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Abstract
1.	 Temporal	variability	in	the	environment	drives	variation	in	vital	rates,	with	conse-
quences	 for	 population	dynamics	 and	 life-history	 evolution.	 Integral	 projection	
models	(IPMs)	are	data-driven	structured	population	models	widely	used	to	study	
population	 dynamics	 and	 life-history	 evolution	 in	 temporally	 variable	 environ-
ments.	However,	many	datasets	have	insufficient	temporal	replication	for	the	en-
vironmental	drivers	of	vital	rates	to	be	identified	with	confidence,	 limiting	their	
use	for	evaluating	population	level	responses	to	environmental	change.

2.	 Parameter	selection,	where	the	kernel	is	constructed	at	each	time	step	by	randomly	
selecting	 the	 time-varying	 parameters	 from	 their	 joint	 probability	 distribution,	 is	
one	approach	to	including	stochasticity	in	IPMs.	We	consider	a	factor	analytic	(FA)	
approach	for	modelling	the	covariance	matrix	of	time-varying	parameters,	whereby	
latent	 variable(s)	 describe	 the	 covariance	 among	 vital	 rate	 parameters.	 This	 de-
creases	the	number	of	parameters	to	estimate	and,	where	the	covariance	is	posi-
tive,	the	latent	variable	can	be	interpreted	as	a	measure	of	environmental	quality.	
We	demonstrate	this	using	simulation	studies	and	two	case	studies.

3.	 The	simulation	studies	suggest	the	FA	approach	provides	similarly	accurate	esti-
mates	of	stochastic	population	growth	rate	to	estimating	an	unstructured	covari-
ance	matrix.	We	demonstrate	how	the	latent	parameter	can	be	perturbed	to	show	
how	selection	on	reproductive	delays	 in	 the	monocarp	Carduus nutans changes 
under	different	environmental	conditions.	We	develop	a	demographic	model	of	
the	fire	dependent	herb	Eryngium cuneifolium	to	show	how	a	putative	driver	of	the	
variation	in	environmental	quality	can	be	incorporated	with	the	addition	of	a	sin-
gle	parameter.	Using	perturbation	analyses	we	determine	optimal	management	
strategies	for	this	species.

4.	 This	approach	estimates	fewer	parameters	than	previous	approaches	and	allows	
novel	eco-evolutionary	insights.	Predictions	on	population	dynamics	and	life-his-
tory	 evolution	 under	 different	 environmental	 conditions	 can	 be	made	without	
necessarily	 identifying	causal	factors.	Putative	environmental	drivers	can	be	in-
corporated	with	relatively	few	parameters,	allowing	for	predictions	on	how	popu-
lations	will	respond	to	changes	in	the	environment.
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1  | INTRODUC TION

Environmental	variation	causes	vital	rates	to	vary,	affecting	population	
dynamics	 and	 life-	history	 evolution	 (Benton	 &	 Grant,	 1996;	 Boyce,	
Haridas,	Lee,	&	NCEAS	stochastic	demography	working	group,	2006).	
Interest	in	understanding	the	ecological	consequences	of	environmen-
tal	variation	has	 increased	 rapidly	as	a	consequence	of	global	 climate	
change	(Evans,	2012;	Stenseth	et	al.,	2002).	As	experimental	approaches	
to	determining	how	natural	populations	are	affected	by	environmental	
variation	are	frequently	impractical,	structured	demographic	models	are	
often	used	to	understand	the	population	 level	effects	of	environmen-
tal	change	(Coulson,	2012).	Environmental	effects	on	vital	rates	can	be	
complex,	 with	 nonlinear	 effects,	 multiple	 interacting	 drivers,	 indirect	
effects,	 and	 correlations	 between	 the	 drivers	 (Darling	&	 Cote,	 2008;	
Ehrlen,	Morris,	 von	 Euler,	 &	 Dahlgren,	 2016;	 Parmesan	 et	al.,	 2013).	
These	challenges,	and	the	relatively	short	length	of	many	demographic	
datasets	(Salguero-	Gomez	et	al.,	2015,	2016),	mean	it	is	often	difficult	
to	identify	explicit	environmental	drivers	of	vital	rates.	This	restricts	the	
ability	of	models	 to	predict	how	populations	will	 respond	 to	environ-
mental	change	(Crone	et	al.,	2013).

Environmental	variation	can	drive	covariation	amongst	vital	rates	
(Doak,	Morris,	Pfister,	Kendall,	&	Bruna,	2005;	Tomimatsu	&	Ohara,	
2010).	All	 else	equal,	 failing	 to	account	 for	 this	 covariation	will	 bias	
model	outputs	(Fieberg	&	Ellner,	2001;	Metcalf	et	al.,	2015).	Positive	
covariance	among	vital	rates,	occurring	when	multiple	vital	rates	are	
affected	 by	 the	 same	 environmental	 drivers	 (Jongejans,	 de	 Kroon,	
Tuljapurkar,	&	 Shea,	 2010),	 increases	 the	variance	 of	 the	 stochastic	
population	growth	rate.	Negative	covariance	can	also	occur	as	a	result	
of	trade-	offs	between	rates	or	from	opposing	effects	of	environmental	

variables	 on	 different	 rates	 (Jongejans	 &	 De	 Kroon,	 2005;	 Knops,	
Koenig,	&	Carmen,	2007).	However,	in	plants,	covariation	is	predom-
inantly	 positive	 (Jongejans	 et	al.,	 2010),	 and	positive	 covariance	 ap-
pears	widespread	among	other	taxa	including	mammals	(e.g.,	Rotella,	
Link,	 Chambert,	 Stauffer,	 &	 Garrott,	 2012)	 and	 birds	 (e.g.,	 Jenkins,	
Watson,	&	Miller,	1963;	Nur	&	Sydeman,	1999).

Stochastic	demographic	models,	such	as	matrix	population	models	
(MPMs;	see	Caswell,	2001)	and	 integral	projection	models	 (IPMs;	see	
Ellner,	Childs,	&	Rees,	2016),	are	widely	used	to	study	population	dynam-
ics	in	temporally	variable	environments	(e.g.,	Inchausti	&	Weimerskirch,	
2001;	Vindenes	et	al.,	2014).	In	an	IPM	the	annual	transitions	are	given	
by	 kernels,	 typically	 parameterised	 by	 estimating	 state-	fate	 relation-
ships.	Stochastic	models	allow	the	state-	fate	relationships	to	vary	tem-
porally	(or	spatially),	using	either	parameter	or	kernel	selection	(Metcalf	
et	al.,	2015).	Under	a	kernel	selection	approach,	a	projection	kernel	 is	
estimated	 for	 each	 year	 and	 these	 are	 resampled	 (Rees	 et	al.,	 2006;	
Williams,	 Jacquemyn,	 Ochocki,	 Brys,	 &	 Miller,	 2015);	 this	 preserves	
the	covariance	amongst	the	vital	rates.	Using	a	parameter	selection	ap-
proach,	a	unique	kernel	 is	constructed	at	each	time	step	by	randomly	
selecting	 the	 time-	varying	parameters	 from	 their	 joint	probability	dis-
tribution	 (Morris	&	Doak,	2002;	Rees	&	Ellner,	2009;	Vindenes	et	al.,	
2014).	A	potential	limitation	of	the	parameter	selection	approach	is	that	
an	unstructured	covariance	matrix	must	be	estimated	for	the	set	of	time-	
varying	parameters,	often	from	relatively	few	temporal	replicates.

An	 alternative	 to	 estimating	 an	 unstructured	 covariance	matrix	 is	
to	use	 a	 structured	model	 for	 the	 temporal	 parameters	 (co)variances.	
Hierarchical	(multilevel)	factor	analysis	(FA;	Figure	1a),	whereby	one	or	
more	latent	variables	are	introduced	to	capture	the	temporal	covariance	
among	vital	 rate	parameters,	 is	a	promising	candidate	 (Marcoulides	&	
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F IGURE  1 Structure	of	the	stochastic	vital	rate	models	for	the	simple	life-	history	simulation	using	the	(a)	factor	analytic	(FA)	approach	
and	(b)	unstructured	covariance	matrix	(UCM)	approach.	In	the	FA	approach	factor-	loading	terms	(βQ)	allowed	the	direction	and	magnitude	
of	the	latent	parameter	(Q)	to	differ	among	the	vital	rates.	Submodel-	specific	year	effects	(ε)	accounted	for	additional	variation	among	years.	
In	the	UCM	approach	a	fully	unstructured	covariance	matrix	(Σ)	was	estimated	by	sampling	the	year	effects	(ε)	from	a	multivariate	normal	
distribution.	β0	parameters	are	the	intercepts	and	βz	are	slopes	with	respect	to	size.	The	subscript	t	denotes	stochastic	parameters
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Moustaki,	2013).	The	latent	variable(s)	represent	the	underlying	causes	
of	covariation	among	observed	variables,	allowing	complex	multivariate	
relationships	to	be	described	in	a	simple	way.	Moreover,	these	models	
effectively	 capture	 hypotheses	 about	 causal	 variables	 that	 cannot	 be	
directly	measured	 (Grace,	Anderson,	Olff,	&	 Scheiner,	 2010;	Grace	&	
Bollen,	2008).	The	FA	approach	can	also	be	extended	to	include	puta-
tive	underlying	drivers	of	variation	in	the	latent	variables,	which	allows	
covariance	to	be	partitioned	into	explained	and	unexplained	sources	of	
variation.	However,	despite	the	broad	use	of	FA	approaches	in	ecological	
research	(e.g.,	Ohlberger,	Scheuerell,	&	Schindler,	2016;	Thorson	et	al.,	
2015;	 Zuur,	 Fryer,	 Jolliffe,	Dekker,	&	Beukema,	 2003)	 they	 are	 rarely	
used	to	parameterise	demographic	models.

This	 approach	 has	 two	 potential	 advantages.	 First,	 fewer	 parame-
ters	need	to	be	estimated	relative	to	an	unstructured	covariance	matrix.	
Second,	a	small	number	of	latent	variables	(often	just	one)	may	account	
for	the	covariation	among	the	vital	rates.	When	this	covariance	is	positive,	
the	latent	variable(s)	can	be	interpreted	as	axes	of	environmental	quality	
or	suitability,	where	positive	values	of	a	single	latent	variable	correspond	
to	environments	in	which	survival,	growth,	and	reproduction	are	all	higher	
than	average.	The	latent	term(s)	then	represent	a	target	for	further	analy-
sis.	For	example,	perturbing	the	latent	parameter	allows	predictions	to	be	
made	on	the	effects	of	environmental	change	on	population	dynamics	or	
life-	history	evolution.	Where	the	degree	of	temporal	replication	in	the	data	
is	insufficient	for	environmental	drivers	to	be	identified	this	may	represent	
the	best	alternative	for	exploring	how	changes	in	the	stochastic	part	of	the	
environment	affect	such	processes.	This	method	is	not	dissimilar	to	the	
use	of	broad	scale	climate	indices,	such	as	the	North	Atlantic	Oscillation,	as	
proxies	for	local	environmental	conditions	(Ottersen	et	al.,	2001).	Such	in-
dices	do	not	directly	influence	the	vital	rates,	but	as	they	provide	an	index	
of	the	overall	climate	conditions,	incorporating	multiple	local	climate	vari-
ables,	they	are	often	better	predictors	of	the	vital	rates	than	local	climate	
variables	(Post	&	Stenseth,	1999;	Stenseth	&	Mysterud,	2005).

We	conduct	simulation	studies	to	compare	the	accuracy	of	the	FA	
approach	 to	 a	 standard	 parameter	 selection	 approach,	with	 different	
numbers	 of	 temporally	 varying	 parameters.	 We	 then	 apply	 the	 ap-
proach	in	two	case	studies.	We	construct	a	demographic	model	of	the	
monocarpic	perennial	Carduus nutans,	and	show	how	the	latent	param-
eter	 can	be	perturbed	 to	make	predictions	 about	optimal	 life-	history	
strategies	under	changing	environments.	We	explore	how	selection	for	
strategies	to	delay	reproduction	differs	as	the	mean	and	variance	of	en-
vironmental	quality	changes.	Finally,	we	develop	a	demographic	model	
of	 the	rare	herb	Eryngium cuneifolium	 to	show	how	an	environmental	
variable	(time-	since-	fire)	can	be	incorporated	as	a	putative	driver	of	vari-
ation	in	the	latent	variable.	We	use	perturbation	analyses	to	determine	
the	optimal	fire	return	interval	(FRI)	for	managing	this	species.

2  | SIMUL ATION STUDY: COMPARING 
FAC TOR ANALY TIC AND UNSTRUC TURED 
APPROACHES

We	 compared	 the	 accuracy	 of	 population	 growth	 estimates	 from	
the	FA	approach	to	those	derived	using	an	unstructured	covariance	

matrix.	We	 considered	 two	 scenarios:	 a	 relatively	 simple	 life	 his-
tory	with	 four	 temporally	 variable	vital	 rates	 (the	 “simple	model”),	
typical	of	many	published	IPMs,	and	a	two-	stage	(juvenile	and	adult)	
life	history	with	a	total	of	seven	temporally	variable	vital	rates	(the	
“complex	model”).	Demographic	rate	functions	in	both	settings	were	
parameterised	using	data	from	a	long-	term	study	of	the	St	Kilda	Soay	
sheep	(Clutton-	Brock	&	Pemberton,	2004).	These	were	used	to	con-
struct	a	pair	of	density	independent	individual-	based	models	(IBMs;	
Appendices	A1.1.1	and	A1.2.1),	from	which	simulated	datasets	could	
be	generated.	Only	 the	correlation	coefficients	 for	 the	 temporally	
varying	parameters	were	 allowed	 to	 vary	 in	 each	 simulation,	 such	
that	 on	 each	 occasion,	 a	 correlation	matrix	was	 drawn	 at	 random	
from	a	uniform	distribution	over	the	space	of	positive	definite	matri-
ces	(using	rcorrmatrix	from	the	clusterGeneration	package	in	R;	Qiu	
&	Joe,	2015).

One	 hundred	 simulated	 datasets	 of	 8,000	years	 were	 gener-
ated	from	each	of	the	two	IBMs.	A	range	of	realistic	dataset	lengths	
were	sampled:	12,	25,	and	50	years	(Appendices	A1.1.1	and	A1.2.1).	
Multivariate	demographic	models	were	then	parameterised	using	an	
unstructured	covariance	matrix	 (UCM	approach)	and	a	 latent	vari-
able	 (FA	 approach)	 parameterisation	 (Figure	1;	 Appendices	A1.1.3	
and	A1.2.3).	Under	the	FA	approach	each	vital	rate	is	estimated	as	a	
function	of	a	shared,	unobserved	latent	variable	(Q),	which	accounts	
for	the	covariation	among	the	vital	rates.	For	example,	in	the	simple	
simulation,	the	probability	of	survival	(s)	for	an	individual	of	size	z in 
year t is given by 

where �s
0
	is	the	intercept,	�s

z
 and �s

Q
	are	slopes	with	respect	to	size	and	

the	 latent	variable,	respectively,	and	�s
t
	accounts	for	any	remaining	

temporal	 variation.	The	 remaining	vital	 rates	are	 structurally	 anal-
ogous	to	Equation	(1),	differing	only	 in	their	distributional	assump-
tions	(Figure	1a).	Alternatively,	under	the	UCM	approach	each	vital	
rate	 contains	 a	 random	year	effect	 (εt;	 Figure	1b),	 sampled	 from	a	
multivariate	normal	distribution.

In	 the	 simple	 model,	 10	 parameters	 (4	 variance	 and	 6	 covari-
ances)	account	for	the	temporal	variation	using	the	UCM	approach,	
whereas	the	FA	approach	estimates	eight	parameters.	 In	the	com-
plex	model	28	parameters	are	required	for	the	UCM	approach	and	
14	for	the	FA	approach.	The	demographic	models	were	fitted	using	
Bayesian	methods,	 implemented	 in	JAGS	(Plummer,	2003)	and	run	
using	the	runjags	package	(Denwood,	2016)	in	r	(R	Core	Team,	2016).

IPMs	 were	 constructed	 from	 each	 set	 of	 posterior	 samples	
(Appendices	A1.1.2	and	A1.2.2).	The	stochastic	population	growth	
rate	 (λs)	 was	 estimated	 after	 excluding	 the	 first	 2,000	years	 of	 a	
5,000	year	simulation.	This	was	repeated	with	1,000	samples	from	
the	posterior.	The	true	stochastic	population	growth	rate	(λt)	was	es-
timated	using	an	IPM	parameterised	with	the	true	parameter	values	
used	in	the	IBM.

The	results	of	the	simulation	study	are	summarised	in	Figure	2.	
The	 UCM	 approach	 led	 to	 marginally	 less	 diffuse	 estimates	 of	
stochastic	 population	 growth	 rate	 than	 the	 FA	 approach.	 This	
was	 true	 for	 both	 the	 simple	 (Figure	2a)	 and	 complex	 (Figure	2b)	
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models.	However,	even	with	12	years	of	 temporal	 replication	 the	
differences	 between	 the	 performance	 of	 the	 two	 methods	 was	
small,	 and	with	 25	years	 of	 replication	 both	methods	 performed	
well	 (0.8	≤	λs/λt	≤	1.1).	 The	 estimates	 of	 stochastic	 population	
growth	 rate	were	 strongly	 correlated	 between	 the	 two	methods	
(0.88	<	ρ	<	0.99	 and	 0.93	<	ρ	<	0.97	 for	 the	 simple	 and	 complex	
models	respectively),	indicating	that	most	of	the	among-	simulation	
variation	in	the	stochastic	population	growth	rate	arises	from	sam-
pling	variation	rather	than	the	choice	of	model	for	the	time-	varying	
parameters.

The	accuracy	of	parameter	estimates	under	the	FA	and	UCM	
approaches	 was	 very	 similar	 (Appendices	A1.1.4	 and	 A1.2.4).	
Carrying	out	a	variety	of	model	checks	may	help	to	 improve	the	
accuracy	 of	 the	 models,	 for	 example,	 under	 the	 FA	 approach	
here	we	 assume	 a	 single	 latent	 variable	 can	 account	 for	 the	 co-
variation	among	the	vital	rates,	which	may	not	always	be	the	case	
(Appendix	A1.3).

3  | C A SE STUDY 1:  THE EFFEC T 
OF ENVIRONMENTAL QUALIT Y ON 
REPRODUC TIVE DEL AYS IN C ARDUUS 
NUTANS

3.1 | Background and methods

Carduus nutans	 is	 a	monocarpic	 thistle	with	a	persistent	 seedbank	
and	 short-	lived	 rosettes	 (Appendix	A2.1;	 Popay	 &	 Medd,	 1990;	
Wardle,	 Nicholson,	 &	 Rahman,	 1992).	We	 use	 a	 FA	model	 to	 ex-
plore	how	environmental	change	may	affect	selection	for	reproduc-
tive	 delays	 in	 this	 species.	 Reproductive	 delays	 can	 act	 as	 a	 form	
of	diversified	bet	hedging,	spreading	a	cohort	across	multiple	years	
and	therefore	decreasing	the	effect	of	a	bad	year	on	the	cohort	as	
a	whole	 (Childs,	Metcalf,	 &	 Rees,	 2010;	 Cohen,	 1966;	 Rees	 et	al.,	
2006;	 Tuljapurkar,	 1990).	 In	 monocarpic	 perennial	 plants,	 repro-
duction	may	be	deferred	preestablishment,	through	a	seedbank,	or	
postestablishment,	through	a	delay	in	flowering	(Childs,	Rees,	Rose,	

F IGURE  2 Ratio	between	the	estimated	(λs)	and	true	(λt)	stochastic	population	growth	rates	for	the	factor	analytic	(FA)	and	unstructured	
covariance	matrix	(UCM)	approaches	for	the	(a)	simple	and	(b)	complex	models.	The	points	are	clustered	according	to	the	length	of	the	
demographic	dataset	used	to	parameterise	the	IPM	(12,	25	or	50	years).	To	prevent	overplotting	only	25	of	the	100	simulations	are	
shown	here	(see	Appendices	A1.1.4	and	A1.2.4	for	results	of	all	simulations).	Points	are	the	median	and	lines	show	the	interquartile	range	
across	1,000	samples	from	the	posteriors	for	each	simulation.	The	dashed	line	is	at	one,	where	the	estimated	growth	rate	equals	the	true	
growth	rate.	True	λ	ranges	between	0.98–1	and	0.97–0.99	for	the	simple	and	complex	models	respectively.	Median	estimates	of	λ	from	the	
simulations	range	between	0.65–1.12	and	0.82–1.13	for	the	simple	and	complex	models	respectively
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Grubb,	&	Ellner,	2004;	Rees	et	al.,	2006).	Post-	establishment	delays	
have	 the	 additional	 benefit	 of	 higher	 fecundity	 as	 individuals	may	
grow	larger,	producing	more	seeds	(Rees	et	al.,	2006).

We	define	the	fittest	strategy	to	be	the	evolutionary	stable	strat-
egy	(ESS).	The	predicted	ESS	for	the	study	population	is	substantial	
seed	dormancy	and	the	majority	of	plants	to	flower	in	their	first	year,	
with	a	flowering	probability	of	c.	0.75	for	an	average	sized	individual	
(Rees	et	al.,	2006).	Using	our	framework	we	predict	how	changes	to	
the	average	or	variability	of	the	environment	affect	the	ESS	germi-
nation	and	flowering	strategy.	We	reparameterised	the	IPM	of	Rees	
et	al.	(2006;	Appendix	A2.2).	The	model	is	structured	by	the	natural	
logarithm	of	 rosette	area	 (z),	 a	measure	of	plant	 size	 that	predicts	
individual	 performance.	 Four	 stochastic	 vital	 rate	 functions,	 with	
temporally	variable	intercepts,	were	estimated;	survival,	growth,	re-
cruitment,	and	recruit	size	(Appendix	A2.3).

The	vital	rate	parameters	were	estimated	using	MCMC	sampling	
in	 JAGS	 through	 runjags	 (Denwood,	2016).	 The	prior	distributions	
were	weakly	informative	(i.e.,	within	biologically	reasonable	ranges)	
to	improve	mixing	(Appendix	A2.3;	see	Appendix	A3	for	comparison	
with	more	 informative	priors).	The	95%	credible	 intervals	of	many	
parameters	were	relatively	wide	(Appendix	A2.4),	as	a	result	of	the	
short	temporal	extent	(8	years)	of	this	dataset.	Here,	to	keep	things	
simple,	as	this	is	just	an	example	case	study	for	the	factor	analytic	
approach,	 we	 parameterise	 the	 IPM	 using	 the	 posterior	 means.	
Thus	we	do	not	consider	the	effect	of	this	uncertainty	on	the	model	

output.	By	drawing	samples	randomly	from	the	posterior	instead	it	
would	be	possible	to	give	a	measure	of	parameter	uncertainty	and	
the	impacts	of	this	on	the	results	of	the	perturbation	analyses	below	
(e.g.,	 Diez,	 Giladi,	 Warren,	 &	 Pulliam,	 2014;	 Evans,	 Holsinger,	 &	
Menges,	2010).	Posterior	checks	suggested	the	latent	parameter	(Q)	
accounted	for	the	covariation	among	the	vital	rates	(Appendix	A2.4).	
The	positive	covariance	among	the	vital	rates	means	the	latent	pa-
rameter	can	be	assumed	to	be	a	measure	of	environmental	quality.	
The	highest	levels	of	temporal	variation	were	in	survival	and	recruit-
ment	(Appendix	A2.4).

At	each	year	in	the	simulation	the	latent	parameter	(Q)	was	sam-
pled	from	a	normal	distribution	with	a	mean	of	zero	and	a	standard	
deviation	of	one.	The	submodel-	specific	year	effects	(ε)	were	drawn	
from	normal	distributions	with	means	of	zero	and	the	standard	de-
viations	 (σt)	estimated	 in	 the	vital	 rates	model.	The	 joint	 flowering	
intercept	 and	 germination	 probability	 ESS	 were	 predicted	 using	
numerical	 invasion	 analysis	 (Childs	 et	al.,	 2004)	 and	 were	 similar	
to	those	produced	using	a	fixed	effects,	kernel	selection	approach	
(Appendix	A2.5;	Rees	et	al.,	2006).

3.2 | Perturbation analyses

A	prospective	sensitivity	analysis	was	used	to	determine	how	selec-
tion	on	delayed	flowering	and	germination	may	change	as	the	mean	
and	variance	of	 environmental	quality	 (Q)	 changes.	The	mean	and	

F IGURE  3 Effect	of	changing	the	
mean	(a	&	b)	and	variability	(standard	
deviation;	c	&	d)	of	the	environmental	
quality	(Q)	on	the	joint	evolutionary	stable	
strategy	(ESS)	flowering	intercept	and	
germination	strategies	at	different	levels	
of	seed	mortality	(d)	in	Carduus.	Threshold	
flowering	size	is	calculated	as	−� f
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standard	deviations	of	Q	were	 varied	on	 a	 fixed	 grid	 and	 the	ESS	
were	predicted	at	each	value.	This	was	repeated	for	a	range	of	seed	
mortalities	(d	=	0.01,	0.1,	0.2…0.9,	0.99;	Rees	et	al.,	2006).

As	the	quality	of	the	environment	deteriorates	there	is	selec-
tion	for	earlier	flowering	and	reduced	germination,	while	improv-
ing	the	quality	of	the	environment	leads	to	the	opposite	response,	
that	 is,	 selection	 for	 a	perennial	 life	 history	dominates	 in	higher	
quality	environments	(Figure	3	and	Appendix	A2.6).	In	lower	qual-
ity	 environments	 selection	 acts	 on	 the	 germination	 probability,	
delaying	reproduction	preestablishment	by	increasing	the	chance	
of	 seeds	 entering	 the	 seedbank.	 Decomposing	 the	 changes	 in	
ESS	into	the	effects	of	the	different	vital	rates	suggests	that	the	
changes	in	flowering	size	are	mainly	driven	by	changes	in	survival	
(Appendix	A2.7).	 The	 estimated	 survival	 probability	 increases	
from	0.04	to	0.73	with	an	increase	in	Q	from	0	to	2	for	a	rosette	
of	log	size	1.95	(study	population	mode).	With	a	mean	Q	of	2	there	
is	an	advantage	in	delaying	reproduction,	as	the	risk	of	mortality	
is	relatively	small	and	larger	plants	can	produce	more	seeds;	here,	
selection	acts	on	the	flowering	size,	 increasing	the	size	at	which	
plants	reproduce.	The	ESS	threshold	flowering	size,	on	a	log	scale,	
doubles	 from	3.36	to	7.10	with	an	 increase	 in	mean	Q	 from	0	to	
2,	resulting	in	a	9-	fold	increase	in	the	estimated	number	of	seeds	
produced.	Increasing	levels	of	environmental	variability	generally	
caused	 selection	 for	 earlier	 flowering	 and	 a	 lower	 germination	
probability	(Figure	3).

4  | C A SE STUDY 2:  INCORPOR ATING A 
PUTATIVE ENVIRONMENTAL DRIVER: THE 
EFFEC T OF FIRE ON THE DEMOGR APHY OF 
ERYNG IUM CUN EIFOLIUM

4.1 | Background and methods

Eryngium	is	a	fire-	adapted	perennial	herb	with	a	persistent	seedbank	
(Menges	 &	 Kimmich,	 1996;	 Menges	 &	 Quintana-	Ascencio,	 2004)	
found	 in	 Florida	 rosemary	 scrub,	 in	 recently	 burned	 or	 other	 dis-
turbed	areas	(Menges	&	Kimmich,	1996).	Fire	kills	the	majority	of	ro-
settes	and	the	population	recovers	through	the	seedbank	(Menges	&	
Kohfeldt,	1995).	We	used	demographic	data	from	a	single	population	
that	 forms	part	of	a	well-	studied	meta-	population	at	 the	Archbold	
Biological	 Station,	 Florida	 (Appendix	A4.1;	 Menges	 &	 Quintana-	
Ascencio,	2004).

Altering	the	frequency	of	fires	is	one	possible	management	strat-
egy	for	this	endangered	species.	The	recommended	FRI	for	this	spe-
cies	of	<15	years	(Menges	&	Quintana-	Ascencio,	2004)	differs	from	
the	15–30	year	 recommendations	 for	 its	Florida	 scrubland	habitat	
(Menges,	2007).	Alternative	management	strategies	may	therefore	
be	 required	 for	Eryngium.	We	 use	 perturbation	 analyses	 to	 deter-
mine	how	altering	FRIs	and	the	effect	of	fire	on	the	vital	rates	affects	
population	growth.

The	Eryngium	 IPM	 (Appendix	A4.2)	was	 structured	by	 the	nat-
ural	 logarithm	 of	 rosette	 diameter	 (Menges	&	Quintana-	Ascencio,	
2004).	We	assume	density	independent	dynamics	to	investigate	the	

persistence	of	the	population	(Menges	&	Quintana-	Ascencio,	2004;	
see	 Appendix	A5	 for	model	with	 density	 dependent	 recruitment).	
The	 intercepts	 of	 four	 vital	 rates	were	 assumed	 to	 be	 temporally	
variable	(survival,	growth,	flowering	probability,	and	the	number	of	
flowering	stems;	Appendix	A4.3).	As	the	demography	of	Eryngium is 
strongly	affected	by	fire,	we	modelled	the	mean	of	the	latent	param-
eter	(Q)	as	a	linear	function	of	time-	since-	fire	(TSF;	Appendix	A4.3).	
Flowering	 and	 the	 number	 of	 flowering	 stems	 were	 highly	 cor-
related,	so	the	flowering	(εf)	and	(εb)	year	effects	were	sampled	from	
a	 bivariate	 normal	 distribution.	 Sampling	 these	 parameters	 from	
univariate	distributions	results	 in	the	 latent	variable	failing	to	fully	
account	 for	 the	covariation	among	the	vital	 rates	 (Appendix	A4.3).	
Posterior	samples	were	again	drawn	using	MCMC	sampling	in	JAGS,	
using	 runjags	 (Denwood,	 2016).	 Weakly	 informative	 priors	 were	
used	(Appendix	A4.3;	see	Appendix	A3	for	a	comparison	with	more	
informative	priors).	The	vital	rates	were	negatively	related	with	TSF,	
with	survival	particularly	strongly	affected	(Appendix	A4.4).

The	 posterior	 means	 were	 used	 to	 parameterise	 an	 IPM	
(Appendix	 A4.4).	 At	 each	 iteration,	 the	 latent	 parameter	 (Q)	 was	
randomly	sampled	 from	a	normal	distribution	with	mean	βtsf × TSF 
and	standard	deviation	of	one.	Submodel-	specific	year	effects	were	
drawn	 from	 normal	 distributions	 (bivariate	 normal	 for	 flowering	
and	 flowering	 stems),	 with	 means	 of	 zero	 and	 the	 estimated	 (co)
variances.	Estimates	of	germination	probability	range	from	0	to	0.1	
and	0.005	to	0.04	for	first	(hf)	and	second	year	germination	(hb)	re-
spectively	(Menges	&	Quintana-	Ascencio,	2004;	Quintana-	Ascencio	
&	Menges,	2000).	To	select	a	fertility	scenario	for	the	perturbation	
analyses	predicted	dynamics	using	a	range	of	these	estimates	and	of	
seed	mortality	probabilities	 (0.5,	0.7,	0.9)	were	compared	to	 those	
observed	 in	the	field	 (Appendix	A4.5).	A	model	with	 low	first	year	
germination	 (0.0),	 high	 germination	 from	 the	 seedbank	 (0.04)	 and	
low	seed	mortality	(0.5)	was	selected	as	it	was	consistent	with	ob-
served	changes	in	aboveground	population	growth	(Figure	4a).	That	
is,	 aboveground	 populations	 were	 predicted	 to	 increase	 immedi-
ately	following	a	fire,	but	not	beyond	10	years	postfire	 (Menges	&	
Quintana-	Ascencio,	2004).

4.2 | Perturbation analyses

The	 effects	 of	 different	 fire	 regimes	were	 explored	 using	 a	 range	
of	constant	FRIs	from	two	to	30	years	 (Appendix	A4.6).	Stochastic	
population	 growth	 rates	were	 estimated	 by	 iterating	 100	 popula-
tions	for	1,000	years;	the	first	200	years	were	excluded	as	transient	
dynamics.	We	 found	populations	were	 likely	 to	decline	where	 the	
time	 between	 fires	was	 too	 short	 (c.	 <4	years),	 because	 plants	 do	
not	produce	enough	seeds	 to	 replenish	 the	 seedbank,	or	 too	 long	
(c.	>15	years;	Figure	4b),	as	they	are	outcompeted.	This	is	in	accord-
ance	with	a	previous	study,	using	a	matrix	selection	approach,	which	
found	 an	 optimal	 FRI	 of	 less	 than	 15	years	 (Menges	 &	Quintana-	
Ascencio,	2004).

To	determine	how	altering	 the	 effect	 of	 fire	 on	 the	 vital	 rates	
affected	 population	 growth	 the	 βtsf	 parameter	 was	 perturbed	
(Appendix	A4.6).	This	is	a	measure	of	how	quickly	the	environment	
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decays	as	TSF	increases;	more	negative	values	of	this	parameter	in-
dicate	 the	quality	of	 the	environment	decreases	more	quickly	 fol-
lowing	a	fire.	Stochastic	population	growth	rates	were	estimated	as	
before,	but	 the	 fire	 regimes	were	varied	randomly	 throughout	 the	
simulations	(with	the	same	chance	of	each	FRI	occurring),	either	be-
tween	1	 and	15	years	 (optimum	 for	Eryngium)	 or	 between	15	 and	
30	years	 (optimum	 for	 Florida	 scrub	 habitat).	 Decreasing	 βtsf by 
around	 1/3	 could	 make	 a	 15:30	year	 FRI	 strategy	 sustainable	 for	
Eryngium	 (Figure	4c).	 The	 effect	 of	 altering	 the	 temporal	 decay	of	
the	environment	is	much	higher	when	the	FRI	is	higher,	to	the	extent	
that	decreasing	βtsf	sufficiently	can	make	longer	FRIs	preferable	for	
Eryngium	(Figure	4c).

5  | DISCUSSION

Identifying	 the	 environmental	 drivers	 of	 variation	 in	 demographic	
performance	 is	 challenging.	 A	 variety	 of	 approaches	 have	 been	
proposed	 (e.g.,	Teller,	Adler,	Edwards,	Hooker,	&	Ellner,	2016;	Van	
der	Pol	et	al.,	2016),	but	the	performance	of	any	method	is	 limited	
by	 the	 degree	 of	 temporal	 replication	 available.	 The	mean	 length	
for	 a	 demographic	 dataset	 is	 6	years	 in	 plants	 and	 eleven	 in	 ani-
mals	 (Salguero-	Gomez	et	al.,	2015,	2016).	Yet,	 simulations	suggest	
20–25	years	of	data	are	needed	to	identify	putative	environmental	
drivers,	determine	the	temporal	window	over	which	they	act	and	re-
liably	estimate	the	magnitude	of	their	effects	(Teller	et	al.,	2016;	Van	
der	Pol	et	al.,	2016).	Efforts	to	identify	drivers	in	many	of	these	pop-
ulations	will	not	succeed,	forcing	population	ecologists	to	assess	the	
likely	effects	of	environmental	change	using	indirect	methods.	The	
observation	 that,	 in	 natural	 populations,	 different	 components	 of	
demographic	performance	covary,	often	positively,	(Jongejans	et	al.,	
2010;	Nur	&	Sydeman,	1999;	Rotella	et	al.,	2012)	 implies	different	
demographic	processes	respond	(at	least	in	part)	to	the	same	drivers.	

We	have	demonstrated	how	a	factor	analytic	(FA)	framework	can	be	
used	to	incorporate	a	temporal	axis	of	environmental	variation	into	a	
demographic	model.	The	resulting	multi-	process	model—coupled	via	
a	latent	“environmental	quality”	variable—requires	fewer	parameters	
than	its	unstructured	(UCM)	counterpart.

The	 advantage	 of	 adopting	 the	 FA	 approach	 depends	 on	 the	
application	domain.	Accounting	for	vital	rate	covariation	can	be	im-
portant	for	estimating	stochastic	population	growth	rate.	For	exam-
ple,	Metcalf	et	al.	(2015)	demonstrated	that	parameter	and	element	
selection	approaches	were	roughly	comparable	in	terms	of	accuracy	
as	 long	 as	 covariance	 amongst	 the	 vital	 rates	were	 taken	 into	 ac-
count.	In	principle,	an	FA	model	might	yield	more	precise	estimates	
of	population	growth	because	it	requires	fewer	parameters	than	its	
unstructured	 (UCM)	counterpart,	 though	this	comes	at	a	potential	
cost	of	 increased	bias	when	 the	model	 is	 insufficiently	 flexible.	 In	
practice,	we	found	that	the	UCM	and	FA	approaches	yielded	com-
parable	estimates	of	population	growth	rate	in	our	simulation	study,	
indicating	 that	 sampling	 error	was	 the	 dominant	 source	 of	 uncer-
tainty	 in	predicted	population	growth	rate.	Thus,	 the	FA	approach	
may	offer	little	advantage	over	standard	UCM	models	when	estimat-
ing	stochastic	growth	rate.	The	goal	of	a	retrospective	analysis	is	to	
attribute	realised	variation	in	a	statistic	such	as	population	growth	
rate	 to	different	drivers	of	variation.	Temporal	covariances	can	be	
important	in	this	context.	For	example,	between	one	half	and	one-	
third	of	the	variation	in	population	growth	was	accounted	for	by	co-
variation	among	vital	rates	in	three	ungulate	populations	(Coulson,	
Gaillard,	&	Festa-	Bianchet,	2005),	though	this	result	is	far	from	uni-
versal	 in	nature	 (Compagnoni	et	al.,	2016).	The	FA	model	could	be	
used	as	a	basis	for	such	analyses,	though	in	practice	all	this	would	
achieve	is	to	attribute	covariance	contributions	to	latent	variable(s).

The	 main	 advantage	 of	 using	 a	 FA	 model	 is	 that	 it	 identifies	
the	 main	 axis	 of	 demographic	 variation,	 which	 then	 provides	 a	
basis	 for	 prospective	 analysis	 of	 how	populations	may	 respond	 to	

F IGURE  4  (a)	Aboveground	population	growth	rate	for	Eryngium 
(

r= log
(
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	estimated	from	1,000	simulations	of	22	years.	Black	
points	show	the	median,	thicker	and	thinner	blue	bars	show	the	interquartile	range	and	95%	quantiles	respectively.	Red	points	are	the	
observed	growth	rates	for	the	study	population	and	three	other	populations	(site	numbers	45,	57,	and	91)	with	similar	fire	return	intervals	
(FRIs).	(b)	Log	λs	under	different	FRI.	(c)	Effect	of	changing	value	of	βtsf on log λs	under	two	different	FRIs.	Dotted	vertical	line	shows	the	
estimated	value	of	βtsf.	In	all	plots	hf = 0.0, hb	=	0.04	and	d	=	0.5.	Points	show	the	median,	thicker	bars	and	thinner	bars	show	interquartile	
range	and	95%	quantiles	respectively
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environmental	change.	When	it	is	not	possible	to	explicitly	identify	
environmental	 drivers	 of	 demographic	 variation,	 local	 perturba-
tion	analysis	of	model	parameters	 can	be	used	 to	explore	 the	po-
tential	 response	of	 a	population	 to	environmental	 change	 (Rees	&	
Ellner,	2009).	These	analyses	 typically	 consider	each	parameter	 in	
turn,	assessing	its	effect	on	metrics	such	as	population	growth	rate	
while	holding	all	else	constant.	However,	the	existence	of	(positive)	
temporal	correlations	among	demographic	processes	suggests	mul-
tiple	 processes	 respond	 in	 a	 coordinated	 manner	 to	 environmen-
tal	change.	An	FA	model	allows	us	to	 identify	the	potential	axis	of	
change	and,	by	 focusing	perturbation	analyses	on	 this	axis,	makes	
population	 level	 predictions	 under	 different	 environmental	 condi-
tions	possible.	For	example,	this	allowed	us	to	make	predictions	on	
how	life	histories	may	evolve	under	putative	environmental	condi-
tions.	We	 identified	how	the	environmental	quality	would	have	to	
change	for	Carduus	to	alter	its	flowering	strategy;	showing	that	in-
creases	 in	 its	average	vital	 rates,	 in	particular	survival,	will	 lead	 to	
selection	for	a	perennial	life	history.	Whilst	we	focus	here	on	tem-
poral	variation	this	approach	could	also	be	used	to	predict	joint	de-
mographic	responses	to	spatial	variation	or	extended	to	incorporate	
spatial-	temporal	variation	(Elderd	&	Miller,	2016).

The	key	 limitation	 is	that	this	 interpretation	of	the	FA	model	as-
sumes	 the	 temporal	 covariances	 are	 largely	 environmentally	 driven.	
This	may	not	be	true	if	individuals	substantially	adjust	their	allocation	
strategy	 in	 response	 to	 environmental	 conditions.	Negative	 correla-
tions	among	the	vital	rates	may	exist	due	to	life-	history	trade-	offs	be-
tween	vital	rates,	where,	for	example,	resources	are	invested	in	survival	
or	reproduction	to	the	detriment	of	growth	(Koenig	&	Knops,	1998).	
Negative	correlations	appear	relatively	rare,	however	(Jongejans	et	al.,	
2010),	and	where	they	do	exist	are	sometimes	attributable	to	opposing	
responses	to	environmental	drivers	(e.g.,	Knops	et	al.,	2007).	This	sug-
gests	the	magnitude	of	trade-	off	effects	is	generally	small	compared	to	
that	of	environmental	effects,	though	life-	history	trade-	offs	may	still	
attenuate	environmental	driver(s)	of	covariation.	Note	that	whilst	a	FA	
approach	can	still	be	used	where	the	covariances	among	vital	rates	are	
negative	the	interpretation	of	the	latent	variable	is	more	difficult	here.	
That	 is,	 the	 latent	variable	can	only	be	assumed	to	be	a	measure	of	
environmental	quality	where	the	vital	rates	positively	covary.

Explicitly	incorporating	putative	environmental	drivers	allows	
population	responses	to	management	strategies	or	anticipated	en-
vironmental	change	to	be	predicted	(e.g.,	Gotelli	&	Ellison,	2006;	
Isaza	 et	al.,	 2016).	 The	 FA	 approach	 can	 simplify	 the	 process	 of	
incorporating	 such	drivers,	 as	 they	 can	be	 included	 into	a	 single	
model	of	the	shared	environmental	axis.	Where	explicit	environ-
mental	 drivers	 (e.g.,	 population	 density	 or	 temperature)	 can	 be	
identified,	 these	 are	 typically	 considered	 on	 a	 process-	specific	
basis,	by	constructing	separate	models	for	survival,	reproduction,	
growth,	 and	 recruitment	 (e.g.,	 Dahlgren,	 Ostergard,	 &	 Ehrlen,	
2014;	Williams	 et	al.,	 2015).	 This	 would	 require	 the	 addition	 of	
four	time-	since-	fire	slope	parameters	in	our	Eryngium	case	study,	
one	for	each	temporally	variable	vital	rate	(e.g.,	Evans	et	al.,	2010).	
Instead	 we	 introduced	 a	 higher	 level	 model,	 decomposing	 the	
shared	axis	of	environmental	variation	into	explained	and	residual	

components	 of	 variation.	 Thus	 the	 effects	 of	 time-	since-	fire	 on	
all	four	vital	rates	were	incorporated	with	the	addition	of	a	single	
parameter.	This	allowed	us	to	evaluate	the	population	level	effects	
of	two	alternative	management	strategies;	that	is,	altering	the	dis-
turbance	regime	or	ameliorating	the	environment	to	decrease	the	
rate	 of	 decay	 in	 environmental	 quality	 following	 a	 disturbance.	
We	 found	 that	whilst	 the	optimum	FRI	 for	Eryngium	 is	 less	 than	
15	years,	decreasing	the	rate	of	environmental	decay	could	lead	to	
persistent	populations	under	15–30	year	fire	regimes	(the	recom-
mended	FRI	for	the	Florida	scrub	habitat;	Menges,	2007).

Similar	 approaches	 to	 our	 analysis	 have	 been	 used	 previously	
(Elderd	&	Miller,	2016;	Evans	&	Holsinger,	2012;	Evans	et	al.,	2010).	
However,	in	previous	models	the	slope	terms	for	the	environmental	
quality	parameter	(βQ)	were	constrained	to	a	value	of	+1	or	−1	among	
a	 set	 of	 demographic	models.	 These	 usually	 operate	 on	 different	
scales.	For	example,	probabilities	such	as	survival	and	flowering	are	
typically	estimated	on	a	 logit	scale,	whereas	fecundity	 is	generally	
estimated	on	a	log	scale;	a	unit	change	on	these	two	scales	cannot	
be	meaningfully	compared.	Moreover,	differences	in	the	magnitude	
of	 the	effect	of	 temporal	variation	among	 the	vital	 rates	were	ac-
counted	for	by	the	process-	specific	year	effects	(ε).	Thus	the	main	
advantage	of	the	FA	approach	is	lost,	as	the	latent	variable	cannot	be	
conceived	as	a	measure	of	overall	environmental	quality.

Adopting	a	Bayesian	approach	has	a	number	of	benefits	(Elderd	&	
Miller,	2016),	for	example,	allowing	the	effects	of	difference	sources	
of	 uncertainty	 to	 be	 quantified	 (Evans	 et	al.,	 2010).	 Uncertainty	
is	 likely	 to	 be	 very	 high	 for	 most	 datasets	 (Metcalf	 et	al.,	 2015).	
Parameter	uncertainty	can	have	 important	ecological	 implications,	
for	example,	failing	to	account	for	it	may	underestimate	the	risk	of	
extinction	(Ludwig,	1996).	Carrying	out	a	range	of	checks	following	
model	 fitting	 (Appendix	A1.3)	 can	 help	 to	 increase	 the	 accuracy	
of	the	model	output.	Such	checks	are	particularly	 important	when	
fitting	 very	 constrained	models,	 for	 example,	 when	 assuming	 the	
temporal	covariation	in	the	vital	rates	may	be	explained	by	a	single	
environmental	axis.	Sometimes,	as	in	the	Eryngium	case	study,	addi-
tional	axes	may	be	necessary	to	fully	account	for	the	covariation	in	
the	vital	rates.	We	recommend	starting	with	a	simple	model	struc-
ture	and	slowly	adding	in	complexity	(Appendix	A1.3).

Rapid	 levels	 of	 environmental	 change	have	 increased	 interest	 in	
determining	how	population	processes	respond	to	environmental	sto-
chasticity	(Evans,	2012;	Stenseth	et	al.,	2002).	However,	the	long-	term	
individual	level	data	needed	to	accurately	quantify	such	responses	are	
often	 lacking,	especially	 for	 rare	 species.	Where	positive	covariance	
exists	among	vital	rates	these	can	be	exploited	under	a	FA	approach	to	
allow	predictions	on	the	joint	responses	of	vital	rates	to	environmental	
variation.	Where	 insufficient	data	exist	 to	 identify	putative	environ-
mental	drivers	the	FA	approach	may	offer	the	best	alternative	for	pre-
dicting	population	responses	to	environmental	change.
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