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Abstract—Most existing adaptive control designs for nonlinear 

pure-feedback systems have been derived based on backstepping 

or dynamic surface control (DSC) methods, requiring full system 

states to be measurable. The neural networks (NNs) or fuzzy logic 

systems (FLSs) used to accommodate uncertainties also impose 

demanding computational cost and sluggish convergence. To 

address these issues, this paper proposes a new output feedback 

control for uncertain pure-feedback systems without using 

backstepping and function approximator. A coordinate transform 

is first used to represent the pure-feedback system in a canonical 

form to evade using the backstepping or DSC scheme. Then the 

Levant’s differentiator is used to reconstruct the unknown states 

of the derived canonical system. Finally, a new unknown system 

dynamics estimator with only one tuning parameter is developed 

to compensate for the lumped unknown dynamics in the feedback 

control. This leads to an alternative, simple approximation-free 

control method for pure-feedback systems, where only the system 

output needs to be measured. The stability of the closed-loop 

control system including the unknown dynamics estimator and the 

feedback control is proved. Comparative simulations and 

experiments based on a PMSM test-rig are carried out to test and 

validate the effectiveness of the proposed method. 

Index Terms—Pure-feedback systems; output-feedback control; 

unknown dynamics estimator; Levant’s differentiator. 

I. INTRODUCTION 

During the past decades, many control design methodologies 

have been proposed for various nonlinear systems, e.g. 

Brunovsky systems [1], strict-feedback systems [2, 3], and 

pure- feedback systems [4, 5]. Among different system 

formulations, pure-feedback systems can cover the 

aforementioned nonlinear dynamics. However, the non-affine 

properties of the states and control input involved in the pure-

feedback systems create certain difficulties in the control 

design for such systems compared with the other system 

formulations [6]. In viewing the control design for pure-

feedback systems, e.g. [4-8] and references therein, it is found 

that the most commonly used method is to reformulate the 

pure-feedback systems into strict-feedback systems via the 

mean value theorem and then apply the backstepping scheme 

[9], which was originally derived for strict-feedback systems. 

Following this idea, a special affine-in-control pure-feedback 

system was studied in [4, 5], where the implicit function 

theorem is applied to assert the existence of the desired control 

actions. Generic non-affine systems were studied in [10], where 

the ISS approach and small gain theorem are used to relax the 

imposed assumptions. Similarly, by using the backstepping 
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scheme, control designs for pure-feedback systems with time-

delays [11], dead-zone input [8] and hysteresis [6] have been 

subsequently considered. However, all of above control 

designs were derived based on the lengthy and complicated 

backstepping procedure. One of the well-known drawbacks of 

backstepping is the ‘explosion of complexity’, which stems 

from the repeated calculation of the derivatives of virtual 

control actions. To tackle this problem, dynamic surface 

control (DSC) [12, 13] was developed using a low-pass filter in 

each step to approximate these derivatives. Although DSC has 

been tailored for nonlinear pure-feedback systems [7, 8, 14], it 

again follows a similar recursive synthesis as the backstepping, 

because the non-affine functions have to be transformed into 

strict-feedback forms.  

In fact, most of existing control methods for pure-feedback 

systems [4, 5, 7, 8, 10, 11, 15] use the backstepping or DSC 

techniques, such that the control implementation and stability 

analysis are lengthy and complicated. Moreover, all of the 

above control designs assume that all the system states are 

available or directly measurable, which may not be true in 

practice. In this respect, only a few output-feedback control 

approaches have been investigated recently, e.g. [16-20] and 

references therein, where different adaptive observers with 

function approximators were used to reconstruct system states.  

On the other hand, function approximation-based control has 

been proved as a powerful method to address the unknown 

uncertainties and nonlinearities, and thus attracted increasing 

attentions in the control community. In this method, neural 

networks (NNs) [4, 5, 7, 8, 10, 11, 15, 21-23] or fuzzy logic 

systems (FLSs) [18, 24-27] have been incorporated into 

adaptive control designs, to handle the unknown nonlinearities 

[28-30], where the unknown weights of NNs or FLSs can be 

online updated based on the gradient based adaptive laws to 

retain the closed-loop stability. This approximation based 

adaptive control was also extended for uncertain pure-feedback 

systems [4-8]. However, for such adaptive backstepping 

control designs, multiple function approximators have to be 

used to obtain each virtual control actions, which make them 

computational demanding.  

Moreover, although function approximators have been used 

in the control designs for uncertain systems, there is merely 

unique guidelines to select the topology of NNs and FLSs, and 

analyze their approximation accuracy. Specifically, in order to 

obtain satisfactory performance, the number of parameters (e.g. 

NN weights) to be online updated is very large [31-33]. 
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Nevertheless, in most existing function approximation based 

controls, adaptive laws used to online update the unknown NN 

or FLS weights are driven by the control errors [34-38]. 

Although theoretical studies have shown that the closed-loop 

system is stable, the estimated weights may not converge to 

their ideal values [39], and they may suffer from the parameter 

drifting issue when a high gain adaptation is used. Thus, the 

parameter tuning of approximation-based adaptive control is 

generally difficult [40, 41]. The above mentioned issues 

partially result in the gap between the elegant theoretical 

studies and rare practical applications of these approximation- 

based adaptive control methods.  

Following the above discussions, we find that developing 

alternative output-feedback control for pure-feedback systems 

without using backstepping and any function approximators 

[42] has not been fully solved, and deserves further 

investigation. Hence, this paper aims to present a new output- 

feedback control design for nonlinear unknown pure-feedback 

systems. We first represent the pure-feedback system in a 

Brunovsky form by defining new coordinate system states, 

which helps to evade the backstepping scheme. Then Levant’s 

differentiator [43, 44] is used to reconstruct the immeasurable 

states of the derived canonical system with guaranteed finite-

time convergence. Finally, instead of using NNs or FLSs, we 

will develop a new simple unknown dynamics estimator by 

tailoring the idea of unknown input observer [45, 46] to handle 

the lumped unknown nonlinearities. This unknown dynamics 

estimator uses first-order filter operations on the measured 

system dynamics, and has only one scalar (e.g. filter constant) 

to be set, whilst the exponential convergence is achieved. In 

this case, we do not need to select the topology of NNs or FLSs 

[31, 47, 48]. The sluggish online learning in the function 

approximators is also avoided. Finally, only the system output 

is required in the control implementation. Theoretical studies 

are all verified by using both simulations and experiments 

based on a practical servo system driven by a PMSM. 

Compared with existing control methods of pure-feedback 

systems, the main contributions of this paper can be stated as: 

1) A new output-feedback control is proposed for nonlinear 

pure-feedback systems without using the backstepping or DSC 

schemes. This is achieved by using a coordinate transform to 

reformulate a pure-feedback system into a Brunovsky form. 

Then, the suggested control is considerably simpler than the 

backstepping based methods [4, 5, 7, 8, 10, 11, 15]. 

2) A new unknown dynamics estimator inspired by [45, 46] 

is investigated to address the lumped unknown dynamics, such 

that function approximators and the corresponding online 

learning are avoided. This approximation-free control has not 

only faster convergence but also reduced computational burden 

than function approximation based methods. 

3) The suggested control requires the system output only 

rather than the full system states. Hence, it is more attractive in 

terms of practical control implementation. Experiments are also 

carried out to validate its effectiveness. 

The paper is structured as: Section II presents the problem 

formulation; Coordinate transform is described in Section III; 

Section IV gives the output-feedback control design with the 

differentiator and unknown dynamics estimator; Section V 

provides comparative simulations and experiments; Section VI 

gives some conclusions. 

II. PROBLEM FORMULATION 

In this paper, we consider the following nonlinear nonaffine 

pure-feedback systems 
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where
1 2[ , ] , 1,T i

i ix x x x i n=  =  is the system states; 

1y x=   denotes the system output and u   is the control 

input. ( ), 1,if i n=  are nonlinear unknown smooth functions. 

The objective of control design is to find an appropriate 

control action u  based on the measured output y
 
only, such 

that the output y  of system (1) follows a given trajectory dy  

without using any function approximators (e.g. NNs, FLSz) and 

backstepping or DSC schemes.  

To facilitate the following control design, we have 

Assumption 2.1: The desired trajectory dy  and its derivatives 
1 , , n

d dy y  are bounded. 

Assumption 2.2 [4, 5]: The functions 1( )i if x +  are continuous 

with respect to the state 1ix +  and 1nx u+ = , and the signs of 

1 1 1( , , ) /i i if x x x+ +   are known. Without loss of generality, we 

assume that all of these signs are positive in this paper. 

Remark 2.1: Assumption 2.2 is the well-known controllability 

condition for pure-feedback system (1), which is sufficient to 

guarantee that the system states  can be manipulated by 1ix +  

without encountering the control singularity problem. This 

condition has been widely used in the literature, e.g.  [4, 5], and 

can be fulfilled in most of practical systems. The control design 

for the system with negative control gains 1 1 1( , , ) /i i if x x x+ +   

can be carried out in a similar way as the case with positive 

gains to be presented in the paper. For systems with unknown 

signs of control coefficients, Nussbaum functions [6] can be 

further used in the control design.  

Remark 2.2: Although adaptive control design for system (1) 

has been studied during the past decade [4, 5, 7, 8, 10, 11, 15], 

most existing methods were derived by using the backstepping 

scheme. Moreover, the unknown functions in these controls are 

addressed by using multiple function approxmators (NNs or 

FLZs) in each backstepping step. Consequently, these control 

designs and the stability analysis are complicated, and their 

implementations require significant computational costs. 

The aim of this paper is to develop a new output-feedback 

control design for pure-feedback system (1) without using 

backstepping and any function approximation techniques. The 

first idea is to introduce a coordinate transform to reformulate 

the original system (1) into a canonical system. Then, the 

Levant’s differentiator is used to reconstruct the unknown 

system states of the transformed system. Finally, a new 

unknown dynamics estimator will be investigated and used in 

the control design to compensate for the unknown lumped 

dynamics. 

III. COORDINATE TRANSFORM 

To avoid using the backstepping scheme, we first introduce 

ix
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a coordinate transform to represent system (1). For this purpose, 

we define coordinate variables as [42] 

1 1

1, 2, ,i i

z x

z z i n−

=


= =
.      (2) 

Then we know 2 1 1 1 2( , )z z f x x= = , and then can calculate its 

derivative as 

1 1 2 1 1 2
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z f x x f x x x

x x

 
= +

 
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From the fact that 2 1 2 3( , , )f x x x  is a continuous function of 

3x , one may apply the Mean-Value Theorem [49] such that 

3 3

2 1 2 3

2 1 2 3 2 1 2 3

3

( , , )
( , , ) ( , ,0) |

x x

f x x x
f x x x f x x x

x
=


= +


,

 

 (4) 

where 
3 3x x =  for any constant 0 1  .  

Substituting (4) into (3) yields 

2 2 1 2 2 1 2 3 3( , ) ( , , )z x x x x x x = + ,     (5) 

where 1 1 2 1 1 2
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functions of 2

2 1 2[ , ]Tx x x=  . 

By applying similar mathematical manipulations on (5), one 

can obtain for 3i =  that 
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are continuous functions of 3

3x  .  

Similarly, we can obtain for any 4, , 1i n= −  
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are continuous functions of i

ix  . 

For i n= , we can further calculate the derivative of nz  as 
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are continuous functions of n

nx  , respectively. 

Based on the coordinate transform given in (2)-(8), the 

original pure-feedback system (1) is represented as the 

following canonical system  

1 2

1, 1, , 1
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z z
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z x x u u 
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where 1 1y x z= =  is the output of system (1), ( , )n nx u  , 
n   and the derived system (9). In this sense, the 

original control objective, i.e. make the output y  of system (1) 

track a given trajectory dy , can be achieved by controlling the 

Brunovsky system (9). 

It should be noted that the above coordinate transform is used 

for analysis only, i.e. it is not used in the practical control 

implementation. The motivation for introducing this transform 

is to represent the pure-feedback system (1) as a Brunovsky 

form (9). Consequently, the following control design based on 

system (9) is simpler than the conventional backstepping 

method [4, 5, 7, 8, 10, 11, 15], while achieving better transient 

control response. In fact, a simple feedback linearization-like 

control can be designed for system (9), whilst the tedious 

backstepping procedure with multiple NNs or FLSs are avoided. 

Specifically, only the measured system output y
 
is used in the 

following control design.  

Lemma 3.1: The derived function ( , )n nx u
 
in (9) is positive 

over a compact set  . 

Proof: From Assumption 2.2, we know 1 1 1( , , ) /i i if x x x+ +   

with 1ix +  and 1nx u+ =
 
is true, such that 1 1( , )i i ix x + +  derived 

based on (3)-(7) are all positive. Then, from the definition of 

( , )n nx u
 
given in (8), we can verify its positiveness.   ◇ 

Lemma 3.1 indicates that system (9) is controllable without 

encountering the control singularity problem.  

IV. OUTPUT-FEEDBACK CONTROL DESIGN 

In this section, we will present a new output-feedback control 

design for the derived canonical system (9) to achieve the 

output tracking of the original system (1). There are two 

difficulties in the control design for system (9): 1) the system 

states , 2, ,iz i n=  in (9) are not available although the output 

 can be measured; 2) the lumped nonlinear functions 

( )n nx , ( , )n nx u  in (9) are unknown.  

To tackle the first problem, we will first use a specific state 

observer to reconstruct , 2, ,iz i n=  by using the output 1x  

only. Then based on the observed states, we will suggest a new 

1 1y x z= =
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unknown dynamics estimator to address the unknown dynamics 

( )n nx  and ( , )n nx u , which has only one tuning parameter 

and thus is easily to use the control implementation. 

Consequently, the widely used function approximators (e.g. 

NNs or FZs) and backstepping scheme are all avoided. The 

proposed control system structure can be illustrated in Fig.1. 

 
Fig.1 Schematic of the proposed control system. 

A. Levant’s differentiator 

We first use an observer to reconstruct the unknown states 

, 2iz i n=
 
of system (9). It is shown in (9) that , 2iz i n=  

are the high order derivatives of the measured system output 

1y x= . Thus, the following Levant’s differentiator [43, 44] can 

be used  
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 (10) 

where , 1, , 1i i n = +  are positive observer gains. In this 

observer, ˆ , 1iz i n=  can be taken as the reconstructed states 

of , 1iz i n=  in (9), respectively. 

The salient feature of this Levant’s differentiator is that it has 

a finite-time error convergence property as proved in [43, 44]: 

Lemma 4.1 [43, 44]: When the measured output 1x of system 

(9) is free of sensor noise, then the states of the differentiator 

(10) converge to the states of system (9) in finite-time 0T  , 

i.e. ˆ , 1i iz z i n= =  holds for any t T , and the differentiator 

(10) is Lyapunov stable. 

Lemma 4.2 [43, 44]: When the measured output of system 

(9) is subject to bounded sensor noise, e.g. 1 1z x −   for 

0  , then the states of differentiator (10) converge to a 

compact set around the states of system (9) in finite-time 0T  , 

such that  
( 2)/( 1)ˆ , 1 ,forn i n

i i iz z z i n t T − + += −  =  ,
 

 (11) 

where i are positive constants, which is determined by the 

parameters , 1, , 1i i n = +  used in differentiator (10). In 

general, large gains 
i  can increase the convergence rate of 

observer, while too large 
i  can trigger oscillations due to the 

adopted sign function. Thus, a trade-off between the 

convergence rate and oscillations should be considered when 

we choose the gains 
i , where some guidelines have been 

presented in [43, 44].  

The proof of Lemmas 4.1 and 4.2 can be found in [43, 44], 

which will not be shown here. The differentiator (10) was 

designed by modifying the super-twisting algorithm, thus it can 

achieve very fast transient observer response (i.e. finite-time 

convergence). This finite-time property retains the separation 

principle [50] to be almost true when the observed states are 

used in the control design. As shown in [43, 44], a control 

design with the differentiator (10) can preserves major features 

of the same control with the fully measured states under a 

practically feasible condition, i.e. the derivatives of 1x  is 

bounded during arbitrarily short transient period [43, 44]. This 

property motivates the use of Levant’s differentiator (10) in this 

paper rather than the other observers, e.g. high gain observer 

[50] and function approximation based observers [16-19]. 

Remark 4.1: The above Levant’s differentiator will be used in 

the following control designs, because even in the presence of 

sensor noise, the unknown states 
1 2[ , ]T

nz z z z= can be 

accurately reconstructed in finite time. As a consequence of 

Lemma 4.2, there exist positive constants  and t  depending 

on the bound of noise   and design parameters, such that the 

observer error ˆz z z= −  is bounded by z   for t t .  

B. Filter based unknown dynamics estimator 

To achieve tracking control of system (9), the lumped 

uncertainties should be compensated. In most of existing results, 

NNs or FLZs are usually used [4, 5, 7, 8, 10, 11, 15]. However, 

theses function approximators are only valid in a compact set 

determined by the system trajectory, leading to the semi-global 

stability of the control system. Moreover, online adaptive 

learning must be used in these results to update the unknown 

weights of NNs or FLZs, where the sluggish transient learning 

phase could cause a control performance degradation, and the 

tuning of learning parameters is generally difficult [39]. In this 

section, we will design a new unknown dynamics estimator by 

using first-order filters [45, 46] with only one scalar selected by 

the designers but guaranteed exponential convergence.  

As shown in Lemma 3.1, the control function  in 

(9) is positive and bounded, which means that there are positive 

constants 0  and 1 , such that 
0 10 ( , )n nx u      holds 

as shown in [4, 5, 10, 15]. Without loss of generality, we define 

0 1m  =  as the nominal value of , and thus

( , ) ( , )n n m nx u x u   =  holds, where the uncertainty 

( , )nx u  fulfills 
0 1( , )nb x u b    for  positive constants 

0 0 1 1/ , /m mb b   = = , which can be calculated in practice. 

In this case, the last equation of (9) can be rewritten as 

( ) ( ( , ) 1)

( , )

n n n m n m

n m

z x x u u u

F x u u

   



= +  − +

= +
 ,  

 (12) 

where ( , ) ( ) ( ( , ) 1)n n n m nF x u x x u u  = +  − denotes the lumped 

1x

( , )n nx u

( , )n nx u
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unknown dynamics. To facilitate the design of estimator to 

handle unknown dynamics, we have the following assumption:  

Assumption 4.1: The derivative of the lumped dynamics F  is 

bounded, i.e., 
0sup | |t F   for an unknown constant 0 . 

Remark 4.2: The motivation for using the nominal input gain 

m  in (12) is to facilitate the subsequent control design. The 

existence of such a stable control for system (1) has been 

asserted in the literatures, e.g. [4, 5], by means of  the implicit 

function theorem. For practical systems, this nominal value can 

be calculated based on the hardware configuration, thus can be 

used in the control design [42]. The error stemming from this 

nominal value 
m  can be taken into the lumped dynamics 

( , )nF x u  and then addressed via the estimator to be presented. 

Moreover, Assumption 4.1 is required for the convergence 

analysis of the proposed estimator, whilst the upper bound  is 

not used in the control implementation. This condition has been 

well-recognized in the disturbance observer designs [45, 46] 

and adaptive NN control designs [4, 5], and can be practically 

fulfilled when the system is operated with a proper control. 

To facilitate the design of unknown dynamics estimator, we 

define the filtered variables of nz  and u  as 

,     (0) 0

,        (0) 0

nf nf n nf

f f f

kz z z z

ku u u u

+ = =


+ = =

,     (13) 

where 0k   is a positive constant. As shown in [28], the above 

operation can be easily implemented by applying a low-pass 

filter 1/ ( 1)ks +  on nz  and u . 

Then the idea of invariant manifold [51] will be further 

explored to design the unknown dynamics estimator. 

Lemma 4.3: Consider system (12) and filter (13), the variable 

( ) /n nf m fz z k u F = − − −  is bounded for any 0k  , and it 

decreases in an exponential manner. Moreover, we have 

0
lim[lim{( ) / }] 0n nf m f
k t

z z k u F
→ →

− − − = , which means that 

( ) / 0n nf m fz z k u F− − − =  is an invariant manifold. 

Proof: From (12)-(13), we can calculate the derivative   as 

1
( )

n nf

m f

z z
u F kF

k k
  

−
= − − = − + .

   
 (14) 

We first need to prove the boundedness of  . Choose a 

Lyapunov function as 
2 / 2V = , then we have 

2 21 1

2

k
V F V

k k
  = − +  − + .    (15) 

By integrating both sides of (15), we can further obtain that 
/ 2 2( ) (0) / 2t kV t e V k 

− + holds. Hence, the variable  

exponentially converges to a set around the origin given by 
2 / 2 2

( ) 2 ( ) (0)
t k

t V t e k


 
−

=  + , whose size depends on the 

parameters k  and , i.e. 
0sup | |t F  , which vanishes for a 

sufficiently small k  and/or any constant F (i.e. =0 ). Moreover, 

for infinitesimal 0k → , it can be verified that 
0

lim lim ( ) 0
k t

t
→ →

=  is 

true, which means that   converges to zero for any finite , 

such that 0 =  is an invariant manifold for 0k  .     ◇ 

The invariant manifold given in Lemma 4.3 indicates an 

implicit mapping from the available variables ( , , )n nf fz z u  to 

the unknown lumped dynamics ( , )nF x u  given in (12). 

However, only the estimated state ˆ
nz  is available rather than the 

true state 
nz . Thus, based on the manifold defined in Lemma 

4.3, a feasible estimator of F  is given by 

ˆ ˆ
ˆ n nf

m f

z z
F u

k


−
= − ,      (16) 

where ˆ
nfz  is the filtered version of ˆ

nz  given by 

 ˆ ˆ ˆ ˆ, (0) 0nf nf n nfkz z z z+ = = .     (17) 

Now, we can prove that the estimation error ˆF F F= −  

exponentially converges to a small compact set around zero.  

Theorem 4.1: For system (12) with estimator (16) and ˆ
nz  given 

in (10), then the estimation error F  can exponentially converge 

to a set around origin defined by 
2 / 2 2

( ) (0) ( / )
t k

F t F e k k
−

 + +
 

with nz   being the observer error defined in Lemma 4.2, so 

that F̂ F→  holds for 0k →  and/or 0→ . 

Proof: We first calculate the dynamics of estimator error . By 

applying a low-pass filter 1/ ( 1)ks +  on (12), it follows 

 
nf f m fz F u= + ,         (18) 

where
fF  is the filtered version of the nonlinearities F  given 

by , (0) 0f f fkF F F F+ = = . Moreover, from the first equation 

of (13), we can verify that ( ) /nf n nfz z z k= − . Then, it follows 

from (16) and (18) that 

ˆ ˆ
ˆ ˆ( )

n nf

m f nf m f nf nf f nf

z z
F u z u z z F z

k
 

−
= − = − − − = − ,  (19) 

which means that the estimator F̂  in (16) is the filtered version 

of the unknown dynamics with a residual error ˆ
nf nf nfz z z= − , 

which is the filtered version of the observer error ˆ
n n nz z z= − . 

We can calculate the error dynamics in the time-domain as  

1 1
nF F F z

k k
= − + + ,       (20) 

where the last term is the observer error of differentiator (10), 

which is bounded by | |nz   for a constant 0  by recalling  

Lemma 4.2. 

We select a Lyapunov function as 
2 / 2FV F= , then calculate 

its derivative 
FV  along (20) as  

2 21 1 1 1
( ) ( )

2
F n

k
V F F F z V

k k k k
= − + +  − + + . (21) 

Then, similar to the proof of Lemma 4.3, we can obtain that 
2 / 2 2

( ) 2 ( ) (0) ( / )
t k

F
F t V t F e k k

−
=  + + , which indicates that 

( ) 0F t →  for 0k →  and/or 0→ .  ◇ 

The implementation of the estimator (16) with filters (13) and 

(17) is straightforward, which can be achieved by applying a 

low-pass filter on the input u  and the observed state ˆ
nz , and 

then conducting algebraic calculations in (16). This filter based 

estimation has a linear structure, which is simpler than function 

approximators. Moreover, only one scalar 0k   needs to be 

selected by the designer, which defines the bandwidth of the 

low-pass filter given in (13), which determines the convergence 

speed of the estimation error as shown in (20). It is also shown 

in Theorem 4.1 that the estimator error F  converges to a small 



F



 6 

compact set around zero, whose size can be calculated via (21). 

The effect of the estimator error F  will also be studied in the 

stability analysis of the closed-loop control system. 

Remark 4.3: If the studied system has bounded disturbances, 

based on the above derivations, their effect can be lumped into 

the unknown dynamics ( , )nF x u , which can be estimated by the 

proposed unknown system dynamics estimator, and then 

compensated in the following presented control.  

C. Tracking control design and stability analysis 

As shown in the previous subsections, the observer states 

1 2
ˆ ˆ ˆ ˆ[ , ]T

nz z z z= can be obtained from differentiator (10), and 

the nonlinearities ( , )nF x u  in (12) are estimated by estimator 

(16). Thus, we can design a feedback control for system (9) to 

achieve the output tracking of the original system (1). 

To accomplish the control design, we define the tracking 

error of system (9) as de z x= − , where 1[ , , , ]n T

d d d dx y y y −=  

is the given bounded desired trajectory, i.e. d dx c . Then, we 

can further define: 

[   1]Ts e=  ,        (22) 

where 
1 2 1[ , ]T

n− =    is chosen such that 1 2

1 1

n n

ns s− −

−+  +   

is a stable polynomial. In this case, the convergence of s  

implies the convergence of the tracking error e [50][49][49].  

However, in practical control implementation, we can only 

use the observed states ẑ  instead of the unknown system states 

z . Thus, we define the practical tracking errors ê  and ŝ  as 

ˆ ˆ ˆˆ , [   1]T

de z x s e= − =  ,     (23) 

which define the differences between the states of differentiator  

(10) and the given trajectory dx .  

Now, we can design the following feedback control 

( )1

1 ˆˆ ˆ[0  ]n T

d

m

u k s F y e


= − − + −  ,    (24) 

where 1 0k   is the feedback gain, ŝ  and ê  are the tracking 

errors given in (23), and F̂  is the estimation of the lumped 

unknown nonlinearities F  given in (16). The designed control 

(24) can be implemented by using the Levant’s differentiator 

(10), the estimation F̂  given in (16) and the tracking errors ê  

and ŝ  defined in (23).  

  We will analyze the stability of the proposed control system. 

For this purpose, we substitute (9) and (12) into (22), and 

consider (23), then have 

[0  ] ( , )

ˆ[0  ] ( , ) [0  ] ,

T n

n m d

T n T

n m d

s e F x u u y

e F x u u y z





=  + + −

=  + + − + 
  

 (25) 

where the fact ˆˆz z z e e= − = −  can be verified based on the 

definition
 de z x= −  and ˆ ˆ

de z x= −  given in (23).  

   We further substitute the feedback control (24) into (25) and 

then derive the closed-loop error dynamics as 

1 1
ˆˆ ˆ[0  ] [0  ]T Ts k s F F z k s F z= − + − +  = − + +  .

  
(26) 

We now provide the main results of this paper as follows: 

Theorem 4.2: Consider system (1) and the transformed system 

(9). The Levant’s differentiator (10), the filter based estimator 

(16) and feedback control (24) are used, then the closed-loop 

system is stable. Moreover, the output tracking error s  and the 

estimation error F  all exponentially converge to a small set 

around zero, which are given as 

  : , | 2 / , 2 /s F s F    =   ,  (27) 

where 
1 1 12min{( / ), (1/ / )}k k k k  = − −  an 2

1 / 2k c = +

2

1( / ) / (2 )k k +  with 1 
 
are positive constants. 

Proof: We choose a Lyapunov function as 

2 21 1

2 2
V s F= + .         (28) 

From the fact ˆ ˆ[   1] [   1]( ) [   1]T T Ts e e z s z=  =  − = −  , we 

can calculate the derivative of 
1V  along (20) and (26) as 

1

2 2

1 1

1

1 1
ˆ( [0  ] ) ( )

1 1 1
[   1] [0  ] ( ).

T

n

T T

n

V s k s F z F F F z
k k

k s k s z sF F F F z
k k k

= − + +  + − + +

 
= − −  +  + − + + 

 

 (29) 

We recall Lemma 4.2 and know that the observer error z  is 

bounded even when the measured output 
1x  is subject to noise, 

i.e. ẑ z−  holds in finite-time. Thus, there exists a constant 

1
max{[   1] [0  1/k ]}

T T
c =  +  , so that ( )1

[   1] [0  1/k ]
T T

z c +  
 

is fulfilled. In this case, by applying the Young’s inequality, 

then (29) can be further reformulated as 

2 2

1 1

2 2 2 2 2 21 1 1

1

1

2 21

1

2 2 2 21 1 1

1

1

1 1
( )

1

2 2 2 2

1
( )

2 2

1 1
( ) ( ) ( )

2 2

V k s k c s s F F F
k k

k k k
k s s c s F F

k k

k
F

k k

k k k
k s F c

k k k

V

 

 







 

 

 − + + − + +

 − + + + + −

+ + +

= − − − − + + +

 − +

,    (30) 

where
1 1 12min{( / ), (1/ / )}k k k k  = − − and 

2

1 / 2k c = +
2

1( / ) / (2 )k k +  are constants. If we set the parameters such 

that 1  , 
1 /k k  , then   and   are all positive. From 

Lyapunov theorem, we can claim that V  and thus the tracking 

error s  and the estimation error  are all uniformly ultimately 

bounded. This together with the fact that z  is bounded further 

implies that ŝ , ˆ,  e e  are bounded, and thus the control u  and 

the system states 
iz  and 

ix  are all bounded. 

Finally, we can calculate the ultimate bounds of  and  by 

integrating (30) over [0, ]t , such that 

( ) (0) (1 ) (0)t t tV t V e e V e   

 

− − − + −  + .  (31) 

Consequently, the errors ,  will exponentially converge 

to a compact set given in (27) for t →  . The size of this 

compact set depends on the observer error z , filter parameter 

k  and feedback gain 
1k . Specifically, it is shown that a large 

gain 
1k

 
can increase the convergence rate of tracking error s  

defined by  , while a too large 
1k  can lead to a large residual 

error bound denoted by  . Thus, it can be set as a trade-off 

between the error convergence rate and the steady-state 

F

s F

s F



 7 

performance.  ◇ 

Remark 4.4: The above control (24) has a simple feedback 

linearization structure, and is clearly simpler than backstepping 

or DSC schemes (e.g. [4, 5, 7, 8, 10, 11, 15]) for system (1), 

since the recursive procedure involved in the backstepping is 

not needed. This will contribute to improving the transient 

control convergence, which will be shown in the simulations.  

To implement the proposed control (24) with Levant’s 

differentiator (10) and filter based estimator (16), there are only 

several parameters to be selected by the designers. The number 

of these parameters and the associated tuning procedure are 

simpler than other adaptive control schemes. In general, the 

observer gains 
i  in (10) are chosen as a trade-off between the 

convergence response of the observer error  and the 

smoothness of the observer states ˆ , 1iz i n= . Detailed 

discussion on these parameters are given in [43, 44]. The filter 

coefficient k  in (16) defines the bandwidth of the low-pass 

filter 1/ ( 1)ks + , thus it should be set to compromise the error 

response F  and the robustness. In general, k  cannot be set 

sufficiently small. Finally, as shown in the above discussion, 

the feedback gain 
1k  in the control (24) is included in both   

and   in (31), thus it needs to be set as a trade-off between the 

convergence rate and the steady-state response. 

V. SIMULATIONS  

Consider the following benchmark non-affine pure-feedback 

system, which has been widely used in the literatures (e.g. [10, 

15]) to verify various control designs 
3

2

1 1 2

3

2 1 2

5

7

x
x x x

u
x x x u


= + +



 = + +


.       (32) 

In the simulation, the command signal to be tracked is given 

as sin( ) cos(0.5 )dy t t= + , and the initial condition is set as 

(0) [0.8,0.3]Tx = . The parameters of differentiator (10) are set 

as 
1 2 310, 15, 20  = = = , such that 

1 1

2 2

3 3

2/3

1 1 1 1 1 2

1/2

2 2 1 2 1 3

3 3 2

ˆ

ˆ

ˆ

ˆ ˆ ˆ10 ( )

ˆ ˆ ˆ15 ( )

ˆ20 ( )

z

z

z

z x sign z x z

z sign z z

sign z









  

 

 =


=


=


= − − − +


= − − − +


= − −

.  (33) 

The tracking errors used in the control implementation are 

given as ˆ ˆ
de z x= − , ˆ ˆ[   1]Ts e=   with 2 = , and the feedback 

control gain in (24) is 
1 20k = . Finally, the unknown dynamics 

estimator (16) is carried out with the filter constant 0.01k = . It 

should be noted that in the proposed control, only the system 

output 
1x  is used. 

For comparison, the backstepping control with multiple NN 

approximation initially proposed in [10] is also simulated. This 

beckstepping control with two NNs can be given as follows 

1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

2 2 1

1 2 2 2 2 2

2 2 2 2 2 2 2

,

ˆ ( ),

ˆ ˆ( ( ) ),

,

ˆ ( ),

ˆ ˆ( ( ) )

d

T

T

z x y

c z W S Z

W S Z z W

z x

u z c z W S Z

W S Z z W









= −

= − −

=  −

= −

= − − −

=  −

,

    

  (34) 

where 
1 1[ , ]T

dZ x y=  and 
2 1 2 1 1 1[ , , / , ]TZ x x x =    with 

1 1 1

1 1

1

ˆ
ˆd d

d d

y y W
y y W

  


  
= + +

  
, and 

1 2, 0c c   are the feedback 

gains, 
1 2, 0    are the adaptive learning gains, which should 

be carefully selected to tradeoff the convergence speed and the 

error response. The constants 
1 2, 0    are the leakage 

coefficient to guarantee the boundedness of NN weights 1 2
ˆ ˆ,W W . 

It is clear that two NNs are used in the backstepping control 

(34), such that it imposes demanding computational costs in the 

control implementation. Specifically, the terms 
1 1 1/ ,x    are 

used as the inputs of NN, resulting in the ‘explosion of 

complexity’ issue [8]. Moreover, as shown in (34), there are 

many parameters to be set by the designers, and the compact set 

within which the NN approximation is valid should be properly 

set based on the system trajectory, which are not trivial tasks. 

Nevertheless, the full system states 
1 2,x x  are required in the 

backstepping control. In this sense, this paper provides an 

alternative yet more efficient output feedback control for the 

studied system.  

Simulation results are provided in Fig. 2-Fig. 6. It is shown 

in Fig. 2-Fig. 4 that fairly good tracking control response can 

be achieved with this output-feedback control. The system 

states and control signal are bounded and smooth. In particular, 

the observed state 
2z  tracks the given command 

2dx  as stated 

in Theorem 4.2. This control response can be explained by the 

fact that the Levant’s differentiator can achieve sufficiently 

small observer error and fast convergence (Fig. 5). Moreover, 

the proposed unknown dynamics estimator (16) can capture the 

unknown dynamics ( , )nF x u  well as shown in Fig.6.  

Comparative tracking errors of the backstepping control (34) 

and the presented control (24) are given in Fig.7. One may find 

from Fig.7 that the proposed control (24) has faster error 

convergence speed than the backstepping control (34), though 

their steady-state error bounds are comparable. This is because 

the online learning for NNs is not needed in the control (24), 

and the suggested estimator (16) for unknown dynamics can 

achieve exponential convergence as proved in Theorem 4.1, 

while the scalar k can be easily set in advance. However, the 

backstepping control (34) uses two NNs to handle unknown 

dynamics, and thus it requires fairly long online learning phase 

before it achieves convergence, even full states 
1 2,x x  are used.  

From above simulations, one can find that the control (24) 

suggested in this paper only requires 
1x

 
to implement the 

feedback control, without using any NN approximators and 

backstepping, while better control response can be achieved. 

z
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Fig. 2 Output tracking response and observer output. 

 
Fig. 3 System state and observer state. 

 
Fig. 4 Profile of control signal. 

 
Fig. 5 Observer error 

1z  and tracking error 
1e . 

 
Fig. 6  Estimation of unknown dynamics of . 

 
Fig. 7 Comparative tracking errors. 

VI. PRACTICAL EXPERIMENTS 

To validate the effectiveness of the proposed control scheme, 

a turntable servo system is used as the experimental test-rig, 

whose schematic is shown in Fig.8. This experiment platform 

consists of a PMSM (HC-UFS13), a DSP (TMS3202812), and 

a PWM amplifier in the motor drive card (MR-J2S-10A). The 

control algorithm is implemented by C++ program coded in 

CCS3.0. An encoder with a sampling rate 10ms is used to 

measure the rotation angular of motors. The aim is to control to 

rotation position to track a given command. The detailed 

description of this test-rig can be found in [46]. According to 

the modeling work given in [52, 53], the rotation motion 

behavior of this servo system is described as  

( , ) f l d m

a

E a a a

m T a

Jq f q q T T T T

dI
K q L R I u

dt

T K I

+ + + + =



+ + =


=


,

    

 (35) 

where 

q , q ,  angular position and velocity; 

J ,   motor inertia; 

( , )f q q , unknown resonances and modeling uncertainties; 

fT ,   friction torque; 

lT ,   load torque; 

dT ,   disturbance torque; 

u ,   input voltage; 

TK ,   torque constant; 

EK ,  electronmotive force coefficient. 

( , )nF x u
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Fig. 8 Diagram of servo system driven by PMSM. 

The nominal values of these parameters are listed in Table I. 

Select 
1 2[ , ] [ , ]x x x q q= = , then system (35) is rewritten as  

    
( )

1 2

2 1 2 2 1 2

1
( , ) l d f

x x

x K u K x f x x T T T
J

=



= − − − − −


,

 

 (36) 

where 
1 /T aK K R= ,

2 /E T aK K K R= . Clearly, system (36) can 

be taken as a specific form of pure-feedback system (1), thus 

the proposed control can be directly used to achieve the angular 

tracking control.  
Table I. Nominal system parameters 

Parameters Values 

J  0.025 

R  10 

L  0.043 

TK  1.25 

EK  0.1 

In order to illustrate the effectiveness of the proposed control 

method and compare its performance with other controllers, the 

following two control algorithms are also implemented: 

1) The proposed control (24) with feedback gains 
1 40,k =  

15 =  , and 0.01k =  for estimator (16). The parameters of 

differentiator (10) are the same as those used in the simulations. 

2) Adaptive neural control (ANC): This controller was 

presented in [54], which is given as 1
ˆ Tu ks W u= +  +   with 

1 /u s s=   for 0s   or 
1 0u =  for 0s =  . 

1 2s e e=  +   is the 

tracking error with 
1 1 de x y= −   and 

2 2 de x y= − . The adaptive 

law is Ŵ s=   , and the control parameters are 15, 1,k = =

0.5, =  and 0.005 = . 

Case 1- Sinusoidal Trajectory Tracking: In this case, a 

sinusoidal command ( )0.6sin 2 / 5dy =   is used to test the 

proposed control method. Experiment results are depicted in 

Fig. 9, where the tracking performance, tracking error and 

control signal are all given. It can be found that the proposed 

control can achieve fairly good tracking response, and fast error 

convergence can be retained. This is due to that the suggested 

unknown dynamics estimator can capture and compensate the 

unknown dynamics in the system, which is given in Fig. 10.  

For comparison, Fig. 11 shows the response of the above 

shown ANC method. From Fig. 9 and Fig. 11, it is clearly 

shown that the proposed control with filter based estimator can 

achieve faster transient error convergence and smaller steady-

state tracking error than the ANC method, since the exponential 

convergence of estimation error for (16) can be guaranteed 

without using any sluggish online learning for NN 

approximators. 

 
Fig. 9 Response of proposed control for 0.6sin(2 / 5)dy = . 

 
Fig. 10 Estimated dynamics with 0.6sin(2 / 5)dy = . 

 
Fig. 11 Response of ANC [54] for 0.6sin(2 / 5)dy = .  

Case 2- Saw Tooth Trajectory Tracking: To further validate 

the proposed control scheme under sudden varying conditions, 

a saw tooth signal with jumps is used. The parameters used in 

this experiment are the same as those used in Case 1. 

Comparative results are depicted in Figs. 12-14. From Fig. 12, 

it is found that the presented control method can also achieve a 

satisfactory tracking performance, owing to its capability to 

cope with unknown time-varying dynamics in terms of the 

developed unknown dynamics estimator. In fact, it is shown in 

Fig. 13 that this unknown dynamics estimator (16) can capture 

the lumped uncertainties even under the tooth signal. However, 

the ANC with NN approximation requires fair transient time to 

achieve convergence of the used online learning. Moreover, the 

peaks in the tracking error when the position trajectory changes 

its moving direction are larger than that of the proposed control.  
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Fig. 12 Response of proposed controller for tooth signal. 

 
Fig. 13  Estimated dynamics for tooth signal. 

 
Fig. 14  Response of ANC [54] for tooth signal. 

All these experimental results illustrate how the proposed 

filter based estimator captures and then compensates the time-

varying nonlinearities including modeling uncertainties, 

frictions and disturbances, so as to improve both the transient 

and steady-state tracking response. In particular, compared with 

the ANC, the main advantage of the suggested control is that 

the parameter tuning procedure is simpler, while the 

convergence speed is faster. Moreover, only the system output 

is required in this control implementation.  

VII. CONCLUSION 

This paper presents a new output-feedback control for 

uncertain nonlinear pure-feedback systems, where the widely 

used backstepping or DSC scheme and function approximators 

are avoided. We first use a coordinate transform to reformulate 

the pure-feedback system into a canonical form. Then the 

Levant’s differentiator with attractive finite-time convergence 

is used to reconstruct the immeasurable states of the derived 

system. Finally, we introduce a novel filter based estimator to 

address the unknown dynamics in the system, where only one 

constant needs to be selected. In this case, the online learning 

of function approximators (e.g. NNs, FLSs) with potential 

sluggish transient and increased computational costs are all 

remedied. Moreover, the backstepping procedure is avoided in 

this control framework. Consequently, the implementation and 

the analysis of this proposed control is simpler than the existing 

backstepping based methods. Nevertheless, only the system 

output needs to be measured for the control implementation. 

Simulations with a benchmark pure-feedback system model and 

experiments on a servo system are carried out to verify the 

efficacy of this method. This output-feedback control design 

methodology can also be further explored for strict-feedback 

systems, which deserves further investigations.  
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