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Abstract
1.	 Temporal variability in the environment drives variation in vital rates, with conse-
quences for population dynamics and life-history evolution. Integral projection 
models (IPMs) are data-driven structured population models widely used to study 
population dynamics and life-history evolution in temporally variable environ-
ments. However, many datasets have insufficient temporal replication for the en-
vironmental drivers of vital rates to be identified with confidence, limiting their 
use for evaluating population level responses to environmental change.

2.	 Parameter selection, where the kernel is constructed at each time step by randomly 
selecting the time-varying parameters from their joint probability distribution, is 
one approach to including stochasticity in IPMs. We consider a factor analytic (FA) 
approach for modelling the covariance matrix of time-varying parameters, whereby 
latent variable(s) describe the covariance among vital rate parameters. This de-
creases the number of parameters to estimate and, where the covariance is posi-
tive, the latent variable can be interpreted as a measure of environmental quality. 
We demonstrate this using simulation studies and two case studies.

3.	 The simulation studies suggest the FA approach provides similarly accurate esti-
mates of stochastic population growth rate to estimating an unstructured covari-
ance matrix. We demonstrate how the latent parameter can be perturbed to show 
how selection on reproductive delays in the monocarp Carduus nutans changes 
under different environmental conditions. We develop a demographic model of 
the fire dependent herb Eryngium cuneifolium to show how a putative driver of the 
variation in environmental quality can be incorporated with the addition of a sin-
gle parameter. Using perturbation analyses we determine optimal management 
strategies for this species.

4.	 This approach estimates fewer parameters than previous approaches and allows 
novel eco-evolutionary insights. Predictions on population dynamics and life-his-
tory evolution under different environmental conditions can be made without 
necessarily identifying causal factors. Putative environmental drivers can be in-
corporated with relatively few parameters, allowing for predictions on how popu-
lations will respond to changes in the environment.
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1  | INTRODUC TION

Environmental variation causes vital rates to vary, affecting population 
dynamics and life-history evolution (Benton & Grant, 1996; Boyce, 
Haridas, Lee, & NCEAS stochastic demography working group, 2006). 
Interest in understanding the ecological consequences of environmen-
tal variation has increased rapidly as a consequence of global climate 
change (Evans, 2012; Stenseth et al., 2002). As experimental approaches 
to determining how natural populations are affected by environmental 
variation are frequently impractical, structured demographic models are 
often used to understand the population level effects of environmen-
tal change (Coulson, 2012). Environmental effects on vital rates can be 
complex, with nonlinear effects, multiple interacting drivers, indirect 
effects, and correlations between the drivers (Darling & Cote, 2008; 
Ehrlen, Morris, von Euler, & Dahlgren, 2016; Parmesan et al., 2013). 
These challenges, and the relatively short length of many demographic 
datasets (Salguero-Gomez et al., 2015, 2016), mean it is often difficult 
to identify explicit environmental drivers of vital rates. This restricts the 
ability of models to predict how populations will respond to environ-
mental change (Crone et al., 2013).

Environmental variation can drive covariation amongst vital rates 
(Doak, Morris, Pfister, Kendall, & Bruna, 2005; Tomimatsu & Ohara, 
2010). All else equal, failing to account for this covariation will bias 
model outputs (Fieberg & Ellner, 2001; Metcalf et al., 2015). Positive 
covariance among vital rates, occurring when multiple vital rates are 
affected by the same environmental drivers (Jongejans, de Kroon, 
Tuljapurkar, & Shea, 2010), increases the variance of the stochastic 
population growth rate. Negative covariance can also occur as a result 
of trade-offs between rates or from opposing effects of environmental 

variables on different rates (Jongejans & De Kroon, 2005; Knops, 
Koenig, & Carmen, 2007). However, in plants, covariation is predom-
inantly positive (Jongejans et al., 2010), and positive covariance ap-
pears widespread among other taxa including mammals (e.g., Rotella, 
Link, Chambert, Stauffer, & Garrott, 2012) and birds (e.g., Jenkins, 
Watson, & Miller, 1963; Nur & Sydeman, 1999).

Stochastic demographic models, such as matrix population models 
(MPMs; see Caswell, 2001) and integral projection models (IPMs; see 
Ellner, Childs, & Rees, 2016), are widely used to study population dynam-
ics in temporally variable environments (e.g., Inchausti & Weimerskirch, 
2001; Vindenes et al., 2014). In an IPM the annual transitions are given 
by kernels, typically parameterised by estimating state-fate relation-
ships. Stochastic models allow the state-fate relationships to vary tem-
porally (or spatially), using either parameter or kernel selection (Metcalf 
et al., 2015). Under a kernel selection approach, a projection kernel is 
estimated for each year and these are resampled (Rees et al., 2006; 
Williams, Jacquemyn, Ochocki, Brys, & Miller, 2015); this preserves 
the covariance amongst the vital rates. Using a parameter selection ap-
proach, a unique kernel is constructed at each time step by randomly 
selecting the time-varying parameters from their joint probability dis-
tribution (Morris & Doak, 2002; Rees & Ellner, 2009; Vindenes et al., 
2014). A potential limitation of the parameter selection approach is that 
an unstructured covariance matrix must be estimated for the set of time-
varying parameters, often from relatively few temporal replicates.

An alternative to estimating an unstructured covariance matrix is 
to use a structured model for the temporal parameters (co)variances. 
Hierarchical (multilevel) factor analysis (FA; Figure 1a), whereby one or 
more latent variables are introduced to capture the temporal covariance 
among vital rate parameters, is a promising candidate (Marcoulides & 

K E Y W O R D S

Carduus nutans, covariation, environmental variation, Eryngium cuneifolium, factor analysis, 
integral projection model, life history, population dynamics

F IGURE  1 Structure of the stochastic vital rate models for the simple life-history simulation using the (a) factor analytic (FA) approach 
and (b) unstructured covariance matrix (UCM) approach. In the FA approach factor-loading terms (βQ) allowed the direction and magnitude 
of the latent parameter (Q) to differ among the vital rates. Submodel-specific year effects (ε) accounted for additional variation among years. 
In the UCM approach a fully unstructured covariance matrix (Σ) was estimated by sampling the year effects (ε) from a multivariate normal 
distribution. β0 parameters are the intercepts and βz are slopes with respect to size. The subscript t denotes stochastic parameters
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Moustaki, 2013). The latent variable(s) represent the underlying causes 
of covariation among observed variables, allowing complex multivariate 
relationships to be described in a simple way. Moreover, these models 
effectively capture hypotheses about causal variables that cannot be 
directly measured (Grace, Anderson, Olff, & Scheiner, 2010; Grace & 
Bollen, 2008). The FA approach can also be extended to include puta-
tive underlying drivers of variation in the latent variables, which allows 
covariance to be partitioned into explained and unexplained sources of 
variation. However, despite the broad use of FA approaches in ecological 
research (e.g., Ohlberger, Scheuerell, & Schindler, 2016; Thorson et al., 
2015; Zuur, Fryer, Jolliffe, Dekker, & Beukema, 2003) they are rarely 
used to parameterise demographic models.

This approach has two potential advantages. First, fewer parame-
ters need to be estimated relative to an unstructured covariance matrix. 
Second, a small number of latent variables (often just one) may account 
for the covariation among the vital rates. When this covariance is positive, 
the latent variable(s) can be interpreted as axes of environmental quality 
or suitability, where positive values of a single latent variable correspond 
to environments in which survival, growth, and reproduction are all higher 
than average. The latent term(s) then represent a target for further analy-
sis. For example, perturbing the latent parameter allows predictions to be 
made on the effects of environmental change on population dynamics or 
life-history evolution. Where the degree of temporal replication in the data 
is insufficient for environmental drivers to be identified this may represent 
the best alternative for exploring how changes in the stochastic part of the 
environment affect such processes. This method is not dissimilar to the 
use of broad scale climate indices, such as the North Atlantic Oscillation, as 
proxies for local environmental conditions (Ottersen et al., 2001). Such in-
dices do not directly influence the vital rates, but as they provide an index 
of the overall climate conditions, incorporating multiple local climate vari-
ables, they are often better predictors of the vital rates than local climate 
variables (Post & Stenseth, 1999; Stenseth & Mysterud, 2005).

We conduct simulation studies to compare the accuracy of the FA 
approach to a standard parameter selection approach, with different 
numbers of temporally varying parameters. We then apply the ap-
proach in two case studies. We construct a demographic model of the 
monocarpic perennial Carduus nutans, and show how the latent param-
eter can be perturbed to make predictions about optimal life-history 
strategies under changing environments. We explore how selection for 
strategies to delay reproduction differs as the mean and variance of en-
vironmental quality changes. Finally, we develop a demographic model 
of the rare herb Eryngium cuneifolium to show how an environmental 
variable (time-since-fire) can be incorporated as a putative driver of vari-
ation in the latent variable. We use perturbation analyses to determine 
the optimal fire return interval (FRI) for managing this species.

2  | SIMUL ATION STUDY: COMPARING 
FAC TOR ANALY TIC AND UNSTRUC TURED 
APPROACHES

We compared the accuracy of population growth estimates from 
the FA approach to those derived using an unstructured covariance 

matrix. We considered two scenarios: a relatively simple life his-
tory with four temporally variable vital rates (the “simple model”), 
typical of many published IPMs, and a two-stage (juvenile and adult) 
life history with a total of seven temporally variable vital rates (the 
“complex model”). Demographic rate functions in both settings were 
parameterised using data from a long-term study of the St Kilda Soay 
sheep (Clutton-Brock & Pemberton, 2004). These were used to con-
struct a pair of density independent individual-based models (IBMs; 
Appendices A1.1.1 and A1.2.1), from which simulated datasets could 
be generated. Only the correlation coefficients for the temporally 
varying parameters were allowed to vary in each simulation, such 
that on each occasion, a correlation matrix was drawn at random 
from a uniform distribution over the space of positive definite matri-
ces (using rcorrmatrix from the clusterGeneration package in R; Qiu 
& Joe, 2015).

One hundred simulated datasets of 8,000 years were gener-
ated from each of the two IBMs. A range of realistic dataset lengths 
were sampled: 12, 25, and 50 years (Appendices A1.1.1 and A1.2.1). 
Multivariate demographic models were then parameterised using an 
unstructured covariance matrix (UCM approach) and a latent vari-
able (FA approach) parameterisation (Figure 1; Appendices A1.1.3 
and A1.2.3). Under the FA approach each vital rate is estimated as a 
function of a shared, unobserved latent variable (Q), which accounts 
for the covariation among the vital rates. For example, in the simple 
simulation, the probability of survival (s) for an individual of size z in 
year t is given by 

where �s
0
 is the intercept, �s

z
 and �s

Q
 are slopes with respect to size and 

the latent variable, respectively, and �s
t
 accounts for any remaining 

temporal variation. The remaining vital rates are structurally anal-
ogous to Equation (1), differing only in their distributional assump-
tions (Figure 1a). Alternatively, under the UCM approach each vital 
rate contains a random year effect (εt; Figure 1b), sampled from a 
multivariate normal distribution.

In the simple model, 10 parameters (4 variance and 6 covari-
ances) account for the temporal variation using the UCM approach, 
whereas the FA approach estimates eight parameters. In the com-
plex model 28 parameters are required for the UCM approach and 
14 for the FA approach. The demographic models were fitted using 
Bayesian methods, implemented in JAGS (Plummer, 2003) and run 
using the runjags package (Denwood, 2016) in r (R Core Team, 2016).

IPMs were constructed from each set of posterior samples 
(Appendices A1.1.2 and A1.2.2). The stochastic population growth 
rate (λs) was estimated after excluding the first 2,000 years of a 
5,000 year simulation. This was repeated with 1,000 samples from 
the posterior. The true stochastic population growth rate (λt) was es-
timated using an IPM parameterised with the true parameter values 
used in the IBM.

The results of the simulation study are summarised in Figure 2. 
The UCM approach led to marginally less diffuse estimates of 
stochastic population growth rate than the FA approach. This 
was true for both the simple (Figure 2a) and complex (Figure 2b) 
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models. However, even with 12 years of temporal replication the 
differences between the performance of the two methods was 
small, and with 25 years of replication both methods performed 
well (0.8 ≤ λs/λt ≤ 1.1). The estimates of stochastic population 
growth rate were strongly correlated between the two methods 
(0.88 < ρ < 0.99 and 0.93 < ρ < 0.97 for the simple and complex 
models respectively), indicating that most of the among-simulation 
variation in the stochastic population growth rate arises from sam-
pling variation rather than the choice of model for the time-varying 
parameters.

The accuracy of parameter estimates under the FA and UCM 
approaches was very similar (Appendices A1.1.4 and A1.2.4). 
Carrying out a variety of model checks may help to improve the 
accuracy of the models, for example, under the FA approach 
here we assume a single latent variable can account for the co-
variation among the vital rates, which may not always be the case 
(Appendix A1.3).

3  | C A SE STUDY 1:  THE EFFEC T 
OF ENVIRONMENTAL QUALIT Y ON 
REPRODUC TIVE DEL AYS IN C ARDUUS 
NUTANS

3.1 | Background and methods

Carduus nutans is a monocarpic thistle with a persistent seedbank 
and short-lived rosettes (Appendix A2.1; Popay & Medd, 1990; 
Wardle, Nicholson, & Rahman, 1992). We use a FA model to ex-
plore how environmental change may affect selection for reproduc-
tive delays in this species. Reproductive delays can act as a form 
of diversified bet hedging, spreading a cohort across multiple years 
and therefore decreasing the effect of a bad year on the cohort as 
a whole (Childs, Metcalf, & Rees, 2010; Cohen, 1966; Rees et al., 
2006; Tuljapurkar, 1990). In monocarpic perennial plants, repro-
duction may be deferred preestablishment, through a seedbank, or 
postestablishment, through a delay in flowering (Childs, Rees, Rose, 

F IGURE  2 Ratio between the estimated (λs) and true (λt) stochastic population growth rates for the factor analytic (FA) and unstructured 
covariance matrix (UCM) approaches for the (a) simple and (b) complex models. The points are clustered according to the length of the 
demographic dataset used to parameterise the IPM (12, 25 or 50 years). To prevent overplotting only 25 of the 100 simulations are 
shown here (see Appendices A1.1.4 and A1.2.4 for results of all simulations). Points are the median and lines show the interquartile range 
across 1,000 samples from the posteriors for each simulation. The dashed line is at one, where the estimated growth rate equals the true 
growth rate. True λ ranges between 0.98–1 and 0.97–0.99 for the simple and complex models respectively. Median estimates of λ from the 
simulations range between 0.65–1.12 and 0.82–1.13 for the simple and complex models respectively
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Grubb, & Ellner, 2004; Rees et al., 2006). Post-establishment delays 
have the additional benefit of higher fecundity as individuals may 
grow larger, producing more seeds (Rees et al., 2006).

We define the fittest strategy to be the evolutionary stable strat-
egy (ESS). The predicted ESS for the study population is substantial 
seed dormancy and the majority of plants to flower in their first year, 
with a flowering probability of c. 0.75 for an average sized individual 
(Rees et al., 2006). Using our framework we predict how changes to 
the average or variability of the environment affect the ESS germi-
nation and flowering strategy. We reparameterised the IPM of Rees 
et al. (2006; Appendix A2.2). The model is structured by the natural 
logarithm of rosette area (z), a measure of plant size that predicts 
individual performance. Four stochastic vital rate functions, with 
temporally variable intercepts, were estimated; survival, growth, re-
cruitment, and recruit size (Appendix A2.3).

The vital rate parameters were estimated using MCMC sampling 
in JAGS through runjags (Denwood, 2016). The prior distributions 
were weakly informative (i.e., within biologically reasonable ranges) 
to improve mixing (Appendix A2.3; see Appendix A3 for comparison 
with more informative priors). The 95% credible intervals of many 
parameters were relatively wide (Appendix A2.4), as a result of the 
short temporal extent (8 years) of this dataset. Here, to keep things 
simple, as this is just an example case study for the factor analytic 
approach, we parameterise the IPM using the posterior means. 
Thus we do not consider the effect of this uncertainty on the model 

output. By drawing samples randomly from the posterior instead it 
would be possible to give a measure of parameter uncertainty and 
the impacts of this on the results of the perturbation analyses below 
(e.g., Diez, Giladi, Warren, & Pulliam, 2014; Evans, Holsinger, & 
Menges, 2010). Posterior checks suggested the latent parameter (Q) 
accounted for the covariation among the vital rates (Appendix A2.4). 
The positive covariance among the vital rates means the latent pa-
rameter can be assumed to be a measure of environmental quality. 
The highest levels of temporal variation were in survival and recruit-
ment (Appendix A2.4).

At each year in the simulation the latent parameter (Q) was sam-
pled from a normal distribution with a mean of zero and a standard 
deviation of one. The submodel-specific year effects (ε) were drawn 
from normal distributions with means of zero and the standard de-
viations (σt) estimated in the vital rates model. The joint flowering 
intercept and germination probability ESS were predicted using 
numerical invasion analysis (Childs et al., 2004) and were similar 
to those produced using a fixed effects, kernel selection approach 
(Appendix A2.5; Rees et al., 2006).

3.2 | Perturbation analyses

A prospective sensitivity analysis was used to determine how selec-
tion on delayed flowering and germination may change as the mean 
and variance of environmental quality (Q) changes. The mean and 

F IGURE  3 Effect of changing the 
mean (a & b) and variability (standard 
deviation; c & d) of the environmental 
quality (Q) on the joint evolutionary stable 
strategy (ESS) flowering intercept and 
germination strategies at different levels 
of seed mortality (d) in Carduus. Threshold 
flowering size is calculated as −� f

0
∕�

f
z 

(Childs, Rees, Rose, Grubb, & Ellner, 2003)

2 1 0 1 2

2
0

2
4

6
8

Mean environmental quality

T
hr

es
ho

ld
 fl

ow
er

in
g 

si
ze

 (
lo

g 
sc

al
e)

d=0.01
d=0.2
d=0.4
d=0.6
d=0.8
d=0.99

(a)

2 1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean environmental quality

E
S

S
 g

er
m

in
at

io
n 

pr
ob

ab
ili

ty
, h

(b)

0.0 0.5 1.0 1.5 2.0

2
0

2
4

6
8

Environmental variability

T
hr

es
ho

ld
 fl

ow
er

in
g 

si
ze

 (
lo

g 
sc

al
e)

(c) (d)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Environmental variability

E
S

S
 g

er
m

in
at

io
n 

pr
ob

ab
ili

ty
, h



2288  |    Methods in Ecology and Evolu
on HINDLE et al.

standard deviations of Q were varied on a fixed grid and the ESS 
were predicted at each value. This was repeated for a range of seed 
mortalities (d = 0.01, 0.1, 0.2…0.9, 0.99; Rees et al., 2006).

As the quality of the environment deteriorates there is selec-
tion for earlier flowering and reduced germination, while improv-
ing the quality of the environment leads to the opposite response, 
that is, selection for a perennial life history dominates in higher 
quality environments (Figure 3 and Appendix A2.6). In lower qual-
ity environments selection acts on the germination probability, 
delaying reproduction preestablishment by increasing the chance 
of seeds entering the seedbank. Decomposing the changes in 
ESS into the effects of the different vital rates suggests that the 
changes in flowering size are mainly driven by changes in survival 
(Appendix A2.7). The estimated survival probability increases 
from 0.04 to 0.73 with an increase in Q from 0 to 2 for a rosette 
of log size 1.95 (study population mode). With a mean Q of 2 there 
is an advantage in delaying reproduction, as the risk of mortality 
is relatively small and larger plants can produce more seeds; here, 
selection acts on the flowering size, increasing the size at which 
plants reproduce. The ESS threshold flowering size, on a log scale, 
doubles from 3.36 to 7.10 with an increase in mean Q from 0 to 
2, resulting in a 9-fold increase in the estimated number of seeds 
produced. Increasing levels of environmental variability generally 
caused selection for earlier flowering and a lower germination 
probability (Figure 3).

4  | C A SE STUDY 2:  INCORPOR ATING A 
PUTATIVE ENVIRONMENTAL DRIVER: THE 
EFFEC T OF FIRE ON THE DEMOGR APHY OF 
ERYNG IUM CUN EIFOLIUM

4.1 | Background and methods

Eryngium is a fire-adapted perennial herb with a persistent seedbank 
(Menges & Kimmich, 1996; Menges & Quintana-Ascencio, 2004) 
found in Florida rosemary scrub, in recently burned or other dis-
turbed areas (Menges & Kimmich, 1996). Fire kills the majority of ro-
settes and the population recovers through the seedbank (Menges & 
Kohfeldt, 1995). We used demographic data from a single population 
that forms part of a well-studied meta-population at the Archbold 
Biological Station, Florida (Appendix A4.1; Menges & Quintana-
Ascencio, 2004).

Altering the frequency of fires is one possible management strat-
egy for this endangered species. The recommended FRI for this spe-
cies of <15 years (Menges & Quintana-Ascencio, 2004) differs from 
the 15–30 year recommendations for its Florida scrubland habitat 
(Menges, 2007). Alternative management strategies may therefore 
be required for Eryngium. We use perturbation analyses to deter-
mine how altering FRIs and the effect of fire on the vital rates affects 
population growth.

The Eryngium IPM (Appendix A4.2) was structured by the nat-
ural logarithm of rosette diameter (Menges & Quintana-Ascencio, 
2004). We assume density independent dynamics to investigate the 

persistence of the population (Menges & Quintana-Ascencio, 2004; 
see Appendix A5 for model with density dependent recruitment). 
The intercepts of four vital rates were assumed to be temporally 
variable (survival, growth, flowering probability, and the number of 
flowering stems; Appendix A4.3). As the demography of Eryngium is 
strongly affected by fire, we modelled the mean of the latent param-
eter (Q) as a linear function of time-since-fire (TSF; Appendix A4.3). 
Flowering and the number of flowering stems were highly cor-
related, so the flowering (εf) and (εb) year effects were sampled from 
a bivariate normal distribution. Sampling these parameters from 
univariate distributions results in the latent variable failing to fully 
account for the covariation among the vital rates (Appendix A4.3). 
Posterior samples were again drawn using MCMC sampling in JAGS, 
using runjags (Denwood, 2016). Weakly informative priors were 
used (Appendix A4.3; see Appendix A3 for a comparison with more 
informative priors). The vital rates were negatively related with TSF, 
with survival particularly strongly affected (Appendix A4.4).

The posterior means were used to parameterise an IPM 
(Appendix A4.4). At each iteration, the latent parameter (Q) was 
randomly sampled from a normal distribution with mean βtsf × TSF 
and standard deviation of one. Submodel-specific year effects were 
drawn from normal distributions (bivariate normal for flowering 
and flowering stems), with means of zero and the estimated (co)
variances. Estimates of germination probability range from 0 to 0.1 
and 0.005 to 0.04 for first (hf) and second year germination (hb) re-
spectively (Menges & Quintana-Ascencio, 2004; Quintana-Ascencio 
& Menges, 2000). To select a fertility scenario for the perturbation 
analyses predicted dynamics using a range of these estimates and of 
seed mortality probabilities (0.5, 0.7, 0.9) were compared to those 
observed in the field (Appendix A4.5). A model with low first year 
germination (0.0), high germination from the seedbank (0.04) and 
low seed mortality (0.5) was selected as it was consistent with ob-
served changes in aboveground population growth (Figure 4a). That 
is, aboveground populations were predicted to increase immedi-
ately following a fire, but not beyond 10 years postfire (Menges & 
Quintana-Ascencio, 2004).

4.2 | Perturbation analyses

The effects of different fire regimes were explored using a range 
of constant FRIs from two to 30 years (Appendix A4.6). Stochastic 
population growth rates were estimated by iterating 100 popula-
tions for 1,000 years; the first 200 years were excluded as transient 
dynamics. We found populations were likely to decline where the 
time between fires was too short (c. <4 years), because plants do 
not produce enough seeds to replenish the seedbank, or too long 
(c. >15 years; Figure 4b), as they are outcompeted. This is in accord-
ance with a previous study, using a matrix selection approach, which 
found an optimal FRI of less than 15 years (Menges & Quintana-
Ascencio, 2004).

To determine how altering the effect of fire on the vital rates 
affected population growth the βtsf parameter was perturbed 
(Appendix A4.6). This is a measure of how quickly the environment 
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decays as TSF increases; more negative values of this parameter in-
dicate the quality of the environment decreases more quickly fol-
lowing a fire. Stochastic population growth rates were estimated as 
before, but the fire regimes were varied randomly throughout the 
simulations (with the same chance of each FRI occurring), either be-
tween 1 and 15 years (optimum for Eryngium) or between 15 and 
30 years (optimum for Florida scrub habitat). Decreasing βtsf by 
around 1/3 could make a 15:30 year FRI strategy sustainable for 
Eryngium (Figure 4c). The effect of altering the temporal decay of 
the environment is much higher when the FRI is higher, to the extent 
that decreasing βtsf sufficiently can make longer FRIs preferable for 
Eryngium (Figure 4c).

5  | DISCUSSION

Identifying the environmental drivers of variation in demographic 
performance is challenging. A variety of approaches have been 
proposed (e.g., Teller, Adler, Edwards, Hooker, & Ellner, 2016; Van 
der Pol et al., 2016), but the performance of any method is limited 
by the degree of temporal replication available. The mean length 
for a demographic dataset is 6 years in plants and eleven in ani-
mals (Salguero-Gomez et al., 2015, 2016). Yet, simulations suggest 
20–25 years of data are needed to identify putative environmental 
drivers, determine the temporal window over which they act and re-
liably estimate the magnitude of their effects (Teller et al., 2016; Van 
der Pol et al., 2016). Efforts to identify drivers in many of these pop-
ulations will not succeed, forcing population ecologists to assess the 
likely effects of environmental change using indirect methods. The 
observation that, in natural populations, different components of 
demographic performance covary, often positively, (Jongejans et al., 
2010; Nur & Sydeman, 1999; Rotella et al., 2012) implies different 
demographic processes respond (at least in part) to the same drivers. 

We have demonstrated how a factor analytic (FA) framework can be 
used to incorporate a temporal axis of environmental variation into a 
demographic model. The resulting multi-process model—coupled via 
a latent “environmental quality” variable—requires fewer parameters 
than its unstructured (UCM) counterpart.

The advantage of adopting the FA approach depends on the 
application domain. Accounting for vital rate covariation can be im-
portant for estimating stochastic population growth rate. For exam-
ple, Metcalf et al. (2015) demonstrated that parameter and element 
selection approaches were roughly comparable in terms of accuracy 
as long as covariance amongst the vital rates were taken into ac-
count. In principle, an FA model might yield more precise estimates 
of population growth because it requires fewer parameters than its 
unstructured (UCM) counterpart, though this comes at a potential 
cost of increased bias when the model is insufficiently flexible. In 
practice, we found that the UCM and FA approaches yielded com-
parable estimates of population growth rate in our simulation study, 
indicating that sampling error was the dominant source of uncer-
tainty in predicted population growth rate. Thus, the FA approach 
may offer little advantage over standard UCM models when estimat-
ing stochastic growth rate. The goal of a retrospective analysis is to 
attribute realised variation in a statistic such as population growth 
rate to different drivers of variation. Temporal covariances can be 
important in this context. For example, between one half and one-
third of the variation in population growth was accounted for by co-
variation among vital rates in three ungulate populations (Coulson, 
Gaillard, & Festa-Bianchet, 2005), though this result is far from uni-
versal in nature (Compagnoni et al., 2016). The FA model could be 
used as a basis for such analyses, though in practice all this would 
achieve is to attribute covariance contributions to latent variable(s).

The main advantage of using a FA model is that it identifies 
the main axis of demographic variation, which then provides a 
basis for prospective analysis of how populations may respond to 

F IGURE  4  (a) Aboveground population growth rate for Eryngium 
(

r= log
(

Nt

Nt−1

))

 estimated from 1,000 simulations of 22 years. Black 
points show the median, thicker and thinner blue bars show the interquartile range and 95% quantiles respectively. Red points are the 
observed growth rates for the study population and three other populations (site numbers 45, 57, and 91) with similar fire return intervals 
(FRIs). (b) Log λs under different FRI. (c) Effect of changing value of βtsf on log λs under two different FRIs. Dotted vertical line shows the 
estimated value of βtsf. In all plots hf = 0.0, hb = 0.04 and d = 0.5. Points show the median, thicker bars and thinner bars show interquartile 
range and 95% quantiles respectively
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environmental change. When it is not possible to explicitly identify 
environmental drivers of demographic variation, local perturba-
tion analysis of model parameters can be used to explore the po-
tential response of a population to environmental change (Rees & 
Ellner, 2009). These analyses typically consider each parameter in 
turn, assessing its effect on metrics such as population growth rate 
while holding all else constant. However, the existence of (positive) 
temporal correlations among demographic processes suggests mul-
tiple processes respond in a coordinated manner to environmen-
tal change. An FA model allows us to identify the potential axis of 
change and, by focusing perturbation analyses on this axis, makes 
population level predictions under different environmental condi-
tions possible. For example, this allowed us to make predictions on 
how life histories may evolve under putative environmental condi-
tions. We identified how the environmental quality would have to 
change for Carduus to alter its flowering strategy; showing that in-
creases in its average vital rates, in particular survival, will lead to 
selection for a perennial life history. Whilst we focus here on tem-
poral variation this approach could also be used to predict joint de-
mographic responses to spatial variation or extended to incorporate 
spatial-temporal variation (Elderd & Miller, 2016).

The key limitation is that this interpretation of the FA model as-
sumes the temporal covariances are largely environmentally driven. 
This may not be true if individuals substantially adjust their allocation 
strategy in response to environmental conditions. Negative correla-
tions among the vital rates may exist due to life-history trade-offs be-
tween vital rates, where, for example, resources are invested in survival 
or reproduction to the detriment of growth (Koenig & Knops, 1998). 
Negative correlations appear relatively rare, however (Jongejans et al., 
2010), and where they do exist are sometimes attributable to opposing 
responses to environmental drivers (e.g., Knops et al., 2007). This sug-
gests the magnitude of trade-off effects is generally small compared to 
that of environmental effects, though life-history trade-offs may still 
attenuate environmental driver(s) of covariation. Note that whilst a FA 
approach can still be used where the covariances among vital rates are 
negative the interpretation of the latent variable is more difficult here. 
That is, the latent variable can only be assumed to be a measure of 
environmental quality where the vital rates positively covary.

Explicitly incorporating putative environmental drivers allows 
population responses to management strategies or anticipated en-
vironmental change to be predicted (e.g., Gotelli & Ellison, 2006; 
Isaza et al., 2016). The FA approach can simplify the process of 
incorporating such drivers, as they can be included into a single 
model of the shared environmental axis. Where explicit environ-
mental drivers (e.g., population density or temperature) can be 
identified, these are typically considered on a process-specific 
basis, by constructing separate models for survival, reproduction, 
growth, and recruitment (e.g., Dahlgren, Ostergard, & Ehrlen, 
2014; Williams et al., 2015). This would require the addition of 
four time-since-fire slope parameters in our Eryngium case study, 
one for each temporally variable vital rate (e.g., Evans et al., 2010). 
Instead we introduced a higher level model, decomposing the 
shared axis of environmental variation into explained and residual 

components of variation. Thus the effects of time-since-fire on 
all four vital rates were incorporated with the addition of a single 
parameter. This allowed us to evaluate the population level effects 
of two alternative management strategies; that is, altering the dis-
turbance regime or ameliorating the environment to decrease the 
rate of decay in environmental quality following a disturbance. 
We found that whilst the optimum FRI for Eryngium is less than 
15 years, decreasing the rate of environmental decay could lead to 
persistent populations under 15–30 year fire regimes (the recom-
mended FRI for the Florida scrub habitat; Menges, 2007).

Similar approaches to our analysis have been used previously 
(Elderd & Miller, 2016; Evans & Holsinger, 2012; Evans et al., 2010). 
However, in previous models the slope terms for the environmental 
quality parameter (βQ) were constrained to a value of +1 or −1 among 
a set of demographic models. These usually operate on different 
scales. For example, probabilities such as survival and flowering are 
typically estimated on a logit scale, whereas fecundity is generally 
estimated on a log scale; a unit change on these two scales cannot 
be meaningfully compared. Moreover, differences in the magnitude 
of the effect of temporal variation among the vital rates were ac-
counted for by the process-specific year effects (ε). Thus the main 
advantage of the FA approach is lost, as the latent variable cannot be 
conceived as a measure of overall environmental quality.

Adopting a Bayesian approach has a number of benefits (Elderd & 
Miller, 2016), for example, allowing the effects of difference sources 
of uncertainty to be quantified (Evans et al., 2010). Uncertainty 
is likely to be very high for most datasets (Metcalf et al., 2015). 
Parameter uncertainty can have important ecological implications, 
for example, failing to account for it may underestimate the risk of 
extinction (Ludwig, 1996). Carrying out a range of checks following 
model fitting (Appendix A1.3) can help to increase the accuracy 
of the model output. Such checks are particularly important when 
fitting very constrained models, for example, when assuming the 
temporal covariation in the vital rates may be explained by a single 
environmental axis. Sometimes, as in the Eryngium case study, addi-
tional axes may be necessary to fully account for the covariation in 
the vital rates. We recommend starting with a simple model struc-
ture and slowly adding in complexity (Appendix A1.3).

Rapid levels of environmental change have increased interest in 
determining how population processes respond to environmental sto-
chasticity (Evans, 2012; Stenseth et al., 2002). However, the long-term 
individual level data needed to accurately quantify such responses are 
often lacking, especially for rare species. Where positive covariance 
exists among vital rates these can be exploited under a FA approach to 
allow predictions on the joint responses of vital rates to environmental 
variation. Where insufficient data exist to identify putative environ-
mental drivers the FA approach may offer the best alternative for pre-
dicting population responses to environmental change.
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