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Abstract

We present a New Keynesian model in which a fraction n of agents are fully rational,

and a fraction 1− n of agents are bounded rational. After deriving a simple reduced

form, we demonstrate that the Taylor condition is sufficient for determinacy and sta-

bility, both when the proportion of fully rational agents is held fixed, and when it is

allowed to vary according to reinforcement learning. However, this result relies on the

absence of persistence in the monetary policy rule, and we demonstrate that the Tay-

lor condition is not sufficient for determinacy and stability in the presence of interest

rate smoothing. For monetary policy rules that imply indeterminacy, we demonstrate

the existence of limit cycles via Hopf bifurcation, and explore a rational route to ran-

domness numerically. Our results support the broader literature on behavioural New

Keynesian models, in which the Taylor condition is known to be a useful guide to

monetary policy, despite not always being sufficient for determinacy and/or stability.
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1 Introduction

The workhorse New Keynesian model is used by central banks, governments, and policy in-

stitutions, and defines the contemporary orthodoxy in monetary policy. This states that the

central bank should raise interest rates more than one-for-one with any observed increase

in inflation, such that the real interest rate increases in response to inflationary shocks,

and aggregate demand is subject to central bank control. This principle, translated into

the mathematics of DSGE models, ensures that the dynamics of output and inflation are

determinate and stable. However, the workhorse model relies on a number of simplifying

assumptions. In particular, the basic model assumes that any heterogeneity between house-

holds and firms can be ignored, and that all agents are endowed with the ability to form

rational expectations. These characteristics of the contemporary orthodoxy have been heav-

ily criticised since the 2008 crisis, encouraging the growth of a literature on behavioural New

Keynesian models (Calvert Jump and Levine, 2019).

The behavioural New Keynesian literature builds on the pioneering work of Branch and

Evans (2007), Branch and McGough (2004, 2009, 2010), and De Grauwe (2011, 2012a,b),

who present models in which a subset of agents form expectations in a bounded rational

manner. The size of this subset can be fixed, or can vary according to a learning dynamic.

Although the Taylor principle is neither necessary nor sufficient for determinacy and stability

in these models (Branch and McGough, 2010, 2016), it remains an important guide to

monetary policy. Pecora and Spelta (2017), for example, present a simple model in which

the Taylor condition is sufficient for stability, although convergence to the steady state can

be slow. This general result, in which the orthodox approach to monetary policy is qualified,

but remains correct in its basic logic, is supported by the review of monetary policy under

imperfect knowledge in Eusepi and Preston (2018). It is a useful contribution to the current

state of knowledge, and largely supports the existing framework.

In this paper, we present a model that supports this general result. It goes beyond the

existing behavioural New Keynesian literature by deriving analytical stability conditions in a

model with bounded rationality and rational expectations. We make two main contributions

to the literature. Our first contribution is the derivation of analytical stability conditions.

The existing literature tends to rely on numerical simulation to study the dynamics of be-

havioural New Keynesian models. While the benefits of numerical simulation are numerous,

we are of the opinion that analytical results, arrived at by the use of small models, provide

important insights1. Our second contribution is the use of the anticipated utility approach of

Kreps (1998). The majority of the existing literature on behavioural New Keynesian models

employs Euler learning, in which agents’ decisions are based on first order conditions to

maximisation problems. In contrast to the rational expectations solution, in which model

consistent expectations enter the first order conditions, Euler learning uses simple bounded

rational predictors alongside knowledge of the form of the rational expectations solution.

1This is a standpoint shared by, for example, Turnovsky (2011).



In the anticipated utility approach, henceforth AU, agents follow an optimal decision

rule conditional on their beliefs over aggregate states and prices2. This takes into account

all information available to the agent, and involves forecasts of variables external to them.

AU is similar - but not identical - to the internal rationality approach of Adam and Marcet

(2011), in which “agents maximize utility under uncertainty, given their constraints and

given a consistent set of probability beliefs about payoff-relevant variables that are beyond

their control or external”. With internal rationality, henceforth IR, beliefs take the form of

a well-defined probability measure over a stochastic process - the fully Bayesian plan. Adam

and Marcet (2011) and Adam et al. (2017) utilise the IR approach, whereas our paper and a

number of the applications cited below adopt AU. Cogley and Sargent (2008) compare AU

and IR and encouragingly find that AU can be seen as a good approximation to the fully

Bayesian plan3.

The AU approach was first used in a New Keynesian model in Preston (2005), and a

real business cycle model in Eusepi and Preston (2011). Adam and Marcet (2011) apply

the IR approach to asset pricing, Spelta et al. (2012) apply AU to a model of house prices,

Woodford (2013) apply AU to a New Keynesian framework, and Adam et al. (2017) apply IR

to a model of stock market booms. Massaro (2013) constructs a behavioural New Keynesian

model in which a fixed subset of agents are AU learners and the remaining subset are fully

rational. Of these existing studies, our approach is closest to Massaro (2013). Specifically,

we present a New Keynesian model in which a fraction n of agents are fully rational, and a

fraction 1− n of agents are AU learners, and use this to demonstrate the following results:

1. The Taylor condition is sufficient for determinacy and stability when n is fixed,

2. The Taylor condition is sufficient for local determinacy and stability when n varies

according to reinforcement learning,

3. When monetary policy is such that the dynamics are indeterminate, limit cycles can

exist, and may be followed by a rational route to randomness,

4. The Taylor condition is not sufficient for determinacy and stability in the presence of

interest rate smoothing.

Thus our results offer qualified support to the existing monetary policy orthodoxy, which is

consistent with the message of the behavioural New Keynesian literature.

2The anticipated utility approach with infinite time horizons is also referred the infinite-time horizon

approach. Bounded rationality of this form can be generalized to finite time horizons - see Lustenhouwer

and Mavromatis (2017) and Woodford (2019).
3See Branch and McGough (2016) and Deak et al. (2017) for further discussion. Sinitskaya and Tesfatsion

(2015) introduce forward-looking optimizing agents into an ACE framework. They use a concept that falls

within a general definition of AU which they refer to as “constructive rational decision making”. Graham

(2011) uses the term “individual rationality” to refer to the same general concept.
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The remainder of the paper is organised as follows. Section 2 presents the basic New

Keynesian framework. Section 3 presents the New Keynesian model with AU households and

firms, and demonstrates our first proposition. Section 4 incorporates reinforcement learning,

and demonstrates our second and third propositions. Section 5 incorporates interest rate

smoothing, and demonstrates our fourth proposition. Section 6 concludes.

2 The New Keynesian model with rational expectations

In this section, we briefly recap the workhorse New Keynesian model with rational expec-

tations. We set up the model in a way the emphasises the link with bounded rationality

assuming anticipated utility, which should aid the reader when interpreting the models in

sections 3 and 4 below. We first consider the decision problems of households and firms,

and then the aggregation and equilibrium conditions.

2.1 Households

Let Ct(j) denote consumption and Ht(j) denote hours worked for the jth household. The

within-period utility function is,

Ut(j) = log(Ct(j))−
Ht(j)

1+φ

1 + φ
,

and households choose paths for consumption Ct(j), labour supply Ht(j), and holdings of

financial assets Bt(j), to maximise Et
∑∞

s=0 β
sUt+s(j) subject to the flow budget constraint,

Bt(j) = RtBt−1(j) +WtHt(j) + Γt(j)− Ct(j),

where Wt denotes the real wage, Γt denotes distributed profits, and Rt denotes the ex post

real interest rate paid on assets held at the beginning of period t. The first order conditions

for the household problem are,

1

Ct(j)
= βEt

[
Rt+1

Ct+1(j)

]
, (1)

Ht(j) =

(
Wt

Ct(j)

) 1
φ

.

Usually, one analyses the New Keynesian model by log-linearising the first order conditions,

leading to the familiar consumption Euler equation and labour supply function,

ct(j) = Et [ct+1(j)− rt+1],

ht(j) =
1

φ
(wt − ct(j)),
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where variables in lower case denote log-deviations.

As the labour supply function is static, it does not pose any particular problems when we

move from rational expectations to bounded rationality. The consumption Euler equation,

on the other hand, involves expectations of future variables, and a useful form of the house-

hold’s decision rule can be found by solving the household budget constraint forward in time

and imposing the Euler and transversality conditions. In symmetric equilibrium with zero

net financial assets, this yields a consumption function for the representative household of

the form,

PVt(Ct) = PVt

W 1+ 1
φ

t

C
1
φ

t

+ PVt(Γt),

which states that the present value of consumption is equal to the present value of total

income, where the present (expected) value of a series X ≡ {Xt+i}∞i=0 at time t is defined

by

PVt(Xt) ≡ Et
∞∑
i=0

Xt+i

Rt,t+i

=
Xt

Rt

+
1

Rt

PVt(Xt+1),

writing Rt,t+i ≡ RtRt+1Rt+2 · · ·Rt+i as the real interest rate over the interval [t− 1, t+ i].

Using exogenous point expectations, appendix B and the supplementary appendices D

and E demonstrates that the corresponding log-linearised consumption function is given by,

α1ct(j) = α2wt + α3(ω2,t + rt) + α4ω1,t, (2)

where,

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1, (3)

ω2,t = (1− β)γt − rt + βEtω2,t+1, (4)

and,

γt =
1

1− α
ct −

α

1− α
(wt + ht),

denotes log-linearised dividends. Consumption is therefore a function of the current wage

and profit income, expected wage and profit income, and current and expected real interest

rates. The parameters and composite parameters are defined in table 1.
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Parameter Definition

α Elasticity of output with respect to labour input (α > 0)

β Representative household discount rate (0 < β < 1)

Υ Fixed cost of rational expectations predictor (−∞ < Υ <∞)

ζ Elasticity of substitution between consumption goods (ζ ≥ 0)

θπ Monetary policy rule elasticity of inflation (θπ ≥ 0)

θy Monetary policy rule elasticity of output (θy ≥ 0)

µ Intensity of choice parameter (µ > 0)

ξ Calvo probability that firms change price (0 ≤ ξ ≤ 1)

φ Inverse Frisch elasticity of labour supply (φ > 0)

α1 α1 = 1 + α/φ

α2 α2 = α(1− β) (1 + 1/φ)

α3 α3 = 1− α

α4 α4 = αβ

α5 α5 = (1− β) (1 + 1/φ)

α6 α6 = 1 + 1/φ

δ δ = (1− ξ)(1− βξ)−1

κ κ = (1− ξ)(1− βξ)(1 + φ)(αξ)−1

ψ ψ = (1− βξ)−1

A A = (θπκ− θπκψ)(βθy)
−1

B B = (θy + θπκψ)(βθy)
−1

C C = (κ− δβθy − κψ)(βθy)
−1

D D = (δβθy + κψ)(βθy)
−1

Table 1: Parameters, parameter definitions, and composite parameter definitions.
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2.2 Firms

Firms in the retail sector uses a homogeneous wholesale good to produce a basket of differen-

tiated goods for aggregate consumption. Consumers choose the consumption of variety m at

a price Pt(m) to maximise a standard CES sub-utility function with elasticity of substitution

equal to ζ, which yields the demand functions,

Ct(m) =

(
Pt(m)

Pt

)−ζ
Ct,

or,

Yt(m) =

(
Pt(m)

Pt

)−ζ
Yt,

where Pt =
[∫ 1

0
Pt(m)1−ζdm

] 1
1−ζ

is the aggregate price index, and Ct, Yt, and Pt are Dixit-

Stigliz aggregates (Dixit and Stiglitz, 1977).

For each variety m the retail good is produced costlessly from wholesale production,

Yt(m) = Y W
t = AtHt(m)α.

Following Calvo (1983), there is a probability 1 − ξ in each period that the price of each

variety m is set optimally to P 0
t (m). If the price is not re-optimized, then it is held fixed.4

For each retail producer m, given its real marginal cost MCt, the objective is at time t to

choose {P 0
t (m)} to maximize discounted real profits,

Et
∞∑
k=0

ξk
Λt,t+k

Pt+k
Yt+k(m)

[
PO
t (m)− Pt+kMCt+k

]
,

subject to

Yt+k(m) =

(
PO
t (m)

Pt+k

)−ζ
Yt+k,

where Λt,t+k ≡ βk
UC,t+k
UC,t

is the stochastic discount factor over the interval [t, t + k]. The

solution to this is standard and given by

PO
t (m)

Pt
=

ζ

ζ − 1

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ Yt+kMCt+k

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ (Πt,t+k)
−1 Yt+k

.

4Thus we can interpret 1
1−ξ as the average duration for which prices are left unchanged.
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Denoting the numerator and denominator by Ω3,t and Ω4,t and introducing a mark-up shock

MSt to MCt, as detailed in appendix C we can write in recursive form,

PO
t (m)

Pt
=

Ω3,t

Ω4,t

,

Ω3,t − ξEt[Λt,t+1Πζ
t+1Ω3,t+1] =

1

1− 1
ζ

YtMCtMSt,

Ω4,t − ξEt[Λt,t+1Πζ−1
t+1 Ω4,t+1] = Yt.

Using the fact that all resetting firms will choose the same price, by the Law of Large

Numbers we can find the evolution of inflation given by,

1 = ξ (Πt−1,t)
ζ−1 + (1− ξ)

(
PO
t

Pt

)1−ζ

.

In a zero-net inflation steady state, the linear choice for the optimizing retail firm m found

by linearizing these equations about the deterministic steady state is given by,

pot (m)− pt = ω3,t − ω4,t, (5)

where pot (m) is the optimal price for firm m, and,

ω3,t = ξβEt+1 [ζπt+1 + ω3,t+1] + (1− βξ)(yt + uC,t +mct +mst),

ω4,t = ξβEt+1 [(ζ − 1)πt+1 + ω4,t+1] + (1− βξ)(yt + uC,t),

where πt is the aggregate inflation rate, yt is aggregate output, uC,t is household marginal

utility, mct is marginal cost, and mst is an exogenous supply shock. Finally, for the wholesale

sector we have,

yt = αht,

mct = wt − yt + ht.

Note that labour productivity is assumed to be constant, so the only exogenous driving

variable is the shock process mst.
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2.3 Aggregation and equilibrium

Assuming a unit measure of households and retail firms, aggregation under symmetry entails

ct(j) = ct, ht(j) = ht, p
o
t (m) = pot , and ξπt = (1 − ξ)(pot − pt). Equilibrium in the output

market requires yt = ct. The model is completed with a Fisher equation,

rt = rn,t−1 − πt,

where rn,t is the nominal interest rate, and a policy rule of the form,

rn,t = θππt + θyyt. (6)

We confine our attention to implementable policy rules, and postpone until section 5 a

discussion of rules with persistence.

2.4 Reduced form

Imposing the aggregation and equilibrium conditions, we arrive at the workhorse New Key-

nesian three equation model,

yt = Etyt+1 − (rn,t − Etπt+1), (7)

πt = βEtπt+1 + κ(yt +mst), (8)

rn,t = θππt + θyyt. (9)

Before presenting the determinacy condition, two points about this formulation need to

be made. First, there is no lagged output in the demand curve (7), nor lagged inflation

in the Phillips curve (8). These can enter through the introduction of external habit in

households’ utility functions and price indexing, respectively. But we choose to focus on

bounded rationality as a persistence mechanism, so both of these features are omitted.

Second, even without these persistence terms, the linearisation is only correct about a zero

inflation steady state.

To find the determinacy and stability condition for the rational expectations model in

(7) - (9), we write the model in state space form, setting mst = 0 and substituting out rn,t

from (7) using (9). We then have, Etyt+1

Etπt+1

 =

 1 + θy + κ/β θπ − 1/β

−κ/β 1/β


 yt

πt

 . (10)
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Denote the trace of the system in (10) by τ , and the determinant by ∆. These are,

τ = 1 + θy + κ/β + 1/β,

∆ =
1 + θy + κθπ

β
.

For stability, we simply require a stable shock process mst. For determinacy, we require

that both of the eigenvalues of the system in (10) lie outside the unit circle, as both yt and

πt are jump variables (Blanchard and Kahn, 1980). Necessary and sufficient conditions are

(Woodford, 2003a),

1. ∆ > 1,

2. 1− τ + ∆ > 0,

3. 1 + τ + ∆ > 0.

As β < 1 and θy + κθπ > 0, condition 1 is always satisfied, and the binding condition is

condition 2. Substituting in the trace and determinant, we arrive at the familiar condition,

θπ +

(
1− β
κ

)
θy > 1. (11)

3 The New Keynesian model with anticipated utility

We now extend the standard New Keynesian model to include both AU and fully rational

households and firms. This allows us to demonstrate our first proposition, and forms the

basis of the model with reinforcement learning in section 4.

3.1 Households

We distinguish between the consumption of fully rational households, cREt , and AU house-

holds, cAUt . The consumption of fully rational households is pinned down by the rational

expectations Euler equation as before,

cREt = Et
[
cREt+1 − (rn,t − πt+1)

]
, (12)

where we have omitted the household index to reduce notational clutter. With Euler learning

(henceforth EL), as in Branch and McGough (2010), the consumption of bounded rational

households would be pinned down by the Euler equation,

cELt = E∗t
[
cELt+1 − (rn,t − πt+1)

]
,
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where E∗t denotes a bounded rational expectations operator. Hence households base their

consumption decisions on forecasts of the same decision in future periods.

As discussed in the introduction, we replace Euler learning with anticipated utility.

Expectation formation discussed in more detail in the next section uses the predictor

E∗t [xt+j] = E∗t [xt+1] for j ≥ 1.5 In this case iterating (3) and (4) forward in time and using∑∞
j=1 β

jE∗txt+j =
∑∞

j=1 β
jE∗txt+1 = β

1−βE
∗
txt+1, the consumption function for AU households

becomes:

α1c
AU
t = α2wt + α3(ω2,t + rn,t−1 − πt) + α4ω1,t, (13)

with,

ω1,t =
1

1− β
[
α5E∗twt+1 + α6E∗h,tπt+1

]
− α6

(
rn,t +

β

1− β
E∗t rn,t+1

)
,

ω2,t = (1− β)γAUt + βE∗tγAUt+1 −
(
rn,t−1 + βrn,t +

β2

1− β
E∗t rn,t+1

)
+ πt +

(
β

1− β

)
E∗h,tπt+1,

Hence AU households base their consumption decisions on forecasts of the variables exoge-

nous to them - wages, profits, interest rates, and inflation rates.

We now have to differentiate between the profit flows accruing to AU and fully rational

households. In the general case, with a fully specified market for the ownership of firms, an

individual household’s profit earnings would depend on their entire history of strategy choice

over fully rational and AU behaviour, leading to a complicated distribution over households.

To avoid this - and ensure tractability - Massaro (2013) assumes that profit is distributed

equally across households. We take a different approach, and assume that profits accrue to

households in proportion to their contribution to overall profit, i.e.,

γREt =
1

1− α
cREt −

α

1− α
(wt + hREt ), (14)

γAUt =
1

1− α
cAUt −

α

1− α
(wt + hAUt ). (15)

This is the major simplifying assumption that allows us to derive straightforward expres-

sions of the model’s reduced form, which in turn allows us to derive analytical stability and

bifurcation conditions. In fact, it is the only material difference between the microfoun-

dations of our model and that of Massaro (2013). Although the assumption is relatively

unusual, it is in a similar spirit to an assumption of equal distribution, and ensures that

γt = nγREt + (1− n)γAUt in each period, where n is the proportion of fully rational agents.

As before, optimal labour supply is an intra-temporal decision, so we have,

5This will hold with a general adaptive expectations rule.
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hREt =
1

φ

(
wt − cREt

)
, (16)

hAUt =
1

φ

(
wt − cAUt

)
, (17)

where hREt is the labour supply of fully rational households, and hAUt is the labour sup-

ply of AU households. These labour supply functions provide more insight into the profit

distribution rules, as they allow us to re-write (14) and (15) as,

γREt =
α + φ

φ(1− α)
cREt −

α(1 + φ)

φ(1− α)
wt,

γAUt =
α + φ

φ(1− α)
cAUt −

α(1 + φ)

φ(1− α)
wt.

Thus RE households receive more dividends relative to AU households when they are con-

suming more, and vice versa. Note that, as both consumption and labour supply are pro-

cyclical, dividends increase with output and hours worked in equilibrium.

3.2 Firms

As for firms with rational expectations, optimal price setting for AU retail firms is given by,

(pot − pt)AU = βξE∗t [πt+1 + (pot+1 − pt+1)AU ] + (1− βξ)(mct +mst). (18)

Solving forwards yields,

(pot − pt)AU = E∗t
∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)]. (19)

Note that AU for retail firms is more straightforward than for households, as the rational ex-

pectations solution is already in recursive form and there is no retail firm budget constraint.

Note also that with AU we do not impose the aggregation relationship ξπt = (1− ξ)(pot −pt)
used in the RE solution as this requires firms to know that they are identical.

3.3 Aggregation and equilibrium

Without loss in generality, for reasons given in section 3.5, suppose that the proportion n of

fully rational households in the economy is equal to the proportion of fully rational firms.

Assuming a unit measure of households, aggregation entails,

ncREt + (1− n)cAUt = ct, (20)
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nhREt + (1− n)hAUt = ht, (21)

n(pot − pt)RE + (1− n)(pot − pt)AU = pot − pt, (22)

ξπt = (1− ξ)(pot − pt). (23)

The equilibrium conditions, Fisher equation, and the monetary policy rule are exactly the

same as in the standard rational expectations model.

3.4 Expectation formation of AU agents

Equations (12) - (23) define the New Keynesian model with AU up to the definition of the

bounded rational predictor E∗t . To close the model, we therefore need to specify the manner

in which AU households and firms form their expectations. As discussed in Calvert Jump

and Levine (2019), there is a large literature discussing departures from full rationality

in expectations formation, with a comprehensive survey of the studies preceding the 2008

financial crisis contained in Pesaran and Weale (2006). A notable post-crisis paper is Pfajfar

and Santoro (2010), who find that only 10% of the forecasts in the Michigan Survey reflect

regular information updating. A useful simplified predictor in this context is the static

predictor in which future values of a variable are forecast as equal to the last observed value

of that variable, i.e.,

E∗t [xt+1] = xt−i,

for some random variable x, where i ≥ 0 determines the last observed value. This is the

extrapolative predictor used in chapter 1 of De Grauwe (2012b), and is a special case of

the bounded rational predictor used in Branch and McGough (2010). It is the optimal

predictor when agents believe that x follows a random walk, which is a relatively accurate

approximation to most macroeconomics variables (Nelson and Plosser, 1982).

Given the foregoing, we assume that AU households and firms assume that the variables

of interest to them follow random walks, and therefore forecast all variables as equal to

their last observed values. We assume that variables which are local to the agents, in a

geographical sense, are observable within the period, whereas variables that are strictly

macroeconomic are only observable with a lag. This categorization regarding information

about the current state of the economy follows Nimark (2014). He distinguishes between

the local information that agents acquire directly through their interactions in markets and

statistics that are collected and summarised, usually by governments, and made available to

the wider public6. The only exception to this is the nominal interest rate, which we assume

6His paper actually focuses on a third category, information provided by the news media, and allows for

imperfect information in the form of noisy signals, issues which go beyond the scope of our paper.
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is observable within the period given the timing structure of New Keynesian models. Thus

AU household expectations are given by,

E∗twt+1 = wt, (24)

E∗tγt+1 = γt, (25)

E∗t rn,t+1 = rn,t, (26)

E∗tπt+1 = πt−1, (27)

and AU firm expectations are given by,

E∗tmct+1 = mct, (28)

E∗tπt+1 = πt−1. (29)

AU firms can observe their own marginal costs within the period, but in a similar manner to

AU households, can only observe aggregate inflation with a lag. Note that firms observing

their real marginal costs within the period, and households observing their real wage and

profits within the period, does not imply that firms and households observe the aggregate

price level within the period. We assume that they observe their own price within the

period, and therefore their own real marginal costs, real wages, and dividends, but not

the aggregate price level. This is reasonable given the considerable data-gathering costs of

observing aggregate macroeconomic variables like inflation, as discussed in Nimark (2014).

Note, however, that fully rational agents observe all variables within the period, and that

we retain the Taylor rule (9) and assume that the central bank observes current inflation

and output, thus having the same information advantage as rational agents.

3.5 Reduced form

Equations (12) - (29) fully describe the New Keynesian model with AU, where the pro-

portion n of fully rational agents is held constant. Deriving the reduced form is relatively

straightforward. First, by rearranging the AU household consumption function (13) after

substituting in the expectations functions, we find that AU households choose their level of

consumption such that,

rn,t = πt−1, (30)

in each period. The derivation of (30) is discussed in some detail in appendix A.
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Combining (30) with the monetary policy rule (9), we see that,

yt = −
(
θπ
θy

)
πt +

(
1

θy

)
πt−1, (31)

which greatly simplifies the analysis, as we will not need to track output as a separate state

variable. In fact, as (31) means that we do not have to separately track the consumption

levels of fully rational and AU households in the state space form, it is this result that allows

us to derive analytical stability conditions in the sequel. Also note that (31) means that

the proportion of fully rational households does not affect the equation of motion for yt,

which allows us to assume that the proportion of fully rational households is equal to the

proportion of fully rational firms without loss of generality.

Using the aggregation conditions (22) and (23), and the price setting conditions (18) and

(19), we can derive the reduced form New Keynesian Phillips curve with fully rational and

AU firms,

πt = n(βEtπt+1 + κyt) + (1− n)(δβπt−1 + κψyt), (32)

where the shocks process mst is set equal to zero, mct = yt(1 + φ)/α, and the composite

parameters κ, δ, and ψ are defined in table 1. Finally, by substituting the equation of motion

for output (31) into the New Keynesian Phillips curve (32) and rearranging, we arrive at

the reduced form model,

Etπt+1 =

(
A+

B

n

)
πt −

(
C +

D

n

)
πt−1, (33)

where the composite parameters are defined in table 1.

3.6 State space form and stability

The New Keynesian model with fixed proportions n of fully rational agents and (1− n) of

AU agents, has a reduced form (33) described by a second order forward looking difference

equation in inflation. Define the auxiliary variable zt = πt−1. Then the state space form of

our model is given by, Etπt+1

zt+1

 =

 A+B/n −(C +D/n)

1 0


 πt

zt

 , (34)

where πt is a jump variable and zt is a pre-determined variable. We are now in a position

to demonstrate our first proposition:

Proposition 1: If the monetary policy rule is such that the condition in (11) holds, then

the model in (34) is determinate and stable.
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Proof of proposition 1: The proof is composed of two lemmas:

Lemma 1: For n ∈ (0, 1], if the monetary policy rule is such that the condition in

(11) holds, then the model in (34) is determinate and stable.

Proof of lemma 1: Determinacy and stability in the model described by (34) with

n ∈ (0, 1] requires one eigenvalue inside the unit circle and one eigenvalue outside the

unit circle (Blanchard and Kahn, 1980). Denote the trace of the system in (34) by

τ = A + B/n and the determinant by ∆ = C + D/n. As τ and ∆ are positive, the

necessary and sufficient condition for determinacy and stability in the model described

by (34) is τ −∆ > 1. Now, suppose that n = 1 and,

θπ = 1−
(

1− β
κ

θy

)
+ ε, (35)

where ε is an arbitrarily small but positive constant (i.e. the condition in (11) holds), so

the model is determinate and stable. A sufficient condition for stability when n ∈ (0, 1)

is then,

d

dn
(τ −∆) < 0 ∀n ∈ (0, 1], (36)

i.e. τ −∆ increases from 1 as n decreases from 1. From (34), we have,

d

dn
(τ −∆) = (D −B)n−2.

Taking advantage of the definitions of B and D in table 1, this yields,

d

dn
(τ −∆) =

[
θy(δβ − 1)− κψ(θπ − 1)

βθy

]
n−2, (37)

which, by substituting (35) into (37), yields,

d

dn
(τ −∆) = (D −B)n−2 = −

[
κψε

βθy

]
n−2. (38)

As κ, ψ, β, and θy are all positive (see table 1), (38) implies (36). This is illustrated

graphically in figure 1, which shows the standard stability plot in the trace and deter-

minant for a second order difference equation when both the trace and determinant

are positive (see e.g. Hamilton 1994, chapter 1). �

Lemma 2: For n = 0, if the monetary rule is such that the condition in (11) holds,

then the model in (34) is stable.
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Figure 1: Graphical illustration of proposition 1, showing a stability plot in the trace τ

and determinant ∆ for a second order difference equation when τ > 0 and ∆ > 0. At point

P, which lies within the saddle path stable region (i.e. it satisfies τ −∆ > 1), a decrease in

n moves the model to P′ or P′′ if ∂τ
∂(−n)

< ∂∆
∂(−n)

, or to P ′′′ if ∂τ
∂(−n)

> ∂∆
∂(−n)

. Thus a decrease

in n moves the model to P′ or P′′ if ∂τ
∂n
> ∂∆

∂n
, or to P ′′′ if ∂τ

∂n
< ∂∆

∂n
.

Proof of lemma 2: When n = 0, there are no agents with rational expectations, and

therefore determinacy is irrelevant. From (32), the New Keynesian Phillips curve is

given by,

πt = δβπt−1 + κψyt, (39)

when all agents are AU. Substituting out yt using (31), we have the reduced form,

πt =

(
δβθy + ψκ

θy + ψκθπ

)
πt−1. (40)

The model in (40) is stable when the coefficient on πt−1 is less than one in absolute

value. As the coefficient will be positive given the parameter definitions in table 1,

this is the case when,

δβθy + ψκ

θy + ψκθπ
< 1. (41)

Rearranging, and taking advantage of the parameter definitions, we arrive at a stability

condition identical to (11). Therefore, the model in (34) with n = 0 is stable if the

condition in (11) holds, which completes the proof of proposition 1. �
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Figure 2: Impulse response functions of inflation to a positive marginal cost shock, for the

model with n fixed, for three different values of n. The remaining parameter values are

φ = 2, α = 0.7, β = 0.99, ξ = 0.75, θπ = 1.25, θy = 0.5.

Proposition 1 states that the rational expectations determinacy condition is sufficient for

determinacy and stability in the model with fixed proportions of fully rational and AU

agents. However, the dynamics of the model will vary with n, as the magnitude of the

eigenvalues will change as n changes. This is illustrated in figure 2, which plots impulse

response functions of inflation in response to an ms shock with n = 0.1, n = 0.5, and

n = 0.9. The remaining parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 1.25, θy = 0.5, such that the condition in (11) holds, and the marginal cost shock

has no persistence. Although the determinacy and stability properties of the model are

unaffected by a reduction in n, given that (11) holds, the response of the model to shocks

becomes increasingly persistent as the proportion of fully rational agents decreases. This

result is consistent with the results of Pecora and Spelta (2017), who find that convergence

to the steady state can be slow in models with heterogeneous expectations, despite the

Taylor principle being sufficient for stability.

4 The New Keynesian model with strategy switching

In this section, we extend the analysis to allow n to vary. Following the literature, we assume

that n varies according to a reinforcement learning mechanism laid out in section 4.1. We
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then derive the reduced form in section 4.2, and consider the state space form and local

stability conditions in section 4.3. We establish our second and third propositions in this

section. First, the rational expectations determinacy condition ensures local determinacy

and stability in the model with n variable. Second, if the model starts from a position of

indeterminacy, an increase in the fixed cost of being fully rational can lead to the loss of

local stability via a Hopf bifurcation. This Hopf bifurcation appears to be super-critical,

giving rise to stable limit cycles. As the speed at which agents learn increases, a rational

route to randomness appears to follow, which we explore with numerical methods.

4.1 Reinforcement learning and predictor fitness

We extend the model to allow n to vary with the perceived relative forecasting strength of the

fully rational and AU predictors. Following Branch and McGough (2010) and the literature

described in the introduction, denote the fitness of the rational expectations predictor by

vREt , and the fitness of the AU predictor by vAUt . Then the proportion of fully rational

agents at any point in time is given by,

nt =
exp[µvREt ]

exp[µvREt ] + exp[µvAUt ]
. (42)

The parameter µ in (42) is referred to as the intensity of choice parameter, as a higher µ

increases the rate at which agents choose strategies with a high fitness level. In this sense,

µ governs the speed of learning.

Denote the perceived mean squared error of the AU predictor by Φt, and define it as

follows,

Φt = (πt − E∗t−1[πt])
2 = (πt − πt−2)2. (43)

If - as we will do in the sequel - we consider a deterministic economy, the mean squared

error of the fully rational predictor is zero, as rational expectations is equivalent to perfect

foresight in this context. Finally, and in accordance with the literature, we define the fitness

measures as follows,

vREt = −Υ, (44)

vAUt = −Φt, (45)

where Υ is a fixed cost of using the fully rational predictor. The AU predictor is then fit

relative to the fully rational predictor when the mean squared error falls below the fixed

cost of being fully rational.
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4.2 Reduced form

Equations (12) - (29), extended to allow n to vary with equations (42) - (45), fully describe

the New Keynesian model with fully rational and AU agents, where the proportion n of

fully rational agents varies over time according to the perceived relative fitness of the two

strategies. By substituting (43) - (45) into (42), we find that,

nt =
exp[−µΥ]

exp[−µΥ] + exp[−µΦt]
,

⇒ nt =
exp[−µΥ]

exp[−µΥ] + exp[−µ(πt − πt−2)2]
. (46)

Thus, as the perceived mean squared error of the AU predictor falls below the fixed cost, Υ,

of being fully rational, agents move towards being AU and n falls. The speed of this process

is determined by the intensity parameter µ. Note that (46) implies,

n−1
t = 1 + exp[−µ((πt − πt−2)2 −Υ)]. (47)

As we have changed nothing in the original model other than allowing n to vary, the original

reduced form (33) becomes,

Etπt+1 =

(
A+

B

nt

)
πt −

(
C +

D

nt

)
πt−1, (48)

with A, B, C, and D defined as before. Finally, substituting (47) into (48), we arrive at the

reduced form New Keynesian model with n variable,

Etπt+1 =
[
A+B

(
1 + e−µ((πt−πt−2)2−Υ)

)]
πt −

[
C +D

(
1 + e−µ((πt−πt−2)2−Υ)

)]
πt−1. (49)

The reduced form (49) is a highly non-linear third order difference equation. The state

space form, which we turn to next, simplifies the expression somewhat and allows analytical

stability conditions to be derived.

4.3 State space form and stability

As before, define the auxiliary variable zt = πt−1, and define a second auxiliary variable

zzt = zt−1 = πt−2. Then the state space form of the model in (49) is given by,


Etπt+1

zt+1

zzt+1

 =


A+B

(
1 + e−µ((πt−zzt)2−Υ)

)
−
[
C +D

(
1 + e−µ((πt−zzt)2−Υ)

)]
0

1 0 0

0 1 0




πt

zt

zzt

 ,
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where πt is a jump variable and zt and zzt are pre-determined variables. In the steady state,

πt = zt = zzt = 0, and nt = (1 + eµΥ)−1. Therefore, the Jacobian matrix J evaluated at the

steady state is as follows:

J |πt=zt=zzt=0 =


A+B

(
1 + eµΥ

)
−
[
C +D

(
1 + eµΥ

)]
0

1 0 0

0 1 0

 . (50)

For local determinacy and stability we require two eigenvalues of the Jacobian matrix (50)

inside the unit circle, and one eigenvalue outside. Local indeterminacy occurs when all

eigenvalues of the Jacobian matrix (50) are inside the unit circle. If a pair of eigenvalues

are complex conjugates, as they pass through the unit circle a Hopf (or Neimark-Sacker)

bifurcation occurs (see e.g. Hommes (2013), chapter 3). Proposition 2 considers the case of

local determinacy and stability, and proposition 3 considers the case of local indeterminacy

and Hopf bifurcation.

Proposition 2: If the monetary policy rule is such that the condition in (11) holds, then

the model in (49) is locally determinate and stable.

Proof of proposition 2: At the steady state, nt = (1 + eµΥ)−1. As µ ∈ [0,∞) and

Υ ∈ (−∞,∞), nt ∈ (0, 1) at the steady state. The proof then follows directly from lemma

1: as the model with fixed n is stable and determinate when the condition in (11) holds, the

model with variable n is locally stable and determinate when the condition in (11) holds. �

Proposition 3: Local indeterminacy and stability in the model described by (49) requires

all eigenvalues inside the unit circle. In this case, an increase in Υ can lead to a loss of local

stability via a Hopf bifurcation.

Proof of proposition 3: Consider the mapping xt+1 = F (xt, ϕ), xt ∈ Rn, and ϕ ∈ R
is a parameter. Following Iooss et al. (1981) and Gabisch and Lorenz (1987), we have the

following theorem:

Hopf: Let the mapping xt+1 = F (xt, ϕ), xt ∈ Rn, ϕ ∈ R, have a fixed point

at the origin. If there is a ϕ0 such that the Jacobian matrix evaluated at the

origin has a pair of complex conjugate eigenvalues λ1,2 which lie on the unit

circle, while the remainder of its spectrum lies at a non-zero distance from the

unit circle, and the Hopf transversality condition holds, i.e.

d(modλ(ϕ))

dϕ
> 0,
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then if λn(ϕ0) 6= ±1 for n = 1, 2, 3, 4, there is an invariant closed curve bifur-

cating from ϕ = ϕ0. So, as a parameter ϕ is varied, a stable fixed point loses

stability as a pair of complex conjugate eigenvalues crosses the unit circle7.

Denote the trace of the Jacobian in (50) by τ = A+B(1 + eµΥ). By inspection, the matrix

is non-invertible, so the determinant ∆ = 0, and at least one eigenvalue is equal to zero. In

fact, the eigenvalues of (50) are given by,

λ1,2 = τ/2±
√
τ 2/4−∆0, λ3 = 0,

where ∆0 = C + D(1 + eµΥ) is the pseudo-determinant of (50), i.e. the product of the

non-zero eigenvalues. When ∆0 > τ 2/4 so the non-zero eigenvalues are complex conjugate,

let λ1,2 = β1 ± β2i, where β1 = τ/2 and β2 =
√

∆0 − τ 2/4. The modulus of the complex

conjugate eigenvalues is then:

mod(λ1,2) =
√
β2

1 + β2
2 ,

from which it follows that mod(λ1,2) =
√

∆0. As the remaining eigenvalue λ3 = 0, we require

∆0 to equal unity for a Hopf bifurcation to occur.

Now, as ∆0 = C +D(1 + eµΥ), mod(λ1,2) = 1 when,

C +D(1 + eµΥ) = 1. (51)

Taking advantage of the parameter definitions in table 1 and re-arranging, this condition

reduces to,

µΥ = ln

[
βθy − κ
δβθy + κψ

]
. (52)

As the right hand side of (52) is finite, as Υ → ∞, ∆0 will pass through unity from below

if it starts from a parameterisation in which ∆0 < 1. Precisely, we have,

d(modλ2,3(Υ))

dΥ
=
d
√

∆0

dΥ
> 0.

Therefore, if the non-zero eigenvalues are complex conjugate as ∆0 passes through unity,

the model undergoes a Hopf bifurcation. This is illustrated graphically in figure 3, which

presents the same stability plot as in figure 1, as the model in (49) linearised is effectively

a second order difference equation, but with the region of complex conjugate eigenvalues

highlighted. �

7This wording largely follows Iooss et al. (1981), although it has been altered slightly to fit with the

notation of the present paper. Gabisch and Lorenz (1987: 161) considers the case of xt+1 = F (xt, ϕ),

xt ∈ R2.
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Figure 3: Graphical illustration of proposition 4, showing a stability plot in the trace τ

and pseudo-determinant ∆0 for the model in (49). Note this looks exactly the same as the

stability plot in figure 1, as the linearised model is effectively a second order difference

equation in πt and zt, but we have now shaded the region of complex conjugate eigenvalues

with grey lines. As the model moves from points P to P′, as Υ is increased, a Hopf

bifurcation takes place.

4.4 Rational route to randomness

Proposition 3 demonstrates that an increase in the fixed cost of being fully rational can lead

to the loss of local stability via a Hopf bifurcation if the model starts from a position of

local indeterminacy. The existence of limit cycles therefore depends on the monetary policy

rule and Υ. Figure 4 presents a plot of a single simulated trajectory of the model in (49),

numerically demonstrating the existence of a stable limit cycle in the inflation rate. The

underlying parameterisation is the same parameterisation used in the rest of the paper, and

is a fairly standard prior for the basic New Keynesian model.

The existence of a Hopf bifurcation and stable limit cycles indicate the possibility of a

rational route to randomness. Following Brock and Hommes (1997), this is a bifurcation

route to instability, cycles, and chaos as the intensity of choice parameter µ increases.

Mathematically, this route to chaos is associated with the emergence of a homoclinic loop,

as the equilibrium becomes a saddle-focus with one stable and two unstable eigenvalues

after the Hopf bifurcation, associated with a one dimensional stable manifold and a two

dimensional unstable manifold, respectively. In fact, proposition 5.5.2 in Hommes (2013)

would lead us to expect the existence of a homoclinic loop in the model considered here.

Retaining the same underlying parameterisation, and setting Υ = 0.1, figures 5 and 6 plot

several trajectories as µ increases. As is evident from the plots, the stable limit cycle quickly
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Figure 4: Phase plot of inflation with n variable, illustrating a stable limit cycle. The

parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75, θπ = 0.5, θy = 4, µ = 1, Υ = 0.

loses its smoothness as µ increases, and then varies between periodic attractors and strange

attractors. This evolution is not dissimilar to the evolution in the Henon-like map discussed

in Gonchenko et al. (2014), in which simple Shilnikov scenarios in three dimensional maps

are discussed in some detail. Finally, figure 7 plots a bifurcation diagram as µ is increased,

and the simulated largest Lyapunov exponents for the model over the same range of µ. Both

panels in figure 7 are plotted using the software E&F Chaos - see Diks et al. (2008).

The bifurcation diagram is constructed by simulating the model for T periods, k times

for k different values of µ equally spaced between 1 and 3. For each of the k values of

µ, this yields T different simulated values of inflation which are plotted on the vertical

axis (although a long burn-in period for each simulation ensures that the simulated values

of inflation constitute the fixed point(s) for the system). The Lyapunov exponents are

simulated, and measure the average rate of separation of a trajectory before and after a

small perturbation. As a positive Lyapunov exponent is an important indicator of chaos,

we can state with some confidence that the model in (49) displays a rational route to

randomness.

Unsurprisingly, as proposition 5.5.2 in Hommes (2013) leads us to expect the existence

of a homoclinic loop, there exist parameterisations in which near-homoclinic trajectories are

particularly apparent in numerical simulation. Figure 8 presents an example of this, and
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Figure 5: Simulated trajectories for various values of µ, illustrating the rational route to

randomness. The remaining parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1, Υ = 0.1.

plots the phase diagram in two dimensions and three dimensions. The plotted trajectory

starts very close to the steady state, and spirals away from it across the unstable manifold.

Throughout this process the proportion of AU agents fluctuates with the fluctuations in

inflation. As the trajectory gets further from the steady state, it becomes increasingly

difficult to forecast, leading to agents shifting away from the AU predictor towards the

rational expectations predictor for longer periods of time. At this point the model stabilises,

and re-approaches the steady state down the stable manifold. The corresponding time series

of inflation and n, the proportion of rational firms, are plotted in figure 9, which illustrates

this dynamic from a different perspective. This dynamic is common to models of this form,

in which agents shift between destabilising bounded rational predictors and stabilising fully

rational predictors, following Brock and Hommes (1997).

4.5 Robustness to the timing assumptions

In the models above, we assume that the proportion of rational and bounded rational agents

changes based on inflation information within the period, i.e.,
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Figure 6: Simulated trajectories for various values of µ, illustrating the rational route to

randomness. The remaining parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1, Υ = 0.1.

n−1
t = 1 + exp[−µ((πt − πt−2)2 −Υ)], (53)

as in (47). It might be argued, however, that this is an awkward assumption given that

only RE agents observe inflation within the period when they form their expectations.

Fortunately this timing assumption is not crucial, as the strategy switching dynamic only

enters the model in a nonlinear fashion. To see this, consider the case in which strategy

switching only uses information available at time t−1. In this case, a reasonable alternative

measure of the mean squared error of the bounded rational predictor is,

Φt = (E∗t [πt]− E∗t−1[πt])
2 = (πt−1 − πt−2)2, (54)

in which case the reduced form model becomes,

Etπt+1 =
[
A+B

(
1 + e−µ((πt−1−πt−2)2−Υ)

)]
πt −

[
C +D

(
1 + e−µ((πt−1−πt−2)2−Υ)

)]
πt−1.
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Figure 7: Panel A: Bifurcation plot of the orbit of inflation against µ. Panel B: Largest

Lyapunov exponent against µ. The parameter values are φ = 2, α = 0.7, β = 0.99,

ξ = 0.75, θπ = 0.3, θy = 1, Υ = 0.1.

Clearly, the Jacobian matrix for this model is exactly the same as the Jacobian for the model

in the main body of the paper, i.e.,

J |πt=zt=zzt=0 =


A+B

(
1 + eµΥ

)
−
[
C +D

(
1 + eµΥ

)]
0

1 0 0

0 1 0

 ,

as altering the timing assumptions has no effect on the linear part of the model8. As such,

propositions 2 and 3 are unaffected.

8Note that this would also be the case if we assumed a mean squared error of the form Φt = (πt−1 −
E∗t−2[πt−1])2 = (πt−1 − πt−3)2, for example.
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Figure 8: Trajectories in two and three dimensions, respectively, of the first 103 iterations

of the model in which µ = 1 and Υ = 0. The remaining parameterisation is φ = 2, α = 0.7,

β = 0.99, ξ = 0.75, θπ = 0.3, θy = 1.

4.6 Local instability and global indeterminacy

The limit cycles and chaotic dynamics explored above exist in the locally explosive part

of the parameter space. As the global dynamics are bounded, however, inflation does not

diverge to ±∞ and as such the transversality condition is satisfied. Interestingly, as there

are an infinite number of trajectories that converge on a stable limit cycle (as in figure

4), and an infinite number of chaotic trajectories (as in figures 5 and 6), these dynamics

are examples of a type of global indeterminacy also analysed by Benhabib et al. (2001,

2002), Airaudo and Zanna (2012), and others. In this situation one can imagine a one-off

sunspot pinning down the state vector at t = 0, which then evolves along a perfect foresight

equilibrium trajectory to a unique limit cycle, or continues to evolve chaotically without

repeating itself. This is, in fact, exactly how the simulations in this section are computed.
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Figure 9: Trajectories, respectively, of the first iterations 10 to 140 of the model in which

µ = 1 and Υ = 0. The remaining parameterisation is φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1.

5 Monetary policy rules with persistence

In sections 3 and 4 we demonstrate three propositions. First, in the model with fixed

proportions of fully rational and AU agents, we demonstrate that the condition in (11) is

sufficient for determinacy and stability. Second, in the model with variable proportions of

fully rational and AU agents, we demonstrate that the condition in (11) is sufficient for local

determinacy and stability. Third, in the model with variable proportions of fully rational

and AU agents, we demonstrate that an increase in the cost of being fully rational can lead

to a Hopf bifurcation if the model starts out from a position of indeterminacy.

These results rely on a lack of persistence in the policy rule. In this final section, we

relax this assumption to check the robustness of the results in sections 3 and 4. Specifically,

we generalise the monetary policy rule to the standard rule with persistence,

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt), (55)

where ρr ∈ (0, 1].
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For the case of pure rational expectations, with n fixed and equal to 1, the policy space

for the rule in (55) is given by,

θπ +
1− β
κ

θy > 1− ρr, (56)

which is a result obtained in Woodford (2003a), appendix C.

For the case of pure AU, with n fixed and equal to 0, using the monetary policy rule

(76) leads to a second order generalisation of the model in lemma 2,

πt =

[
ψκ+ (1− ρr)δβθy

(1− ρr)(θy + ψκθπ)

]
πt−1 −

[
ρr

(1− ρr)(θy + ψκθπ)

]
πt−2. (57)

Using zt = πt−1 as before, we can re-write the model in (57) as,

 πt

zt

 =


ψκ+ (1− ρr)δβθy

(1− ρr)(θy + ψκθπ)
− ρr

(1− ρr)(θy + ψκθπ)

1 0


 πt−1

zt−1

 . (58)

Denoting the trace of the model in (58) by τ and the determinant by ∆, necessary and

sufficient conditions for stability are,

1. ∆ < 1,

2. 1− τ + ∆ > 0,

3. 1 + τ + ∆ > 0.

As τ and ∆ are both positive the third condition is not binding, and for ρr < 1 condition 3

yields the familiar condition θπ + 1−β
κ
θy > 1. But condition 1 adds a further restriction on

persistence in the monetary policy rule, given by,

ρr <
θπψκ

θy + ψκ(1 + θπ)
. (59)

Thus we have our fourth result:

Proposition 4: With persistence in the interest rate, the policy space (θπ, θy) under rational

expectations is increased to θπ + 1−β
κ
θy > 1 − ρr. Under AU the policy space remains as

θπ + 1−β
κ
θy > 1 and persistence is constrained by (59).

By considering the limiting case of θy = 0, one can see that (59) restricts the stability region

of the model with n = 0 quite substantially. This is further illustrated by considering the

limiting case of ρr = 1. By re-parameterising the rule as,
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Figure 10: Stability for model with persistence in the monetary policy rule, as a function

of θπ and ρr, with φ = 2, α = 0.7, β = 0.99, ξ = 0.75, θy = 0.5, for n = 0 (dashed line),

n = 0.5 (solid line), and n = 1 (dot-dashed line). (ρr, θπ) combinations above the

constraints imply saddle path stability; the white area is saddle path stable for n = 0.5.

rn,t = rn,t−1 + αππt + αyyt, (60)

then the case αy = 0 gives ∆rn,t = θπ∆pt, where πt = pt−pt−1 and pt is the price level. Thus

rn,t = θπpt, and (60) is a price level rule. Putting απ = (1− ρr)θπ and αy = (1− ρr)θy into

the previous result and letting ρr → 1, the policy space (απ, αy) under rational expectations

is απ + 1−β
κ
αy > 0 and the policy space under AU is απ + (1−βξ)

κ
αy > 1. Hence under rational

expectations and ρr = 1, at least one slightly positive feedback from inflation and output is

necessary and sufficient to result in saddle-path stability. Under AU and ρr = 1, the policy

space is considerably reduced for plausible values of the Calvo contract parameter ξ. Thus

proposition 4 qualifies propositions 1 and 2, and implies that the stability properties of the

New Keynesian model with AU are sensitive to changes in the monetary policy rule. Again,

this reinforces the existing results discussed in the introduction.

Finally, we consider the case with interest rate smoothing in which n ∈ (0, 1). By

substituting (30) into the Taylor rule with persistence in (55) and rearranging we get the

equivalent equilibrium condition to (31), except now with interest rate smoothing:
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Figure 11: Root-locus plot for model with persistence in the monetary policy rule, with

θπ = 1.5, θy = 0.75, φ = 2, α = 0.7, β = 0.99, ξ = 0.75, n = 0.5, for ρr = 0.5, 0.7. The Hopf

bifurcation when ρr increases from 0.5 to 0.7 is apparent.

yt = −
(
θπ
θy

)
πt +

(
1

θy(1− ρr)

)
πt−1 −

(
ρr

θy(1− ρr)

)
πt−2. (61)

By substituting (61) into (32) and rearranging, we get the new reduced form model,

Etπt+1 =

(
A+

B

n

)
πt −

1

1− ρr

(
C +

D

n
+

(
n− 1

n

)
δρr

)
πt−1 +

ρr
1− ρr

(
E +

F

n

)
πt−2, (62)

where the new composite parameters are,

E = (κ− κψ)(βθy)
−1,

F = κψ(βθy)
−1.

Note that when ρr = 0, i.e. no interest rate smoothing, (62) is identical to (33).

The state space form of the model in (62) is given by,
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
Etπt+1

zt+1

zzt+1

 =


A+

B

n
− 1

1− ρr

(
C +

D

n
+

(
n− 1

n

)
δρr

)
ρr

1− ρr

(
E +

F

n

)
1 0 0

0 1 0




πt

zt

zzt

 ,

where zt = πt−1 and zzt = zt−1 = πt−2 as before. Figure 10 plots the stability condition for

this model alongside the stability conditions for the special cases n = 0 and n = 1 discussed

above. This stability condition has been computed numerically, and lies in between the

stability conditions for n = 0 and n = 1. The (ρr, θπ) combinations shaded in white are

saddle path stable for the case n = 0.5 in figure 1, and the (ρr, θπ) combinations shaded in

grey are explosive. Thus, as in the case of pure anticipated utility, the Taylor condition is

insufficient for saddle path stability in the case with n ∈ (0, 1), although the constraint on ρr

is not as severe as in the case of pure anticipated utility. The analysis in this section suggests

that current central banking practice may not ensure saddle path stability if the degree of

interest rate smoothing is high. In fact, as figure 11 demonstrates, a Hopf bifurcation

occurs in this model as ρr increases past some critical value, even when the standard Taylor

condition holds. Again, this result implies that the stability properties of the New Keynesian

model with AU are sensitive to changes in the monetary policy rule, reinforcing the existing

results discussed in the introduction.

6 Concluding Remarks

This paper constructs and explores the monetary policy consequences of the workhorse

New Keynesian model with AU learning and heterogeneous agents. First, we derive the

model with a fixed proportion n of fully rational agents and a fixed proportion 1 − n of

anticipated utility agents, in a similar manner to Massaro (2013). We then extend the model

to include reinforcement learning along the lines of Branch and McGough (2010). Using

this model, we demonstrate four propositions. First, the rational expectations determinacy

condition is sufficient for determinacy and stability when n is fixed. Second, the rational

expectations determinacy condition is sufficient for local determinacy and stability when n

varies according to reinforcement learning. Third, when monetary policy is such that the

dynamics are indeterminate, limit cycles can exist, and may be followed by a rational route

to randomness. Fourth, the rational expectations determinacy condition not is sufficient for

determinacy and stability in the presence of interest rate smoothing.

These results are consistent with the general message of the behavioural New Keynesian

literature, i.e. qualified support for the existing monetary policy orthodoxy. Nevertheless, it

is worth highlighting that while some papers in the literature find that the Taylor condition

is sufficient for determinacy and stability (e.g. Pecora and Spelta, 2017), others find that
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this is not the case (e.g. Branch and McGough, 2010). There does not appear to be a

straightforward answer as to why this is the case, with part of the problem being the inherent

complexity of the models - and therefore a lack of analytical results - and part of the problem

being the diversity of monetary policy rules used in the literature. For example, while our

model uses a Taylor rule that conditions on observable output and inflation, Branch and

McGough (2010) use a Taylor rule that conditions on forecasts of output and inflation, and

this difference is likely to affect the stability results. The only obvious resolution to this

problem is to study the stability properties of an “inventory of monetary policy rules” in the

major bounded rational approaches - including at least Euler learning, anticipated utility,

and internal rationality - along the lines of Lubik and Marzo (2007).

On the other hand, our results concerning interest rate smoothing are dissimilar to the

standard results on interest rate smoothing - e.g. Bullard and Mitra (2007) - in which

monetary policy inertia improves the stability properties of rational expectations models

and promotes the learnability of rational expectations equilibria. Our result, in which the

stability region is substantially reduced in the presence of interest rate smoothing, is similar

to that of Gasteiger (2014), who finds that monetary policy inertia reduces the space of de-

terminate optimal policy rules in a New Keynesian model with heterogeneous expectations.

Again, differing results may partly be due to differences over the type of policy rule used,

with Bullard and Mitra (2007) using Taylor rules with lagged observations and forecasts of

output and inflation, rather than contemporary observations. But more straightforwardly,

the benefits of interest rate smoothing in rational expectations models are usually attributed

to the ability of current interest rates to signal future interest rate movements when policy

inertia is present. Thus,

[A]n effective response by the Fed to inflationary pressures, say, requires that the

private sector be able to believe that the entire future path of short rates has

changed. A policy that maintains interest rates at a higher level for a period of

time once they are raised . . . is one that, if understood by the private sector, will

allow a moderate adjustment of current short rates to have a significant effect on

long rates. Such a policy offers the prospect of significant effects of central-bank

policy upon aggregate demand, without requiring excessively volatile short-term

interest rates. (Woodford, 2003b, pp.863).

In other words, under rational expectations, the interest rate in period t provides informa-

tion about the interest rate in period t + 1 when policy follows a rule like (55), and can

therefore stabilise expectations. As noted by Eusepi and Preston (2018), this stabilising

function of interest rate smoothing is lost when expectations are backwards looking, and

the backwards looking dynamic introduced by policy inertia may instead interact with the

backwards looking dynamic introduced by expectational inertia to generate instability. This

simple observation illustrates the complexity with which demand management interacts with

private sector behaviour, and the consequent importance of testing policy rules on a variety
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of private sector behaviours, rather than relying exclusively on rational expectations.
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Appendix

A Deriving the reduced form model

In this appendix we explain how to arrive at the reduced form equation (30), which leads

in a straightforward manner to the reduced form equation for output (31), and thus the

reduced form model analysed in the main body of the text.

There are two ways to derive (30), the first of which is the most straightforward and is

emphasised in the main body of the text. Substituting expectations into (13) we have,

α1c
AU
t = α2wt + α3(ω2,t + rn,t−1 − πt) + α4ω1,t, (A.1)

with,

ω1,t =
1

1− β
(α5wt + α6πt−1)− α6

(
rn,t +

β

1− β
rn,t

)
,

ω2,t = (1− β)γAUt + βγAUt −
(
rn,t−1 + βrn,t +

β2

1− β
rn,t

)
+ πt +

(
β

1− β

)
πt−1,

hence,

α1c
AU
t = α2wt + α3

[
γAUt − β

1− β
(rn,t − πt−1)

]
+

α4

1− β
[α5wt − α6(rn,t − πt−1)]. (A.2)

Collecting terms in (A.2) gives us,

α1c
AU
t =

(
α2 +

α4α5

1− β

)
wt + α3γ

AU
t −

(
α3β + α4α6

1− β

)
(rn,t − πt−1). (A.3)

To proceed, we can either assume that profit is distributed in proportion to economic activity,

as in the main body of the text, or we can assume that profit is distributed equally. In the

first case we have,

γREt =
1

1− α
cREt −

α

1− α
(wt + hREt ), (A.4)

γAUt =
1

1− α
cAUt −

α

1− α
(wt + hAUt ), (A.5)

with the associated labour supply functions given by,
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hAUt =
wt − cAUt

φ
, (A.6)

hREt =
wt − cREt

φ
. (A.7)

Substituting (A.6) into (A.5) and rearranging, we have,

γAUt =

(
α + φ

φ(1− α)

)
cAUt −

(
α

1− α

)(
1 + φ

φ

)
wt. (A.8)

Substituting (A.8) into (A.3), and substituting out for the composite parameters α1 - α5

using table 1, yields,

(
α + φ

φ

)
cAUt = α

(
1 + φ

φ

)
wt +

(
α + φ

φ

)
cAUt − α

(
1 + φ

φ

)
wt

−
(
α3β + α4α6

1− β

)
(rn,t − πt−1),

(A.9)

and we are thus left with (30) in the main body of the text. Given (30) and the monetary

policy rule, aggregate output yt is determined by (31), i.e.,

yt = −
(
θπ
θy

)
πt +

(
1

θy

)
πt−1, (A.10)

the consumption of rational agents is determined by (12), i.e.,

cREt = Et [cREt+1 − rt+1], (A.11)

and the consumption of AU agents is determined by the aggregation relationship (20), i.e.,

cAUt =
yt − ncREt

1− n
. (A.12)

However, we can ignore (A.11) and (A.12) in the reduced form model, as neither yt nor cREt
nor cAUt are state variables; it is precisely this fact which lets us derive the analytical results

in the main body of the paper.

An alternative way to arrive at (30) is to assume that profit is distributed equally across

households. Then,

γAUt = γREt = γt =
1

1− α
ct −

α

1− α
(wt + ht), (A.13)
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with household labour supply as before. Aggregating household labour supply yields,

ht =
wt − ct
φ

, (A.14)

and making use of the production function and the fact that ct = yt yields yt = αht. We

then arrive at,

wt =

(
α + φ

α

)
yt, (A.15)

γt = −
(
α + φ

1− α

)
yt, (A.16)

hence (A.3) becomes,

α1c
AU
t =

(
α2 +

α4α5

1− β

)(
α + φ

α

)
yt − α3

(
α + φ

1− α

)
yt

−
(
α3β + α4α6

1− β

)
(rn,t − πt−1).

(A.17)

Rearranging (A.17) and substituting out α1 - α6 then yields,(
α + φ

φ

)
(cAUt − yt) = −

(
β

1− β

)(
α + φ

φ

)
(rn,t − πt−1), (A.18)

or,

cAUt = yt −
(

β

1− β

)
(rn,t − πt−1), (A.19)

which, interestingly, is a type of “Old Keynesian” (or “textbook Keynesian”) consumption

function.

Now, from the aggregation relationship and output equilibrium we have (A.12), which

gives us,

cAUt =
ct − ntcREt

1− nt
=
yt − ntcREt

1− nt
= yt +

nt(yt − cREt )

1− nt
. (A.20)

Substituting this term into (A.19) and rearranging, we arrive at,
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rn,t − πt−1 =
(1− β)nt
β(1− nt)

(cREt − yt). (A.21)

This should be compared to the expression in (30), and holds when profit income is equally

split across households rather than being split in proportion to activity as in the main body

of the paper. However, we note that β ≈ 1, and therefore,

(1− β)n

β(1− n)
≈ 0 for n� 1. (A.22)

In fact, for β = 0.99 as in the numerical examples in the text, (1−β)n
β(1−n)

< 0.1 for n < 0.9,

then rises rapidly as n is increased past 0.9. We therefore expect the dynamics of the model

with (30) to be a reasonable approximation to the dynamics of the model with (A.21),

particularly in the case with n fixed (and less than 0.9), or close to the steady state in the

case with n variable.

B Deriving the Linearized Consumption Function

Solving (1) for a symmetric equilibrium forward in time and using the law of iterated ex-

pectation we have for i ≥ 1

1

Ct
= βiEt

[
Rt+1,t+i

Ct+i

]
; i ≥ 1 (B.1)

We now express the solution to the household optimization problem for Ct and Ht that

are functions of point expectations {EtWt+i}∞i=1, {EtRt+1,t+i}∞i=1 and {EtΓt+i}∞i=0 treated as

exogenous processes given at time t. With point expectations we use (B.1) to obtain the

following optimal decision for Ct+i given point expectations EtRt+1,t+i

EtCt+i = Ctβ
iEtRt+1,t+i ; i ≥ 1 (B.2)

Et(Wt+iHt+i) =
(EtWt+i)

1+ 1
φ

C
1
φ

t+i

(B.3)

Substituting (B.2) and (B.3) into the forward-looking household budget constraint, using∑∞
i=0 β

i = 1
1−β and EtRt,t+i = RtEtRt+1,t+i for i ≥ 1, we arrive at

Ct
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t +
∞∑
i=1

(β
1
φ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
φ

)
+ Γt +

∞∑
i=1

EtΓt+i)
EtRt+1,t+i
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which can be written in recursive form as

Ct
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t + Ω2,t

)
+ Γt + Ω1,t (B.4)

Ω1,t ≡
∞∑
i=1

EtΓt+i
EtRt+1,t+i

=
EtΓt+1

EtRt+1,t+1

+
Ω1,t+1

EtRt+1

Ω2,t ≡
∞∑
i=1

(β
1
φ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
φ

= (β
1
φ )−1

(
EtWt+1

EtRt+1,t+1

)1+ 1
φ

+
Ω2,t+1

β
1
φEtRt+1

Consumption is then given by (B.4) assuming point expectations or by the symmetric form

of the Euler equation (1) under full rationality (i.e. households know symmetric nature of

equilibrium with Ct(j) = Ct). Ct is a function of rational point expectations {EtWt+i}∞i=1,

{EtRt,t+i}∞i=i and {EtΓt+i}∞i=1 which can be treated as exogenous processes given at time t

or as rational model-consistent expectations.

The linearized consumption function (2) where xt = logXt/X is the log of each variable

Xt = Ct, Wt, Rt, Ω1,t, Ω2,t, Γt, Ht relative to its deterministic steady state X, derived in a

straightforward manner as the first-order Taylor series expansion about that steady state.

Since Etf(Xt) ≈ f(Et(Xt)); Etf(XtYt)) ≈ f(Et(Xt)Et(Yt)) up to a first-order Taylor-series

expansion, assuming point expectations is equivalent to using this linear approximation.

C Deriving the Recursive Form of Optimal Price Setting

In the first order conditions for Calvo contracts and expressions for value functions we are

confronted with expected discounted sums of the general form

Ωt = Et

[
∞∑
k=0

βkXt,t+kYt+k

]
(C.1)

where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example an inflation,

interest or discount rate over the interval [t, t+ k]).

Lemma

Ωt can be expressed as

Ωt = Yt + βEt [Xt,t+1Ωt+1] (C.2)

Proof

Ωt = Xt,tYt + Et

[
∞∑
k=1

βkXt,t+kYt+k

]

= Yt + Et

[
∞∑
k′=0

βk
′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[
∞∑
k′=0

βk
′
Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt [Xt,t+1Ωt+1] �
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Then summations Ω3,t and Ω4,t are of the form considered in the Lemma above. Applying

the Lemma gives (5)-(5) in the main text.
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