MFCs can be proven feasible biosensors of biological contaminants, such as 

faeces or urine, as these can enhance the metabolic activity and consequent 

power output of the system (Chang et al., 2004; Kim, Chang and Moon, 

2006). As such, it has been reported that a self-powered, floating MFC-

based biosensor was able to detect urine presence in freshwater which stim-

ulated both a visual and a sound cue, akin to an alarm system (Pasternak, 

Greenman and Ieropoulos, 2017). The literature evidence presented in this 

section can support the argument that MFC-based biosensors can provide 

easily manufactured, cheap and reliable water monitoring systems for toxic 

chemicals (Chouler et al., 2018). Concomitantly, they can also work as  

online water quality monitoring systems for early warning of urine contamina-

tion in water streams at off-grid remote locations (Pasternak, Greenman and 

Ieropoulos, 2017).  
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2.1.3.3 Remote source of power 

Being a versatile energy converter, MFC has the potential to be used as a 

power supplying system operating with microorganisms and organics 

sourced from the local environment. This capability makes it suitable for us-

age in remote and resource-poor areas where discontinuous demand for 

power supply is needed and where solar panels cannot be used. Electricity 

generated from multiple units of MFC connected together (stacks) can be 

used directly to power small gadgets such as red LED lights (Gajda et al., 

2015a; Winfield et al., 2015b) and DC-motor powered windmill toys (Gajda et 

al., 2015b). MFCs can power larger appliances by amplifying the voltage 

through the implementation of energy harvesting modules. This voltage can 

then be used directly or stored intermittently in rechargeable devices such as 

capacitors and then distributed to the end-user (Ieropoulos, Greenman and 

Melhuish, 2003). Examples of MFC applications using energy harvester 

and/or capacitors include but are not restricted to wireless sensors 

(Shantaram et al., 2005), digital wristwatch (Papaharalabos et al., 2013), air-

freshener (You et al., 2016), an array of 40 white LED lights and smoke 

alarm detector (Ieropoulos et al., 2015). Conventionally these gadgets are 

powered by rechargeable or alkaline batteries which contain toxic chemicals 

and have a limited life. The most notable example of them all is the charging 

up of a commercially available mobile phone (Ieropoulos et al., 2013a) and a 

state-of-the-art smartphone (Walter et al., 2017). This is of high importance 

as mobile phones are part and parcel of our everyday lives and are important 

in case of emergency or danger. Thus having the possibility of charging and 

powering up such smart devices -in remote locations- with MFCs, adds to the 

value of the technology. In the same line of work, wearable MFCs can be 

used to send wireless signals in case of danger (Taghavi et al., 2015) or 

power up wearable electronics (Pang, Gao and Choi, 2017). 
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Even though all the aforementioned applications have been tested in labora-

tory conditions it is only a matter of time for their field deployment which is 

envisaged due to the rapid development of the technology. In the meantime, 

there have been other practical applications that have been successfully 

tested in the field. These include the PeePower™ urinals (Ieropoulos et al., 

2016) that have been tested in UK-based festivals such as Glastonbury and 

Camp Bestival and in developing countries such as Uganda and Kenya 

(UWE Bristol, 2018). 

2.1.3.4 Autonomous robots and MFCs 

The field of robotics is a modern technology that is following an increasing 

trend in interest (Iqbal and Khan, 2017). Robots have changed our everyday 

lives to a great extent. They are improving the automation in industrial appli-

cations (e.g. KUKA robots) and at the same time, they are even helping in 

household errands (e.g. iRobot vacuum cleaner). More importantly, robots 

are being deployed in dangerous and hazardous zones aiming to accomplish 

tasks that are too risky for humans to perform themselves (Saha, 2008). 

Such applications require robots to be mobile, this implies that robots need to 

be able to navigate themselves, avoid collisions and plan their path (Siegwart 

and Nourbakhsh, 2004). Most importantly though mobile robots need to ex-

hibit energy autonomy that can free them from wire restrictions that limit their 

range of activity and limited operation time due to battery supply. Robots’ 

power supply has been characterised as the bottleneck of their applications 

thus it is envisaged that green energy resources are the only way forward for 

powering the next generation of mobile autonomous robots (Wei and Yan, 

2012).  
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MFCs have been contributing to the field of autonomous robotics since the 

early millennium with the development of “Gastronome” or otherwise called 

Chew-Chew train (Wilkinson, 2000). “Gastronome” employed an artificial 

stomach comprising of Escherichia coli inoculated MFCs that were 

metabolising sugars (dextrose). Artificial mediators were facilitating the elec-

tron transfer and the MFCs were powering the on-board rechargeable battery 

pack which ran the train’s motors and pumps (Wilkinson, 2000). Even though 

Wilkinson’s invention was not entirely autonomous, as the battery bank had 

to be conventionally fully charged before initiating the system, it inspired a 

whole new generation of food powered autonomous robots.  

Concurrently to Wilkinson’s work, another bioinspired robot was created by 

Kelly et al. (Kelly, Holland and Melhuish, 2000) named “Slugbot”. Slugbot 

was intended to be the first robot which can gather its energy from the envi-

ronment (in the form of organic food matter) and utilise it to power itself. 

Even though it achieved the former by collecting slugs from a muddy field, it 

never reached the latter. Nevertheless, it explored the potential of utilising 

naturally occurring organic sources from the environment to achieve energy 

autonomy in robotic systems.  

Following Gastronome’s and Slugbot’s footsteps, a new series of biologically 

inspired robots called EcoBots made their appearance in 2002 and shook the 

world of autonomous robotics. EcoBot-I was the first of the series, it em-

ployed eight E.coli inoculated MFCs which with the aid of artificial mediators 

were oxidising sugars and charging the on-board capacitors. EcoBot-I was 

able to perform phototaxis and it was moved towards light every time the ca-

pacitor bank reached a certain threshold (Ieropoulos, Greenman and 

Melhuish, 2003; Ieropoulos, Melhuish and Greenman, 2004).  Its’ successor 

was EcoBot-II which employed the same number of MFC units as its prede-
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cessor but used air-breathing cathodes rather than chemical ones 

(Ieropoulos et al., 2004, 2005). EcoBot-II was more advanced in functionality 

than EcoBot-I as on top of phototaxis it performed environmental monitoring 

(temperature sensing) and transmitted information through an on-board wire-

less transmitter. The other difference with its predecessor was the nutrient 

source, as EcoBot-II was the first of its kind to digest raw food such as rotten 

fruits, dead flies and prawn shells (Melhuish et al., 2006). EcoBot-I and II 

were similar in appearance and MFC materials as shown in Figure 2.10.  

In 2010 a more advanced robot was created; EcoBot-III (Figure 2.10) was 

the first to exhibit autonomous behaviour as it was able to collect food and 

water from its environment, digest the collected food and egest the waste 

(artificial digestion system) (Ieropoulos et al., 2010a). EcoBot-III was able to 

perform temperature logging, moving towards food and water source and 

actuate its’ pumps. The structure of the robot and the 48 MFCs on-board, 

were 3D-printed using rapid prototyping materials, the latter with Nanocure® 

resin and the former with ABS and polycarbonate. Three years later the team 

developed the last EcoBot of the series, so far. EcoBot-IV (Figure 2.10) was 

the worlds’ first fully self-sustainable MFC powered robot. It had bio-inspired 

digestion and ingestion system and was able to power its electronics and 

transmit data about its performance to a computer (Papaharalabos et al., 

2015b). 

The most recent bioinspired MFC powered autonomous robot is Row-Bot 

(Figure 2.10) (Rossiter et al., 2015). This followed from the EcoBot example, 

but changed the environment from terrestrial to aquatic, since it was inspired 

by the water boatman beetle; an aquatic insect that feeds on algae and dead 

plants. The stomach of the robot was an MFC which digested the fluid and 
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algae and turned it to electricity that powered the robot to move forward and 

continue its operation (Rossiter et al., 2015; Philamore et al., 2016).  

MFC powered robots have come a long way in the last 18 years and this is 

mainly attributed to the development of the MFC technology that brought im-

provements in materials, manufacturing techniques (e.g. 3D-printing), elec-

tronics and a better understanding of the underpinning science of the sys-

tem. Nonetheless, more research is needed to improve the MFC systems 

that will be on-board autonomous robots providing uninterrupted power sup-

ply. Apart from power density and cost improvements, another critical factor 

is the reduction of the size of the MFC units so that it keeps the weight and 

footprint of the robot at a minimum. The body of work described in this thesis 

will tackle these issues and intents in improving MFC’s power density and 

concomitantly reducing their costs. The resulted optimised MFCs are envis-

aged to power a new series of autonomous robots that can form a continua-

tion of this thesis. This series of robots can have an advantage over the con-

ventionally battery powered robots that need recharging every couple of 

hours or days. MFC powered robots can consume organic matter from their 

environment to gain their electrical energy making them able to forage freely.  
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Figure 2.10 – MFC powered autonomous robots in chronological order until 2015. 
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2.2 MFC relevance to EVOBLISS project 

The work described in this thesis falls under the overarching umbrella of the 

European Commission FP-7 funded project EVOBLISS (from 2014 to 2018, 

grant agreement 611640), an interdisciplinary project combining robotics, 

artificial intelligence, chemistry, and microbiology. The project aimed to cre-

ate an open source expandable and customisable robotic workstation (called 

EvoBot), to develop new materials and applications based on a real-time 

feedback loop between the robot and the MFCs, in an attempt to enhance 

the MFC technology. 

Through EvoBot (Figure 2.11) as its main apparatus, EVOBLISS took the 3D 

printing technology to the next level, by turning an open-source low-cost 3D 

printer to an interactive research tool that allowed the empirical study of ad-

aptation and evolution of the MFC systems. The unique novelty of the project 

was that the adaptation and evolution occurred with energy abstraction as 

the main selective mechanism, which was used as the feedback signal trig-

gering EvoBot’s feeding mechanism. This was, in fact, the main scientific hy-

pothesis of the overall EVOBLISS project, as written in the original proposal, 

and hence why it was tested as part of this study. As described above 

(2.1.2.1), MFCs usually are inoculated with WW which has a diverse popula-

tion of bacteria, both electroactive and non-electroactive. Even though this is 

very beneficial compared to MFCs inoculated with pure strains of bacteria, 

this delays the maturation process as at least 3-4 weeks are needed for the 

electroactive organisms to colonise the electrode, and the non-electroactive 

to be washed out of the system. Thus only through temporal adaptation, the 

ecosystem is evolving to more suitable for electricity generation. This pro-

cess can last from four weeks to three months (depending on the environ-

ment) delaying their installation in practical applications.  



44 Background 

 

   

 

 

Figure 2.11 – EvoBot robotic workstation 

EvoBot is a liquid handling robot which was the product of EvoBliss project. Here, EvoBot is 

connected with a laptop computer and runs experiment on MFCs, recording and displaying 

at the same time their voltage output. 

EVOBLISS aimed to investigate the evolution and adaptability of the micro-

cosm inside the MFCs in response to dynamic environments dictated by 

EvoBot, and decrease the time required from MFCs to achieve maximum 

power output. Such a project is perhaps the first pioneering attempt at adapt-

ing the 3D-printing technology to work like a chemostat, which is a standard 

microbiological procedure for controlling the environment of a growing cul-

ture. Similar to a chemostat, EvoBot will be controlling the development of 

the electroactive biofilms by  

i) inoculating the microorganisms in the MFC anodic vessels  

ii) accurately dosing them with the necessary organic substrate 

iii) adapting the frequency of feedstock supply based on the ex-

perimentation needs 
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iv) monitoring their adaptation over time in response to feeding 

(e.g. voltage output) or change in feeding (e.g. types of fuel) 

v) reacting to the degradation of organic matter in real-time (e.g. 

by feeding the starving MFCs) 

Hence EvoBot was aiming to reinforce, monitor and interact with the evolving 

microbial communities inside the MFCs, resulting in efficient energy genera-

tion. Complimentary it was aiming to accelerate the maturing process and 

produce MFCs with energy producing cultures at shorter periods of time than 

manually maintained MFCs. Further to this, through evolutionary algorithms 

EvoBot aimed to improve the existing MFC technology in terms of electricity 

generation by optimising the organic fuel that electroactive bacteria need to 

live and thrive.  

Beyond the projects main aim another avenue of interest was explored and 

developed as part of EVOBLISS. EvoBot is a modified 3D printer, so natural-

ly, the ability to also extrude material for MFC parts, such as membranes or 

electrodes was explored. The idea focused on exploring the possibility of us-

ing EvoBot both as a “maintenance machine” and a production tool which 

can 3D-print core MFC materials such as electrodes and membranes which 

can contribute to higher power output of MFCs and be potentially used in an 

EvoBot derived monolithically printed MFC. 

The work package that this thesis is based on was the biggest and most crit-

ical of the EVOBLISS project since the successful evolution of the EvoBot 

nurtured MFCs were going to be empirically validated, in terms of accelerat-

ing the growth of microorganisms and improving energy output performance, 

on the EcoBot-II platform (2.1.3.4). This is where the EvoBot-matured MFCs 

were going to be assessed, in order to demonstrate the feasibility of the 
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EVOBLISS approach. The successful demonstration of such approach de-

termined the project’s success. 

Overall, as explained above EVOBLISS aimed to interface the advantages of 

robotics and computation with the MFC living systems, and use the EvoBot 

robotic workstation to evolve the MFCs in order to address two important 

characteristics of living systems: adaptability and stability. 
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2.3 Aims and Objectives 

The main purpose of this study was to increase the power output of MFCs 

and accelerate their maturing process by using EvoBot’s interactive capabili-

ties for their maintenance. Likewise, towards the same aim of improving the 

MFC power output the work focused on optimising the organic feedstock 

(fuel), supplied to the MFCs, through EvoBot evolutionary algorithms and 

optimising the core MFC materials (off-robot).  

Specific objectives: 

a. To optimise critical MFC components such as electrodes and ion-

exchange membranes using novel materials (potentially extrude-able) 

b. To establish a system of interface and interconnection whereby the 

real-time electrical output is monitored and fed back to the robot plat-

form for control 

c. To investigate the selective pressure effects of substrate concentra-

tion and combination through interactive evolutionary experiments 

performed by the robot 

d. To evaluate the robotic approach on MFC biofilm maturing by compar-

ing it against control MFCs (outside of the robotic platform)  

e. To evaluate the robotic approach on MFC biofilm maturing by employ-

ing the robot matured MFCs on EcoBot-II 



 

 

Chapter 3 General Materials and Methods 

This chapter aims to give an overview of the general materials employed for 

building the MFCs as well as the experimental methodology used throughout 

the study, and therefore act as a reference point for all the subsequent chap-

ters. However, in the case where materials/methods are exclusive to a single 

experiment, the specific details will be described in that respective chapter.   

3.1 Electrode Materials 

The importance of both the anode and cathode electrode material on an 

MFC system were discussed in sections 2.1.2.2.1 and 2.1.2.2.2. Next, the 

methods for fabricating the electrodes used throughout the study are de-

scribed in detail. 

3.1.1 Anode Electrode 

The selection of anode material was based on its versatility, beneficial poros-

ity and cost-effectiveness, thus the anode electrodes were constructed from 

untreated (catalyst-free) carbon veil fibre, with 30g/m2 carbon loading (PMF 

Composites, Dorset, UK). The total surface area used for each experiment 

differs and this will be mentioned where it is pertinent.  

Carbon veil is a foldable material which can be pleated to fit into different 

size anode compartments allowing the use of bigger surface area with 

smaller projected area. After folding, the carbon veil is pierced with a piece of 

nickel or stainless steel wire (approximately 10 cm in length) to secure the 
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electrode in place and provide the connection point for the data logger and 

external load crocodile clips. 

3.1.2 Cathode Electrode 

The cathode electrode is connected via an external load to the anode elec-

trode. The size of both anode and cathode surface area electrodes is based 

on the literature, which teaches that the ideal ratio of solid cathode to anode 

is 1: 27 (Uría et al., 2012), which is the selected ratio used for every experi-

ment in this study.  

For the purposes of this study, two custom made electrodes for air-breathing 

cathodes were used as controls against alternative cathode electrodes under 

investigation. The two electrode types consisted of activated carbon paste 

with the only difference being the current collector material (carbon veil or 

stainless steel mesh). The composition and preparation of both electrodes is 

described next. 

3.1.2.1 Activated carbon on Carbon Veil (AC/CV) 

The cathode electrode was made of two layers; a gas diffusion layer (GDL) 

and a microporous layer (MPL). The GDL comprised a single sheet of the 

same carbon veil material used for the anode electrode but coated with 30% 

polytetrafluoroethylene (PTFE) (Sigma Aldrich, UK). The sheet was left to dry 

for 24 hours in room temperature, and once the GDL dried the activated car-

bon paste was applied on top to form a 2mm thick layer of MPL. The MPL 

was a mixture of activated carbon powder (G.Baldwin & Co., London, U.K.) 

blended with PTFE in a 4:1 ratio and deionised water (120 mL). The activat-

ed carbon paste was then hot pressed, using a household iron or heat press 

(Gajda et al., 2015a) and subsequently heated for 15 minutes at 200 oC to 
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allow MPL liquefaction. The resulted carbon loading on each cm2 of the elec-

trode was in total 90±5 mg. Photographic image of the electrode is presented 

in Figure 3.1A. 

3.1.2.2 Activated carbon on Stainless Steel (AC/SS) 

This electrode was manufactured using the MPL activated carbon mixture 

described above and a stainless steel mesh (316SS, MeshDirect, UK) as the 

backbone and the current collector (Walter, Greenman and Ieropoulos, 

2018). The carbon paste was hot pressed against the stainless steel mesh in 

both sides to produce a homogenous electrode assembly as shown in Fig-

ure 3.1B. The resulting carbon loading in each cm2 was 186 ±7 mg. 
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Figure 3.1 - Photos of the two mainly used types of air-breathing cathode electrodes 

in this study.  

[A] AC/CV and [B] AC/SS.  

3.2 Membranes and Preparation 

The role of a semi-permeable membrane in an MFC system and the im-

portance of selecting the material that makes up this membrane are de-

scribed in section 2.1.2.2.3. The two main types of membranes that have 

been used as controls for this study are described below. These two types 

were selected for their applicability in small-scale MFCs. 

3.2.1 Cation exchange membranes (CEM) 

In all of the experiments where membrane materials were tested, the control 

membrane was CMI-7000S cation exchange membrane (Membranes Inter-
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national, USA). The membranes were cut to shape based on the MFC re-

quirements and then immersed in 5% NaCl solution for 12 hours at 40 oC to 

allow hydration and expansion. 

3.2.2 Kilned Terracotta Clay membranes 

Smooth red terracotta Valentine’s clay (Bath Potters, UK) was used for the 

membrane fabrication in all the cases where “kilned clay” is mentioned in the 

following body of text. To fabricate flat ceramic membranes the terracotta 

clay was rolled with a rolling pin in order to remove air bubbles and until it 

reached 5 mm of thickness (Figure 3.2). Then, it was fed through a pasta 

making machine until it reached 2.5 mm thickness. The flat sheet was then 

cut to size (factoring 5.6% shrinkage loss due to firing) according to the MFC 

design and pierced through using a puncher at the four edges to make space 

for the screw to pass through during assembly. Then the shaped membrane 

was placed between two sheets of wood to absorb the moisture and dried for 

12 hours. The membranes were then kilned at a temperature of 1070 oC for 

7 hours, which cured the materials through structural bonding of the clay. 
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Figure 3.2 - In-house preparation technique for custom made clay membrane “kilned 

clay”. 

3.3 MFC designs 

As mentioned in section 2.1.2.2.4, MFCs come in different shapes and 

forms. During the period of this study three MFC designs were the most 

commonly used and are introduced below, however modifications to these 

systems were made in certain experiments, which will be pointed out later in 

their respective chapters. 

3.3.1 Analytical type MFCs  

The analytical square type MFCs were assembled using laser-cut poly-

methyl methacrylate, commonly known as acrylic or Perspex®, of different 
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thicknesses. These were used to construct the anodic and cathodic half-

cells. To ensure leak-proofing, rubber gaskets were fitted between each Per-

spex piece and the whole assembly was tightened together using plastic 

studding and nuts. The capacity of the two chambers was 25 mL each. As 

shown in Figure 3.3, the two half-cells were separated by a CEM and had a 

chemical cathode consisting of liquid potassium hexacyanoferrate (ferricya-

nide-FeCn). Analytical type MFCs of that volumetric capacity employ folded 

carbon veil electrodes with 270 cm2 total surface area. In most parts of the 

study analytical type MFCs were modified to accommodate open-to-air cath-

odes (for the reasons explained in 2.1.2.2.2), this is described in detail at the 

relevant sections. 

 

Figure 3.3 - Analytical type MFC with a liquid chemical cathode.  

The different compartments are presented clearly along with the attached resistor which was 

employed in order to close the circuit and the data logger lead cables. 
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3.3.2 Small-scale MFCs  

Small-scale MFCs were 3D printed using the EnvisionTec Perfactory printer 

at Bristol Robotics Laboratory (BRL) from Nanocure® photopolymer resin 

(RCP30) (Ieropoulos et al., 2013c). Anodic and cathodic compartments were 

printed separately with the resulting parts shown in Figure 3.4. The small 

scale MFC design consists of a 6,25 mL anode chamber with a 67.5 cm2 sur-

face area electrode and an open-to-air cathode (with hydration capabilities). 

Both chambers have built-in inlet funnels and outflow mechanisms. In the 

case of anode, the incoming liquid fills up the chamber from the bottom up 

while the excess exits from the incorporated overflow exit. The cathode was 

designed to incorporate a built-in pocket that can hold 1mL of water while 

allowing any excess water, above that level, to escape through the outlet. As 

in the analytical type MFCs the anode and cathode are separated via a sem-

ipermeable membrane that varies depending on the experiment.  Two rubber 

gaskets, one for each half-cell, sandwich the membrane and ensure water-

tight sealing. The final assembly is bolted together using stainless steel stud-

ding and nuts. 
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Figure 3.4 - 3D printed small-scale MFCs. 

3.4 Inoculum and Feedstock 

Inoculation process, as described in 2.1.2.1.1, is the required initiation pro-

cess to kick start an MFC as it is the introduction or microorganism to the 

system. Selecting the type of microorganisms is important in establishing a 

strong electroactive biofilm that can contribute in the electron harvesting pro-

cess. Following inoculation the bacteria need to be supplied with carbon en-

ergy rich feedstock to continue their metabolic processes that result in elec-

tron production. The type of bacteria and feedstock used in this study is de-

scribed below.  
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3.4.1 Activated Sludge 

Activated sewage sludge supplied from the Wessex Water Scientific Labora-

tory (Saltford, UK) was used as the mixed bacteria source for inoculating 

abiotic MFCs in all the experiments unless otherwise stated. To initiate the 

experiment, the MFCs were inoculated with activated sludge supplemented 

with nutrients as explained next (3.4.2), for the first four days. The anode 

chamber of the MFC was emptied and replenished with fresh sludge daily 

until the selected feedstock was introduced at the end of the inoculation peri-

od.  

3.4.2 Tryptone Yeast Extract 

Tryptone Yeast Extract (TYE) was used as a background solution in many 

experiments as a supplement of nutrients and amino acids. A strong stock 

solution of 1.5% TYE (1% Tryptone and 0.5% Yeast Extract) was prepared 

using 10g of Tryptone (Sigma Aldrich, UK) and 5g of Yeast Extract (Sigma 

Aldrich, UK) in a litre of deionised water before it was diluted in a stock of 

activated sludge. When TYE was used as a background solution, the final 

concentration of TYE in the mixture was 1:10 (0.15% TYE). 

3.4.3 Urine 

Urine was collected from healthy individuals, on a normal diet and without 

any medical conditions through a 125 L collection tank connected to an 

adapted male urinal at BRL. Urine was collected twice a day for experimental 

purposes and excess was stored in the fridge. On the time of collection from 

the tank, the pH of urine was on average pH 9.20(±), the conductivity was 

29.1(±) mS and COD was 5.16(±) g/L. 
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3.5 Mode of feeding 

Following the selection of feedstock, the feeding mode needs to be estab-

lished in order to ensure the system receives the much needed carbon ener-

gy sources in frequent doses. The different modes of feeding used in MFC 

studies have been reviewed above (2.1.2.1.2) and the ones selected for this 

study are outlined in detail below. 

3.5.1 Batch mode 

MFCs that were maintained through a batch mode of feeding were complete-

ly emptied daily (weekdays) and refilled with the selected feedstock (100% 

refill). The emptying and refilling of the anode chamber occurred through ex-

traction of the anolyte using a conventional syringe (Terumo®) followed by 

topping up with fresh media.  

3.5.2 Continuous flow 

Throughout the thesis, all the experiments that were fed in continuous flow 

mode were maintained using a 16-channel high accuracy peristaltic pump 

(205U, Watson Marlow, Falmouth, UK). This pump offers a high range of 

flow rates starting from 4.2 mL.h-1 to 780 mL.h-1, depending on the volume of 

the MFC anodic half cells each flow rate resulted in different hydraulic reten-

tion times (HRT).  

MFCs that were operating under continuous flow mode were adapted ac-

cordingly in order to allow continuous movement of liquid in and out of the 

cell as well as percolation of liquid within the cell. The adaptations of these 

systems will be explained in their relevant sections. 
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3.6 Operational conditions 

Unless otherwise stated all the experiments were performed at room tem-

perature (22 ± 2 °C) within a temperature-controlled environment. 

3.6.1 Practical challenges 

Throughout the life span of this study, some inevitable challenges were en-

countered that caused temporary loss of data due to power cuts, computer 

failures, and laboratory shut-down. Other challenges included urine shortage, 

when water diluted urine had to be used instead and pump failures that inter-

rupted the fuel supply. These occasions are mentioned and noted where ap-

propriate.   

3.7 Data capture 

For the data collection, MFC output was recorded in millivolts (mV) against 

time using Agilent Keysight 34970A Data Acquisition / Data Logger Switch 

Unit (Keysight Technologies, UK) or PicoLog Datalogger ADC-24 (Pico 

Technologies, UK) with a 1, 3 or 5 min sample rate. Data were processed 

and analysed using MS Office Excel and GraphPad Prism® version 5.01 

software package (GraphPad, San Diego, California, U.S.A). 

3.8 Calculations 

Current (I) in amperes (A) was calculated using Ohm’s law, I = V/R, where V 

is the measured voltage and R is the known value of the external resistive 
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load in ohms (Ω) used in each experiment. Power (P) in watts (W) was calcu-

lated by multiplying voltage with current: P = I x V. 

In frequent cases throughout the text the power output is expressed as pow-

er density for comparison purposes. The power density in this thesis is calcu-

lated based on total anode surface area of the specific MFCs taking place in 

each experiment. This initially is expressed as μW per cm2 of anode elec-

trode with is calculated as shown below: 

𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 (𝜇𝑊)

𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑜𝑑𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝑐𝑚2)
 

However, to normalise the power density from μW/cm2 to mW/m2, the total is 

multiplied by 10 (e.g. 1 μW/cm2 = 10 mW/m2). 

3.9 Polarisation experiment 

Polarisation experiment is an electrochemical analysis performed on MFCs 

by sweeping the external resistance value in a gradual manner starting from 

open circuit (high resistance value) and finishing to a very low resistance 

value. This experiment provides information on the power output capabilities 

of the MFC system by identifying the maximum power transfer point (MPT) 

that an MFC can achieve. Specific information on each polarisation experi-

ment will be described in the relevant chapters. 

Polarisation experiments were carried out by connecting the MFCs to an 8-

channel automated Resistorstat, developed by Degrenne et al. (2012). The 

external resistance (Rext) values ranged from 30 kΩ down to 3.74 Ω with 

each resistance value held for 3 minutes. During polarisation, voltage output 

was recorded every 30 s (6 samples per resistance value) in order to monitor 
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and capture the dynamic response of MFCs to changes in Rext. The MFCs 

were kept in open-circuit voltage for 2 hours prior to polarisation testing. Fol-

lowing the first polarisation experiment, the Rext was changed to a value at 

which maximum power transfer was obtained.  

3.10 Conductivity and pH measurements 

All pH and conductivity measurements were taken using a benchtop pH me-

ter (Hanna Instruments, HI2211 pH/ORP Meter) with a pH range of 0-14 and 

a handheld portable conductivity meter (Jenway, 470 Cond Meter) with a 

range from 0 – 199.9 mS.  

3.11 Chemical Oxygen Demand (COD) analysis 

Chemical oxygen demand (COD) analysis measures the amount of oxygen 

required to oxidise chemically the amount of oxidable components present in 

water samples and is expressed in mg/L of oxygen. This gives an indication 

of the oxygen demand characteristics of a sample (e.g. wastewater). The 

greater the COD value the harmful the sample is to the aquatic environment. 

Once this sample is discharged it can consume the available oxygen present 

in water depleting it and hence starving the aquatic life (e.g. fish).  

COD removal analysis was carried out by analysing the influent sample and 

comparing it with the effluent sample after 24 hour retention time in the MFC 

systems under investigation. The analysis was conducted using the potassi-

um dichromate oxidation method (CamLab, UK) with high range (HR) COD 

vials. Then 0.2 mL of sample (inlet and outlet) were taken from the MFC and 

filtered, using a 0.45 μm syringe filter (MILEX®HA, UK), before being added 
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into the vial. The sample was then heated up at 150°C for 2 hours and 

cooled down for another 2 hours. At last, the concentration was measured 

through a spectrophotometer (Lovibond Water testing).  

3.12 Scanning electron microscopy (SEM) 

To observe the surface morphology of the different abiotic materials under 

investigation, microscale images were acquired using FEI Quanta 650 field 

emission scanning electron microscopy (SEM) at difference magnifications. 

The samples were mounted on aluminium mounts using contact adhesive 

and were pre-treated using sputter coating in gold using Emscope SC500 

sputter coating unit. 

3.13 Energy-dispersive x-ray (EDX) spectroscopy 

Following the SEM analysis, a qualitative chemical analysis took place. The 

present elements in the solid samples under investigation were determined 

using the Oxford Instruments Aztec energy dispersive X-ray (EDX) system 

and the main elemental content of each sample was identified.  

3.14 Experimental data 

The data obtained from the experiments, for statistical analysis, were in tripli-

cates. Three identical MFCs were set up for each condition tested, including 

the controls. The mean voltage output of each triplicate was calculated in 

Excel for each time point and plotted against time to provide the temporal 

profile of the experiment. In some cases, in the text describing the experi-

ment, the spread in data was reported to show how much variation there is in 
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the values of the data set. This was done by finding the mean of the set of 

data, then subtracting each number from the mean and expressing it in 

mean±difference. An example is presented below: 

MFC 1 500 mV Mean = 
500+550+600

3
 = 550 mV 

MFC 2 550 mV Difference 1 = 550 − 500 = 50 

MFC 3 600 mV Difference 2 = 550 − 600 = −50 

  Spread = 550 ± 50 mV 

3.15 Conclusions 

This methodology chapter aimed to provide the reader with the necessary 

understanding of the standard materials and methods used during the study. 

The subsequent chapters will guide the reader through the experimental 

journey that ultimately led to the novel findings highlighted in each chapter. 

To facilitate the flow of the thesis each chapter will include a succinct materi-

als and methods section to describe the specifics of each experiment that 

have not been mentioned above, that where necessary, will cross-reference 

to this chapter.  



 

 

Chapter 4 3D-Printable core materials for 

MFCs 

As described in Chapter 2, the electrical performance of an MFC system re-

lies on a number of factors including but not restricted to; the design of the 

system and its core structural (chassis) and functional (electrodes, connect-

ors and membranes) materials. In the same chapter, the different designs of 

MFCs used so far were presented, showing that 3D printing can be an alter-

native method to manufacture bespoke and optimised MFCs. This chapter 

therefore aims to review the impact of 3D-printing on MFC research and then 

describe and discuss the series of experiments which were conducted as 

part of this study. The chapter is split into the three main sections focusing 

on the experiments conducted in the context of improving the three main 

MFC parts; separators, anode and cathode. Thus, following the literature re-

view, the experiments on 3D-printable MEAs, extrude-able carbon energy 

sources and soft 3D-printed electrodes are presented individually. This set of 

experiments focused on investigating the 3D-printable core MFC materials 

that can result from EvoBot and can improve the performance of MFCs, 

bringing the field a step closer to monolithic MFC fabrication.  

Parts of this chapter have been published in Journals and Conference Pro-

ceeding. Each relevant publication is mentioned at the start of each subchap-

ter to provide better clarity. 
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4.1 3D-printing and its impact on MFC research 

Additive manufacturing (AM) and three-dimensional (3D) printing are two in-

terchangeably used terms to describe the process of producing layer-by-

layer three-dimensional objects based on a virtual digital model of the object. 

The 3D printing technology made its first appearance in the 1980s in Japan 

when Hideo Kodama invented AM (Kodama, 1981). His method of automati-

cally fabricating 3D plastic objects by exposing photo-hardening liquid to ul-

traviolet light and stacking the solidified successive cross-sectional layers 

together was the first pioneering attempt at 3D printing. Kodama’s idea in-

spired the development of this technology and three years later Charles Hull 

patented the invention of stereolithography (SLA) (Hull, 1984). Hull’s patent 

opened up a new avenue for manufacturing complex objects rapidly, reliably, 

accurately and economically. Since then, his groundbreaking development 

has driven major innovations in many sectors including food industry (Godoi, 

Prakash and Bhandari, 2016), cell biology (Mitchell, 2016) and pharmaceuti-

cals (Jonathan and Karim, 2016).  

MFC technology and 3D printing (rapid fabrication) were both employed in 

2007 as part of the EcoBot-III project, where compartments of MFCs were 

fabricated and used on-board the entirely 3D-fabricated and uniquely de-

signed body of the robot (Ieropoulos et al., 2010a). In the years to follow 

more 3D printed polymer-based materials started to be investigated and 

tested against the conventional Perspex ones, showing the advantages of 

3D printed compartments, not only in accelerating the assembly process but 

also in reducing the internal resistance of MFCs (Ledezma, Ieropoulos and 

Greenman, 2010). Several developments have been achieved in the field of 

MFCs due to 3D printing including the fabrication of Nanocure® housing 

(chassis) for small-scale MFCs. This development made it possible to scale-
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up the technology by miniaturizing and multiplying the MFC units within a 

stack (Ieropoulos et al., 2010b) and achieve their implementation in autono-

mous robots (Ieropoulos et al., 2010a).  This was just the beginning of a new 

era for the MFC research as the 3D printing technology gave unprecedented 

design freedom to the researchers, enabling them to explore novel materials 

with intricate geometry and complex features. This helped reduce the costs 

and assembly requirements for MFCs, such as the small-scale twist ‘n’ play 

MFCs (Papaharalabos et al., 2013). Further to the advances in the area of 

MFC chassis, 3D printing opened new opportunities for using a vast array of 

printable materials to advance the inner functional system of the MFC such 

as using Tangoplus acrylate photopolymer resin for the rapid fabrication of 

ion exchange membranes (Philamore et al., 2015), which is one of the most 

important components of the MFC (as detailed in 2.1.2.2.3). A pocket of re-

search focused on using AM techniques to fabricate both the outside housing 

and inner core system of the MFC. In a recent study, Calignano et al. (2015) 

managed to entirely print an MFC by combining three different AM tech-

niques (selective laser melting - SLM, fused deposition modelling – FDM and 

spray coating technique). The bio-inspired lattice anode was rapidly fabricat-

ed using an aluminium alloy sprayed with marine inoculum and enclosed 

within a non-assembly mechanism MFC housing. The latest attempt towards 

monolithically printing MFCs reported the fabrication of the first 3D printable 

polymer anode using conductive PLA material combined with the use of Gel-

Lay polymer as a viable alternative separator to the conventional cation ex-

change membrane (You et al., 2017). The ease of bringing complex custom-

made prototypes to life within a span of few days using 3D printing did not 

only help MFC research but it planted its roots into electrochemistry (Ambrosi 

and Pumera, 2016) exemplified by the production of conductive 3D printed 

electrodes for supercapacitors (Zhao et al., 2014) and versatile microfluidic 
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flow cells for specific electrochemical experiments (Snowden et al., 2010). 

Bioelectrochemisty and MFCs are a branch of electrochemistry, thus the no-

table developments mentioned above can also directly benefit MFC research 

where possible.  

Adding to the above history of MFC advancements due to 3D printing tech-

niques, in 2014 a novel line of work under the project name EVOBLISS was 

initiated. EVOBLISS aimed to turn a low-cost RepRap printer into a liquid 

handling robotic platform, named EvoBot, to maintain and improve the power 

output performance of MFCs while at the same time 3D print “evolved” parts 

for the next generation of MFCs. The ultimate aim of the project was the 

monolithic fabrication of MFC units that can be inoculated and maintained at 

high power output levels using the same exact platform that created them.  

The following chapter sections present the experimental work that led to 

identifying potentially 3D-printable materials suitable for MFC systems which 

can contribute to higher power output levels compared to conventional (con-

trol) materials. The first experimental work is presented directly below and it 

is focusing on identifying printable separators that can be part of a monolithi-

cally printed membrane electrode assembly.  

4.2 Air-dry 3D-printable membrane electrode as-

sembly  

Part of this work has already been included in “Theodosiou, P., Greenman, J and 

Ieropoulos, I. Towards monolithically printed MFCs: Development of a 3D-printable 

membrane electrode assembly (MEA) International Journal of Hydrogen Energy” in 

press. 
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One of the main contributors affecting both cost and performance in MFCs is 

the commercially available membrane, which tends to be expensive. Poly-

meric separators based on Nafion or Nafion-derived fluorinated polymers are 

considered at the bottleneck of MFC progress and the main contributor to 

high cost and internal resistance (Harnisch and Schröder, 2009). Besides, 

those types of membrane are prone to biofouling after long term operation 

(more than 60 days) (Ghasemi et al., 2013; Flimban et al., 2018). The afore-

mentioned is a result of microorganisms, microbial extracellular polymers 

and salts depositing on the membrane. This, along with possibly contact re-

sistance, impacts negatively the MFC power performance (up to 37% de-

crease) due to the deterioration of the cation transfer which limits the charge 

transfer and increases the systems’ internal resistance (up to 20%) (Xu et al., 

2012). In addition, in the open-to-air configuration, the cathode is often not 

well integrated within the membrane, therefore the contact resistance is even 

higher, and output is limited. 

To overcome these issues, alternative MFC architectures and materials, 

such as ceramic based ones (Winfield et al., 2016; Yousefi, Mohebbi-Kalhori 

and Samimi, 2017), need to be identified (or examined better) as well as 

ways to manufacture and integrate them. One possible design that can bene-

fit the system is the integrated membrane electrode assembly (MEA) in 

which the cathode is built on the membrane itself. It was previously shown 

that the power output is improved by reducing the internal resistance (Nandy 

et al., 2015).  

MEA is the assembled system comprised of a membrane and electrode/s 

attached together as one through pressing with or without heat treatment in 

order to minimise the distance between them. This arrangement has been 

inherited from the traditional chemical abiotic fuel cell and showed higher 
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power densities compared to the conventional separated membrane and 

electrode configurations (Nandy et al., 2015). However, only a few studies 

have focused on MEA influence on MFC systems and even fewer on 3D-

fabrication techniques to manufacture these MEAs. 

This investigation looks at 3D printing MFCs using novel extrude-able mate-

rials that can be produced from the EvoBot platform; a RepRap 3D printer 

turned to a robot which can inoculate, maintain and print parts for MFCs 

(Faíña et al., 2016); more details of EvoBot are given in Chapter 5. The fo-

cus of this experimental study is on the development of cost-effective MEAs 

using extrude-able air-dry membranes coated with conductive paint. Different 

ceramic and polymeric based membranes were investigated and compared 

in terms of chemical composition and properties. The electrical conductivity, 

surface morphology and chemistry of the materials were also analysed and 

presented below along with the measured electrochemical performance in 

terms of power generation.  

4.2.1 Specific Materials and Methods 

4.2.1.1 Membrane Materials 

For the scope of this experiment, three types of potentially extrude-able 

membranes were tested and compared against a conventional CEM. The 

materials tested were Fimo™ air-dry clay (Staedtler, German), terracotta air-

dry clay (Hobbycraft, UK) and red terracotta clay.  Even though all three 

membranes were prepared using the process described in 3.2, only the ter-

racotta clay was kilned. The other two membranes were dried overnight at 

room temperature. The thickness of the tested membranes was consistent 

for all the custom made membranes (2.5mm). The total surface area of the 
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membranes was 25 cm2. The images of the different membranes utilised in 

this study are shown in Figure 4.1. 

 

Figure 4.1 - Photographs of the four cut-to shape (25 cm2) membrane materials.  

[A] Air-dry Fimo™, [B] Air-dry Clay, [C] Kilned Terracotta and [D] Cation exchange mem-

brane. 

4.2.1.2 Membrane electrode assembly 

A conductive graphite coating was applied to each membrane and formed 

the cathode electrode. The coating was fabricated using polyurethane rubber 

coating (PlastiDip), white spirit and graphite powder as previously described 

(Winfield et al., 2014). The membranes were coated uniformly with the con-

ductive cathode mixture using a brush followed by the Dr. Blade technique 

using a spatula. Dr. Blade or otherwise known tape-casting is a well-known 

technique in the fabrication industry where a slurry (made out of conductive 

particles and binder additives) is applied onto a substrate using a blade in 

order to produce a thin layer of coating on the substrate. The surface re-

sistance was measured during each coating as described in 4.2.1.4.2. After 

the membrane electrode assembly had dried, a cable was attached to the 

cathode using conductive wire glue, to form the cathodic current collector.  
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4.2.1.3 MFC architecture 

Twelve cubic analytical size MFCs (3.3.1) were modified for this experiment 

to accommodate an open-to-air cathode resulting in the use of the anodic 

half-cell only (Figure 4.2A). The cathode was integrated with the four differ-

ent membranes (i.e. painted on one side) and directly glued to the anode 

chamber with an inert aquatic sealant (Aquabits, UK), with the cathode side 

facing open to air (Figure 4.2B). In order to maintain the moisture of the 

membrane electrode assemblies and maintain a liquid ‘bridge’ for proton 

transport, the MFCs were wrapped with Parafilm® which is a highly water-

proof material but at the same time is permeable to oxygen (Figure 4.2C). 

 

Figure 4.2 - Photographs of the MFC setup.  

[A] Anode chambers with the anode electrodes, [B] side view showing the Membrane Elec-

trode Assembly (MEA) glued on the anodic chamber and [C] the whole MFC assembly 

wrapped in Parafilm® to retain the moisture on the MEA.   

 

4.2.1.4 Characterisation of membrane and electrode 

The chemical composition of the membrane, as well as the morphology of 

the electrode, was conducted using the methods described in section 3.13 

and 3.12 respectively. Additionally, two other tests were carried out; a hard-
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ness test to evaluate the structural durability of the materials and an electri-

cal conductivity test to observe the in-plane resistance of the MEA. 

4.2.1.4.1 Hardness Test 

The hardness of the membrane material was tested using the Vickers Hard-

ness Testing equipment (Buehler, UK) (Clinton and Morrell, 1987).  Particu-

larly; the entire 25 cm2 of the membrane was used for the hardness testing. 

Average values were obtained from five readings taken from five different 

locations on the membrane and located 5 cm apart. 

4.2.1.4.2 Electrical conductivity of the multi-layer cathode  

The surface conductivity of the cathode was measured through a handheld 

digital multimeter (TENMA, 72-7750). Particularly, crocodile clips were at-

tached on the opposite sides of the membrane electrode assembly and the 

resistance was measured. This operation was repeated for each layer of 

graphite applied on the membrane. This method was only used to give an 

early indication of the in-plane resistance of each conductive coating addi-

tion. 

4.2.1.5 Inoculation and feedstock 

The twelve MFCs were inoculated with a mixture of 50% fresh human urine 

and 50% anolyte derived from another ongoing experiment operating on ac-

tivated sludge and urine. The mixture was enriched with a background solu-

tion of 0.15 % TYE. The solution was left in a shaking incubator (Orbital In-

cubator S150) for 24 hours at a shaking speed of 130 rpm and at a tempera-

ture of 36.6°C. The solution was transferred to 15 mL centrifuge tubes (Corn-

ing, UK) and placed into the centrifuge (VWR Compact Star CS4) for 10 
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minutes at 5000rpm. Subsequently, the supernatant was removed and the 

pellet re-suspended into 5 mL of neat urine. The re-suspended medium was 

collected and formed the inoculum for the experiment. After the inoculation 

period during which the biofilm formed, the MFCs were fed manually in batch 

mode with urine.  

4.2.1.6 External loading  

The MFCs operated using a fixed load of 2.7 kΩ prior to polarisation experi-

ment, which was conducted as described in section 3.9. Following the first 

polarisation experiment the Rext was changed to 1 kΩ, a value at which max-

imum power was generated. This load was kept constant until the end of the 

experiment.  

4.2.1.7 Breakdown of the experimental procedure 

The experimental plan that was followed in this study has been summarised 

and presented at Table 3. The table, notes in detail the feeding regime 

followed, the operational conditions, urine replacements, timings and quanti-

ties of feedstock as well. 
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Table 3 Breakdown of the experimental scheme followed through the entire duration 

of the experiment. 

4.2.2 Results and discussion 

4.2.2.1 Material selection and analysis 

Four different membranes (Figure 4.1) were selected and investigated as 

separators in MFCs fed with urine. Two of the membranes were based on 

air-dry techniques (Fimo™ air-dry clay and terracotta air-dry clay). Both are 

based on water, filling materials and cellulose derivatives. These two materi-

als were selected due to the advantage of being malleable and extrude-able 

from an adapted 3D-printer nozzle, which can be incorporated in the EvoBot 

platform. Furthermore, the air-drying technique means that ceramics can be 

fabricated through normal atmospheric conditions without the utilisation of 

heat treatment. Red terracotta clay was another membrane used during the 
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experiment and acted as one of the controls to the investigation. However 

terracotta has to undergo high temperature treatment in controlled atmos-

pheric conditions which allows the internal binding of the clay within the 

structure as needed (Ieropoulos et al., 2017). The last membrane utilised 

was a commercial polymeric-based cation exchange membrane, which was 

used as the second control. 

4.2.2.1.1 Chemical composition of the membranes 

EDX system was employed for the qualitative chemical analysis of the ele-

ments composing each membrane tested during this investigation. C, O, Al, 

Si and F were the elements identified with percentages above 10% (Figure 

4.3.A). Carbon and oxygen were detected in all four samples; however, it is 

notable that aluminium and silicon were detected only for the ceramic-based 

membranes. These elements are well known to be generally integrated with-

in ceramic materials especially in their oxide form (Pasternak, Greenman and 

Ieropoulos, 2016) however their role in the cation transfer and overall MFC 

performance is yet to be identified.  

As expected fluoride was only detected in the polymeric membranes confirm-

ing that it is not suitable for a sustainable technology as MFCs. Generally, 

polymeric membranes consist of a backbone of fluorinated polymer that 

gives mechanical strength and resistance to harsh and corrosive environ-

ments. Unfortunately, fluoride pollution can harm plants and wildlife and 

therefore the utilisation of fluorinated materials in MFCs might negatively im-

pact the environment after long-term operation. In fact, if those MFCs are to 

be used on-board low-power robots that are programmed to perform a par-

ticular task and then degrade naturally in the environment (Rossiter, Winfield 
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and Ieropoulos, 2016) then the use of fluorinated membranes needs to be 

avoided. 

Additionally, elements with a percentage lower than 5% were also reported 

(Figure 4.3.B). Traces of Na, Mg, K, Ca, Ti and Fe were detected within the 

ceramic-based samples. Only Na and N were detected on the polymeric 

membrane. Interestingly, a percentage of ~3.5% of Ca was measured in the 

air-dry clay and higher content (roughly 4%) of iron was detected in the ter-

racotta sample. Overall, the two air-dry membranes had almost identical 

composition between each other and had similar composition to the terracot-

ta, confirming that they might be by-products of the latter. The impact of their 

chemical composition in the overall power output of MFCs, requires further 

study. 

 

Figure 4.3 - ED-X analysis results data of the chemical elements between the four 

tested types of membranes.  

[A] Major and minor components [B] trace elements 

 

4.2.2.1.2 Morphology of the electrode 

The morphology of the graphite-based coating was observed using SEM im-

ages at different magnifications (Figure 4.4). Increasing magnifications al-
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lowed visualising the surface of the electrode in more detail. The surface of 

the electrode, in fact, seems to be fully covered by a quasi-uniform coating 

ensuring electrical continuity. At higher magnification, the graphite particles 

could be clearly detected with non-uniform shape and length within the mi-

crometric shape in agreement with the manufacturer’s specifications (Kaiyu 

Industrial LTD, 2018). This observation shows that the cathode electrode has 

an enhanced exposed area to atmospheric oxygen providing better oxygen 

reduction reaction. The importance of having high surface area in the cath-

ode and its role in the oxygen reduction reaction has been reviewed above 

(2.1.2.2.2). 
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Figure 4.4 - SEM images at three different magnification of the MEA side surface coat-

ed with the graphite ink (cathode side). 

 

4.2.2.1.3 Electrical conductivity of the multi-layer cathode 

The MEAs were prepared by applying the conductive ink directly on to the 

already set membranes using a layer-by-layer technique. Each layer was left 

to air-dry before each in-plane resistance measurement was taken. Figure 

4.5A shows the in-plane resistance of the air-dry clay and terracotta clay 

based MEAs after applying the first, second and third layer of conductive ink 

on their surfaces. These two materials were chosen for discussion because 
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their sets of data illustrate nicely the difference in resistance between the two 

differently made clays (air-dry and kilned). Initially the terracotta MEA had 

almost 2.5x higher resistance compared to air-dry clay. The difference was 

more exaggerated after applying the second layer of coating with terracotta 

being 5.0x higher that air-dry clay even though the overall resistance de-

creased for both by nearly 2.0x and 4.0x respectively.  Despite the differ-

ences and high resistance values initially, by the time the third layer of con-

ductive coating was applied and cured, both MEAs showed similar in-plane 

resistance values (170±5 Ω). This suggested that by that time the conductive 

ink coating completely covered the surface of the membrane and bonded 

with the underlined layers of coating in a quasi-uniform manner, in agree-

ment with the SEM micrographs. It is noteworthy that in an attempt to de-

crease the in-plane resistance even more, a fourth layer of coating was ap-

plied on the membranes. However, this had an adverse effect on the continu-

ity of the electrode as it caused cracking of the upper layer of coating. Thus 

for the scope of this experiment, only three layers of coating were applied on 

each membrane to form the MEA, which was in accordance to what has 

been reported in the literature for similar conductive inks applied on paper-

based MFCs (Winfield et al., 2015a). Following the application of three con-

secutive layers of conductive ink on the MEAs the in-plane resistance values 

were measured and plotted on Figure 4.5B, showing that all MEAs had an 

overall resistance of 150±15 Ω. More specifically, Fimo™ had an in-plane 

resistance of 135 Ω followed by CEM with a resistance of 143 Ω, air-dry clay 

and terracotta as mentioned above had a similar resistance of 158 and 168 

Ω, respectively. These results have given an initial indication of the in-plane 

resistance after each layer of graphite coating, which can provide information 

on the current connecting losses of the MEA. In further investigation of MEA 

materials, through-plane resistance it is recommended to be measured in 
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order to provide more comprehensive results on the whole MEA resistance, 

preferably by employing the Wheatstone bridge method. This method uses 

an electrical circuit which measures an unknown electrical resistance by bal-

ancing two legs of a bridge circuit, one leg of which includes the unknown 

component (Ekelof, 2001). This technique can give more accurate meas-

urement results than the in-plane resistance method, for further analysis.  
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Figure 4.5 - Resistivity of the MEA and hardness of the membrane.   

[A] Average resistance values after each coating on the membrane [B] Average surface 

resistance of the MEA electrode [C] hardness test based on Vickers value (Hv) 

4.2.2.1.4 Structural rigidity of the membrane 

It is well known from the literature that ceramics have many unique charac-

teristics that make them suitable for use within MFC systems; one of these 

advantageous characteristics is their structural durability (Winfield et al., 

2016). In order to test the durability of the materials under investigation 

against terracotta, a Vickers hardness test was performed. Even though this 

technique is well used for testing metal materials, it has been reported in the 
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past that it can be used for ceramic materials (Clinton and Morrell, 1987) to 

give an indication of durability between different samples. The unit of hard-

ness given by this test is the Vickers Pyramid Number (HV), the five values 

obtained from each ceramic testing were averaged and presented in Figure 

4.5C The results confirmed that terracotta was indeed the most dura-

ble/hardest (82.7 HV); however air-dry Fimo™ and air-dry clay were very 

comparable being only 13 and 17 HV units lower respectively. To put the re-

sults into perspective a window glass has a hardness value of 550 HV. 

Those data are early indications that even though air-dry clays are not as 

structurally robust as kilned terracotta; they can still be proven to be durable. 

The hardness of the materials was tested in order to observe the properties 

of the material in question, in terms of deformation from a standard source 

(the metal indenter), which would in turn provide an indication of the materi-

al’s ability to resist wear, pressure, or damage, which is particularly relevant 

for shipping systems like these to other areas. 

4.2.2.2 Power Output 

4.2.2.2.1 Initial power output profile of the first fifteen days 

For this experiment, MFCs using different membrane materials were tested 

with the ultimate aim to observe the feasibility of using air-dry clays that can 

be 3D-printed, as separators for MFCs. As previously mentioned (4.2.1.5), 

the MFCs were all inoculated with a mixture of activated sludge, tryptone-

yeast extract and effluent from established urine fed MFC experiments. After 

inoculation, the MFCs were left in open circuit for three hours until the volt-

age plateaued. The observed potential difference between the anode and 

cathode from all the MFCs was roughly 600±50 mV (data not shown). An 

external load of 2.7 kΩ was connected on all MFCs, closing the circuit and 
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initiating the power generation process by encouraging the formation of an 

electroactive biofilm on the anode electrode. The MFCs were maintained in a 

batch-fed mode as exemplified graphically by each increase (then decrease) 

in power output, accompanying each feed cycle. This is because the energy 

source availability within the anode chamber initially increases. That means, 

that bacterial growth rate and metabolism were limited by the supply rate of 

new carbon-energy substrates and therefore they respond to the new supply. 

The first two exchanges in anolyte consisted of replenishing fully the cham-

ber with the aforementioned inoculum and urine in a 50%:50% ratio, which 

was sufficient to supply the bacteria with the much needed carbon energy 

sources to continue their metabolic activities during “periods of no feeding”, 

which were beyond the normal feeding cycle (Figure 4.6). During this period, 

the MFCs with air-dry clay membrane decreased in performance by 13.2%, 

which was similar with the air-dry Fimo™ (13.8% decrease). The MFCs with 

terracotta and CEM were the most affected showing a decrease of 18.6% 

and 40.0% respectively.  
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Figure 4.6 - Power generation recorded in the first 15 days of operations. 

On the fifth day, the anode chamber of each MFC was replenished complete-

ly (25 mL) with fresh urine resulting in an increase in power output by 14.4% 

and 14.8% for the air-dry clay based MFCs, 29.7% for the CEM based MFCs 

and nearly 50% in the terracotta based MFCs (Figure 4.6). It is assumed 

that the terracotta based MEA had the greatest improvement in power follow-

ing carbon-energy depletion, because of the higher porosity compared to the 

other materials, which has a direct impact on the cation rate of exchange. 

Higher porosity and non-selective materials will naturally allow a higher rate 

of cations to diffuse through – a process which is driven by electron-

neutrality. This means that for selective or lower porosity materials even if 

the rate of electrons generated by the biofilm communities is at similar levels 

for all tested conditions, the power output will be lower, as a result of the 



4.2 Air-dry 3D-printable membrane electrode assembly 85 

 

   

 

lower number of cations, diffusing through the membrane and reacting with 

the incoming electrons. This is also reflected by the fact that the terracotta 

based MEAs reached maximum power output just after 5 days of operation 

whereas the other materials needed more time to reach that. Such observa-

tion agrees with existing literature on ceramic-based MFCs (Pasternak, 

Greenman and Ieropoulos, 2016).  

The following five days continued with daily anolyte exchanges of 25 mL 

fresh urine as indicated by the spikes on the graph. During this period, the 

MFCs showed a consistent increase in power output with a peak at 75 μW 

for air-dry clay followed by terracotta and air-dry Fimo™, which were almost 

on par at 58 μW and 54 μW, respectively; the CEM was the least performing 

with 37 μW. Nine days after the start of the experiment, following the emp-

ty/refill of the anode chambers with fresh organic matter, the mode of feeding 

was switched to 5 mL top-ups, after manually removing the same liquid vol-

ume from each anode. This resulted in an overall increase in power output of 

11%-15%, however, this dropped quickly due to the lower amount of fresh 

carbon-energy available. Bacteria were presumably still consuming other by-

products available in the suspension, within the 24 hour window between 

each feeding. However, the power output at the end of each feeding cycle 

was consistently around 40 μW each time. In order to compensate for the 

impact of each feeding approach on the power performance, it was decided 

to have a complete exchange of anolyte early each week, followed by a daily 

top-up of 5 mL until the end of the week. This strategy continued until the 

end of the experiment.  
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4.2.2.2.2 Long term power output profile of the entire exper-

iment duration 

As explained earlier, the experiment was maintained at a constant external 

load of 2.7 kΩ for the initial 30 days of operation, during which it was clearly 

observed that the air-dry clay was the best performing, while the air-dry 

Fimo™ and terracotta were on a par; in most cases, CEM was the least per-

forming. Although a steady-state was achieved within the first fifteen days of 

operation for all the MFCs, this was lost due to urine shortage and having to 

use diluted urine (50:50) (3.6.1) between the fifteenth and twenty-fifth day of 

the experiment (Figure 4.7). It is envisaged that the steady state would have 

continued at the same levels if neat urine had been supplied to the bacteria. 

This hypothesis is confirmed by the data of the twenty-fifth day where the 

output of the MFCs recovered to the previous levels once un-diluted neat 

urine was supplied. Following a month of operation at a constant load, the 

MFCs were subjected to polarisation using an automated Resistorstat in or-

der to identify the optimum resistance value based on each system that can 

give the maximum power output. Although the polarisation results are dis-

cussed in detail below (4.2.2.2.3), the impact of identifying and applying the 

optimum external load on the MFCs will be discussed here. The results of 

the polarisation experiment showed that those particular MFC systems were 

optimal when subjected to an external loading of 1 kΩ resistance. Once the 

external resistance switched to 1 kΩ, Fimo™ outperformed the rest and the 

overall power output of all others also increased by 25%-50%. The perfor-

mance of the MFCs was maintained at the same levels for the following 

month until complete starvation of four consecutive days brought all the sys-

tems to nearly zero (from day 58 to day 62). During this period, all the anode 

MFC chambers completely dried out from evaporation (Figure 4.7). Howev-
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er, once the MFCs were fed again, the bacterial communities of the already 

established anode biofilm switched from inactive mode (carbon limited) to 

active mode. Therefore, the power performance recovered immediately back 

to similar levels as those from the last feeding. More specifically, Fimo™ 

separated MFCs reached 91.25% recovery, air-dry clay and CEM reached 

full recovery (100%), while interestingly terracotta separated MFCs had an 

increase of 13.4%. However, compared to the highest levels of performance 

recorded during days 30-45, the percentage of recovery was 63.5%, 64%, 

40.5% and 91% for Fimo™, air-dry clay, CEM and terracotta respectively. 

The recovery profile of the previously dried and inactive MFCs adds an extra 

value to the feasibility of those systems. MFCs are biological entities that not 

only have long-term power production capabilities -for as long as organic 

matter is supplied- but more importantly, can survive elongated periods of 

starvation with demonstrable fast response/recovery. Besides, inexpensive 

materials such as air-dry clays and terracotta can be used to fabricate these 

MFCs, which is an economic advantage over traditional commercially availa-

ble ion exchange membranes.     
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Figure 4.7 - Power generation over 70 days operations (n=3) 

 

4.2.2.2.3 Polarisation results 

After a whole month of operation under a constant load (2.7 kΩ), all the 

MFCs were subjected to polarisation analysis by sweeping the external re-

sistance value in a gradual manner starting from infinite resistance (open cir-

cuit) and finishing at a very low resistance value (heavy load). Throughout 

the polarisation experiment, the voltage output of the cells was recorded as a 

function of resistance, making it possible for the automated system to calcu-

late the current and subsequently the power output. Using the aforemen-

tioned data, polarisation curve was generated (Figure 4.8A), by plotting the 

voltage versus current. The recordings from each triplicate of MFCs were 
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averaged and plotted including standard deviation. The initial values at 1MΩ 

resistance (no current) show the open circuit voltage (OCV) of all the cells at 

around 600±50 mV. The OCV of the tested MFCs was around 500 mV below 

the theoretical OCV value (1.1 V) for open-to-air cathode MFCs. Primarily 

this is due to activation overpotentials, which is a characteristic of MFCs with 

air-breathing cathodes operating on the ORR in neutral media (Santoro et 

al., 2017). These OCV values are in agreement with other open-to-air MFC 

devices under similar operating conditions (You et al., 2014; Papaharalabos 

et al., 2013). Although in the literature there are also higher OCV values re-

ported  (0.7-1.0 V), the cathode electrodes of those MFCs were either sup-

plemented with ferricyanide, during the polarisation experiment, or were 

moistened continuously with tap water (Logan, 2008; Ieropoulos, Greenman 

and Melhuish, 2010; Ieropoulos, Melhuish and Greenman, 2007).  

The purpose of the polarisation experiment is to understand better the specif-

ic characteristics of the systems under examination in order to measure their 

power outputs. Figure 4.8B shows the power curves generated, this graph 

gives us the possibility to assess the maximum power transfer (MPT) point, 

which is the maximum peak of each power curve and corresponds to the op-

timum resistance value that can give this output. Based on the results, it is 

evident that air-dry clay had the highest power output at 130 μW followed by 

air-dry Fimo™ with 111 μW. These results were in accordance with the real- 

time data shown above, proving that the air-dry membranes generated the 

highest amount of power output. The two underperforming MFCs were the 

controls; terracotta (73 μW) and CEM giving around 50% less than the air-

dry clay (66 μW).  

Comparing the power density of the MFCs reported herein with other MEA-

based MFCs in the literature, the 3D-printable ones are showing promising 
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results. In particular, a study on tubular MFCs with air-breathing cathodes 

based on CEM-MEA had a power density of 5W m-3 (based on the anodic 

liquid volume of 200 mL) (Kim et al., 2009). This output is 0.2 W m-3 less 

than the air-dry clay-MEA of this study, calculated based on a reactor volume 

of 25 mL. Besides, apart from the advantage over the power density, the 

MEA used in the aforementioned study (Kim et al., 2009) was fabricated us-

ing carbon cloth coated with a mixture of Pt powder and carbon black bond-

ed together with Nafion resin, which inherently increases the cost. 

Following the polarisation analysis and based on the MPT point, the optimal 

external resistance was identified (1 kΩ). Once the MFCs were connected to 

this lower resistance value, the performance levels began to diverge and 

Fimo™ produced the highest power output (Figure 4.7). Although after the 

change in external resistance, the results of the polarisation differed from the 

real-time data (day 30 onwards) and Fimo™ ended up outperforming the air-

dry, in all cases, the soft materials were operating better than the conven-

tional cation exchange membrane. 
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Figure 4.8 - Polarisation results [A] voltage vs current curve and [B] power curve. 

(n=3) 
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4.2.2.3 Chemical Oxygen Demand Analysis 

Following the increase in performance due to the external loading shift, a 

COD analysis was conducted to observe the rate of COD decrease within a 

24 hour period. On the eleventh day following the switch in external re-

sistance (forty-second day of the entire experiment), prior to replenishing the 

anode chamber with the 25 mL of urine, a sample of that was taken for COD 

analysis. In parallel to that, a sample from that urine (25 mL) was kept in a 

closed container on the bench to observe the decrease in COD without being 

treated in MFC. The following day, a sample of the effluent of all the MFCs 

was taken and analysed. The results of this analysis are presented in Figure 

4.9A., which shows that MFCs with air-dry Fimo™ MEA had a decrease of 

almost 82±1% in COD which was 4% higher than air-dry clay and terracotta. 

CEM based MFCs resulted in 63±1% COD decrease.  The control COD re-

duction occurring in the closed glass bottle after 24 hours was 4.7%; this val-

ue was deducted from the overall percentage decreases of all MFCs. This 

was in order to demonstrate the decrease in COD, which was induced due to 

the bioelectrocatalytic activity of the electroactive microorganisms presented 

in the anode and also by fermentative floating microorganisms. 
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Figure 4.9 - COD reduction results and power output at the time of sampling.  

[A] Percentage of COD reduction of fresh urine within 24 hours in an MFC and in a closed 

glass bottle (control). [B] Power Output of the MFCs at the moment that the samples for 

COD analysis were taken. 

 

The results of the COD analysis are in agreement with the real-time data of 

that period (day 42), which confirm and support the literature which reports 

that MFCs operating at higher power densities have higher COD removal 

rates due to the enhanced abstraction of electrons (Ledezma, Greenman 

and Ieropoulos, 2013; Zhang et al., 2015). For the sake of clarity, Figure 

4.9B shows the power output of the MFCs at the time that the samples were 

taken. Based on that in terms of power output Fimo™ was at 130 μW, air-dry 

clay and terracotta performed 29% and 45% lower than Fimo™ whereas 

CEM had a 60% less power output than the aforementioned (51 μW). Figure 

4.9 demonstrates clearly the correlation of power output to COD reduction 

and adds an extra value to the feasibly of those MEAs as alternative conduc-

tive separators of MFCs. 

4.2.2.4 Cost Analysis 

As microbial fuel cell is a technology producing low quantity of electricity, 

particular attention needs to be given towards maximizing the performance 
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while minimizing the costs. In this section, the cost of membranes is illustrat-

ed and discussed (Figure 4.10). The cost of the ceramic membranes was 

calculated considering 1 kilo of raw materials. More specifically, at the mo-

ment of purchase air-dry Fimo™ cost 4.94 £ kg-1, air-dry clay cost 3.75 £ kg-1 

while terracotta was the least expensive of all as it was 33% cheaper than 

air-dry clay and roughly 50% cheaper than air-dry Fimo™. The cost of the 

latter was in fact 2.52 £ kg-1. The CEM cost was considered to be 188 £ m-

1(250$ m-1) according to the supplier. Each membrane was weighed during 

fabrication and therefore the composition was known. In the case of CEM, a 

total area of 25 cm-2 was used. In order to fabricate the ceramic membranes, 

6 g, 8 g and 10 g of air-dry Fimo™, air-dry clay and terracotta respectively 

were used. Consequently, the overall cost for each membrane (with an area 

of 25 cm-2) was similar for air-dry Fimo™ and air-dry clay at £0.030 per 

membrane and terracotta being slightly lower at £0.025 per membrane main-

ly due to the lower cost of the raw material. CEM was the most expensive 

costing £0.78 per membrane (Figure 4.10A). This means that it is possible 

to fabricate 26 air-dry Fimo™/air-dry clay membranes or 31 terracotta mem-

branes for every CEM membrane at the same cost. As mentioned in the in-

troduction of this thesis, to make MFCs affordable and accessible every-

where in the world the price per unit need to be as low as possible. The ulti-

mate aim is to achieve a cost per unit around £1. Membranes such as the 

ones tested here which can cost only as little as £0.025 can be proven an 

economic alternative minimising the overall costs of MFCs and achieving that 

aim. 
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Figure 4.10 - Cost analysis of the membranes.  

[A] Overall cost of the membranes, [B] Cost of the membrane for unit of area and [C] Cost 

of the membrane for unit of power produced. 

Another important aspect to consider is the cost of the membrane density 

meaning the cost of the membrane per cm2. The results are shown in Figure 

4.10B. The trend reflects the cost of the raw materials with terracotta having 

the lowest cost per surface area and CEM the highest. Particularly, the cost 

for terracotta was roughly 0.1 pence per cm2 (10£ m-2) followed by air-dry 

Fimo™ and air-dry clay which amounted to roughly 0.12 pence per cm2 (12 £ 

m-2) and CEM thirty times higher than that (≈300 £ m-2).  

Finally, the cost of the membrane for each Watt produced was also calculat-

ed (Figure 4.10C). The power from the peak of power curves (Figure 4.8B) 

was considered in 130 μW, 111 μW, 73 μW and 60 μW for air-dry clay, air-

dry Fimo™, terracotta and CEM respectively. Due to the higher performance, 

air-dry clay had the higher value of cost per power produced, among the ma-
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terials investigated, that was quantified in 230 £ W-1 (Figure 4.10C). Slightly 

higher value was achieved by air-dry Fimo™ with 267 £ W-1. Terracotta had 

a cost per W produced of 345 £ W-1 and CEM had an astonishing value of 

11818 £ W-1. The cost per W produced of CEM was 34, 44, 51 times higher 

compared to terracotta, air-dry Fimo™ and air-dry clay respectively. Among 

the three clay-based membranes, the most cost-effective material tested was 

air-dry clay. The cost per W produced was 14% and 33% better compared to 

air-dry Fimo™ and terracotta respectively. Air-dry Fimo™, air-dry clay and 

terracotta seem to be very promising cost-effective membranes materials 

that can replace the more expensive and not environmentally-friendly poly-

meric membranes. It must be noted that the cost of kilning or shipping from 

abroad was not taken into account for these economic calculations. 

4.2.3 Connection with EvoBot   

EvoBot (Figure 4.11A) is a RepRap open-source customisable 3D-printer 

modified successfully to operate as a liquid handling robot for culturing and 

maintaining MFCs based on an established feedback loop between the MFC 

systems and the python controlled platform (Theodosiou et al., 2017). The 

feedback loop between the MFC output and the EvoBot controller, allowing 

the robot to respond to changes in MFC electrical output, is a novel contribu-

tion from the overall EVOBLISS project, as it allows the robot to operate as 

an automated chemostat and has greatly benefited this thesis. Since EvoBot 

is a 3D-printer turned into a robot it still holds its 3D-printing capabilities and 

so it can be employed to extrude (3D-print) parts for MFCs with the ultimate 

aim to monolithically print and nurture those already made MFCs. EvoBot’s 

hardware and software were designed and developed as part of EVOBLISS 

from the consortium partners in IT University (ITU), Copenhagen.  
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The process of manufacturing terracotta ceramic based membranes usually 

takes 2-3 days from start to finish as described in Ieropoulos et al. (2017), 

including initially making the membranes, cutting them to size, drying be-

tween two pieces of wood by applying pressure, and finally firing for 8 hours 

in the kiln. Based on the results in the previous section, Fimo™ demonstrat-

ed that it could act as a promising membrane and so the focus turned to 3D 

printing such membranes using the EvoBot platform, an automated process 

that would speed up manufacturing. Fimo™ is a malleable and easy to pro-

cess material that does not require firing at a high temperature to cure as 

opposed to terracotta ceramic. It only needs to be exposed to air at normal 

room temperature and hardens within a few hours. These attributes high-

lighted that the material would be suitable for extrusion from the EvoBot plat-

form (Figure 4.11.B) and immediate use.  

 

Figure 4.11 - EvoBot RepRap 3D-printer.  

[A] Extended EvoBot within its Evo-world enclosure performing experiments on MFCs under 

controlled conditions [B]  EvoBot with an adapted extruder 3D-prints Fimo™ membranes. 

(Source: www.evobliss-project.eu.) 

However, since the modelling clay is thick, it cannot be extruded from the 

EvoBot syringes directly as it requires more force than liquids or semi-

viscous materials. To combat this, one of the robot syringes was adapted (by 

the ITU partners) using an existing open-source paste extruder developed by 
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the 3D printing community and made available to the public via Thingiverse 

(https://www.thingiverse.com/thing:20733). The adapted extruder is present-

ed in Figure 4.12. This work (i.e. developing EvoBot) was completed by the 

EVOBLISS partners from IT University, Copenhagen. The extruder was 

mounted in a heavy payload module, and the extruder motor connected di-

rectly to the stepper driver on the RAMPS board of the EvoBot (Figure 4.12). 

As most of the EvoBot´s design is shared with existing 3D printing technolo-

gy, the integration to control the extrusion was straightforward. In order to 3D 

print a desired shape, a design was created in a computer-aided design 

(CAD) program and exported as an STL file, the standard format in 3D print-

ing. Then this file was imported into a slicer program, which generates the 

paths of the nozzle for EvoBot (Figure 4.13). Different paths can be generat-

ed by tuning the settings of the slicer. As an example, parameters such as 

number of contours, infill percentage, overlapping between the passes or the 

layer height can influence the curing properties of the 3D printed mem-

branes. These paths are a sequence of G-code commands that the EvoBot 

can interpret. However, EvoBot has special G codes for the vertical move-

ments of the modules, as each module can be moved in the Z-axis inde-

pendently. In order to adapt the output of the slicer to something that can be 

executed by EvoBot, a post-processing algorithm was implemented by the 

ITU partners. This post process, changes standard vertical movements (G1 

Zx.xx commands) with custom commands (M290 Iy Sx.xx) and comments 

out the last G92 E0 which flips the X and Z axis. The modified file with G-

codes can then be sent to EvoBot for printing. 

Initially, the printing trial started using only one layer of clay however the 

monolayer was prone to cracking. To combat this, overlapping between each 

printing path was introduced as well as a second layer of clay, which im-

proved the final outcome. The direction of the extrusion between the top and 

https://www.thingiverse.com/thing:20733
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bottom deposit was perpendicular and the second layer compressed with the 

first layer, creating a continuous membrane, even after drying.   
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Figure 4.12 - Universal paste extruder mounted on a heavy payload module on the 

EvoBot robotic head. 

 

Figure 4.13 - The process of 3D printing membranes.  

[A] The model created in OpenScad and exported to an STL file and introduced into [B] 
Slic3r, where the user selects the right parameters to create the path for the nozzle. [C] The 
paths are post-processed and imported into Pronterface, which sends the G-codes to the 
robot. 
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The experimental evidence presented above pushes forward the idea of 

monolithically 3D-printed MFCs as it shows the feasibility of creating core 

MFC materials that can potentially emerge from platforms such as EvoBot 

and help realise mass manufacturing. However, monolithically printed MFCs 

will require an extrude-able (preferably viscous) carbon energy source that 

can act as both a substrate and a substratum for the electroactive biofilm. 

The experimental rationale and procedure towards identifying those nutri-

tionally rich extrude-able materials is presented in the next section (4.3). 

4.3 Printable substrate/ carbon energy source  

Based on the work published in “Ieropoulos, I., Theodosiou, P., Taylor, B., Green-

man, J. and Melhuish, C. (2017) ‘Gelatin as a promising printable feedstock for mi-

crobial fuel cells (MFC)’, International Journal of Hydrogen Energy, 42(3), pp. 1783–

1790”. 

Having discussed how to construct printable MEAs using EvoBot, the follow-

ing section presents the results from MFCs’ fed for the first time with soft ma-

terials (gelatine and alginate) as a nutrient feedstock and Nafion® as a nega-

tive control. The aim of the study was to identify soft materials that could be 

used as feedstock for MFCs and that were extrude-able via the EvoBot plat-

form and can form biodegrade-able MFCs. This was evaluated based on the 

power output response, and the behaviour of the MFCs after feeding them 

with these different soft materials. Biodegrade-able MFCs are useful in sus-

tainable robotic applications for creating robots that can perform certain tasks 

(e.g. environmental monitoring) for a certain period of time (i.e. a month)  and 

then naturally decompose. This approach eliminates the need for decommis-

sioning robots from hard to reach or polluted areas as they can degrade nat-

urally. 
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The materials tested were selected based on their physicochemical proper-

ties, as these are critical in ensuring that maximum growth conditions are 

maintained within the MFCs, which is reflected by the power output perfor-

mance levels. To fulfil those requirements the ideal substratum has to have: 

a) the appropriate porosity, which will facilitate both access to the elec-

trode surface for the microbes and free percolation of the liquid medi-

um to reach all the colonised parts 

b) the appropriate conductivity, in order to encourage optimum surface 

reactions, between the microbial cells and the electrode surface.  

These are the key mechanisms that maintain a fixed thickness biofilm on a 

given surface area of electrode material, since the direct conductance of 

electrons (charge transfer) is the primary mechanism of bacterial survival, 

under anaerobic conditions. Metabolically, the electrode surface acts as the 

end-terminal electron acceptor for anaerobic microbes in the MFC. The ma-

terial must also be biocompatible, chemically inert, long-life and with good 

structural integrity. 

4.3.1 Specific Materials and Methods 

4.3.1.1 MFC design 

The twelve modified analytical cells employed in this study had open-to-air 

cathodes with AC/CV electrode Figure 4.14A. The custom-made AC/CV was 

used due to its potentially extrude-able ability and a single layer of terracotta 

clay (~2 mm) was used as a semi-permeable membrane for the same reason 

Figure 4.14B-C. To assemble (bolt) the cell together without fracturing the 

ceramic membrane, a thick layer of silicone was placed between the anode 
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chamber and the cathode framework, acting as a ‘cushion’ for the ceramic 

membrane. 

 

Figure 4.14 - MFC design and set-up.  

[A] Computer aided design (CAD) of the modified MFCs. [B] Clay membrane and the at-

tached AC/CV electrode. [C] Open to air cathode construction. The cathode electrode sheet 

was directly attached onto the exposed membrane but in order to ensure the electrode-

membrane contact, a thin (0.5 mm) Perspex cross was pressed against the electrode using 

a cut-to-shape cork that was tightened with a cable tie. 

4.3.1.2 Inoculation process and Rext. conditions 

Activated sludge was injected manually into the sterile chamber and the ex-

periment initially started in batch mode before becoming continuous flow. 

Three sludge exchanges occurred in the first three days of the experiment by 

emptying the chamber and re-filling it with fresh inoculum. For the next three 

batch mode feedings the inoculum used was sludge enriched with TYE 

(0.15%). Due to inherent absorption/evaporation processes, the experiments 

turned into continuous flow on the 18th day of the experiment. The flow rate 

of the constant pumping was 4.2 mL.h-1 resulting in a hydraulic retention time 

(HRT) of 5.92 hrs. The feedstock used was full strength (1.5%) TYE. One 

hour after the first inoculation, once the open circuit cells reached a plateau, 

an Rext. of 2.7 kΩ was connected and this remained unchanged until the end 

of the experiment. 
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4.3.1.3 Feeding regime and process 

After 18 days of being fed 1.5% TYE, the MFC triplicates were fed with wa-

ter-soluble pork-derived gelatine powder (240 Bloom Type A, MM ingredi-

ents, UK), sodium alginate (pure powder, Minerals Water, UK) and as a neg-

ative control, liquid Nafion® perfluorinated resin solution (Sigma Aldrich, UK). 

TYE (0.15%) was also used as a background solution in all experiments. To 

ensure that the same weight of nutrients was added, the final concentration 

of the target material in solution was 2%. This concentration was selected 

after testing different ratios in order to obtain a liquid state with sufficient vis-

cosity that will enable it to be pumped through the tubes without causing 

blockages. The positive control triplicate was fed with neat human urine and 

0.15% TYE background solution. The cells were fed in continuous flow and 

this was maintained at a 4.2 mL.h-1 flow rate. 

4.3.2 Results and Discussion 

4.3.2.1 Rationale of selecting the target materials 

In this experiment gelatine, alginate and Nafion were tested as substrates 

with the prospect of being used in the future as bacterial substrata or jelly-

like membranes for the 3D printed MFCs. Each of these materials was se-

lected because of its distinct properties. Gelatine and alginate are biode-

gradable and all the materials tested are biocompatible. It is quite evident 

that gelatine is a material that can be employed as both a substratum (3D 

extrude-able) and as a substrate (microbially utilise-able), and this forms part 

of future work.  

Nafion was only used as a negative control, due to its excellent ion-exchange 

properties, and the data showed that if Nafion should be employed in a mon-
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olithically printed MFC, in a jellified state, it will be detrimental to the system. 

Thus printable membranes such as the ones described above (4.2) are more 

favourable alternatives.   

4.3.2.1.1 Alginate and gelatine 

Alginate or gelatine, as well as pectin, can be mixed with food proteins to be 

incorporated into the 3D printing process (Godoi, Prakash and Bhandari, 

2016). For these reasons, alginate and gelatine were tested as possible 

printable feedstock for the MFCs’ bacterial community. This was due to their 

ability to be 3D printed and blended with carbon energy sources, as well as 

used as immobilising agents for bacterial cells on electrode surfaces allowing 

their accumulation as a digesting biofilm.   

Alginate is a polysaccharide and the second most abundant biopolymer in 

the world next to cellulose (Melvik and Dornish, 2004). It is composed of 

mannuronic and glucuronic acid residues which are cross-linked by calcium 

acids and form the ionotropic gel (Godoi, Prakash and Bhandari, 2016). Algi-

nate is derived from seaweed and has been used as a useful cell-

immobilising (entrapment) technique in biotechnology due to its biocompati-

ble properties as well as its ability to form heat-stable gels that can be devel-

oped and set in room temperature (Melvik and Dornish, 2004). Some species 

of bacteria can hydrolyse alginate into cell transportable sugars with subse-

quent fermentation into short-chain fatty acids (Michel et al., 1996).  

Gelatine is an animal derived protein which has been known to be used as 

gelling agent in early bacteriological media as a source of growth promoting 

substance (Koser, Chinn and Saunders, 1938). However over the years, 

agar based media proved more suitable for bacterial cultivation than gelatine 

based media as gelatine cannot remain solid in temperatures above 37 oC 
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(optimal condition for pathogen growth) and it can be digested by many bac-

teria. Bacteria possessing the enzyme gelatinase can break down gelatine 

into amino acids by hydrolyzing it (Levine and Carpenter, 1922). Apart from 

their biochemical and physiological characteristics, both gelatine and alginate 

powders are considerably inexpensive substances (approximately £4-5/kg). 

4.3.2.1.2 Nafion (control) 

Nafion is the main component of the commercially available PEM for MFCs 

as it offers excellent thermal and mechanical stability as well as conductivity. 

Nafion’s high cost (liquid: £100/ 25 mL) though means it is not a sustainable 

option for MFC scale-up and practical applications. On another note, Nafion 

membranes require activation/hydration prior to use and cannot be 3D print-

ed, however, the Nafion liquid mixed with polymers, can be deposited from 

the EvoBot platform into a solid layer and form a thin layer of membrane. 

Even though, it is well known that Nafion is not a carbon energy source, in 

this experiment it was used as feedstock for the purpose to identify if a jelly 

form Nafion membrane will cause biofouling (Chae et al., 2008) which is a 

common effect observed in Nafion membranes (anode side) or have a detri-

mental effect on the bacterial community. 

4.3.2.2 Batch mode inoculation and continuous flow op-

eration 

The power output obtained during the microorganisms’ inoculation with neat 

sludge, is highlighted in Figure 4.15A. The loaded cells were able to develop 

a visibly dense biofilm over the electrode, which gave approximately 20μW of 

power output. After the inoculation and colonisation phase, the electrode bio-

film was exposed to sludge in TYE (1:10) and the power output increased by 
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three-fold (Figure 4.15B). Although the performance of the cells was con-

sistent and repeatable, a high evaporation loss caused the anode chamber 

to dry within 96 hours, leaving behind semi-solid sediment at the bottom of 

the chamber, and having a deteriorating effect on the performance of the 

cells. An almost zero power performance was recorded after the anode 

chamber was left to dry out completely (Figure 4.15C). As can be seen from 

Figure 4.15D, once the cells turned to continuous flow operation, the power 

output increased by 0.4-fold. This shows the consistency of the twelve cells’ 

behaviour when all of them were fed with the same feedstock at the same 

flow rate. Near the end of the experiment, MFC 7-9 due to pump failure re-

sulted in declining power outputs (690-700 hour). 
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Figure 4.15 - Power profile of the inoculation process and initial feeding of the twelve 

MFCs.  

[A] Batch mode inoculation period of the fuel cells with neat sludge, [B] TYE and sludge 

(1:10). The power decrease was related to the absorption loss of anolyte liquid, due to the 

clay membrane, [C] Total dry period of the cells, [D] Continuous flow. Data represented as 

mean (n=3) 

 

On the one hand, as the early results showed, the use of a ceramic mem-

brane in an open to the air batch mode fed MFC allow a significant percent-

age of water to be absorbed leaving the anode chamber almost dry having a 

detrimental effect on the performance (Figure 4.15B). On the other hand, the 

always hydrated clay membrane in continuous flow offers a higher rate of 

proton/cation transfer (Ghadge et al., 2014) reflected by the higher output. 

Clay membranes possess a great advantage over the conventional polymer-

ic PEM (e.g. Nafion), due to their beneficial porosity, low cost, durability, as 

well as their ability to be 3D printed (Herpt, 2016); as discussed earlier (4.2).  
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4.3.2.3 Initial response of cells fed with soft materials 

After continuously feeding the 12 MFCs with TYE for ~10 days, the two tripli-

cate groups, namely MFCs 4-6, and MFCs 7-9, were fed with the target pol-

ymeric feedstock substrates gelatine and alginate, respectively, whereas and 

MFCs 10-12 were fed with the negative control, Nafion. MFCs 1-3 were fed 

with the positive control urine medium. Even though the feedstock switching 

had a slight decreasing effect on the MFC power output for the first 10 hours, 

after this period the performance levels began to diverge (Figure 4.16B). 

The power output from the first 5 days showed that the urine fed MFCs’ per-

formance improved, compared with that from the soft material fed MFCs 

whose performance decreased. Similar power decreasing levels were rec-

orded from alginate and gelatine, with the only difference being that gelatine 

was more than two-fold higher in power performance than alginate. A possi-

ble explanation for the superiority of gelatine over alginate is the difference in 

the calorific value of the two substances (gelatine: 329 kCal/100g – alginate: 

248 kCal/100g). As stated in section 4.3.1.3, the dilution of the compounds 

was standardised based on their viscosity and not their calorific value. As 

shown in Figure 4.16, the performance from the Nafion fed MFCs deteriorat-

ed rapidly over time. 
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Figure 4.16 - Time profile of MFC’s after feeding with soft materials for the first time. 

[A] The last three days of the 18-day period followed by [B] the response once the feed-

stock changed. The fuel cells were fed with 1.5% TYE for the first 18 days, and then target 

soft materials added. Gelatine outperformed the other soft materials (p < 0.0001). 

4.3.2.4 Overall performance and starvation period of the 

cells 

The average power production of the MFCs fed with different soft materials is 

shown below (Figure 4.17). The data were consistent with the initial re-

sponse to the change of feedstock. The urine fed control MFCs remained the 

highest in power output with the maximum being 149.23 µW; gelatine fol-

lowed as the second best with a maximum power at 111.26 µW. The aver-

age power production over the period of the whole duration of the experiment 

for control, gelatine, alginate and Nafion was 105.28 µW (SD=32.52), 79.54 
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µW (SD=22.67), 39.27 µW (SD=25.04) and 19.79 µW (SD=26.19) respec-

tively. The performance is represented also as the area under curve, shown 

in the graph of Figure 4.18A.  

While constant pumping was supplied to the MFCs the output was stable 

over time, however, when the feeding paused for ten days and cells left to 

starve, a different behaviour was observed. The pausing of feeding was done 

in order to observe the behaviour of the cells under starvation conditions and 

assess the longevity of each feedstock. Gelatine fed cells appeared to have 

better longevity as their performance gradually declined, and even for the 

first four days they had stable performance (Figure 4.17- inset). The rate of 

decrease of the positive control (urine) cells was the fastest among all the 

others with a decreasing trend of 0.73 µW.h-1. In all cases, Nafion was con-

sistently close to zero. The mean power output during the starvation period 

for the four feedstocks was 42.92 µW (SD=30.43) for control, 75.64 µW 

(SD=29.53) for gelatine, 38.25 µW (SD=27.14) for alginate and 1.80 µW 

(SD=2.0) for Nafion. The area under curve of the starvation period is pre-

sented in Figure 4.18B.  
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Figure 4.17 - Average power production of MFCs after feeding with different soft ma-

terials.  

Starvation period (total 10 days) is highlighted in the dotted box, a magnification of which is 

shown as the inset graph. Gelatine fed MFCs decreased at the slowest rate, which was the 

reason for its higher power output. 

 

Figure 4.18 - Area under curve (AUC) of the full experiment [A] and the starvation pe-

riod [B]. 
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4.3.2.5 Polarisation experiment 

The polarisation experiment was conducted two months after the start of the 

experiment. By this time the biofilm community was already well established 

and developed based on the 2.7 kΩ load. Polarisation power curves (Figure 

4.19) are consistent with the temporal power output data (Figure 4.17).  

Some studies suggest that early and regular polarisation experiments can 

determine the ideal resistance for maximum power production and by switch-

ing to that ideal load value the best power performance is achieved (Lovley, 

2008). Other studies indicated that changing the external resistance does not 

improve the power output, as different combinations of microbial communi-

ties are developed based on each load that leads to comparable power out-

puts, showing the flexibility and resilience of MFC systems (Lyon et al., 

2010). Thus, despite that in this study the polarisation experiment occurred 

at the latter stage when the cells had already operated under a stable re-

sistance load, it is believed that the unchanged load did not have a limiting 

effect on the MFCs’ performance. 

Nevertheless, an overshoot phenomenon was observed in the polarisation 

curves (Winfield et al., 2011). The overshoot phenomenon occurs when 

there is either a delay in or prevention of charged molecules (ions and elec-

trons) transfer, which results in decreasing the current at the same time as 

the voltage. Power overshoot can be caused by a number of factors, some of 

which have been previously described in detail, such as sample rate, flow 

rate, inoculum, feeding mode, anolyte and catholyte composition as well as 

anode and cathode redox potential levels (Zhu et al., 2013; Watson and 

Logan, 2011; Ieropoulos, Winfield and Greenman, 2010a). In this case, it is 

suspected that this was due to the complex nature of the substrates used (as 

well as the molecular weight/size) in conjunction with the flow rate (resultant 
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HRT), which appear to have resulted in high mass-transfer (kinetic) losses. 

The power output recorded during the polarisation experiments was much 

higher (>3-fold) compared to the levels recorded in the real-time temporal 

curves. This might be due to the short time of sampling (3 mins) during the 

polarisation experiment, suggesting that the period was not sufficiently long 

to reach steady-state conditions for identifying the optimum resistance value 

for long-term experiments with a fixed load (Winfield et al., 2011). 

 

Figure 4.19 - Power curves produced after two months operation on a fixed load of 2.7 

kΩ 

4.3.3 Connection with EvoBot 

The long-chain polymer composition of gelatine and chitin renders the feed-

stock to be longer lasting than monomeric substrates, which wash through 

the system or are quickly utilised. Whereas proteolytic enzymes (such as 
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gelatinease) are commonly encountered amongst many different species of 

microorganism, the enzyme to hydrolyse chitin is thought to be relatively rare 

and is encountered more in marine species. Gelatine’s outperformance over 

the other soft materials and its viscous characteristics make it a suitable ma-

terial to be employed in the 3D process. With the aim of monolithically fabri-

cated MFCs gelatine can provide nutrients during a starving period or act as 

an endogenous store of fuel. For a material to be employed in the 3D pro-

cess it should be soft and easily extruded using a RepRap EvoBot machine 

and can also be used as a structural material. The gelatine, as a feedstock 

and activated carbon paste as an electrode, serves the aim of the experi-

ment as a suitable alternative printable substratum and an electron acceptor. 

This work is a continuation of the work presented in the previous section 

(4.2), outlining the line of research towards identifying printable MFC materi-

als that can act as; physical separators of anode and cathode, or organic 

substrata. However further investigation is needed in discovering different 

material combinations which could make up an entirely 3D printed fuel cell 

including the electrodes. To do so the electrode material of choice needs to 

be in a malleable state to allow its extrusion as well as being able to become 

rigid without further treatment (i.e. air drying). This will provide structural ro-

bustness to the electrode and subsequently to the fuel cell as a whole. Hav-

ing the above rationale in mind an experiment was designed to investigate 

the feasibility of developing a custom made alginate based carbon mixture as 

a 3-D printable cathode electrode for MFCs. This work is described in detail 

in the following section (4.4). 
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4.4 3D-Printable Cathode Electrode  

Based on the work presented in “Theodosiou, P., Greenman, J. and Ieropoulos, I. 

(2018) ‘3D-Printable Cathode Electrode for Monolithically Printed Microbial Fuel 

Cells (MFCs), Electrochemical Society Transactions, Seattle (US), May 2018”. 

At the beginning of this chapter (4.1) a historical overview was presented 

based on the impact that additive manufacturing (AM) and 3D-printing have 

had on MFC research. AM and 3D-printing are playing an increasing role in 

advancing the MFC technology, by substituting essential structural compo-

nents i.e. chassis and separators, with 3D-printed parts. That has helped 

overcome many time-consuming MFC assembly steps however to date there 

have been no studies to the author’s knowledge that have focused on identi-

fying electrodes that can be 3D-printed and used directly on MFCs. This 

would be a big step towards advancing the technology for mass manufactur-

ing of MFCs using only 3D-printers. Thus the experiment presented here 

builds on the previously discussed experiments (4.2 and 4.3) and it follows 

the same line of work focusing on identifying electrode materials that can 

contribute within a monolithically 3D-printed MFC. This chapter section aims 

to; describe the development of an inexpensive, conductive and printable 

alginate–based electrode, which can be extruded from the EvoBot platform, 

and report on the advances of this material as a cathode electrode on air-

breathing cathodes. 

4.4.1 Specific Materials and Methods 

4.4.1.1 MFC architecture 

Three triplicates of single chamber analytical size MFCs were assembled for 

this experiment as described in 3.3.1. The cathodic half-cell was removed 
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completely and the cathode electrodes in examination were directly attached 

to the CEM membrane forming open-to-air cathodes. The anode electrode 

used in all the MFCs was a catalyst-free carbon veil (3.1.1). 

4.4.1.2 Cathode electrode materials 

Two types of cathode electrode materials were tested against the control 

AC/CV PTFE-based cathode electrode named PTFE_AC (3.1.2.1) (Figure 

4.20). The materials trialed were a) a solid commercially available coconut 

shell derived sintered carbon block filter cartridge (Water Filter Man LTD, 

UK) named AC_BLOCK and b) a custom made PTFE-free/alginate based 

electrode (PTFE_FREE_AC) which was made using activated carbon (80g) 

and alginate (Minerals Water Ltd, 20 g). These two were mixed with distilled 

water into a thick paste.  Prior to mixing, carbon and alginate were homoge-

nized using an electric coffee grinder (Andrew James 150W, UK). The paste 

was then transferred to a syringe from where it was extruded directly onto 

the membrane (10 mL) (Figure 4.21) and dried/solidified on the bench in 24 

hours (Figure 4.22). This mixture was enough for 10 electrodes (e.g. 2g of 

alginate/electrode). The final weight of all the dried electrodes was 3.8 ± 0.2 

g. 
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Figure 4.20 – Photographs of the three different cathode electrodes used in this study. 

[A] AC_BLOCK: Activated carbon block as the commercial option, pierced through with a SS 

screw as the current collector [B] PTFE_AC (AC/CV): Activated carbon on carbon veil 

(AC/CV) PTFE-based electrode as the control and [C] PTFE_FREE_AC: PTFE-free alginate 

based electrode as the extrude-able electrode. 

 

Figure 4.21 – Time-lapse photography of the manual extrusion of the PTFE-free/alginate 

based cathode electrode on the membrane of an assembled MFC. 
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Figure 4.22 - Manually extruded PTFE-free alginate electrode 0, 2 and 24 hours after 

extrusion, showing the electrode settling and solidifying (air-drying). 

4.4.1.3 Inoculation, feedstock and Rext conditions 

The cells were inoculated with acclimated activated sludge supplemented 

(1:10) with full strength TYE (1.5% w/v) for the initial five days which consist-

ed of daily full exchanges (four in total). Then the MFCs were fed daily (batch 

mode) with neat human urine and they were operating under a 2.7 kΩ load 

for the whole duration of the experiment.  

4.4.1.4 Electrochemical analysis of the cathode electrode 

Linear sweep voltammetry (LSV) was performed in order to examine the 

electrocatalytic activities of the cathode electrodes under investigation.  Be-
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fore the electrochemical analysis took place, MFCs were left to stabilise 

overnight with neat urine as their anolyte solution. This allowed the mem-

brane to be fully hydrated and guarantee liquid continuity. Cathode polarisa-

tion curves were run from open circuit voltage (OCV) to -250 mV (vs 

Ag/AgCl) with a scan rate of 0.25 mV s−1. LSV was performed using an SP-

50 potentiostat/galvanostat from Biologic, France. For this analysis, a three-

electrode configuration was used with a reference electrode (Ag/AgCl) in-

serted near the anode electrode according to the literature (Zhang et al., 

2014). The anode was used as the counter electrode, the cathode as the 

working electrode and the reference channel was connected to the reference 

electrode placed in the anodic solution. For statistical significance, every 

electrochemical experiment was run in triplicates. 

4.4.2 Results and discussion 

4.4.2.1 Material selection rationale  

4.4.2.1.1 Activated carbon (AC) 

AC is a porous, solid surface material which can merge with different mo-

lecular structures (Chambre, 2014).  It derives from a wide range of carbon-

rich raw materials such as coconut shells and wood and it is activated using 

chemical or steam activation. The latter is the common technique for the ac-

tivation of coal and coconut shell raw materials. Activated carbon exhibits an 

extended interparticulate surface area which offers to the material a high de-

gree of porosity and excellent adsorbent characteristics (Chambre, 2014). 

This, is attributed to its unique properties such as; large surface area (500-

2000 m2 aggregated surface area per gram of AC), high degree of surface 

reactivity, universal adsorption and pore size (micro- and macro-pores) which 
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allows adsorbents to easily attach to the inner surface of the AC. AC carbon 

is the conductive element of choice when it comes to electrode materials 

throughout this thesis study due to its availability, cost effectiveness and eco-

friendliness.  

4.4.2.1.2 Sodium alginate  

Sodium alginate is a versatile, economical and high-modulus polysaccharide 

extracted from brown algae which has recently attracted a lot of interest as 

an eco-friendly binder for both anodic and cathodic electrodes in the lithium 

ion (Li-ion) battery industry (Bigoni et al., 2017; Xu et al., 2013; Kovalenko et 

al., 2011). The properties of alginate have been discussed previously 

4.3.2.1.1 in relation to using alginate as a printable carbon energy feedstock 

for MFCs. In this experiment, the focus was to investigate whether it could be 

used as a biodegradable binder in MFC electrodes in an attempt to move 

away from employing the toxic PTFE binder. Similarly to preparing a Li-ion 

battery electrode, the PTFE_FREE alginate based electrode was formed into 

a slurry by mixing the conductive carbon powder (PAC) with alginate as the 

polymeric binder and de-ionised water as a solvent. However, instead of 

casting the slurry into a metal foil current collector (as in Li-ion) it was depos-

ited on the membrane directly using a syringe. Although binders are electro-

chemically inactive, they still play an important part in the stability and integri-

ty of the electrodes (Kovalenko et al., 2011) as well as the performance of 

the cell (Bigoni et al., 2017). Also, water-processed binders such as alginate 

can cure in the air and don’t require further treatment. Besides, they are an 

economical and eco-friendly alternative to toxic electrode components and 

costly manufacturing processes.  
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4.4.2.1.3 Carbon Block 

Bonded activated carbon (AC) filters are used in a wide variety of purification 

techniques including water purification, gas purification, and air filters. For 

such applications, GAC is the common choice because it has the flexibility to 

be incorporated as loose-fill within filter housing or into carbon blocks 

(Jefferies, 1995). The industrial manufacturing of bonded carbon filters re-

quires the incorporation of various chemical processes in order to bond the 

carbon particles into a rigid matrix.  

Gas molecules are adsorbed into the carbon block by diffusing into the pores 

of AC where they get trapped into the walls. Since the surface area of the 

block is extremely large the number of pores within the block is equally large. 

With these properties in mind, this type of filter was selected as the commer-

cially available product to be trialled as the of-the-shelf air-breathing cathode 

electrode for the MFCs. In this study, the AC block was made out of coconut-

based AC which is considered effective as it offers high porosity and surface 

area facilitating quick adsorption, which is why is preferred for use in gas and 

water filters. Further, coconut shells are found freely in nature making the 

manufacturing process more sustainable. 

The manufacturing process of bonded carbon filters from loose GAC proved 

to be disadvantageous for their use as air-breathing cathode electrodes in 

this study. This is because the chemical bonding process alters the carbon 

particles having a detrimental effect on their ability to bond with gas com-

pounds (Chambre, 2014). The bonding process initially requires the AC to be 

soaked in water for 24-hours, which can cause leaching of useful impregnat-

ed chemicals, followed by a soaking in bonding agents such as polystyrene 

which can impact the adsorption capacity of the granules. It is hypothesised 

that these factors influenced the underperformance of this type of electrodes 
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in this MFC setup as presented below. Similar observation were published in 

a recent study where sintered AC blocks were employed in self-stratifying 

MFCs treating urine (Walter, Greenman and Ieropoulos, 2018). Among the 

different cathodes tested in that study AC block was the least performing but 

was the most economical. 

4.4.2.2 Power output and polarisation 

4.4.2.2.1 Continuous power output  

At the initial stages of the experiment, the MFCs were inoculated with TYE- 

supplemented activated sludge. The power output was increasing incremen-

tally after each inoculation as shown in the Figure 4.23A and B. In all cases 

the MFCs almost doubled in power output from their initial sludge exchange 

until their fourth and last exchange that occurred on day 7 (instead of day 5 

due to power cut - 3.6.1). Initially PTFE_FREE_AC was performing at 21 μW, 

PTFE_AC at 14 μW and AC_BLOCK at 7 μW whereas on day 7 they were 

performing at 42, 23 and 15 μW respectively.  

The end of the inoculation period signalled the beginning of the urine feeding 

cycle when initially 50% of the anolyte was removed and exchanged with 

neat urine (day 8), as shown in Figure 4.23C. At the beginning this had a 

positive impact on the PTFE_FREE_AC MFCs, which saw an increase of 

68.75% in power output, however it did not have the same effect on the other 

two MFCs that remained almost unaffected. To investigate this further on day 

11 all the MFC anodes were emptied completely, anolyte was sucked 

through the carbon veil electrode, and then replenished with 100% neat 

urine. The MFCs responded unanimously to this feeding and instantly the 

power output reached 67 μW for the PTFE_FREE_AC, 24 μW for the 

PTFE_AC and 10 μW for the AC_BLOCK. During the next 13 days the MFCs 
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steadily increased in power output despite a 79 hour shut down of the exper-

iment when they were left unmaintained. This shows the resilience of the 

system, which even after being left unattended, without daily feedings, can 

still continue to thrive as long as carbon energy source is added to the sys-

tem. This is visualised more clearly from day 23 to day 25 when the MFCs 

steadily degraded their organic fuel but were reinvigorated when fed (Figure 

4.23D). 

Looking at the temporal behaviour, the MFCs with the 3D-printed alginate 

based cathode electrode (PTFE_FREE_AC) performed better than the con-

trol (PTFE_AC) and the commercially bought sintered carbon block 

(AC_BLOCK), which in fact was the least performing. The area under the 

curve was calculated for the whole experiment and is presented in Figure 

4.24. 
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Figure 4.23 – Temporal power output of the MFCs employing different cathode elec-

trodes.  

[A] Inoculation phase consisting of three sludge exchanges as indicated from the spikes in 

the graph, [B] Single re-inoculation following a 48 hour of power cut and loss of data, [C] 

Initiation of urine feeding cycle and [D] Continuation of urine feeding cycle following a 79 

hours experiment shut-down (as explained in  3.6.1).  
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Figure 4.24 - Overall calculated area under the curve, presented in Joules, based on 

the temporal power output data. 

4.4.2.2.2 Polarisation results operating MFCs 

Following the temporal power output of the systems (discussed above) a po-

larisation experiment was conducted to identify the maximum power output 

capabilities of the three whole MFC systems. The results of this experiment 

are presented in Figure 4.25 and are in agreement in terms of the order of 

performance with the real-time (temporal) data. The MPT for the MFC em-

ploying the alginate based PTFE_FREE electrode was 285.5 μW, which was 

190.45 μW higher than the control PTFE_AC and 200.27 μW more than the 

sintered carbon block. The difference in the magnitude of power output be-

tween the real-time data and the polarisation data are due to Rext. which was 

not optimal during the duration of the experiment. 
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Figure 4.25 – Polarisation results of the three types of MFCs examined. (n=3) 
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4.4.2.2.3 Cathode electrode LSVs 

To investigate the electrocatalytic activity of the air-breathing cathodes, LSV 

was carried out under clean conditions, using neat urine (pH=9.2) as the 

electrolyte solution. Prior to running the LSV, the cells were left to soak over-

night in the urine solution, ensuring liquid continuity between the membrane 

and the electrodes as well as achieving a stable open circuit potential (OCP) 

for all the cathodes tested. The resulting OCP of the two custom made elec-

trodes, PTFE_AC and PTFE_FREE_AC was 85±18 mV (vs Ag/AgCl) and 

108±8 mV (vs Ag/AgCl) respectively whilst the commercially available 

AC_BLOCK had an OCP of around 163±15 mV (vs Ag/AgCl), which was the 

highest of all (Figure 4.26). This can be attributed to two factors; firstly the 

AC carbon base employs granular activated carbon (GAC) instead of pow-

ered activated carbon (PAC) and GAC has higher reactivity with gases than 

PAC. Secondly, during the manufacturing process, GAC is sintered into rigid 

blocks which increases the number of pores within the block leaving a higher 

surface area for oxygen reduction compared to the other two tested elec-

trodes which were made manually with PAC. However all the electrodes 

were below the theoretical value of ORR vs Ag/Ag Cl at pH=9 which is 580 

mV, mostly because these values are based on platinum electrodes and not 

carbon-based electrodes. Furthermore, OCP only shows the thermodynamic 

difference in potentials between the anode and the cathode electrode 

(against a reference electrode) which is not a determining factor of the per-

formance of the MFC once it is closed circuited, as reflected from the power 

curves (Figure 4.25). The LSV data (Figure 4.26) show that, PTFE_AC and 

AC_BLOCK had low current outputs and also underwent higher activation 

losses than PTFE_FREE_AC. Overall the LSV data confirmed that the 3D-

printed ones (PTFE_FREE_AC) produced notably higher current output than 

the rest (6±1.5 mA at -250mV vs Ag/AgCl). 
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Figure 4.26 – Linear sweep voltammetry results of the three cathode electrodes 

(250 mV/S) (n=3). 
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4.4.2.3 Cost analysis 

An important factor to consider in the effort to improve the MFC performance 

is not only the power output but also the cost effectiveness of the materials, 

especially when using alginate. In perspective with the aim of £1 per MFC, 

the alginate electrode is the most suitable one in reducing the overall costs. 

PTFE_AC cathode electrode requires PTFE coated carbon veil sheet as well 

as a mixture of PTFE and AC. PTFE is a highly toxic and expensive material 

(£138/500mL, Sigma Aldrich, 2017) compared to food grade alginate which 

only costs £8.76 per 500g. Moreover, the 3D-printed alginate based elec-

trode (PTFE_FREE) was the cheapest. That is because it does not require a 

supporting material or heat treatment to set, thus the assembly and manufac-

turing cost is even less that the conventional electrode (PTFE_AC). Hence, 

by removing the extra costs regarding materials and assembly for cathode 

electrode using the 3D-printed ones, the cost per electrode can costs £0.035 

(not factoring 3D-printing energy costs).  

4.4.3 Connection with EvoBot 

Following the successful implementation of PTFE_FREE alginate based 

electrode on MFC membranes using manual syringe extrusion, the next step 

was to test the same extrusion using syringes on the EvoBot platform.  For 

this test, the syringe was preloaded with conductive paste and attached to 

the robotic head without any modifications (i.e. implementing an extruder) 

because the viscosity of the paste was sufficient for the syringe motors to 

push the paste through. Similarly to printing the Fimo™ membrane as de-

scribed above (4.2.3), to extrude the conductive paste the desired shape was 

created in CAD. This dictated the path that the syringe nozzle of EvoBot 
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needed to follow. A time-lapse figure of the EvoBot extruding the cathode 

electrode is shown below (Figure 4.27).  

 

Figure 4.27 - Time-lapse photographs of the EvoBot extrusion of the PTFE-

free/alginate based cathode electrode on a ceramic MFC membrane. 

4.5 Conclusions and future work 

The key to advance the MFC design is to optimise the construction and de-

sign of units through the use of 3D fabrication techniques. The 3D print-

ed/extruded MFCs will not only speed up the manufacturing process of indi-

vidual units, but can also help in automating the production process of multi-

ple units for scale-up. This will benefit the electrical power output as rapidly 
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fabricated multiple units can be stacked together to increase voltage or cur-

rent output (Ieropoulos, Greenman and Melhuish, 2008). Another important 

advantage of 3D-printing MFCs will be the standardisation of the technology. 

At the moment, a standard MFC archetype does not exist, making the com-

parison of MFCs between groups around the world difficult. The possibility of 

3D-printing MFCs can standardise the design making it easily accessible and 

exchangeable with different research groups globally that have access to a 

3D-printer.  

A series of three experiments were presented in this chapter. Firstly it was 

demonstrated that; alternative, extrude-able, EvoBot printed, membrane ma-

terials and MEAs which do not require firing, can be employed in MFCs and 

provide higher power outputs at lower costs than conventional CEM. This is 

a novelty in the MFC research, as in fact, the MFCs with air-dry clay based 

MEAs produced up to 50% more power than the controls. Since the MFC 

technology relies on low-cost materials, due to the small amount of electricity 

generated per MFC unit, the fact that terracotta, air-dry Fimo™ and air-dry 

clay were 40±10 times cheaper than CEM (per Watt produced), adds an ex-

tra advantage in using  these materials. In addition those MFCs had a COD 

reduction of nearly 80% which was 20% more than what the CEM based 

MFCs achieved. At last, the capabilities of those air-cured materials open 

another novel and promising avenue to the MFC research as they can be 

fabricated using 3D printing and/or extrusion techniques on the EvoBot plat-

form. Apart from extrusion, EvoBot can be customised and a brush/roller can 

be incorporated into its robotic head. This could apply a uniform conductive 

coating onto the dried extruded membranes, akin to a robotic painting ma-

chine (Grosser, 2011), achieving the complete MEA fabrication. 
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Secondly, it was shown that carbon-energy supplemented printable materials 

such as gelatine and alginate can potentially act as printable feedstock in a 

monolithically printed MFC. These were proven to be able to sustain bacteri-

al cells with carbon energy for longer periods (under starvation conditions) 

compared to urine. This experiment can be investigated further by optimising 

the feeding regimes with feedstock that has been standardised based on 

calorific value (even urine), rather than based on utilisable-energy concentra-

tion which was the methods used in this study. This may provide a clearer 

picture between alginate and gelatine as carbon energy sources in further 

studies. Such experiment can be used to explore the breakdown-utilisation 

rates, within an MFC, of different substrata when mixed with small molecular 

weight compounds that can be degraded easily (i.e. acetate). This approach 

can result in “evolving” and adapting microbial communities to degrade a di-

verse range of CE sources based on the media availability and experimental 

purposes. Such experiments can investigate further the “switch on” mecha-

nisms of different bacterial cells (Magasanik, 1961).   

The third and final experiment of this investigation demonstrated the devel-

opment of a cost effective, eco-friendly, air-dried, extrude-able, 3D-printed 

electrode (PTFE_FREE_AC) which could successfully act as a cathode elec-

trode in an MFC system. The conductive element was initially manually de-

posited, to evaluate the effectiveness of the material as a cathode and the 

experiment showed its superiority over the other two tested electrodes, 

PTFE_AC and AC_BLOCK. Finally the electrode was successfully extruded 

from the on-board EvoBot syringe without the need for any hardware modifi-

cations to the unit. Hence it was shown that replacing the conventional 

PTFE-based AC carbon electrodes with the alginate based conductive paste, 

is a valuable development towards printable MFCs since both the membrane 

and the cathode electrodes can emerge from the same platform.  
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The overall work described in this chapter has contributed to a bigger picture 

on 3D fabricating MFCs and the experiments above can be considered as 

steps towards entirely printable MFC units. Moreover, based on these find-

ings it is envisaged that in the future EvoBot-like machines will be able to 

fabricate MFC. This chapter has addressed the improvement of MFC per-

formance through material optimisation and configuration modification. How-

ever, work still needs to be carried out to improve the performance of the 

MFCs using automatic laboratory techniques which is an element that is still 

in hibernation in the sector of MFC research. EvoBot as an automated liquid 

handling robot has the ability to experiment on MFCs with the ultimate goal 

to increase their power performance. The work towards this goal is present-

ed and discussed in detail in Chapter 5. 



 

 

Chapter 5 EvoBot and MFCs 

The previous chapter (Chapter 4) gave an overview of the bench experi-

ments leading to the optimisation of core MFC materials. The focus was on 

3D-printable ones that can be extruded from the EvoBot platform. However 

as EvoBot is modular and multifunctional, apart from its 3D-printing capabili-

ties, it can also operate as a laboratory assistant for performing interactive 

experiments with MFCs. The ultimate aim of this interaction is to improve the 

power output levels of MFCs that can be then used for practical applications. 

Thus this chapter, through a series of experiments stated as Phases I-V, 

aims to cover the range of EvoBot-performed MFC experiments, leading to 

the final step of this study which was the running of the original EcoBot-II, 

using the EvoBot-matured MFCs.  

Parts of this chapter have been included in the following publications:  

Theodosiou, P., Faina, A., Nejatimoharrami, F., Stoy, K., Greenman, J., Melhuish, 

C. and Ieropoulos, I. (2017) EvoBot: Towards a Robot-Chemostat for Culturing and 

Maintaining Microbial Fuel Cells (MFCs). In: Biomimetic and Biohybrid Systems 

[online]. Springer, Cham. pp. 453–464.  

Faíña, A., Nejatimoharrami, F., Stoy, K., Theodosiou, P., Taylor, B. and Ieropoulos, 

I. (2016) EvoBot : An Open-Source , Modular Liquid Handling Robot for Nurturing 

Microbial Fuel Cells. In: Proceedings of the Artificial Life Conference 2016. 2016 pp. 

626–633.  

EvoBot has been developed by Prof. Kasper Stoy, Assistant Prof. Andres 

Faina and Dr. Farzad Nejatimoharrami from the IT University of Copenhagen, 

as part of EVOBLISS project. 
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5.1 The making of EvoBot 

The term robot has been defined by the International Organization for Stand-

ardization (ISO) as:  

“a programmable actuated mechanism with a degree of autonomy, which is 

able to move within its environment in order to perform intended tasks”.  

Historically, the first commercially available laboratory robot, the Robot 

Chemist, was marketed in 1959 with the aim to automate wet-chemical ana-

lytical procedures (Rosenfeld, 2000). This was the first step towards labora-

tory automation practices. Twenty years later, laboratory robots were intro-

duced into the pharmaceutical industry for drug analysis (Bogue, 2011). After 

a long period of adoption, robots are today playing a significant role in all as-

pects of laboratory procedures; from routine chemical analysis to drug devel-

opment and DNA analysis. Autonomous laboratory robotics have generally 

advanced laboratory procedures since they offer: accuracy, speed, conven-

ience and they are cost effective compared to labour cost. One research ar-

ea that can directly benefit from such advances in laboratory robotics is 

MFCs.  

As it has been mentioned earlier (2.1.3), MFCs have been closely associated 

with autonomous robots due to their capabilities of providing energy autono-

my to biologically inspired robots; Gastrobot (Wilkinson, 2000), EcoBot I, II, 

III (Ieropoulos, 2003; Ieropoulos et al., 2005, 2010a) and Row-bot (Rossiter 

et al., 2015; Philamore et al., 2016). These examples are proof-positive that 

energy autonomy is both plausible and feasible through the use of MFCs, 

however research is still needed to reach full MFC potential and increase the 

capabilities of these artefacts, which are known as Symbots (Melhuish et al., 

2006).  
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Due to the increasing demand for alternative - renewable methods of power-

ing robots (Iqbal and Khan, 2017), MFC research emphasis is on the devel-

opment of the next generation of improved and optimised MFCs offering 

maximum power production. In this line of thought, EvoBot attempts to im-

plement the 3D RepRap technology as a mechanism for printing organic and 

inorganic substrata as well as accurately dosing the biofilm (microbial com-

munity adhered to the anode electrode) of the fuel cell with organic matter in 

the same manner as a chemostat. The idea of a laboratory robot that can 

inoculate and maintain MFCs, in a similar manner to the maintenance of bac-

terial cultures within a chemostat, was first captured in the original 

EVOBLISS project proposal that predates this thesis. 

The chemostat is a widely-used apparatus for culturing cells (Monod, 1950) 

enabling the experimental control of cell growth rate, in order to study the 

adaptive evolution of microbes and to achieve dynamic steady-states (Ziv, 

Brandt and Gresham, 2013). The cell culture grows and evolves within the 

chemostat in the presence of a continuous flow of nutrients. The vessel re-

tains a constant volume, as an overflow system is in place (Figure 5.1). 

These principles were transferred on the EvoBot platform. The MFC bioreac-

tors acted as the biofilm culture vessels and the continuous flow of nutrients 

was replaced by an on-demand fuel supply triggered by the MFC electrical 

output. This correlation and experimental line of work has never been ex-

plored before and contributes to the novelty of this thesis.   

EvoBot aims to act as a Robot-Chemostat for monitoring and interacting with 

evolving systems and eventually producing optimally evolved/adapted MFCs 

with improved energy generation capabilities, which is a pioneering step for 

the MFC technology. Hence, this thesis investigated if such a machine can 
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accelerate the maturing process of the MFCs resulting in an optimum micro-

bial consortium, for energy production, at a shorter period of time.  

 

Figure 5.1 - Graphical representation of the chemostat method/biofilm continuous 

culture reactor for culturing bacterial cells. 

 

5.1.1 Characteristics 

EvoBot is a modular, open source, versatile, and affordable robotic platform, 

which has been developed to perform liquid handling experiments; in the 

context of the EVOBLISS EU project (FP7-ICT). EvoBot has been used in 

seven different laboratories around the world for diverse applications, such 

as interaction with MFCs (Faíña et al., 2016), moving droplets, improving the 

quality of artificial life experiments (Nejatimoharrami et al., 2016) and per-

forming OCT scans on biofilms (Blauert, Horn and Wagner, 2015). 
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EvoBot consists of an upper actuation layer, an experimental layer in the 

middle, and a sensing layer (with a camera) at the bottom (Figure 5.2). The 

actuation layer comprises the robot head and modules mounted on it. The 

modules are plugged into the head and are usually designed to perform an 

action on the experiment. However, they may also have sensor functionality 

e.g. optical coherence tomography (OCT) scanning, an imaging technique 

which allows for optical sectioning of the sample. Such a sample can be the 

electroactive anodic biofilm of an active MFC with transparent anode cham-

ber. The head, which holds the modules, can be moved in the horizontal 

plane. EvoBot’s modularity allows for support of modules of different kinds 

for various applications. The experiment-dependent modules could entail sy-

ringe modules for liquid dispensing or aspirating, grippers to move the con-

tainers over the experimental layer or dispose dirty containers, an OCT 

scanner module to perform OCT scans, an extruder module to 3D print MFC 

parts (as shown in 4.2.3), and other potential experiment-specific tools. 

The experimental layer consists of a transparent Poly methyl methacrylate 

(PMMA) sheet on which reaction vessels (e.g. Petri dishes, well plates, 

beakers etc.) and/or MFCs are positioned. The actuation layer interacts with 

the experimental layer by filling or emptying a specific volume to/from a sy-

ringe, washing a syringe, or/and disposing dirty containers. 

The robot frame is built from Aluminium profiles, which, the experimental lay-

er and actuation layer are mounted on. The layers can easily be moved up or 

down on the robot frame with a cam lever mechanism. 

Configuring EvoBot for different experiments is easy, as modules can be 

simply removed or plugged at the appropriate position. The head is respon-

sible for moving the modules in the x-y plane, while the modules have motors 

to move vertically. The robot head can accommodate syringe modules to as-
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pirate or dispense liquid at 17 potential positions, and up to 11 syringes can 

be used simultaneously as the socket positions overlap with adjacent ones. 

 

Figure 5.2 - Overview of the actuation and experimental layer of the robot. 

[A] EvoBot’s actuation layer consists of a moving head on which various modules, such as 

[B] syringe modules can be mounted. In this figure the [C] experimental layer accommo-

dates [E] different vessels, and the [D] camera at the bottom acts as the sensing layer by 

collecting experiment data. 

EvoBot’s design is based on open-source 3D printers using an Arduino 

board and a RAMPS shield. This electronics design allows building on exist-

ing software for open-source 3D printers. A computer controls the robot by 

communicating with the Arduino through serial communication. The Arduino 
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is connected to the RAMPS shield. The RAMPS shield controls the three 

stepper motors to move the robot head, the modules mounted on the robot 

head, as well as the two direct-current (DC) pumps. 

5.1.2 Scope 

As described earlier (5.1), EvoBot was developed to operate in the same 

manner as the chemostat and the work has been broken down into five dif-

ferent phases. These phases (experiments) were performed by the author of 

this thesis at UWE, Bristol. During Phase I, EvoBot demonstrated interface 

and interconnection with an MFC. Shortly after, during Phase II a long-term 

experiment with 9 MFCs was performed. Using a feedback loop, EvoBot 

maintained the MFCs by controlling the nutrient supply rate when the power 

dropped below a pre-set threshold. On Phase III the experiment was opti-

mised further and was able to take twice as many MFCs on the platform 

(than Phase II) and through the use of two DC pumps and two syringes, it 

supplied media to the on-board vessels that redistributed to the fuel cells. 

This work focused on demonstrating the development of EvoBot as a mod-

ern-day, robotic, biofilm bioreactor for continuously culturing the biofilm of the 

MFCs (based on the “chemostat” approach). The main aim of phases I to III 

was to examine whether MFCs could be optimised through EvoBot interac-

tion in order to produce higher power outputs.  

Phase IV gave the opportunity to experiment on the established MFCs by 

implementing an evolutionary algorithm (CMA-ES) in order to identify and 

develop a feedstock more suited for high power performing MFCs. The 

unique novelty of these experiments presented in Phase I-IV is the fact that 

adaptation and evolution occured with energy abstraction as the main selec-
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tive mechanism, which is used as the feedback signal to interact with the 

EvoBot feeding mechanism. 

Based on the knowledge gathered during the four previous experimental 

phases, a final experiment was set-up for Phase V. This investigated the im-

pact of the EvoBot automated feeding process against the conventional 

manual batch feeding process, on the length of the maturing period as well 

as on the power output levels of the MFCs. The optimised MFCs were then 

empirically evaluated to explore whether they could power another robot us-

ing the EcoBot-II as the testing platform. In the following sections the five 

phases that showcase EvoBot’s versatility will be described in detail. 

5.2 Phase I - Interface and interconnection 

This section describes the infrastructure and execution of the interconnection 

experiment between an MFC and EvoBot, which was pursued and estab-

lished for real-time output capture, recording and control. The electrical inter-

face was set-up using a data-logger connected to the EvoBot computer 

which allowed both individual and collective (i.e. stack – when applicable) 

MFC readings to be recorded. The electrical connections on the platform al-

lowed for the MFCs to be connected using “plug & play” interfaces to allow 

easy access to the MFCs once they are ready for detachment and use in 

practical applications.  These electrical connections aimed to interface with 

the EvoBot controller, for real-time feedback control. In particular the experi-

ment investigated if the electrical signal of the MFCs can effect a behaviour 

change in the robotic head which will react either with the microcosms inside 

the MFCs (by supplying the anodes with fuel) or/and the abiotic open-to-air 

side (by hydrating the cathodes with water).  



5.2 Phase I - Interface and interconnection 143 

 

   

 

Initially during the Phase I experiment, threshold readings from the electrical 

output of the MFC were used to control the pumping mechanism mounted on 

the robotic head in order to actuate and deliver fuel (when starved). Hence 

the overall aim of this experiment was the proof-of-principle that a robotic 

system such as EvoBot can interface and interact with living systems (MFCs) 

by monitoring the real-time electrical output and feeding it back to EvoBot to 

control the MFC’s electrical behaviour.   

5.2.1 Specific Materials and Methods 

5.2.1.1 Hardware 

The first version of EvoBot was used for this experiment. It had a length of 

600 cm and the MFC was placed on the arena (Figure 5.3A). A detailed re-

port of the robots design, mechanics and electronics is presented in Faíña et 

al. (2016) and for this purpose it will not be included in detail here. The liquid 

was delivered to the MFC via a DC pump attached to the robotic head as 

described in section 0 (Figure 5.3C).    

5.2.1.2 Software 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) from Na-

tional Instruments, Texas, US was used to create the applications that inter-

acted with the real-time data produced from MFCs. Using LabVIEW a multi-

layer program was compiled in which a function was written that collected the 

data from the Picolog data logger and output that data as a string of values. 

LabVIEW sampled the Picolog file every 1 minute for the MFC voltage read-

ing. The feeding scripts were written in Python language (Python 3.6.0). In 

the case where the MFC voltage dropped below the preset threshold limit 

that was set in LabView, the python script was activating the robotic head 
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(actuation layer) to move above the MFC anode and deposit by pump 12.5 

mL of inoculum. After the disposing of the liquid, the head of the robot homed 

itself.   

 

Figure 5.3 - Experimental set-up of Phase I: Interface and Interconnection experiment.  

[A] The robot and data-logger are connected with the laptop computer which acts as a real-

time voltage display. [B] The photo shows the anode of the MFC, pressed against the mem-

brane using a rectangular piece of inert styrene material and [C] the DC pump connected to 

the bottle containing the sludge. 
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5.2.1.3 MFCs 

A standard analytical size two-chamber cubic MFC (3.3.1) was placed on the 

EvoBot experimental arena (Figure 5.3B). The anode and cathode electrode 

were connected with a 3 kΩ load.  

The MFC was inoculated with activated sludge supplemented with 5mM so-

dium acetate as the CE source. Connected to the robot board, the DC pump 

was used for pumping the enriched sludge into the anode chamber. The DC 

pump was calibrated and the length of time it was allowed to pump (activa-

tion time) dictated how much liquid volume should be dispensed. For this ex-

periment, in order to dispense 12.5 mL of sludge the pump was activated for 

37 seconds. 

Electrical output (voltage) was measured in real-time using a PicoLog ADC-

24 interface, both the EvoBot and the data-logger were connected in the 

same HP laptop computer.  

5.2.2 Results and discussion 

As explained in a previous chapter (2.1.2) the microbial metabolism, utilises 

the carbon energy source within the anode chamber of the MFC which even-

tually depletes the carbon content resulting in a drop in voltage; in other 

words, as the fuel runs out, the voltage decreases. This was the foundation 

of this initial and critical experiment, which focussed on identifying whether 

the change in voltage would trigger the robotic arm of the EvoBot platform. 

The triggering could cause the robotic hand to move and feed the MFC with 

more organic material when the voltage drops below a threshold. As a result 

of the interaction, the MFCs could be maintained at higher output levels and 

the experiment could be prolonged. 
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To test this theory, the experiment started using an abiotic MFC as described 

earlier (0). At the outset, the MFC was dry and contained no bacteria (there-

fore zero voltage was recorded). The null voltage actuated the arm to move 

and deliver approximately 12.5 mL of activated sludge into the anode cham-

ber (Figure 5.3B). The 12.5 mL was fed into the anode chamber of the MFC 

using a DC pump that was connected to a 50 mL bottle of activated sludge 

(Figure 5.3C). 

 

After the robot had deposited the 12.5 mL of activated sludge (Figure 5.4A), 

the MFC voltage increased and stabilised at approximately 27 mV. Next, the 

command “Feeding Threshold” was set to 20 mV with the original intention 

being to let the voltage naturally decrease as the microbes consumed the 

food in the sludge. However, since the time period for a freshly inoculated 

MFC, to fall under 20mV, can take up to 24 hours, 10 mL of sludge was 

manually removed to simulate food consumption (Figure 5.4B); due to the 

disturbance when removing the anolyte a spike in voltage was observed. 

However, once the voltage decreased below the pre-set feeding threshold 

the robot arm was activated to move to the position above the MFC anode 

inlet and initiated the DC pump for 37 seconds, thus introducing 12.5 mL of 

new sludge medium into the MFC. 

This short but significant experiment showed that the feedback loop between 

the MFC output (the voltage and power to maintain that voltage) produced by 

the microorganism living inside an MFC communicated with the robotic con-

troller, which was then able to activate a python script that initiated a set of 

given tasks. This chain reaction resulted in the supply of fresh fuel to replace 

the depleted feedstock leading to increasing the MFC voltage above the min-

imum threshold. This robotic interactive approach can be of a direct benefit 
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to the MFC research community because it gives control and automation to 

the complex process of MFC inoculation, cultivation and maintenance.   

Conventionally, MFCs that are tested in laboratory conditions need reliable 

feeding and maintenance provided by the researcher responsible for that ex-

periment. As discussed earlier in 2.1.2.1 this can either be in the form of pe-

riodical feeding usually occurring daily (batch-fed) or in the form of a constant 

feeding supplied by a pump (continuous flow). Both methods have their re-

spective advantages and disadvantages. However none of these methods 

can provide the MFCs with the much needed fuel on-demand (e.g. when the 

microbes in the biofilm need it the most).  Besides, continuously fed systems 

that need constant pumping of fresh media may result in an excess supply of 

fuel when it is not necessary resulting in the over-consumption (efficiency 

waste) of the specific fuel. 

Thus with software such as LabView and background Python scripts it is 

possible to change that and set threshold limit voltages – either a higher or a 

lower threshold – with a specific command that activates the EvoBot robotic 

arm to perform a given task based on the users’ needs. When low voltage is 

detected (below threshold) these types of commands can include but are not 

restricted to the robotic arm selecting a specific substrate (nutrient, pH buffer, 

mediator) and depositing to an underperforming MFC. On the flipside, if a 

higher voltage is detected (above threshold) then a recommended action 

could be to extract a portion of that “strong” microbial community and transfer 

it into an abiotic MFC. This would ensure that colonisation is initiated using a 

healthy electroactive community. 

In summary this experimental trial showed that the robot is able to maintain 

the MFCs by reacting to the carbon energy source depletion within the anode 

as reflected by the power output. Additionally, these findings demonstrate for 
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the first time that an MFC’s real-time electrical output can establish a feed-

back loop with the EvoBot. Hence, this novel use of the EvoBot can advance 

the inoculation and maturation process of MFCs using the robot as the au-

tomated reactive laboratory assistant, rather than relying on fed-batch or 

continuous flow systems.   

 

Figure 5.4 - Screen capture of the voltage increase.  

[A] Initially the MFC output was zero as the MFC was abiotic, this triggered the robotic arm 

to move to the fuel cell and activate the pump to feed the pre-set amount of inoculum (12.5 

mL) to the anode. [B] At point B, 10 mL of the anolyte were manually removed to rapidly 

simulate food consumption and as a consequence, the voltage dropped. Since the MFC 

output fell below the pre-set threshold of 20mV the robotic arm was activated and another 

12.5 mL of inoculum were deposited to the anode; as a result, the voltage of the MFC con-

tinued to increase. 
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5.3 Phase II – Optimisation of substrate parameters 

During Phase-I, EvoBot responded to the lower voltage threshold resulting 

from CE depletion. However, the signal output of the MFC is dependent on 

both a large number of physicochemical conditions as well as a large number 

of metabolic processes occurring within the microbial community. Apart from 

CE depletion these can include but are not restricted to feedstock concentra-

tion, pH shifts, and temperature fluctuations (that can interfere with the speed 

of the bacterial metabolic processes). These processes can be positively or 

negatively affected by other pressures occurring within the MFC. For exam-

ple, the pH within the anode chamber will be optimal for some microorgan-

isms and sub-optimal for others, including electroactive organisms, therefore 

pH will be an important parameter for the EvoBot to control. Other selective 

pressures affecting the MFC anode include the type and concentration of 

food substrates. Currently the use of a standard 1.5% TYE as a microbial 

medium is commonly preferred in the experimental studies although more 

precise data relating to the specific needs of the microbial community could 

be attained by using a defined medium mix. Having this in mind the following 

experiment was conducted as part of Phase II, which focused on optimising 

the substrate parameters in order to maintain a healthy biofilm and to im-

prove the MFC power performance. The substrate parameters that this ex-

periment tried to optimise were the source of fuel (acetate, lactate, cellulose) 

and the concentration of each fuel (0.25% w/v, 0.5% w/v, 1.0% w/v). Initial 

investigation was conducted using the EvoBot platform to test the aforemen-

tioned feed substrates at the three different concentrations and observe the 

behaviour of both EvoBot and the MFCs..       
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As part of this experiment, EvoBot was set the task of maintaining nine indi-

vidually connected MFCs and testing their behaviour using either acetate, 

lactate or cellulose as feedstock at 0.25% w/v, 0.5% w/v and 1.0% w/v. Con-

comitantly, in order to analyse the advantages of using the EvoBot over the 

conventional batch-fed mode, another set of MFCs were prepared using 

identical materials and methods and operated as controls. The only differ-

ence between the two MFC sets was the mode of operation and mainte-

nance. One was carried out manually and the other one was carried out by 

the EvoBot platform (Figure 5.6). The manually operated experiment was 

used as the control of the study and was named “replica” since it was identi-

cal to the MFC set on the robotic platform. In the case of the robot experi-

ment, the voltage was sampled every minute, the MFCs were hydrated every 

four hours and only fed if the voltage was below the specified threshold. In 

contrast, the voltage of the “replica” (on the bench) was sampled every three 

minutes, and the MFCs were hydrated twice a day - morning and afternoon - 

and fed once every morning, reflecting the conventional manual mode of 

maintaining MFCs. 

 

5.3.1 Specific Materials and Methods 

5.3.1.1 Hardware 

The same hardware was used here as described in 5.2.1.1, with minor modi-

fications. These included the alteration of the experimental arena layout and 

addition of a syringe module. Taking advantage of the built-in flow-through 

mechanism that the small-scale MFCs (3.3.2) have, the sterile MFCs were 

embedded (resting on the pre-laser-cut gap) in the arena, thus allowing the 

effluent to drip into a container placed underneath the robot. The layout of 
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the arena included the feedstock beakers, the ethanol and water beakers (for 

the ‘wash cycle’) as well as the waste funnel. A schematic representation of 

the layout and a photograph of the actual set-up is shown in Figure 5.5 and 

Figure 5.6 respectively. Additionally for this experiment a 10 mL syringe 

module was added on the robot’s head to enable the delivery of media in the 

anode reactors.       

 

Figure 5.5 – Layout of Phase II experiment on EvoBot platform. 

Schematic representation of the experimental layer. Initially beakers 1, 2, 3 contained the 

activated sludge (inoculum) which was replaced at the end of the inoculation period with 

acetate, lactate and cellulose media respectively. 
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5.3.1.2 Software 

Each MFC was individually connected to a separate channel on the Picolog 

data acquisition unit, which was connected to a PC, so that the voltage out-

put of each unit could be continuously recorded. A set of MFC feed functions 

was created in LabView, which sampled the Picolog DLL file every 60 sec-

onds for the MFC voltage reading. A threshold limit for each MFC was set in 

LabView so that when the voltage dropped below the threshold, a Python 

script would activate to move the head of the robot over the food source, 

draw 3 mL of substrate (carbon fuel) and then inject this into the MFC. 

 

After the feed substrate has been deposited into the anode, the syringe 

module would go through a wash cycle where 3.5 mL of 70% ethanol was 

drawn into the syringe and disposed of, down a waste tube on the Evobot 

platform, followed by the taking of 3.5 mL of sterile distilled H2O into the sy-

ringe, before disposing this down a waste tube and then returning the robot 

head to the home position. At the home position, the feed function paused for 

60 minutes to allow stabilisation of the MFC and for the voltage to increase 

above the threshold. 

 

A cathode hydration cycle was also incorporated in a separate function in 

LabView, which activated a Python script every 4 hours. This script moved 

the robot head over the position of each MFC and deposited 3.12 mL of de-

ionised water into the cathode chamber before returning to the home posi-

tion. 

 

For the Evobot experiments, the ‘wash cycle’ with ethanol and deionised wa-

ter was deemed necessary in order to avoid cross-contamination between 

the different carbon-energy sources (acetate, lactate and cellulose). Howev-
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er, it was not necessary for the replica bench experiment, which was carried 

out manually and used separate syringes for each feedstock. 

5.3.1.3 MFCs 

Small-scale MFCs (3.3.2) were employed with CEM separators. The anode 

electrode was as described earlier (3.1.1). This had a total surface area of 

168 cm2 and a projected (exposed) surface area of 5.25 cm2 housed in an 18 

mm x 28 mm anodic chamber. The cathode used was the AC/CV created as 

explained in 3.1.2.1.  

 

For the MFC experiment on the EvoBot platform, the inoculation (i.e. intro-

duction of live microorganisms in a sterile MFC) was carried out using the 

anolyte from already established MFCs. This was activated sludge fed with 

carbon sources such as TYE over a period of months. In order to prevent 

blockages of the syringe needle it had been sieved to remove large particles 

(>1 mm). For the replica bench experiment, neat activated sludge was used 

as the initial inoculum.  

 

To inoculate the MFCs and test the activation of the EvoBot head, the feed-

stock beakers initially contained the activated sludge inoculum; the EvoBot 

syringe then picked up 6 mL (in two doses of 3 mL) and deposited into each 

of the MFCs to begin colonisation. All the nutrient beakers contained activat-

ed sludge during the inoculation phase. As soon as the MFCs had been in-

oculated the beakers were replaced with clean ones containing feed sub-

strate. Over the course of the experiment three different feed concentrations 

were used at 0.25%, 0.5% and 1% w/v for each of the feed sources; acetate, 

lactate and cellulose. The target media were supplemented with a weak solu-
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tion of TYE (0.15%). All MFCs in both experiments were kept under a fixed 

load of 3.9 kΩ, for the whole duration. 

 

Figure 5.6 – Phase II experimental set up on EvoBot.  

[A] Nine individually connected MFCs were operated with Evobot platform. The experiment 

took place on the experiment layer (arena) of the robot. The replica bench experiment was 

setup in exactly the same manner (photo not shown). The MFCs as well as the beakers and 

waste funnel were embedded in the already pre-cut acrylic sheet of the experimental arena. 

Underneath that, a drip tray was positioned to collect the effluent and waste liquids. [B] A 

triplicate of the 3D- printed small scale MFCs as used on the experiment sitting on their 3D-

printed base. 

 

5.3.2 Results and discussions 

This experiment focused on using the EvoBot platform to inoculate empty 

MFCs and monitor how the power profiles develop over time with only Evo-

Bot supporting the cells. Since the experiment focussed on monitoring the 

individual performances of MFCs, they were arranged electrically as individ-

ual units (instead of connected as a stack). In this way, the performance of 
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individual MFCs could be identified and compared to other identical units. 

Subsequently the EvoBot platform was able to focus on the parameters that 

might have contributed to factors causing performance variation and begin to 

replicate these in other MFCs.  

5.3.2.1 EvoBot automated feeding VS manual feeding  

The experiment lasted approximately 8 weeks for the EvoBot experiment and 

2 weeks for the “replica” (manual feeding) and the comparisons between the 

experiments were made for the same period. To show the automated feeding 

profile of EvoBot maintained MFCs, the power output of one MFC fed by 

EvoBot and the feeding events are shown in Figure 5.7. 

 

Figure 5.7 – Indicative power output from one of the MFCs (MFC2) fed by the EvoBot 

with sodium acetate.   

The arrows indicate the points where the voltage output of the MFC dropped below the 

80mV threshold, which was the trigger for feeding the MFC. The dotted lines indicate the 

periods during which three different concentrations of sodium acetate were tested. 
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As explained above during the “replica” experiment, MFCs were fed daily 

regardless of their power output and hydrated twice as oppose to the EvoBot 

maintained MFCs which were hydrated every 3 hours. During the two week 

testing period a significant performance difference was found between the 

replica experiment and the EvoBot experiment (Figure 5.8). The replica ex-

periment (Figure 5.8B) achieved higher power levels compared to those on 

the robot. The difference was almost ten times higher for cellulose fed MFCs, 

and four times higher for lactate and acetate fed MFCs. This difference could 

have been due to the wash cycle with ethanol, which would have inevitably 

left residual ethanol in the syringe during the course of the experiment - the 

replica experiment did not require a cleaning cycle. Also, the sieving of 

sludge for the inoculation of the MFCs may have well resulted in a less en-

riched inoculum, and this was done to prevent the syringe needle from block-

ing - again, this was not an issue for the parallel bench experiment. 

 

Nevertheless, having automated feeding pulses which were dictated by the 

voltage threshold, the behaviour of a MFC could more closely be monitored 

continuously in a way that would otherwise require an operator to be contin-

uously present. In addition, the automated hydration cycle was advanta-

geous, since it helped us identify empirically the aqueous O2 saturation lev-

els for the ORR that is necessary for the open-to-air cathodes. In other 

words, beyond this ’performance saturation’ point, the addition of more water 

did not result in an increased MFC performance. This can be illustrated on 

the acetate fed MFC (inset of Figure 5.8A). The fluctuating electrical output 

is the response to the cathode hydration, however as can be seen, the over-

all performance during that feeding cycle, remains the same (on average). 
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Figure 5.8 – Power output profile of the [A] EvoBot maintained and [B] manually main-

tained MFCs for a time period of two weeks.  

On both graphs solid arrows indicate time of feeding and on graph B, dotted arrows indicate 

hydration of the cathode. On graph A hydrations are not pointed out for better clarity as 

EvoBot induced hydrations every 3 hours as can be seen on the inset in the graph (small 

frequent spikes).  
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5.3.2.2 Substrate concentration impact on MFCs 

Despite the underperforming MFCs on the robot, the experiment continued 

for a total of 8 weeks as it was crucial to test both the durability of the robot 

and the interaction of the MFCs with it. This was the first automated EvoBot 

experiment and the lessons learned proved invaluable for its’ future im-

provement. Furthermore the overall aim of the experiment was to identify, 

using the robotic feedback loop, the optimal substrate concentration of three 

given substrates that can yield the highest power output out of the MFCs. 

The experiment successfully optimised the substrate parameters and using 

its feedback loop showed that acetate was the best fuel among the rest es-

pecially at a concentration of 1.0% w/v. 

 

The average power output of acetate, lactate and cellulose fed MFC tripli-

cates at three different feedstock concentrations is displayed in Figure 5.9A, 

B and C respectively. Each concentration was tested for a period of 20 days 

each. At the end of that period the feedstock was manually prepared (on the 

bench) and loaded into the vessels on the platform. It was picked up by the 

syringe and distributed to the corresponding MFCs. Based on Figure 5.9A 

acetate fed MFCs were performing best when fed with the 1.0% acetate so-

lution and they reached a steady state at 13±1 μW. The MFCs fed on 0.25% 

lactate solution reached a similar power output however this was sustained 

only for a day (day 15-16) (Figure 5.9B). After the lactate concentration was 

increased to 0.5% on day 20, the MFCs declined at first before recovering 

and steadily increasing to reach ~10 μW on the 28th day. Overall, the cellu-

lose fed MFCs were the least performing with a maximum output of only 

1.5±0.25 μW at 0.25% concentration (Figure 5.9C). Increasing the concen-

tration of the cellulose solution had a negative impact on the MFCs’ perfor-
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mance which can be attributed to the inability of the microbial community to 

metabolise cellulose and transfer electrons to the anode electrode.  

 

As explained in 2.1.2.1, MFCs have tremendous electron donor versatility, 

unlike chemical fuel cells which can only oxidise specific electron donors. 

This versatility means they can oxidise both simple (e.g. acetate, lactate) and 

complex substrates. This experiment demonstrated that the oxidation of lac-

tate caused the second highest electric power production. Moreover it 

showed that compared to lactate, acetate is a more preferable electron donor 

and a more effective fuel in terms of electricity generation, similar results 

were observed by Vasyliv et al. (2013). Cellulose on the other hand was not 

suitable for high power production due to the lack of cellulolytic activity from 

electrochemically active bacteria found in municipal wastewater. For the effi-

cient conversion of cellulose to electricity a syntrophic microbial community 

such as Clostridium cellulolyticum and Geobacter sulfurreducens that uses 

an insoluble electron donor (cellulose) and electron acceptor (anode) is re-

quired (Ren, Ward and Regan, 2007). 
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Figure 5.9 – Temporal power output of [A] acetate, [B] lactate and [C] cellulose fed 

MFCs, at different concentrations, via the EvoBot.  

Spikes on the graph are indicative of the occurred feedings. 
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5.3.2.3 Robot improvements 

The intention of EvoBot is to perform new interactive experiments which will 

allow the user to pose different scientific questions, possess novel data nev-

er recorded before and develop better MFCs. To accomplish that, initial ex-

periments (detailed in the previous section) were needed to identify areas 

needing improvement. Such features include the incorporation of more sy-

ringe modules onto the robotic head in order to avoid cross contamination 

issues of media. This will eliminate the need of a ‘wash cycle’ and its associ-

ated issues such as lower performance caused by the ethanol residues. Fur-

thermore a wider bore needle or tubing could be added to the module allow-

ing the syringe to draw thicker viscosity liquids without causing blockage and 

subsequent hardware failures. Moreover, a dispensing module could be de-

veloped for deployment on the robot, which could be connected to external 

pumps to provide pure reagents or solutions. This approach allows different 

organic materials to be used to feed the MFCs without having to draw on the 

same syringe. Finally, the enlargement of EvoBot’s experimental arena can 

provide the space for a larger number of MFCs and/or allow the parallel op-

eration of more experiments. 

 

This was the first demonstration using the EvoBot platform to feed live-

operating MFCs over a significant period of time (8 weeks). Having EvoBot 

driven experiments provides the fuel cells with automated feeding and hydra-

tion pulses, which are dictated by the voltage threshold, as well as continu-

ously monitoring and maintaining the MFCs, eliminating human intervention. 

This initial experiment was significant in getting a better understanding of 

what is needed in order to improve/adapt the robot, based on the experi-

mental needs.  
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5.4 Phase III – Adaptation / Chemostat-like operation  

During Phase II critical issues and areas of improvement were identified. 

These were addressed and resolved before performing the Phase III: Adap-

tation and chemostat mimicking experiment. In this experiment EvoBot was 

primarily used for MFC inoculation and maintenance as well as a characteri-

sation tool akin to chemostat. The improved robot made it possible to per-

form two different experiments using continuous feeding cycles/pulses 

(called the “chemostat” approach). The experimental set-up is presented in 

Figure 5.11. 

In microbiology, the chemostat is the most common type of continuous cul-

ture device. It is an open system where a culture vessel maintains a constant 

volume. As fresh medium is added at a constant rate, an equal volume of 

spent culture is removed at the same rate and as a result, the growth rate is 

equal to the dilution rate (μ = D) and the system reaches dynamic equilibri-

um. In the natural world, a plethora of biofilms are formed in continuous or 

periodic nutrient replenishing conditions and can be regarded as open sys-

tems as well (Greenman, Ieropoulos and Melhuish, 2011). Because the an-

odic biofilm electrodes are made from perfusible carbon veil the MFC falls 

within the general category of matrix perfusion systems. In the literature, it 

has been reported that such systems have similarities to a chemostat model 

(Greenman, Ieropoulos and Melhuish, 2011). Thus in this experiment the an-

ode compartment of the fuel cell is referred to as the culture vessel (chemo-

stat analogy). 
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5.4.1 Specific Materials and Methods 

The robot as well as the MFCs were improved based on the needs identified 

during the Phase II experiment. The hardware, software and MFC alterations 

are described below. 

5.4.1.1 Hardware 

The robot syringe module was adapted to host 20 mL syringe rather than 5 

mL syringe (as in Phase II). Two pumps were placed on the external profile 

of the robot rather than on the robot head and these were connected to a 

dispensing module which was added on board. This allowed the creation of 

fresh media on-board eliminating the need for the media to be manually pre-

pared on the bench. The camera was placed on the side of the robot, to rec-

ord the feeding/maintenance of the MFCs. Lastly, the robot was elongated 

from 600 cm to 1000 cm which gave enough space for hosting twice the 

number of MFCs compared to Phase II. 

5.4.1.2 Software 

Python script activated the pumps for a certain time frame to allow all the liq-

uid to move from the end of the media tube to the tip of the dispensing mod-

ule nozzle. Every 24 hours the robot initiated the pumps to fill the pre-

specified beakers with the media and when full, the syringe module drew the 

liquid (5 mL) from the beakers and dispensed it to the anode compartment of 

the MFCs. The coordinates of each item on the experimental layer were 

stored into Python dictionaries. 



164 EvoBot and MFCs 

 

   

 

5.4.1.3 MFCs 

A set of 18 small-scale MFCs were adapted for this experiment (Figure 

5.10). A 3 mm custom-made terracotta flat sheet (prepared as previously re-

ported in 3.2.2), was used as the membrane. For cathode electrode, 5 mL of 

alginate based electrode (4.4) was deposited manually using a syringe di-

rectly onto the membrane and solidified after 24 hours (Figure 5.10). After 

the inoculation period, the MFCs were loaded with 1 kΩ. The MFCs for this 

experiment were fed with casein (1 g/L) dissolved in 4mL of 1M NaOH buff-

ered using 3 mM PIPES buffer and deionized water. This feedstock was 

trialled to observe if it is suitable for MFCs given that it is a protein, and it in-

formed the Phase IV experiment.   
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Figure 5.10 – Modified Nanocure® printed MFCs for Phase III.  

The anode compartment of the MFC acted like the culture vessel of a biofilm reac-

tor/chemostat. Fresh medium entered through the inlet, whilst effluent was overflowing 

through the outlet. 

 

Initially the fuel cells were inoculated with activated sludge and then with ef-

fluent from active urine fed MFCs. After a total of two weeks inoculation, the 

cells left to starve for a week to ensure that no traces of urine were left in the 

anode. The experiment started with the introduction of sterile sodium acetate 

medium to the 9 MFCs and with sterile casein medium to the other 9 MFCs. 

The pH of the media was buffered to 7. The media were contained within two 

bottles; each bottle was connected to a DC pump and had an air filter 

(Figure 5.11B). The tubing of the pump led to the dispensing module of the 

robot (Figure 5.11A and D). For each experimental cycle the pump was set 
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to deposit and distribute the required amount of feedstock (overall volume 50 

mL) to the specified beakers around the arena and then the syringe collected 

the liquid from the beaker and distributed it to the anode chambers of the fuel 

cells. 

5.4.2 Results and discussion 

Even though the system in the current study was a batch-fed culture system, 

i.e. not a continuous flow system like a conventional chemostat, the results 

show that slow transitional repeat states can be maintained following further 

CE source supply and subsequent depletion (Figure 5.12). These promising 

findings and this continuing line of work could provide useful insights into; 

repeat batch fed microbial fuel cell systems, their behaviour as well provide 

understanding on how to increase or optimise their power production capabil-

ities. The results are a stepping stone for the next phase of experiments 

which focuses on combining the chemostatic abilities of the robot with evolu-

tionary algorithms for the creation of optimised feedstock. 

Based on the data of Figure 5.12 it can be observed that even though all the 

MFCs were fed exactly with the same feedstock at the same time, the output 

differs. This can be attributed to the fact that the inoculation period was not 

optimised for these MFCs. Bacteria need to synthesise special enzymes in 

order to hydrolyse proteins. In order to be able to do that, the inoculation 

process should induce this synthesising process by slowly adding protein 

into the feedstock mixture. This is an approach that has been adopted for the 

Phase IV experiment in order to “train” the bacteria in consuming casein 

more efficiently. 
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Figure 5.11 – Improved EvoBot based on the Chemostat approach for Phase III exper-

iments.  

[A] EvoBot was able to host two experiments that count in total 18 MFCs. The data loggers 

were connected to the MFCs and the computer, and a camera monitored the experiment 

24/7. [B] Similar to the chemostat the media reservoir was connected to the DC pumps and 

the tubes were connected to the [D] dispensing module. [C] The syringes were set to draw 

the liquid and dispense it to the culture vessel. [E] The waste perfusate was collected from 

the bottom into bottles (outflow stream) for further analysis. 
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Figure 5.12 – Python generated graph based on the power output of the MFCs fed 

with casein.  

The graph shows the data produced within five days of EvoBot feeding nineMFCs. The data 

show the reproducibility and stability of these cells when the fresh medium is fed to the bio-

film daily. The non-periodic feeding of MFC 14, and consequent deterioration of performance 

was due to the liquid level of feedstock being below the lowest reach of the syringe needle; 

resulting in abnormal dispensing of volume (less frequent feeding). Undesired as this was, it 

demonstrates how depletion of the CE source affects bacterial metabolism, and therefore 

power output. In other words, it demonstrates the value of the automated maintenance, pro-

vided by EvoBot.  
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5.5 Phase IV - Evolutionary experiment 

Substrate combination is one of the most important biological factors affect-

ing MFC performance (Pant et al., 2010). Microbes by nature are incredibly 

diverse in their metabolism - as they can produce enzymes, synthesise vita-

mins and amino acids based on the carbon energy source availability which 

allows a great variety of substrates to be used as carbon energy sources for 

electricity generation. This has resulted in the investigation of an exhaustive 

list of refined and unrefined substrates which have been reported in the liter-

ature throughout the years (Melhuish et al., 2006; Pant et al., 2010; Pandey 

et al., 2016). However the effect that a combination of vastly different sub-

strates can have in the MFC performance is yet to be explored fully (You et 

al., 2015).  

Taking this into account an experiment using 24 MFCs, the EvoBot robot and 

evolutionary algorithm (CMA-ES; covariance matrix adaptation evolution 

strategy) was used to identify the ideal proportionate combination of acetate, 

casein and urine using voltage readings as the main parameter for the algo-

rithm to evolve the recipe. Acetate (carbohydrate) and casein (protein) are 

examples of two completely different chemically composed organic com-

pounds with different molecular structures. The first derives from bacterial 

fermentation products while the latter from dairy products. Thus they were 

used as exemplars since acetate represents an accessible short-chain-

sugar-based carbohydrate whereas casein represents a more complex long-

chain-sugar-based protein. Urine on the other hand is chemically rich in sub-

stances favourable to the MFC microcosms as described below, thus was 

selected as a “control” for this study. 
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5.5.1 Specific Materials and Methods 

Phase IV is a continuation of Phase III thus the same hardware, software 

and MFCs are used here as well. Below a more detailed description is given 

to the inoculation and carbon energy sources used as these are the crucial 

parameters of the experiment. 

5.5.1.1 Inoculation and carbon energy sources 

Activated sludge was used as the inoculum and the inoculation period lasted 

for four consecutive days after that the three different substrates were intro-

duced to their respective MFCs. 

5.5.1.1.1 Sodium Acetate 

Sodium acetate anhydrous (1.3g/L) (Sigma Aldrich, UK) dissolved in deion-

ized water was used for this experiment. Sodium acetate is the anhydrous, 

sodium salt form of acetic acid. The fact that sodium acetate only partially 

ionises when dissolved in water provides the solution with buffering proper-

ties, thus for this experiment the solution was buffered to pH 7 using 3mM 

PIPES buffer and sterilised using an autoclave. The experiment was con-

ducted at room temperature (20 oC) where acetate is not subject to any other 

microbial conversions (i.e. methanogenesis) (Aelterman, 2009). 

Acetate is a monomer, non-fermentable carboxylic acid and due to its mo-

lecular structure (short-chain carbohydrate) is easily utilisable. For this rea-

son acetate has been widely used in MFC research since 2002 (Bond & 

Lovley, 2003). In their study Bond and Lovley found that current production 

by Geobacter sulfurreducens biofilms is directly related to the consumption of 
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acetate in batch mode fed systems and concluded that acetate can be used 

to induce electroactive bacteria. 

5.5.1.1.2 Casein 

Casein powder (1 g/L) was dissolved in 4mL of 1M NaOH before being 

mixed with the sterile prepared media of 3 mM PIPES buffer and deionized 

water.  Casein is a complex polymer protein which is hydrolysed into mono-

mers by bacteria. Casein usually is found in dairy wastewater effluents. Ace-

tate and casein were standardised based on their COD values 1.5±0.3 g/L. 

A study using acetate and casein media  for continuous flow MFC systems 

(You et al., 2015) used a multivitamin and multi-mineral media for cultivating 

the MFCs. For the purpose of this study the media were not enriched with 

any other nutrients or vitamins as the purpose was to investigate solely the 

impact of the EvoBot “training” on the performance of the MFCs using a mix-

ture of casein, acetate and urine as the only carbon sources. 

5.5.1.1.3 Urine 

Untreated human urine was used as the third carbon energy source for this 

experiment. Urine remained unbuffered throughout the experiment. Urine is 

the by-product of human and animal metabolism with an average daily excre-

tion of 1.5-2.5 L per human (Ieropoulos et al., 2013b).  As a liquid mixture, 

urine is rich in different nutrients for bacterial utilisation, its normal chemical 

composition consists of organic and inorganic compounds (proteins, hor-

mones, metabolites) as well as urea (9.3 g/L), uric acid (1.8 g/L) chloride 

(1.87 g/L), sodium (1.17 g/L), potassium (0.750 g/L) and creatine (0.670 g/L). 

A more extensive list of urine non-mineral composition can be found in Ie-

ropoulos et al., 2012. The direct conversion of urine into electricity was firstly 
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reported in 2012 (Ieropoulos, Greenman and Melhuish, 2012) and since then 

it has been used widely around the world in MFC research. 

5.5.2 Results and discussion 

5.5.2.1 Inoculation and adaptation period 

On the first day of inoculation once the MFCs OCV stabilised, Rext. of 1 kΩ 

was applied to all 24 cells, initiating the power output generation. In less than 

two hours the recorded OCV was around 400±50 mV as shown in Figure 

5.13. This figure shows the open circuit voltage of all the 24 MFCs used for 

this experiment. Once the inoculum was added to the cells, voltage (potential 

difference) was observed, and all the cell’s voltage followed the same 

trajectory. 

After the inoculation, the adaptation period took place. During the adaptation 

period, Group A (MFC 1-9) were slowly switched from acetate to casein, and 

Group B (MFC 10-18) from casein to acetate, as shown in the table below 

(Table 4). Group C (MFC 19-24) on the other hand were fed throughout with 

fresh neat urine. The results of the adaptation period are presented below in 

Figure 5.14. As voltage was the dictating factor for the algorithm to evolve, 

the results in this section, unlike before, are reported in voltage rather that 

power. 
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Figure 5.13 – OCV of 24 individually fed MFCs inoculated by EvoBot with activated 

sludge. 

 

Table 4 Adaptation period feeding schedule for MFCs on Group A and B. 
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Figure 5.14 – Temporal voltage output of the three groups of MFCs during the adapta-

tion period.  

The performance is displayed in voltage under 1kΩ resistance. Each region is annotated 

with the recipe fed at that time. HRT for each feeding was 24hrs. 

 

These data demonstrate that the acetate group, which gradually switched to 

casein, performed best when fed with a substrate combination of 70% ace-

tate and 30% casein. Based on the trend of the graph (Group A) it is appar-

ent that when more casein is added to the system the voltage drops. This is 

the same when looking at the casein-maturing group (Group B) as when 

more acetate is added to the system the voltage increases, reaching a peak 

when fed with 100% acetate. At the same time the urine matured group 
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(Group C) shows an overall steady voltage output. The adaptation period 

lasted 60 days and after that the MFCs were left to starve and dropped to 

0±5 mV before the next experiment (evolutionary algorithm) was initiated. 

5.5.2.2 Evolutionary algorithm  

The evolutionary algorithm selected different amounts of the three previously 

used media and tested them in triplicate MFCs. As the voltage levels of the 

MFCs vary, it is not possible to use the voltage of the MFCs as a direct fit-

ness. In order to address this issue, the evolutionary algorithm tested all the 

MFCs with a recipe of 1/3 casein, 1/3 acetate and 1/3 urine at start-up. This 

base voltage level was stored during the whole experiment and used to nor-

malise the voltages of the MFCs. Therefore, the effects of the different reci-

pes can be compared even if they were tested in MFCs with different power 

output levels.  

The evaluation of the whole population was carried out in parallel. For each 

generation, 8 different recipes were prepared in each of the beakers located 

on the EvoBot arena. The dispensing module prepared the recipes and then 

the syringe module picked up the liquid mixture and dispensed it in each trip-

licate. The routine was as follows:  

• MFCs 1-9 were fed from beakers A, B and C. 

• MFCs 10-18 were fed from beakers D, E and F.  

• MFCs 19-24 were fed from beakers G and H. 

Then, the evaluation phase started and the voltages for all the MFCs were 

sampled every minute for 4 hours. After this time, the fitness of each recipe 

was calculated and a new population of recipes was created. The details of 

this evolution are specified in Appendix A.1. 
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The evolutionary algorithm ran for two consecutive days and 12 generations 

were created and tested on the MFCs. The graph of the evolution is shown in 

Figure 5.15. The best fitness improves until generation four, and after that 

decreases, while the median improves slightly. From the recipe combinations 

tested in this experiment, it is evident that there is not a strong effect on the 

voltage output caused by the evolutionary generated recipe. However, this 

can be attributed to the fact that individual slight changes in the recipe pro-

duced only minor variations in the voltage output. From the data, it is sug-

gested that more dramatic changes in the recipes would have resulted in 

bigger response changes to the MFC output, and improved fitness.  

In addition to the recipe effect, it appeared that the MFCs themselves (where 

each recipe was tested) had more influence than the actual recipes, in the 

overall fitness evolution. As can be seen in the evolution graph (Figure 

5.15), the MFCs 16-18 and MFCs 1-3 perform best most of the time, while 

MFCs 7-9 and 19-21 are suboptimal across most generations. While the 

MFCs matured using three different organic materials, triplicates of each 

group are more powerful than others. This can be explained by the fact that 

before the final genetic algorithm (GA) experiment other small duration GA 

experiments took place with the same MFCs (data not shown). These small 

experiments helped solve some system glitches and optimise the algorithm 

at the same time. An example of a prior GA experiment is one that used the 

power output as the determining factor for improving the algorithm, however 

the fact that each triplicate had different outputs resulted in false data and an 

incorrectly evolved algorithm. Even though all these previous algorithm trials 

gave us all the necessary understanding of how the MFC systems react to 

the evolutionary experiments and help to develop the final one, the feedings 

had an effect on the MFC outputs resulting in some triplicates performing 

better than the others. 
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Finally, it is worth noting that all the MFCs got fitness higher than one in the 

Generation 0. This could be explained because the base voltage did not 

reach a steady state before the start of the experiment. If time had been 

permitting the MFCs would have been fed a few times with the 33% media 

before the evolutionary algorithm started, in order to provide a more stable 

starting point. 

 

Figure 5.15 – Fitness evolution over each generation 

 

As previously mentioned, initially the algorithm started by feeding all the cells 

with 1/3 (33%) of each media to set a reference point for calculating the 

change in voltage that each new recipe caused. Then the algorithm started 

to generate random combinations. However after Generation 4 it is observed 

(Figure 5.16) that the algorithm started using higher amounts of urine (as 
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expected) but also unexpectedly it used higher amounts of casein than ace-

tate in the mixtures. From Generation 4 until Generation 7 the amounts of 

acetate fluctuated from 0-20% however after G7 the algorithm increased to 

10-30%. This shows that by the end of the experimental period the algorithm, 

as anticipated, became more specific in the choice of substrates and the ra-

tios between urine, acetate and casein.  

 

Figure 5.16 – Percentages of each feedstock per generation based on the algorithm 

recipes.  

For each generation there were 8 different recipes (recipe per beaker) which then was test-

ed on 8 different triplicates. 

 

The resulted voltage output of each triplicate from Group A, B and C, to the 

tested recipes is clearly presented in Figure 5.17, Figure 5.18 and Figure 

5.19 respectively. From Group A the MFCs that had consistent voltage out-
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put throughout the two week period were MFC 1-3. Overall however all the 

MFCs of Group A had on average a voltage output of 60-80 mV. Based on 

the graph (Figure 5.17) it is concluded that none of the evolutionary pro-

duced recipes caused a noticeable improvement in output. Apart from the 

reasons discussed above, this can be attributed to the short testing period 

between each generation (24 hours). It is hypothesised that a longer intermit 

period between each generation could have allowed all the carbon energy 

available in the anode to be metabolised resulting in a clearer output profile 

once the new recipes were introduced. The results presented below provide 

a closer look at the voltage output in alignment with the feeding composition 

during each generation.  
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Figure 5.17 – Average (n=3) temporal voltage output of Group A MFCs as they re-

sponded to each generation recipe. 

 

Compared to Group A, Group B MFCs had in overall a slightly higher output 

(75±5 mV) which can be attributed to the fact that since they were matured 

on casein they were able to oxidise casein easier that Group A. 
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Figure 5.18 – Average (n=3) temporal voltage output of Group B MFCs as they re-

sponded to each generation recipe. 

 

The above hypothesis can be confirmed based on the results of Group C. 

The urine matured MFCs were the least performing since they were only 

“trained” on that specific substrate; as the microbes were unable to oxidise 



182 EvoBot and MFCs 

 

   

 

casein in that short timeframe. For MFCs 22-24, higher voltage outputs were 

observed (~60 mV) when higher percentages of urine and acetate were used 

in each recipe, 

 

Figure 5.19 – Average (n=3) temporal voltage output of Group C MFCs as they re-

sponded to each generation recipe. 

 

This experiment used evolutionary algorithm to try and identify the best 

available combination of acetate (carbohydrate), protein (casein) and urine in 

improving the MFC performance. This experiment did not succeed in optimis-

ing the feedstock and ultimately producing a fuel consisting that gives high 

voltage output. Nevertheless, it showed for the first time the interaction be-

tween evolutionary algorithms and robotic system in assisting MFCs resulting 

in novel observations about automated feeding regimes and power output 
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responses. Also the evolutionary process itself provides an excellent step-

ping stone for future research, as now, through this experiment it has been 

proven possible to combine microbiological evolution/adaptation to computa-

tional evolution using genetic algorithms and MFCs. 

Moreover the results obtained by this experiment are interesting and novel 

as it demonstrated that although casein alone is not a good substrate for 

MFCs due to its complex structure, in the majority of cases, the algorithm 

chose casein over acetate. These results showed that using a combination of 

carbon energy sources created via evolutionary algorithms can be a viable 

way to create alternative complex media for bacterial growth (i.e supple-

mented with minerals and vitamins). This experiment has the potential to be 

developed further by including more parameters in terms of substrates and 

allow the algorithm to run for longer periods of time, if the hardware allows.  

5.6 Phase V - EcoBot-II behavioural experiments 

powered by the EvoBot-matured MFCs 

One of the main aims of this PhD study, as defined earlier (2.3) was to im-

prove the MFC performance through the interaction with the robot via the 

feedback loop, so that the optimised MFCs can be trialled on-board low 

power robots to provide autonomy. By establishing this interaction in the pre-

vious Phases (I-IV), Phase V moved into applying this to practice and testing 

the EvoBot derived MFCs on the EcoBot-II robot. 

To demonstrate this, two parallel experiments were performed; on the one 

hand a group of MFCs was inoculated and maintained using the EvoBot, 

while on the other hand, another group was inoculated and maintained man-
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ually. These two experiments were set-up using 8 MFCs, which were intend-

ed to provide power on-board EcoBot-II. Behavioural experiments (i.e. using 

MFCs on robots to perform tasks) were then performed comparable to the 

original EcoBot-II experiments undertaken in 2004-2006 (Ieropoulos et al., 

2005; Melhuish et al., 2006; Ieropoulos et al., 2009).  

To provide adequate information on EcoBot-II and the small-scale MFCs, 

existing data from the literature will be compared against the robot main-

tained MFCs. The original EcoBot-II (2006 ed.) used the analytical type 

MFCs (25mL), carbon veil as the anode electrode and hydrated carbon veil 

as the cathode. The average peak power outputs of these type of MFCs re-

ported in the literature using acetate as the carbon energy source produced 

24.9 μW and 42.8 μW when fed 0.1% prawn exoskeleton (Melhuish et al., 

2006). In the same publication, fly-fed MFCs with open-to-air cathode pro-

duced a current output of 70 μA. The periodically hydrated MFCs had an 

open circuit potential of 450 mV and an average current of 45 μA (Ieropoulos 

et al., 2007). Small-scale MFCs have been used in the past also, using three 

different types of membranes, cation exchange membrane and Hyflon® ion 

membranes in two different thicknesses 3 and 10 μm (Ieropoulos et al. 

2010). The average results are presented below (Table 5). Similar small 

scale architecture MFCs with carbon black micro-porous layer (MPL) cath-

ode electrodes have also been reported in the literature (Papaharalabos et 

al. 2013). The temporal profile of these MFCs showed a voltage output of 

325 mV under 2.7 kΩ (4.3 mW/m2). The power and polarisation curves of 

these improved MFCs showed maximum power transfer (MPT) point at 95 

μW (10.6 mW/m2) and starting open circuit voltage at around 550 mV (Papa-

haralabos et al. 2013). 
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Table 5 Average (n=3) comparative data from the membrane investigations on small-

scale (6,25 mL) MFCs as presented in Ieropoulos et al., 2010.  

5.6.1 Specific Materials and Methods 

For this line of experiments the MFCs were slightly modified as shown in 

Figure 5.20. For the anode a carbon fibre veil with an initial carbon loading 

of 20 g/m2 was used for all 16 MFCs with a surface area of 67.5 cm2. How-

ever unlike in previous experiments the active area of the carbon veil was 

coated with a mixture of nano-sized carbon black particles (Vulcan XC-72R) 

(Cabot Corporation, Stanlow, UK) and isopropanol. This resulted in decreas-

ing the electrode’s resistance as shown in Figure 5.21. Coating was carried 

out using the dipping/drying technique using ethanol dispersion as described 

in the literature (Zheng et al., 2015b), with this technique an average carbon 

loading of 5.5±0.5 mg/cm2 was achieved. The binder used was 5% polyvinyl 

alcohol (7μl per mg of mixture) (Cheng, Liu and Logan, 2006) which was 

mixed with the suspension. Following the coating, the electrodes were heat 

treated at 190 oC for 1 hour, and then were folded down and placed inside 

the anode chamber. As a separator custom made ceramic membranes were 

produced using the same technique described in 3.2.2. The membrane sur-

face area was 12 cm2 and the thickness averaged 3 mm. The cathodes used 

in this experiment were the AC/SS (3.1.2.2). 
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Figure 5.20 – Modified small-scale MFCs (2018 ed.)  

[A] Anode and cathode compartment was separated by a custom made ceramic membrane 

connected directly to the cathode electrode. [B] Anode funnel shaped inlet [C] The cathode 

electrode was supported by a SS-mesh which formed the current collector as well [D] Side 

view of the MFC showing the anode and cathode part as well as the anode outlet. 

 

Figure 5.21 – Treated and untreated carbon veil electrode and their resistance.  

The treated electrode with the carbon nanoparticles was more conductive than the untreated 

one, resulting in lower resistance (half compared to the untreated) as the surface area has 

increased dramatically. The resistance of the folded electrode was on average 1.5 – 1.8Ω 

compared to 3.8Ω for the untreated electrode (picture not shown). 
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5.6.2 Results and discussion 

5.6.2.1 Inoculation period 

For the sake of comparison the 16 MFCs on EvoBot arena and bench exper-

iment were inoculated using activated sludge enriched with 25 g/L of nutrient 

broth as previously reported in the original EcoBot-II publication (Melhuish et 

al., 2006). As the feedback loop is triggered by the MFC voltage reading, the 

threshold was set to 400 mV to initiate the inoculation process. Since all the 

abiotic MFCs were below the specified threshold (below 0 mV) the robot fed 

all the MFCs in the first run. The feedback loop was running every hour 

checking for underperforming MFCs that were subsequently fed if they were 

below the threshold. Once the MFCs stabilised above 400 mV the threshold 

was increased to 500mV which triggered another round of inoculation and 

the voltage output of the MFCs increased accordingly as is shown in Figure 

5.22. To have comparable conditions for the bench experiment the MFCs on 

the bench were re-inoculated as well, as indicated by the arrow on the same 

graph. The voltage results demonstrate nicely the value of changing the volt-

age threshold using the EVOBLISS software in improving the voltage output 

of the MFCs, even at open circuit conditions. As indicated from the results 

the MFCs inoculated by the robot had open circuit potentials around 550-600 

mV whereas the MFCs maintained manually had an average OCV of 450-

500 mV.  

For unexpected reasons during the process of the experiment the Arduino 

board short-circuited and was not functioning which meant the experiment 

had to pause for repairing purposes, during the offline period a third re-

inoculation took place manually (data not shown). 
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Figure 5.22 – OCV voltage from [A] the 8 MFCs plugged on EvoBot compared to [B] 

the ones on the bench.  

Once all the MFCs stabilised above 400mV the threshold changed to 500 mV as it is indi-

cated by the arrow. 
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5.6.2.2 Continuous voltage output and polarisation 

As described previosuly the EvoBot was maintaining the MFCs by using the 

voltage output as the threshold triggering the feeding mechanisms. Thus un-

like previous chapters, here the data on the graphs will be presented in volt-

age rather than power, to aid the discussion. Figure 5.24 illustrates the ben-

efit of EvoBot threshold reaction as a mean of improving the MFC output. In 

the sections D, E and F it is demonstrated that by sweeping the threshold 

value in the software and forcing the robot to feed the MFCs until that 

threshold is reached, the MFC performance increases incrementally. In sec-

tion D the threshold was set to 400 mV and subsequently the MFCs were 

maintained at an average voltage level of 480 mV. Increasing the threshold 

by 50 mV resulted in an average performance of 500mV (Figure 5.24E) and 

by increasing that again by 50 mV the MFCs reached an average output of 

535 mV. This is the exact novelty of such an apparatus as the EvoBot plat-

form via the feedback loop is inoculating and maintaining the MFCs until ma-

turity that in a sense is evolving (i.e. optimising) them based on energy ab-

straction as the main selective pressure. It is noteworthy that such MFCs 

usually take between two weeks to couple of months, to reach that level of 

maturity using batch or continuous feeding modes. However, in this case the 

MFCs were able to reach maturity within 5 days of operation and on the 6th 

day they were connected onboard EcoBot-II to power the robot. When first 

plugged into EcoBot-II the MFCs were able to charge the capacitors every 

1.04 minutes. This is a considerable improvement compared to the old 

EcoBot-II (2006 ed.) which were 4 times bigger in volume and electrode sur-

face area and were using chemical cathodes (FeCn). In this study they were 

fed with flies and were able to charge the capacitors every 14 minutes 

(Ieropoulos et al., 2009). For an empirical comparison the 2006 ed. EcoBot-II 
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was able to move 20 cm in 40 mins compared to the 2018 ed. EcoBot-II 

which covered the same region in less than 14 minutes. Photographs of 

EcoBot-II 2018 ed., can be found in Appendix A.2 of this thesis. 

In terms of current output (data not shown) the MFCs had an average initial 

current output of 125 μA which increased to 200 μA within just 6 days. This is 

2.5 times higher output than the average current reported in Melhuish et al. 

(2006) after 4 weeks of experimentation. The presented data confirm that by 

increasing the voltage threshold on the EvoBot program it improves the pow-

er performance of the MFCs in a fraction of the time that they would have 

otherwise taken. To validate further these findings the data of the manually 

fed parallel experiment are presented below Figure 5.23. 
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Figure 5.23 - Temporal voltage behaviour of the MFCs maintained manually and fed 

once a day (batch-mode feeding).  
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Figure 5.24 – Temporal voltage behaviour of the MFCs maintained by the EvoBot ro-

bot and based on different threshold values under 2.7 kΩ load.  

[A] Feedback loop running every 4 hrs – Threshold 250 mV [B] Feedback loop running eve-

ry 4 hrs – Threshold 400 mV [C] Loop was running but urine bottle was empty during week-

end [D] Urine bottle replaced – Threshold 400 mV. [E] Feedback loop running every 4 hrs – 

Threshold 450 mV [F] Feedback loop running every 1 hr – Threshold 500 mV. 

Out of the 8 MFCs one was underperforming and did not follow the same trend as the others 

(MFC 5), the MFC was removed, examined and reattached. Even though the robot managed 

to improve its performance and recover it, it was still not up to the standards of the others. 

 

The manually maintained MFCs against the EvoBot maintained MFCs, differ 

not only it terms of output but also in terms of consistency. The data on Fig-

ure 5.24 show an almost identical voltage output from the tested MFCs, 

which is not present on the manually batch-fed MFCs. This shows the supe-

riority of an automatic maintenance system in producing MFCs that can have 

reproducible results and high power output levels. 
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The power output levels of each group of MFCs can be seen more clearly 

from the polarisation analysis results presented in Figure 5.26. EvoBot ma-

tured MFCs had an overall higher MPT point reaching on average ~180 μW 

whereas the batch-fed MFCs had a MPT that was 50 μW lower. Additionally 

the robot maintained MFCs had almost double the current output compared 

to their bench controls and almost 200 mV higher OCV. 

As mentioned earlier (5.1.2), this experiment aimed to investigate the impact 

of the EvoBot automated feeding process against the conventional manual 

batch feeding process not in terms of output levels of the MFCs but also in 

terms of the length of the maturing period. For the sake of empirical compari-

son the manually fed MFCs kept running for more than a month in order to 

observe if they would achieve the same levels of performance (500-525 mV) 

as the EvoBot-matured ones achieve, in just 6 days. This, as can be seen in 

Figure 5.25, was not able to be achieved from the manually maintained 

MFCs even after a month of operation. This shows the superiority of the 

EvoBot-maturing process against the widely used batch feeding process for 

cultivating optimised MFCs for higher power production at a fraction of the 

time. 
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Figure 5.25 – Long-term temporal voltage behaviour of the manually maintained 

MFCs. 

  

To bring the data into context with the existing literature mentioned above, a 

summarised graph was created (Figure 5.27). Based on the 2006 data the 

batch-fed MFCs that powered EcoBot-II had a power output of 0.09 mW/m2 

which is 220 times lower than the batch-fed MFCs used for this comparative 

experiment (2018 edition). This demonstrates that the advancement in mate-

rials over the 12 years is the sole factor attributed to this improvement in per-

formance. This highlights the progress made in MFC research in terms of 

materials and their crucial impact in MFC performance. Lastly, since all 16 

MFCs created for this comparative study between EvoBot and control 

(bench) were identical, having only the way of maintenance/feeding differing, 

their difference in performance (7.4 mW/m2) can only be attributed to Evo-
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Bot’s feedback loop feeding system. Hence this experiment demonstrated 

the equal importance of core MFC materials and automated feeding pulses 

dictated by the voltage output, in maximising the overall power output of 

MFCs.  

Microbial fuel cell technology provides a sustainable alternative to chemical 

batteries. However, in order to make this technology as stable as possible, 

all of its core components need to be optimised in order to minimise any un-

necessary energy losses that will lower even further its power capabilities. 

This thesis through the experimentation presented in Chapter 4, tackled this 

issue. This off-robot investigation proved that electrode materials based on 

alginate and carbon as well as membrane materials based on clay improved 

the power output of MFCs. These advancements were then applied on MFCs 

that were trialled on the EvoBot workstation. Hence, the experiments pre-

sented above (Chapter 5) tie together the two main lines of work described 

in this thesis. The MFCs with improved materials were fed on-demand by the 

robot showing that automated feeding pulses improves the power output 

even further (Chapter 5). MFC research at the moment focuses only on im-

proving one element of MFC at a time. The work presented in Chapter 4 and 

5 shows that this thesis took a rounded approach in optimising the technolo-

gy using a robotic workstation as its main tool. This is something that was 

never tried before and forms the novelty of this thesis.  
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Figure 5.26 – Mean (n=8) polarisation results gathered on the 6th day of operation. 

[A] EvoBot matured MFCs [B] Manually/ Bench matured MFCs  
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Figure 5.27 – Summary graph comparing existing literature data from EcoBot-II 2006 

edition MFCs to EcoBot-II 2018 edition MFCs. 
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5.7 Conclusions  

The work presented in this chapter demonstrates the potential of using the 

EvoBot, an open-source modified RepRap 3D-printer, for the inoculation, 

maintenance and study of MFC systems. Furthermore, it presents the possi-

bilities that this type of robot can be developed along the lines of robotically 

controlled environments integrated with MFC-based bioreactors with similari-

ties as well as important differences to the well characterised planktonic 

chemostat. These experiments can be considered as the precursors to the 

development of a new class of living robots (Symbots), which can enforce, 

monitor and interact with evolving systems, such as MFCs. As a result, such 

a platform would not only benefit the MFC field but the robotics field as well. 

EvoBot could potentially be used in the future as a maturing/optimising facto-

ry for MFCs that can be used to power small robots. Indeed, it may even be 

that EvoBot itself is powered by the very same MFCs that it had built, inocu-

lated and maintained. 



 

 

Chapter 6 Conclusions and Further work 

6.1 Executive summary 

Microbial Fuel Cells (MFCs) are energy converters that use the bio-catalytic 

activity of microorganisms to generate electricity through the oxidation of or-

ganic matter. This work has demonstrated a new way of experimenting with 

MFCs via a liquid handling robot called EvoBot that through a feedback loop 

mechanism can interact, influence and optimise MFC units leading to im-

proved power output levels. The work presented in this thesis, through a se-

ries of five chapters, explores the five main project research objectives. In 

Chapter 1 the outline of this work and the contention of this study is de-

scribed. Chapter 2 elaborates on the theoretical underpinnings for these re-

search questions through a literature review, followed by three empirical 

chapters. Chapter 3 gives a detailed overview of the experimental methods 

and the materials used in this study. Chapter 4 describes the identification of 

3D-printable materials that can make up all the components of an MFC. No-

tably, these materials improved the MFC performance compared to conven-

tional materials. Chapter 5 presents the series of interactive experiments be-

tween EvoBot robot and MFCs and how these improved the power output of 

the latter by 7.4 mW/m2 (up to 26.5 mW/m2) compared to the manually main-

tained MFCs. Finally Chapter 6 summarises the findings of the study, out-

lines the novelty of the project and identifies directions for future research.   

This PhD work started in 2014 as part of the EvoBliss project. The state-of-

art MFC during that time was the small scale (6.25 mL) MFC employed in 
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EcoBot-IV (Papaharalabos et al., 2013, 2015b). The maximum power density 

of these MFC were 10.6 mW/m2. This formed the benchmark for this study 

and the advancements made in this thesis aimed at improving this output. 

Following the improvements of core MFC materials and the automatic exper-

imentation of MFCs using EvoBot, the power density of the same structure 

MFCs had more than doubled (26.5 mW/m2) (Chapter 5).  

Apart from the power density another critical factor in making this technology 

more affordable and accessible is the cost of its core materials. In this thesis 

different clay based membrane materials were investigated against the ex-

pensive, widely-used CEM. Clay membranes were proven feasible substi-

tutes of the CEM as they improved the power output by 2.1 mW/m2 (CEM: 

2.7 mW/m2 – Teracotta: 4.8 mW/m2) and reduced the costs by almost 30-

times (CEM: £0.78/membrane – Terracotta: £0.025/membrane).  Further-

more, as part of the investigation on alternative economical cathode elec-

trodes, this thesis substituted toxic and expensive PTFE with alginate as the 

electrode binder. Alginate based electrodes almost tripled the power output 

of the MFCs (PTFE: 3.55 mW/m2 – Alginate: 10.57 mW/m2) and reduced the 

costs by 16-times (PTFE: £0.55/electrode – Alginate: £0.035/electrode). The 

additional benefit of alginate based electrodes and clay based membranes is 

their ability to be 3D-printed by the EvoBot as shown in Chapter 4. The ad-

vancement made in during this PhD push a bit further the boundaries of MFC 

research and open a new direction for the systematic experimentation and 

optimisation of MFCs, using interactive robotic workstations such as EvoBot. 

6.2 General discussion and conclusions 

Microbial fuel cells is a promising sustainable technology that can generate 

electricity whilst treating wastewater effluents. In comparison with conven-
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tional chemical batteries, MFCs can generate electricity for as long as fuel 

(organic matter) is supplied to them however, they are generating low power 

(from μWatts to mWatts). As a technology MFCs are inherently interdiscipli-

nary and versatile systems, hence a holistic approach is needed to improve 

their performance.  

This study investigated both MFC systems on-board the robotic workstation 

(EvoBot) and MFCs on the bench (off-robot). The former focused on improv-

ing the MFC power performance through MFC – robot interaction, by influ-

encing the feeding patterns and regimes. The bench experiments focused on 

developing 3D-printable core MFC materials that can be extruded from the 

EvoBot platform. Once incorporated into working MFCs, these novel materi-

als influenced positively the overall performance of the system. Considering 

that the EvoBot robot is an open-source, modular robotic workstation de-

signed to be easily reconfigurable and extendable, it provides a versatile and 

low cost tool to carry out MFC research. This thesis has documented the 

suite of exclusive experiments demonstrating the unique interaction between 

the automated robotic platform and the MFCs.  

For example, when EvoBot’s automated feeding was dictated in real-time by 

the MFCs voltage, the absolute power over time significantly improved (by 50 

μW or 7.4 mW/m2) when compared to conventionally maintained MFCs. This 

highlighted the benefit of using EvoBot to inoculate and maintain abiotic 

MFCs in order to improve their performance so that can be used on board 

autonomous robots such as EcoBot-II. During the final evaluation of the 

EvoBot-matured MFCs, the feedback loop system improved MFC power out-

put by 3-fold within just 6 days, as opposed to the average four weeks which 

is the standard time in manually maintained experiments. These EvoBot-

matured MFCs were able to charge the EcoBot-II capacitors within just 1 mi-
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nute and 4 seconds enabling phototaxis, a task that took the 2006 edition 

EcoBot-II 14 minutes to achieve using a month’s matured MFCs. These re-

sults can certainly be considered a success because one of the main aims of 

the EVOBLISS project was to create a robot that acts as an MFC factory to 

produce a new generation of MFCs to be plugged into and power autono-

mous robots. The applications of these MFC are not restricted only to robots 

since as mentioned in Chapter 2, MFCs can power; smart gadgets such as 

digital thermometers and mobile phones, remote sensors for environmental 

monitoring, pumps and wireless sensors.  

Even though it is beyond the scope of this thesis, at this stage the power re-

quirements of the EvoBot itself will be discussed in order to put it into per-

spective with the MFC power capabilities. Taking into account that EvoBot 

actuates only every hour, and this lasts for 20 minutes (i.e. feeding cycle), it 

means that it is only active for 30% of the time. The rest 70% of the time 

EvoBot is in idle mode and only records the MFC voltage. During idle mode 

the average current consumption is 137 mA. However once the feeding ex-

periment is ongoing the system draws an average current of 930 mA and a 

peak current of 1.35A at 12 V. Peak time is when all the larger components 

of the robot are active i.e. pumps and motors. Since the EvoBot was never 

intended to be powered by MFCs, its’ hardware was not optimised for this 

purpose. EvoBot could be adapted to be powered by MFCs only when its 

motors and pumps are substituted with low consumption counterparts. This 

can form a new project in the future, where collectives of MFCs can power 

their own maintenance machine. At the current moment is not feasible to 

power EvoBot directly from MFCs, however as the technology progresses 

this might be a reality in the future. 
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Nevertheless, EvoBot achieved its aim and monitored important parameters 

such as the response of MFCs to different feedstock concentrations and re-

gimes. Subsequently, it reacted on these parameters in real-time and per-

formed necessary functions to keep the living cells alive and to thrive for a 

prolonged periods of time. This was achieved by supplying the biofilm cul-

tures in MFCs with fuel when needed while concomitantly monitoring their 

behaviour and reacting to voltage drops with new feeding injections. This ap-

proach would benefit those working in the MFC field because it offers a new 

way of maintaining and studying these living cells. Furthermore, this ap-

proach bridges the gap between the batch and continuous modes of feeding 

that have been used extensively in laboratory research to date. Furthermore, 

robotic systems can rapidly distinguish MFCs between different intrinsic fac-

tors (e.g. species of colonising microbes and their ecological proportions; 

size/shape/design of MFC) as well as extrinsic physicochemical factors such 

as temperature, pH, pO2, redox, osmotic pressure, type and concentration of 

nutrients. Biofilm reactors may offer many advantages compared to conven-

tional chemostats so the two approaches (robot and biofilm bioreactor) can 

advance the biofilm and MFC research respectively.  

Concomitantly to the MFC-robot interaction work, this thesis reported on the 

discovery and use of novel materials for critical MFC components. For in-

stance the study on 3D-printable MEA revealed for the first time that MFCs 

with air-dry clay produced up to 50% more power than the controls (fluorinat-

ed-based). Additionally this line of work showed for the first time that gelatine 

is a promising soft material that can be 3D printed (in higher viscosities) and 

can also be used as a feedstock for MFC operation. These novel findings 

contribute towards developing fully monolithically printed MFCs. This can 

help standardise the MFC design which at the moment varies widely be-
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tween research groups, resulting in non-uniform or transferable material im-

provements, which delay the overall advancement of the technology. 

6.3 Novelty of the project 

This study is the first pioneering attempt to employ a liquid handling robot 

(EvoBot), to inoculate, sustain and maintain living MFC systems. This was 

achieved using an automated reactive feeding system based on an estab-

lished feedback communication loop with the MFC. EvoBot opens a new av-

enue for systematic experimentation with living, bio-hybrid system, allowing 

the study of evolution and adaptation through this interactive and synergistic 

relationship. The ability of EvoBot to interact with the MFCs in real-time, both 

improving and stabilising their output via a feedback loop mechanism is a 

novel approach that to the knowledge of the authors covers virgin ground in 

the MFC technology research. In addition for the first-time to the author’s 

knowledge an extended research study on MFC systems was conducted us-

ing a robotic platform such as EvoBot which investigated the adaptability and 

stability of those systems at the same time. Thus, the overall interaction of 

the biochemical systems (MFCs) with the 3D printing technology which led to 

a Robot-Chemostat behavioural experiments can be described as the main 

novelty of this thesis. 

An additional novelty is the use of evolutionary algorithms on-board EvoBot 

to optimise the feedstock regimes for the living cells. Although, this was just 

a preliminary line of work it does offer an intriguing avenue for future MFC 

research. Evolutionary algorithms that evolve based on the response of 

MFCs to new fuel combinations can be an efficient technique for reinventing 

new MFC substrates. Such an automated system could test and optimise the 

MFC feedstock resulting in increased power output capabilities. Concomi-
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tantly, it can contribute to the development of personalised feedstock for 

MFCs that are indicative of each working environments.  

Based on the results presented in this thesis it is evident that EvoBot can be 

used as an invaluable research tool for MFC research. This can help stand-

ardise the MFC experimental processes between different groups around the 

world. Moreover, since the platform itself is derived from a RepRap 3D print-

er, it still holds an inherent ability to print three-dimensional structures. Novel 

results from this study showed that 3D printable air-dry materials can im-

prove the MFC performance and act as membranes or electrodes in mono-

lithically printed MFCs. The possibility of using one platform both for 3D print-

ing MFC objects and performing live MFC experiments, is another novelty of 

the project as the same research tool can be turned into a production tool 

and vice versa.  

6.4 Future work 

The sets of experiments performed throughout this project are the precursors 

for further investigation and possible avenues as detailed next.  

Initially, EvoBot’s abilities can be extended further via a set of hardware mod-

ifications giving it a broader realm of 3D-printing capabilities. For example, in 

addition to extrusion, EvoBot can be customised to incorporate a brush/roller 

into its robotic head. This could apply a uniform conductive coating onto the 

dried extruded membranes akin to a robotic painting machine (Grosser, 

2011) achieving a complete and automated MEA fabrication. 

Apart from that, a pH module can be incorporated into the robotic head to 

add another element of interaction with the MFCs. Such an apparatus can 

automatically test the inlet pH as well as the outlet pH of the anodic chamber 
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in real-time, and can control the pH to help understand the relationship be-

tween power output and anolyte pH. Also, it can give insight into the chemi-

cal and microbial transformations that take place within each chamber. This 

idea inspired the development of a research project that took place at IT Uni-

versity of Copenhagen, Denmark (EVOBLISS project collaborators) where a 

prototype was developed as part of an MSc study.  

An experiment that has the potential to be explored further and result in im-

portant findings is the evolutionary algorithm experiment that was introduced 

for the first time in this thesis. The ability to automatically test a wide range of 

feedstock recipes and improve the combinations by assessing the resulting 

performance of MFCs, opens a whole new avenue of interdisciplinary study 

between bioelectrochemistry, evolutionary biology and artificial intelligence.  

EvoBot as a standalone open-source platform can continue to be used to 

perform interactive experiments all over the world. These will have the ability 

to produce high quality reproducible data from multiple comparisons of condi-

tions across a wide range of the physicochemical realm; data that would be 

difficult to achieve through conventional manual experimentation on MFCs 

and electroactive biofilms. This in the future can result in laboratory scale 

EvoBot-based MFC farms (akin to hydroponic farms), that can maintain mul-

tiple small MFCs simultaneously and preparing them for practical uses (e.g. 

powering remote sensors, degrading pollutants in the wastewater etc.).    

Following the work carried out in this PhD project and by continuing the de-

velopment of this robot it is believed that valuable results can emerge that 

can shape further the future of MFCs and fully address the physicochemical 

parameters that influence their electrical behaviour.  
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Appendix A  

A.1 Details of the evolutionary algorithm  

 Algorithm: CMA-ES 

 Variables: percentage of acetate, 𝑎 ∈ [0,100], casein, 𝑐 ∈ [0,100], and 

urine 𝑢 ∈ [0,100]  ∀𝑎, 𝑐, 𝑢: 𝑎 + 𝑐 + 𝑢 = 100  

 Representation: vector of three real numbers {𝑎, 𝑐, 𝑢} ∀ 𝑎, 𝑐, 𝑢:  𝑎 +

𝑐 + 𝑢 = 1 / 𝑎, 𝑐, 𝑢 ∈ ℝ ∧ a, c, u ∈ [0,1]; individuals are normalized to 

guarantee that the sum of the three components is 1.  

 Initial population: randomly generated from the a normal distribution 

centred at (0.5, 0.5, 0.5) and standard deviation of 0.2 

 Population size: 8 

 Generations: 12 

 Evaluation time: 4 hours (all the population is evaluated in parallel) 

 Fitness: average voltage of three MFCs, divided by the average volt-

age of the same MFCs with a recipe of 1/3 acetate, 1/3 casein and 1/3 

urine. 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
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,  

where 𝑉_𝑚𝑐𝑓𝑖𝑡 is the voltage of MFC i at sample t , 

𝑉𝑏𝑎𝑠𝑒_𝑚𝑓𝑐1−3 =
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3
  measured with a recipe 

(1/3, 1/3, 1/3) just before the evolutionary experiment started, 

and N is the number of samples taken during the experiment (N=240, 

voltage sampled every minute) 



 

   

 

A.2 EcoBot-II 2018 edition 

 

Figure A.1 Close-up photo of EcoBot-II 2018 edition. 

 

 



 

   

 

 

Figure A.2 Close-up photo of EcoBot-II 2018 edition from above. 

 



 

   

 

 

Figure A.3 Photo of EcoBot-II 2018 edition (from the side) performing phototaxis. 
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