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Abstract

In this paper, a novel adaptive control scheme is proposed base on radial basis function neural network (RBFNN). The
considered system is deduced by the structure of RBFNN with non-zero time-varying parameter that installed in the fore-end
and terminal of RBFNN. With this structure and the Taylor expansion of any smooth continuous nonlinear function, a universal
approximation of RBFNN is addressed according to the analysis of the character of continuous homogenous function and the
Euler’s theorem. The approximation accuracies can be adjusted on-line by the non-zero time-varying parameter in the device with
the degree of continuous homogenous function, which expand the semi-globally stability to global stability over conventional
neural controller design approaches. Based on the theory analysis of barrier Lyapunov function, the violation of time-varying
constraints can be subjugated without wrecked. Finally, simulation results are carried out to verify the effectiveness by the design
methods.

Keywords: Radial basis function neural network (RBFNN), Robot manipulator, Adaptive control, Time-varying constraints,
Global uniformly ultimately bounded(GUUB).

I. INTRODUCTION

In recent years, many researchers and scholars are incline to the design of intelligent control to cope with different regions
or fields with sophisticated and system identification in engineering environments, and hence artificial intelligence control has
become an indispensable significant technique [1]–[3]. For example, in [4], an intelligence shared control system with brain
computer interface was developed to achieve accurate object for robot manipulator system, in which the user’s mind is regarded
as a commander. Parameters identifications are also be populated for frequently usage in various engineering such as hovercraft
system [5], robot system [6], [7], vehicle engines [8], wiener system [9], etc. However, parameters identifications only be suited
to some class of known structured model systems in [5], [6], [8], [9]. Although some novel adaptive parameter estimation
control schemes were constructed for the unknown robotic system in [7], the assumption of persistent excitation condition is
necessary to be known beforehand. In many real applications, unknown nonlinearities and unstructured uncertainties in complex
dynamical systems are inevitable existed, neural network space (NNs) and fuzzy logic systems (FLS) have been received much
more attention since they are two powerful artificial intelligent instruments to deal with uncertainties or unknown model
in nonlinear complex dynamic systems [10]–[17]. In literatures [12], [18]–[22], to investigate different nonlinear dynamical
systems with unknown nonlinearities terms or unstructured models, several excellent NN controllers were developed. For the
uncertain nonlinear robot manipulators systems, extreme learning machine (ELM) was studied to oppose the uncertain terms
or unknown model such that some pre-given performances can be satisfied in [11], [14]. In [23], in order to guaranteed the
good tracking performance of closed-loop systems, NNs combining with wave variable was employed to form a teleoperation
controller. For multiagent systems with uncertain nonlinearities, distributed adaptive NNs controls [24], [25], multiple NN with
supervisory control [22], consensus control [26], distributed output feedback control [27] and quantized control [20], [28] with
asymmetric actuator backlash were proposed.

Recently, robot or telerobot systems recently have a significant of control design in multifarious intricate environments [23],
[29], [30], and consequently the NN adaptive controls design for these kinds of systems have been become a hot interesting
topic. In [29], RBFNNs was utilized to counteract the effect of uncertainties of Baxter robot. A robust output feedback
control based on self-recurrent wavelet NNs with observer dynamical surface was put forward to the flexible joint electrically
driven robot systems in [31]. For the flexible link manipulators in civil and military applications, an adaptive cerebellar model
articulation control with NNs was designed in [32]. A robust NN output feedback controller with observer was implemented
for the motion of robot manipulators in [33]. In [34]–[36], robust adaptive NN controls were brought forward for continuous
and discrete-time robot systems respectively. For a class of robot arm systems with higher nonlinear structure, a NN algorithm
control was presented to obtain good control performance in [37]. Nonetheless, in these literatures, it is important to point out
that the constraint control problem was not considered in the design of the NN controllers.
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More outstanding works about barrier function were engendered from the pioneer works in [38], [39], where an originality
idea was proposed to prevent the constraint violation for the output of closed-loop systems. For uncertain systems with states
bounded constraints, an adaptive NN control strategy was developed by uniting novel integral barrier Lyapunov functions
(BLFs) in [40]. The full-state constraints for a kind of stochastic nonlinear systems, and all the states under the function
of controller can be ensured in their constraint bounds without being destroyed in [41]. An adaptive NN tracking controller
combining with RBF was designed for a kind of marine surface vessels with unknown parameters and full state constraints
in [42]. Howbeit the state constraints in these mention literatures only focused on the invariability of compact sets, and the
result is that these approaches will become invalid when the constraints are defined in some variable domain sets. In [43], the
full states were constrained in time-varying regions, and an adaptive controller was addressed for a class of nonlinear strict-
feedback systems. It is necessary should be pointed out that the constraints were mainly researched on the states of closed-loop
systems in [40]–[43]. The objects of these studies were generally some specific nonlinear systems, and the outputs constraint
of uncertain or unstructured robot systems were not be considered. The outputs time-varying constraint of unstructured model
of robotic manipulators were studied in [44] where an adaptive control design scheme was proposed to guarantee good tracking
performance without outputs violation. In [45], two NNs were employed to design controller for the tracking problem of the
output time-varying constrained in a sort of pure-feedback nonlinear systems.

In these above discussed works, the control approaches only be guaranteed to semi-globally uniformly ultimately bounded
(SGUUB), which are ascribed to the property of approximation on a given certain compact domain. Consequently, the global
stability control design is a challenge for work by using NNs. In [46], [47], global stability NNs controls based on backstepping
design method were devised and satisfied for some given certain tracking performances, but the method can be only applied to
the strict feedback systems and uncertain hypersonic flight vehicle respectively. A novel global uniformly ultimately bounded
(GUUB) switching NN control was designed for bimanual robots systems with given tailored transient performances in advance
in [48], it should be noted that the approximation accuracies of RBFNN can not be adjusted on-line automatically.

With these mentioned analyses, although the aforementioned abundant research works about NNs have significant guidance
for the designing of intelligent controls, it is necessary to exploit other unified novelty methods to meet more performance
requirements in application real world. Nevertheless, we attempt to break the limitation of conventional NN control methods,
and construct updated laws according to the approximation accuracies of RBFNN. In this work, the control procedure of
RBFNNs with non-zero adjusted parameter be divided two folds, the states of closed-loop system will be arrived at the sliding
surface with limited time by using adaptive laws when they go out of the approximation domain, and then the adaptive RBFNNs
controller be employed to satisfy the output of unstructured robot manipulators with outputs time-varying constraints. The major
advantage of the proposed design method is that the on-line training burdens of RBFNNs can be eased greatly. Meanwhile,
the high approximation accuracies of RBFNNs can be guaranteed owing to the relationship designed between adjusted laws
of non-zero parameter and approximation accuracies.

In Section 2, descriptions of dynamic robot manipulator and some assumptions are given, and the structure of RBFNN with
non-zero parameter and limiter is designed, which induced a new and original universal approximation with integer degree.
Tracking adaptive control integrating with RBFNNs is presented in Section 3, and simulation example is carried out to validate
controller in Section 4. The conclusion is addressed finally.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES

A. Descriptions and Assumptions of the Robot Manipulators

The dynamic system can be described as the following equation with n-link robot manipulators{
M(q)q̈ + C(q, q̇)q̇ +G(q) = u(t)− JT (q)F̃ (t)

y = q
(1)

where, q ∈ Rn×1 is the joint angular position, q̇ ∈ Rn×1 and q̈ ∈ Rn denote the velocity and acceleration, respectively;
M(q) ∈ Rn×n expresses the Inertia matrix; C(q, q̇) ∈ Rn×n is the centripetal and coriolis, and G(q) ∈ Rn×1 denotes the
gravity; u(t) ∈ Rn×1 indicates the input torque; J(q) denotes reversible Jacobian matrix, and the constrained force F̃ (t) with
bounded, that is to say, there exists a given positive constant f̃ and satisfies ‖F̃ (t)‖ ≤ f̃ for t > 0; y = q denotes the output
of the robot manipulators.

Assumption 1: [7] The Inertia matrix M(q) is positive definite and its inverse matrix M−1(q) exists.
If we denote q = x1 = [x11, x12, · · · , x1n]T , q̇ = ẋ1= [x21, x22,· · · ,x2n]T , then the robot manipulator system (1) can be

rewritten as 
ẋ1 = x2

ẋ2 = M−1(x1)[u(t)− JT (q)F̃ (t)− C(x1, x2)x2 −G(x1)]

y = x1

(2)
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In this paper, the output position of (1) be assumed to be constrained on a time-varying compact set with the following
form:

hs(t) ≤ q ≤ hs(t),∀t ≥ 0 (3)

where hs(t) = [hs1 , hs2 , · · · , hsn ]T , hs(t) = [hs1(t), hs2(t), · · · , hsn(t)]T with hsi(t) > hsi(t), ∀t ∈ R+, i = 1, · · · , n.

Assumption 2: [40] There exist a series of constants Hsij and Hsij such that |h(j)si | ≤ Hsij and |h(j)si | ≥ Hsij(j =
0, 1, 2, · · · , n).

Assumption 3: The two function vectors X0(t) < hs and X0(t) > hs all hold for ∀t > 0, and there exist some known
positive constants Xi with satisfying |ydi| ≤ Xi and X0(t) ≤ yd(t) ≤ X0(t).

Defining {
hai(t) = ydi(t)− hsi(t)
hbi(t) = hsi(t)− ydi(t)

(4)

With the condition of Assumption 2 and 3, the result is that there exist some positive constants hbi , hbi , hai and hai , which
can make sure the following inequalities are satisfied{

hai(t) ≤ hai(t) ≤ hai(t)
hbi(t) ≤ hbi(t) ≤ hbi(t)

(5)

We introduce the ideal reference of the manipulated object as yd = [yd1, yd2, · · · , ydn]T , and the tracking error be defined
as

e = x1 − yd, z = q̇ − β (6)

where e = [e1, e2, · · · , en]T is the position tracking error vector, z = [z1, z2, · · · , zn]T represents the velocity tracking error
robot manipulator in joint space, q̇ = [q̇1, q̇2, · · · , q̇n]T , and β = [β1, β2, · · · , βn]T stands for a virtual control vector which
will be designed in the following procedure.

Introduce the following coordinates that will be used in the control design
ζa = [ e1ha1

, e2
ha2

, · · · , en
han

]T

ζb = [ e1hb1
, e2hb2

, · · · , enhbn ]T

ζai = ei
hai

, ζbi = ei
hbi

ζi = pi(ei)ζbi + (1− pi(ei))ζai

(7)

where pi(ei) =

{
1, ei > 0

0, ei ≤ 0
.

Assumption 4: The unknown function vector is defined as ϕ(X) = [ϕ1(X), · · · , ϕn(X)]T , in which, the unknown model
function ϕi(X) is assumed as continuous and bounded with satisfies |ϕi(X)| ≤ ϕ̄i, and ϕ̄i is a known bounded positive
constant.

With these Assumptions, there exist some known information about this unknown model in system such as continuous and
up-bounded, which is necessary to design the control in the process of analysis the model.

The follows two Lemmas are introduced:
Lemma 1: [44] For any given |ζi| < 1, and any integer m > 0, then log( 1

1−ζ2mi
) <

ζ2mi
1−ζ2mi

holds.
Lemma 2: [44] If −hai(t) < e1i(t) < hbi(t), then |ζi(t)| < 1 can be obtained.

B. Descriptions of NNs

For the unknown nonlinearities in robot manipulator system (1), the RBFNN is fitted with non-zero parameter ρ and limiter
as displayed in Fig.1
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Fig. 1. The structure of RBFNN with the non-zero parameter ρ and the limiter

Remark 1: The zoomer 1
ρ is added in the input of RBFNN, then X

ρ goes to the limiter. The working mechanism of the
zoomer and limiter is that the input vector X can be limited at the approximation domain field of RBFNN, then other zoomer
ρr (r denotes the degree of unknown continuous homogeneous function that is a known integer) is loaded at the terminal of
the RBFNN, which can force the input states to converge to the origins.

Based on the structure of RBFNN with the parameter ρ and the limiter, the final output in Fig. 1 can be obtained by

X̄ = ρrWTφ(
X

ρ
) (8)

where X = [X1, X2, · · · , Xn]T , W = [W1,W2, · · · ,Wn]T is the weight of the RBFNN, r denotes a known integer, φ(Xρ ) =

[φ1(Xρ ), φ2(Xρ ), · · · , φn(Xρ )]T is the radial basis function vector. Generally speaking, the radial basis function be chosen as
Gaussian function form

φk(
X

ρ
) = exp[−

‖ lim(Xρ )− ck‖
2b2k

], (k = 1, 2, · · · , n) (9)

where ‖ ∗ ‖ denotes 2−norm, ck = [ck1, ck2, · · · , ckn]T represents neural center, and bk is the width of Gaussian function.
The working principle of the RBFNN in Fig.1 is that the input vector be entered into the device with a non-zero time-

varying parameter ρ, and be went to the following limiter, the input vector X can be limited to a certain domain and then go
through another device with ρr, hence the final output of the Fig.1 can be used to approximate any given unknown continuous
homogeneous function with r degree (a known integer) as

ψ(θX) = θrψ(X) (10)

where θ is any given known real constant. On a certain compact set, RBFNN (8) can be employed to approximate any given
uncertain continuous homogeneous function with any degree of accuracy (In Fig.1, the degree is r).

Remark 2: For any unknown smooth nonlinear function ϕ(X, t) at X = 0, by using the Taylor expansion of ϕ(X, t), the
following result can be obtained:

ϕ(X, t) =

s∑
i=1

ϕki(X) + o(X, t) (11)

where
s∑
i=1

ϕki(X) is the sum of s items, the remainder be denoted as o(X, t).

With this property of Taylor expansion (11), we know that the degree ki of the function ϕki(X) can be obtained as
1, 2, 3, · · · , s(s is a positive integer).

Based on the above analysis, every unknown item ϕki(X) in (11) that can be compensated by RBFNN as shown in Fig.1.
Now, the following Lemma 3 is proposed, which play an important role in the adaptive RBFNNs control design procedure.
Lemma 3: Consider the uncertain continuous nonlinear homogeneous function ψ(X) ∈ Rn with known degree r, there exist

RBFNN that be denoted as F̄ (X) with approximation accuracy ε satisfying sup
X∈U0

|ψ(X) − F̄ (X)| ≤ ε. On the compact set

U0 = {X|‖X‖ ≤ |ρ|α}, then the following property of approximation is true

sup
X∈U0

|ψ(X)− F̄ (
X

ρ
)| ≤ |ρ|rε (12)
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Proof: Because we know the degree r of the uncertain homogeneous function ψ(X), so ψ(X)− ρrψ(Xρ ) = 0 is obtained. On
the domain U0 = {X|‖X‖ ≤ |ρ|α}, then the following inequality holds:

|ψ(X)− ρrF̄ (
X

ρ
)| = |ψ(X)− ρrψ(

X

ρ
) + ρr[ψ(

X

ρ
)− F̄ (

X

ρ
)]|

≤ |ψ(X)− ρrψ(
X

ρ
)|+ |ρ|r|ψ(

X

ρ
)− F̄ (

X

ρ
)|

= |ρ|r|ψ(
X

ρ
)− F̄ (

X

ρ
)| ≤ |ρ|rε (13)

The proof of Lemma 3 is completed.
In this paper, let Ŵ and ε̂ represent the estimation value of W and ε, respectively, the errors be defined as W̃ = Ŵ −W

and ε̃ = ε̂− ε. The adaptive laws Ŵ and ε̂ will be proposed in the design procedure of control.
Because the dynamical model of robot manipulators is unknown, some RBFNNs need to be employed to compensate the

unstructured model. We know the information that the higher degree be assumed as v, and hence the unstructured model can
be represented as linear combinatorial function. Along these analyses, a novel RBFNNs adaptive control be designed such that
the tracking global stability performance in Fig.2 can be achieved.

 

Fig. 2. Global stability performance

From Lemma 3, it is known that the RBFNN in Fig.1 be utilized to approximate the unstructured robot manipulators on the
approximation domain U0 in Fig.2. If the tracking signals run out of the domain U0, the sliding model surface s = 0 can be
designed that pull the tracking signals back to the domain U0. Then RBFNN adaptive control is worked such that the signals
are ensured to enter the compact U1, which make all signals to be GUUB guaranteed.

III. GLOBAL ADAPTIVE RBFNN CONTROL DESIGN

In this section, adaptive RBFNN control will be devised, we choose the following Lyapunov function:

V1 =

n∑
i=1

(
pi
2

log
h2bi

h2bi − e
2
i

+
1− pi

2
log

h2ai
h2ai − e

2
i

) (14)

Then, the result of V̇1 is can be got as

V̇1 =

n∑
i=1

[
piζbi

hbi(1− ζ2bi)
+

(1− pi)ζai
hai(1− ζ2ai)

]ėi

−
n∑
i=1

[
piζbi

hbi(1− ζ2bi)
ḣbi
hbi

+
(1− pi)ζai
hai(1− ζ2ai)

ḣai
hai

]ei

=

n∑
i=1

ζ2i
(1− ζ2i )

ėi −
no∑
i=1

[
piζbi

hbi(1− ζ2bi)
ḣbi
hbi

+
(1− pi)ζai
hai(1− ζ2ai)

ḣai
hai

]ei (15)
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Let R = [
ζ21

1−ζ21
,

ζ22
1−ζ22

, · · · , ζ2n
1−ζ2n

]T , then it yields

V̇1 = RT ė−
n∑
i=1

[
piζbi

hbi(1− ζ2bi)
ḣbi
hbi

+
(1− pi)ζai
hai(1− ζ2ai)

ḣai
hai

]ei (16)

In terms of the output of system (2) and the given ideal reference yd, we define the differential of tracking error as

ė = ẋ1 − ẏd =


ẋ11 − ẏd1
ẋ12 − ẏd2

...
ẋ1n − ẏdn

 =


z21 + β11 − ẏd1
z22 + β12 − ẏd2

...
z2n + β1n − ẏdn

 (17)

Let β = [β11, β12, · · · , β1n]T , and choose β1i = ẏdi − k1i − τi, then (15) can be represented as

V̇1 = −RTK1 +RT z2 −RT τ −
n∑
i=1

[
piζbi

hbi(1− ζ2bi)
ḣbi
hbi

+
(1− pi)ζai
hai(1− ζ2ai)

ḣai
hai

]ei (18)

in which, K1 = [k11, k12, · · · , k1n]T with every constant k1i > 0 be proposed by user. z2 = [z21, z22, · · · , z2n]T , τ =

[τ1, τ2, · · · , τn]T with τi =

√
(
ḣai
hai

)2 + (
ḣbi
hbi

)2 + %i, %i is a positive constant by designer.

Since τi + pi
ḣbi
hbi

+ (1− pi)
ḣai
hai
≥ 0, so it has

V̇1 ≤ −RTK1 +RT z2 = −
n∑
i=1

k1i
ζ2i

1− ζ2i
+RT z2 (19)

The following RBFNNs adaptive switching controller is proposed according to the control task

u =

On×1, ‖z2‖ > α|ρ|

−M(x1)[K2z2 +
r∑
q=1

ŴT
q φq(

X
ρ )], ‖z2‖ ≤ α|ρ|

(20)

where O represents a matrix with all elements zero, K2 = diag{k21, k22, · · · , k2n} with k2i > 0, Ŵq = [Ŵq1, Ŵq2,· · · ,
Ŵqn]T , φq(Xρ ) = [φq1(Xρ ), φq2(Xρ ), · · · , φqn(Xρ )]T .

The updated laws be designed as

ρ̇ =


1
α2ρ [L+ (‖R‖+

r∑
q=1

ϕ̄q)‖z2‖], ‖z2‖ > α|ρ|

−γ2ρ− µα(‖R‖+
r∑
q=1
|ρ|kq ε̂q)ρ̄, ‖z2‖ ≤ α|ρ|

(21)

˙̂εq =

{
0, ‖z2‖ > α|ρ|
−δq ε̂q + ηqα|ρ|kq , ‖z2‖ ≤ α|ρ|

(22)

˙̂
Wqi =

{
0, ‖z2‖ > α|ρ|
σqi[z2iφqi(

X
ρ )− ϑqiŴqi], ‖z2‖ ≤ α|ρ|

(23)

where ρ̄ =

{
−1, ρ̄ ≤ 0

1, ρ̄ > 0
, ϕ̄q (q = 1, 2, · · · , r) are some known positive bounded constants, and the parameter α, L, γ, µ,

δq , ηq , σqi, ϑqi are proposed suitable positive constants.
Theorem 1: Consider the robotic manipulator system (1) with the Assumption 1-4, if the initial output hs(0) < y(0) < hs(0)

is satisfied, then the adaptive RBFNN control (20) with the adaptation laws (21)-(23) can guarantee that all the signals are
global uniformly ultimately bounded in the closed-loop system, and the tracking errors can be ensured to enter into a small
zero domain field.

The proof for Theorem 1 be designed as the following two folds:
Case (1): ‖z2‖ > α|ρ|
With this condition, open control u = On×1 is adopted. The following sliding model surface is defined:

s = s(xT1 , x
T
2 , β

T , β̇T , ε̃Tq , W̃
T )T
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= V1 +
1

2
zT2 z2 −

1

2
α2ρ2 +

1

2

r∑
q=1

ε̃2q +
1

2

n∑
i=1

r∑
q=1

W̃T
qiW̃qi (24)

From (24), we know that s > 0, and select the positive function Ṽ = 1
2s

2, then the differentiation Ṽ leads to

˙̃V = s{V̇1 + zT2 z2 − α2ρρ̇+

r∑
q=1

ε̃q ˙̂εq +

n∑
i=1

r∑
q=1

W̃T
qi

˙̂
Wqi}

= s{V̇1 + zT2 [M−1(x1)u+ ϕ(X)]− α2ρρ̇+

r∑
q=1

ε̃q ˙̂εq +

n∑
i=1

r∑
q=1

W̃T
qi

˙̂
Wqi} (25)

where ϕ(X) = −M−1(x1)[JT (x1)F +C(x1, x2)x2 +G(x2)]− β̇1, which is assumed to be an unstructured model. We denote

ϕ(X) =
r∑
q=1

ϕq(X) on the compact set U0, in which ϕq denotes a series unknown continuous homogeneous functions vector

with q degree such as ϕq = [ϕq1, ϕq2, · · · , ϕqn]T . We know sup
X∈U0

‖(ϕq1, ϕq2, · · · , ϕqn)‖ ≤
√

n∑
i=1

ϕqi , ϕ̄q , ϕ̄q is a given

known bounded value, and hence that

˙̃V ≤ s{−
n∑
i=1

k1i
ζ2i

1− ζ2i
+ ‖R‖ · ‖z2‖+ ‖z2‖

r∑
q=1

ϕ̄q − α2ρρ̇+

r∑
q=1

ε̃q ˙̂εq +

n∑
i=1

r∑
q=1

W̃T
qi

˙̂
Wqi}

≤ −s{
n∑
i=1

k1i
ζ2i

1− ζ2i
+ L} ≤ 0 (26)

On the basis of the results in [49], inequality (26) means that the state vector Z = [xT1 , x
T
2 , β

T , β̇T , ε̃Tq , W̃
T ]T can be reached

the sliding surface s = 0 with limited times.
Case (2): ‖z2‖ ≤ α|ρ|
In this case, ‖z2‖ ≤ α|ρ| indicates that ‖X‖ ≤ α|ρ| is truth, and the following candidate Lyapunov function is considered

V2 = V1 +
1

2
zT2 z2 (27)

the differential of V2 becomes as
V̇2 = V̇1 + zT2 ż2

≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
+RT z2 + zT2 M

−1(x1)u+ zT2 ϕ(X) (28)

according to the controller (20) with this case, it gets

M−1(x1)u+ ϕ(X)

= −K2z2 −
r∑
q=1

ŴT
q φq(

X

ρ
) +

r∑
q=1

ϕq(X) (29)

the inequality (28) can be transformed as the following form

V̇2 ≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
+RT z2 − zT2 K2z2 + zT2

r∑
q=1

[ϕq(X)− ŴT
q φq(

X

ρ
)]

= −
n∑
i=1

k1i
ζ2i

1− ζ2i
+RT z2 − zT2 K2z2 + zT2

r∑
q=1

[WT
q φq(

X

ρ
) + |ρ|kq

T
εq − ŴT

q φq(
X

ρ
)] (30)

where |ρ|kq = [|ρ|kq1 , |ρ|kq2 , · · · , |ρ|kqn ]T and εq = [εq1,εq2,· · · , εqn]T . Because ‖|ρ|kq‖ ≤
n∑
i=1

|ρ|kqi and ‖εq‖ ≤
n∑
i=1

εqi can
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be satisfied, if we denote
n∑
i=1

|ρ|kqi , |ρ|kq ,
n∑
i=1

εqi , εq , so (30) yields the form as follows

V̇2 ≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
−

n∑
i=1

k2iz
2
2i +RT z2 + ‖z2‖

r∑
q=1

|ρ|kqεq −
n∑
i=1

r∑
q=1

z2iW̃
T
qiφqi(

X

ρ
) (31)

considering the following Lyapunov function

V3 = V2 +
1

2µ
ρ2 +

r∑
q=1

1

2ηq
ε̃2q +

1

2

n∑
i=1

r∑
q=1

W̃T
qiσ
−1
qi W̃qi (32)

so the derivative of V3 be read as

V̇3 ≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
−

n∑
i=1

k2iz
2
2i + α|ρ| · ‖R‖

+α|ρ|
r∑
q=1

|ρ|kq ε̂q + µ−1ρρ̇+

r∑
q=1

η−1q ε̃q ˙̂εq − α|ρ|
r∑
q=1

|ρ|kq ε̃q

+

n∑
i=1

r∑
q=1

W̃T
qiσ
−1
qi

˙̂
Wqi −

n∑
i=1

r∑
q=1

z2iW̃
T
qiφqi(

X

ρ
)

≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
−

n∑
i=1

k2iz
2
2i −

γ

2µ
ρ2 −

r∑
q=1

δq
ηq
ε̃q ε̂q −

n∑
i=1

r∑
q=1

ϑqiW̃
T
qiŴqi (33)

In virtue of the following inequality

− δq
ηq
ε̃q ε̂q = − δq

ηq
ε̃2q −

δq
ηq
ε̃qεq ≤ −

1

2

δq
ηq
ε̃2q +

1

2

δq
ηq
ε2q (34)

Similarly, we have

−ϑqiW̃T
qiŴqi ≤ −

1

2
ϑqi‖W̃qi‖2 +

1

2
ϑqi‖Wqi‖2 (35)

Substituting (34) and (35) into (33), it follows

V̇3 ≤ −
n∑
i=1

k1i
ζ2i

1− ζ2i
−

n∑
i=1

k2iz
2
2i −

γ

2µ
ρ2 − 1

2

r∑
q=1

δq
ηq
ε̃2q −

n∑
i=1

r∑
q=1

1

2
ϑqi‖W̃qi‖2

+
1

2

r∑
q=1

δq
ηj
ε2q +

1

2

n∑
i=1

r∑
q=1

ϑqi‖Wqi‖2 (36)

Let $ = min{k1i, k2i, γµ ,
δq
ηq
, ϑqiσqi}, and υ = 1

2

r∑
q=1

δq
ηq
ε2q + 1

2

n∑
i=1

r∑
q=1

ϑqi‖Wqi‖2. With Lemma 1 and Lemma 2, then inequality

(36) can be transformed as following

V̇3 ≤ −$V3 + υ (37)

Multiplying e$t in both sides of (37), and integrating over [0, t], it becomes

V3 ≤ [V3(0)− υ

$
]e−$t +

υ

$
≤ V3(0) +

υ

$
(38)

Based on (7), then

−Ωi(t) ≤ z1(t) ≤ Ωi(t) (39)

where Ωi(t) = hai(t){1 − e−2[V3(0)+
υ
$ ]} 1

2 , Ωi(t) = hbi(t){1 − e−2[V3(0)+
υ
$ ]} 1

2 . Thanks to Assumption 1-2, the bounded
condition hc(0) < y(0) < hc(0) can be satisfied, at the same time, −hai(0) < zi(0) < hbi(0) be also hold based on
the functions hai and hbi , which means that |ζi(0)| < 1. From the analysis of Lemma 2, |ζi(t)| < 1 can be ensured, and
−hai(t) < z1i(t) < hbi(t) also can be guaranteed. Because of x1i = z1i + ydi, so it gets

ydi(t)− hai(t) < x1i(t) < hbi(t) + ydi(t) (40)

With the inequality (40), we can get the results that the output of robot manipulator (1) can be guaranteed as hs(t) ≤ y(t) ≤

8



hs(t) (∀t ≥ 0). Under the condition of time-varying output constraints, we know that the output of the closed-loop system can
not be violated.

From (17), it is obviously that the virtual control β1i is bounded, and ‖z2‖ ≤ 2
√
V3(0) + υ

$ is also be bounded. Since
the definition z2 = x2 − β1, hence x2 is bounded too. With the updated laws in (21)-(23), the parameters ρ, L̂ and ε̂ can be
ensured to be bounded. These completed the proof process of Theorem 1.

Remark 3: To summarize the RBFNNs adaptive control design method according to the analysis of Theorem 1, the Global
Stability procedures of the control algorithm is described as the following two steps:

(i) The tracking errors will be drawn back to the sliding surface s = 0 by the updated laws (21)-(23) with the case of
‖z2‖ > α|ρ|, which implies ‖X‖ > α|ρ| because of ‖X‖ > ‖z2‖. With this sliding model surface, although the state of
unknown robot manipulator system go out of the the defined domain that is designed in advance, which can be entered into
the approximation domain field by applying adaptive laws.

(ii) Due to the sliding model surface s = 0, ‖z2‖ ≤ α|ρ| can be ensured. So on the approximation domain of U0 =
{X|‖X‖ ≤ |ρ|α}, the RBFNNs as Fig.1 be utilized to approximate the unknown model of robot manipulators.

Accordingly, we have the conclusion that the tracking errors and the states of the closed-loop system can achieve GUUB
whatever go outside or stay inside the approximation domain of RBFNNs by the above two steps.

IV. SIMULATION EXAMPLE

In this simulation studies section, the coordinate system of robot manipulator with 3-DOF as shown in Fig.3 to illustrate the
RBFNNs adaptive controller. The dynamical robot manipulator system can be written as (1) with the parameters in Table 1.

Fig. 3. The coordinates frame of robot manipulator with 3-DOF

M(q) =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , F̃ =

 f11
f21
f31

 , C(q, q̇) =

 C11 C12 C13
C21 C22 C23
C31 C32 C33

 , G(q) =

 G11G21
G31

 , with M11 =

m3q
2
3 sin(q22) +m3r

2
1 +m2r

2
1 + 1

4m1r
2
1 ,M12 = m3q3r1 cos(q2),M13 = m3r1 sin(q2),M21 = M12,M22 = m3q

2
3 + 1

4m2r
2
2 ,

M23 =M32 = 0,M31 =M13,M33 = m3. C11 = m3q
2
3 sin(q2) cos(q2)q̇2+m3q

2
3 sin(q22)q̇3, C12 = m3q

2
3 sin(q2) cos(q2)q̇1−

m3r1q3 sin(q2)q̇2 − m3r1q3 sin(q2)q̇3, C13 = m3q
2
3sin(q22)q̇1 − m3r1q3 sin(q2)q̇2, C21 = −m3q3 sin(q2) cos(q2)q̇1, C22 =

m3q3q̇3, C23 = m3q3q̇3, C31 = −m3q3 sin(q22)q̇1 +m3r1cos(q2)q̇2, C32 = m3r1cos(q2)q̇1 −m3q3q̇2, C33 = 0. G11 = 0, G21 =
−m3gq3 cos(q2), G31 = −m3g sin(q2). J(q) = I3×3, f11 = sin(t) + 2.9, f21 = 2 cos(t) + 1.2, f31 = 3 sin(t) + 2. The output

TABLE I
THE PARAMETERS OF ROBOT MANIPULATORS.

r1 r2 m1 m2 m3 g
0.3 m 0.4 m 2 kg 2 kg 1 kg 9.8 m/s2

variable is denoted as q = [q1, q2, q3]T = [x11, x12, x13]T . The initial positions are chosen as x1(0) = [1, 0.5, 0.2]T , x2(0) =
[0, 0, 0]T . The given desired trajectory beforehand is described as yd1 = 1.2 sin(2t), yd2 = sin(3t), yd3 = 0.5 sin(2t)+0.6cos(t).
the output constraints with time-varying are defined as hs1 = [hs11 , hs12 , hs13 ]T = [−0.3 sin(t)−1.6, sin(3t)−0.5,−0.4sin(t)−
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0.9]T , hs2 = [hs21 , hs22 , hs23 ]T = [cos(2t) + 0.5, 0.6 sin(t) + 0.8, 0.3 cos(2t) + 1.4]T . The original values of adaptive laws are
given as ρ(0) = 0.2, ε̂1(0) = 0.3, ε̂2(0) = 0.9, ε̂3(0) = 0.6. The parameters in control selected as k21 = 2000, k22 = 1500,
k23 = 1200, L = 0.001, α = 2, γ = 0.003, µ = 0.0005, δ1 = 2, δ2 = 3, δ3 = 4, η1 = 0.001, η2 = 0.002, η3 = 0.003,
%1 = 0.002, %2 = 0.003, %3 = 0.004. In this simulation, nine RBFNNs such as the structure of Fig.1 be used to approximate
nine unknown homogeneous function. ŴT

11φ11(Xρ ), ŴT
12φ12(Xρ ) and ŴT

13φ13(Xρ ) are built to deal with the three unknown
homogeneous function ϕ11, ϕ12 and ϕ13 with degree 1. Another three RBFNNs ŴT

21φ21(Xρ ), ŴT
22φ22(Xρ ) and ŴT

23φ23(Xρ ) are
also be used to compensate for other three unknown model homogeneous functions ϕ21, ϕ22 and ϕ23 with degree 2. Equally, for
the uncertain homogeneous functions ϕ31, ϕ32 and ϕ33 with degree 3, ŴT

31φ31(Xρ ), ŴT
32φ32(Xρ ) and ŴT

33φ33(Xρ ) are employed.
The known bounded positive constants are chosen as ϕ̄1 = 5, ϕ̄2 = 10, ϕ̄3 = 15, respectively. For each RBFNN, the number
of nodes be chosen as 20 with center space in [−0.4, 0.4] × [−2.8, 2.8] × [−2, 2] × [−1.6, 1.6] × [−0.6, 0.6] × [−1.1, 1.1]
and widths 5. σ11 = 0.3I20×20, σ12 = 0.9I20×20, σ13 = 0.35I20×20, σ21 = 0.3I20×20, σ22 = 1.2I20×20, σ23 = 1.05I20×20,
σ31 = 0.3I20×20, σ32 = 0.3I20×20, σ33 = 0.8I20×20. The parameters ϑij are selected as different values between 0.001 and
0.009 randomly. The corresponding simulation results of robot manipulators as shown in Figs. 4-10.
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Fig. 4. The tracking curves of robot manipulators
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Fig. 5. The response curves of output x1 with time-varying output constraint and reference trajectory yd
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Fig. 10. Control input of RBFNNs controller (20)

Fig.4 shows that the output of the robot manipulators and the ideal references with good tracking performance. The output
of the three robot manipulators with output time-varying constraints are shown in Fig.5, and the velocity of references are
depicted shown in Fig.6, in which good tracking index be guaranteed. It is obviously that the output can not be destroyed.
The output of the three robot manipulators and Fig.7 illustrate the performance of small tracking errors can be fulfilled to zero
field. The adaptive parameters in RBFNN controller can be updated on-line automatically shown in Fig 8 with bounded, the
norm of wight in RBFNNs and the input control are also be ensured uniformly ultimately bounded as shown in Fig.9 and
Fig.10.

V. CONCLUSIONS

An adaptive RBFNNs controller with non-zero parameter in the device of RBFNN is proposed for a robot manipulators with
the output time-varying constraints. RBFNN with time-varying parameter is used to deal with the unstructured uncertainties
systems, in which the nature of homogeneous function can be used to deduce another originality universal approximation,
the global stability can be achieved by the RBFNNs with non-zero updated parameter, with which the unknown model robot
manipulators can be estimated and good tracking performance can be obtained by the design method in this paper. The
approximation accuracies of RBFNNs can be on-line updated automatically compare with other RBFNN controls.
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