1	Age and development of active cryoplanation terraces in the alpine permafrost
2	zone at Svartkampan, Jotunheimen, southern Norway
3	
4	John A. Matthews ¹ , Peter Wilson ² , Stefan Winkler ³ , Richard W. Mourne ⁴ , Jennifer L.
5	Hill ⁴ , Geraint Owen ¹ , John F. Hiemstra ¹ , Helen Hallang ¹ and Andrew P. Geary ⁴
6	
7	¹ Department of Geography, College of Science, Swansea University, Singleton Park,
8	Swansea SA2 8PP, Wales, UK
9	
10	² School of Geography and Environmental Sciences, Ulster University, Cromore
11	Road, Coleraine BT52 1SA, Northern Ireland, UK
12	
13	³ Department of Geography and Geology, Julius-Maximilians University Würzburg,
14	Am Hubland, Würzburg 97070, Germany
15	
16	⁴ Department of Geography and Environmental Management, University of the West
17	of England, Coldharbour Lane, Bristol BS16 1QY, UK
18	
19	Correspondence to:
20	John A. Matthews, Department of Geography, College of Science, Swansea
21	University, Singleton Park, Swansea SA2 8PP, Wales, UK
22	E-mail: J.A.Matthews@Swansea.ac.uk
23	Telephone: +44 1633 413291
24	
25	

26 ABSTRACT

27

28 Schmidt-hammer exposure-age dating (SHD) of boulders on cryoplanation terrace treads and 29 associated bedrock cliff faces revealed Holocene ages ranging from 0 ± 825 to 8890 ± 1185 30 yr. The cliffs were significantly younger than the inner treads, which tended to be younger 31 than the outer treads. Radiocarbon dates from the regolith of 3854 to 4821 cal yr BP (2σ 32 range) indicated maximum rates of cliff recession of ~0.1 mm/year, which suggests the onset of 33 terrace formation prior to the last glacial maximum. Age, angularity and size of clasts, together 34 with planation across bedrock structures and the seepage of groundwater from the cliff foot, all 35 support a process-based conceptual model of cryoplanation terrace development in which frost 36 weathering leads to parallel cliff recession and hence terrace extension. The availability of 37 groundwater during autumn freeze-back is viewed as critical for frost wedging and/or the 38 growth of segregation ice during prolonged winter frost penetration. Permafrost promotes 39 cryoplanation by providing an impermeable frost table beneath the active layer, focusing 40 groundwater flow, and supplying water for sediment transport by solifluction across the tread. 41 Snowbeds are considered an effect rather than a cause of cryoplanation terraces and 42 cryoplanation is seen as distinct from nivation. 43 44 **KEY WORDS** 45 46 cryoplanation terraces, Schmidt-hammer exposure-age dating, mountain permafrost, 47 periglacial processes, alpine landform development, frost weathering, nivation. 48 49 **INTRODUCTION** 50

51 Cryoplanation terraces (also known as altiplanation or goletz terraces and by several

52 other terms) are periglacial landforms consisting of nearly horizontal bedrock surfaces

or benches, backed by frost-weathered bedrock cliffs (Demek, 1969a; Washburn, 1979;
Ballantyne, 2018; French, 2018; Harris et al., 2018). The terraces are typically tens of
metres wide and hundreds of metres long, with a thin cover of regolith. They may occur
singly or as an altitudinal sequence of hillslope 'steps' that sometimes culminate in
'summit flats' (Czudek, 1995; Lauriol et al., 2006; Křižek, 2007; Hall and André, 2010;
Nelson and Nyland, 2017).

59

Cryoplanation terraces are generally supposed to have developed by processes 60 61 of 'cryoplanation' - commonly interpreted to include a combination of frost weathering on bedrock cliffs and the removal of the weathered debris by solifluction and/or flowing 62 63 water - resulting in cliff recession and terrace extension (Boch and Krasnov, 1943; 64 Demek, 1969b; Priesnitz, 1988; Lauriol, 1990; Ballantyne, 2018). Indeed, Schunke 65 (1977) suggested that cryoplanation terraces may be the only meso-scale landforms that can be used to characterise the periglacial zone, and hence define a truly periglacial 66 67 environment. The processes of cryoplanation also underpin attempts to define distinctive models of periglacial hillslope and landscape evolution (cf. Peltier, 1950; 68 69 Richter et al., 1963; French, 2016).

70

However, although cryoplanation terraces have been widely recognised in
regions with present or former non-glacial cold climates, such as Siberia (Boch and
Krasnov, 1943, Demek, 1968; Czudek, 1995), Mongolia (Richter et al., 1963); Alaska
(Reger and Péwé, 1976, Nelson, 1998; Nelson and Nyland, 2017), Northern Canada
(Lauriol and Godbout, 1988; Lauriol et al., 2006), Central Europe (Demek, 1969a;
Traczyk and Migon, 2000; Křížek, 2007), Iceland (Schunke and Heckendorff, 1976;
Schunke, 1977), the Andes (Grosso and Corte, 1991), Antarctica (Hall, 1997; Hall and

78 André, 2010) and the British Isles (Te Punga, 1956; Waters, 1962), criteria for the 79 recognition of active features are largely lacking. In the absence of dating evidence, 80 moreover, most examples discussed in the literature are of unknown age and many are 81 regarded as relict. Furthermore, there is disagreement over the necessary climatic 82 conditions under which cryoplanation terraces can form, and whether cryoplanation 83 terraces are characteristic of permafrost environments, as advocated by Reger and Pewe 84 (1976) or can also form under climatic regimes characterised only by seasonal frost 85 (Demek, 1969a).

86

87 The precise processes constituting cryoplanation, the rate of development of cryoplanation terraces, their status as palaeoclimatic indicators, and their role in the 88 89 evolution of periglacial landscapes, all remain highly controversial topics. Furthermore, 90 as cryoplanation terraces are often the sites of long-lasting snowbeds, this has led to the 91 suggestion that cryoplanation is essentially similar to 'nivation' - the suite of 92 weathering and transport processes that may be enhanced by the presence of late-lying or perennial snow - which is another problematic subject (St-Onge, 1964, 1969; Hall, 93 94 1998; Thorn and Hall, 2002; Margold et al., 2011; Rixhon and Demoulin, 2013). 95 Arguably, despite the recent research from the Antarctic, there has been little progress 96 in understanding cryoplanation terraces since the definitive monograph of Demek 97 (1969a): new insights are therefore long overdue. 98

99 This paper presents the results of an investigation of active cryoplanation 100 terraces recently discovered at Svartkampan in the permafrost zone of NE Jotunheimen, 101 alpine southern Norway. These landforms are believed to be the first active 102 cryoplanation terraces to be recognised as such in Norway and have the potential to

102	recolve several	of the aforemer	tioned controve	reine ragar	ling the nature and
105	icsure several	of the aforenter		ISICS ICgare	ing the nature and

104 significance of cryoplanation and related topics. Our specific objectives are as follows:

105

106 1. To describe the morphology of the proposed cryoplanation terraces.

107 2. To date the terraces using Schmidt-hammer exposure-age dating (SHD),

108 complemented by radiocarbon dating, and hence provide firm evidence of landform age109 and present levels of activity.

110 3. To assess observational evidence of the environmental controls on terrace

formation at the site, including geological structure, climate, permafrost, snow, andgroundwater hydrology.

4. To test current ideas on cryoplanation processes in the light of the new evidence
from Svartkampan, and propose a process-based conceptual model of cryoplanation
terrace development.

116

117 LOCATION AND ENVIRONMENT

118

119 Svartkampan is a spur located on the northern slope of the Galdhøpiggen massif of

120 northeastern Jotunheimen, the highest mountains in Norway (Figure 1). The

121 cryoplanation terraces (sites 1-10) occur as a series of north-facing steps with backing

122 cliffs cut into bedrock at an altitude of 1540-1575 m above sea level (Figures 1c and

123 2a). These terraces sit on the northern rim of Juvflye, a high-altitude plateau, where

- 124 related forms have been mapped as perennial snowbeds but not as cryoplanation
- 125 terraces (Ødegård et al., 1987). The study sites lies at least 500 m above the tree line:
- 126 close to the upper altitudinal limit of the mid-alpine belt, which occurs locally at ~1600
- 127 m (Matthews et al., 2018a; see also, NIJOS, 1991). Extensive areas of active and relict

periglacial patterned ground (sorted circles, garlands and stripes) characterise the
largely till-covered landscape at and above the altitude of the sites (Ødegård et al.,
1987, 1988; Winkler et al., 2016) where bedrock outcrops are relatively rare. Beneath
the bedrock cliffs, the treads of the cryoplanation terraces have a similar surface cover
of regolith with an extensive pavement of boulders and cobbles, disturbed soils and a
sparse vegetation cover (Figure 2b).

134

135 Most of the study area is composed of pyroxene-granulite gneiss (Lutro and 136 Tveten, 1996) but the location of the terraces coincides with a shear zone within the gneiss. Observations from the backing cliffs of the terraces show that this zone consists 137 138 mainly of alternating flaggy layers of varied lithologies including fine-grained black to 139 dark green mylonite and coarser-grained grey, sheared gneiss. Both lithologies have 140 lozenge-shaped rotated feldspar crystals and larger pods (>5 cm) of relatively unsheared 141 but rotated gneiss. Also present are rounded feldspar crystals (typically 1-2 cm), which 142 give a 'pebbly' appearance resembling augen gneiss, white quartz-feldspar layers (possibly pre-deformational), and occasional larger intrusions of peridotite, which 143 144 weathers to a distinctive orange-brown colour. Although not very common at the main 145 terrace (sites 1-8) and the upper terraces (sites 9 and 10), the 'pebbly' gneiss 146 predominates at another prominent terrace located below and to the north-west of the 147 main terrace at 1525 m a.s.l. 148

Mean annual air temperature (MAAT) estimated from boreholes near the study site at 1560 m a.s.l., where permafrost is present, is -2 °C with a mean July air temperature of +5 °C and a mean January air temperature of -8 °C (Farbrot et al., 2011; Lilleøren et al., 2012). These temperature data are consistent with the earlier estimate of

153	-2.6 °C for MAAT at 1500 m a.s.l. interpolated from MAAT measurements at 11
154	meteorological stations around Jotunheimen (Ødegård et al., 1992). Annual snow depth
155	is 1.0-1.5 m (<u>www.se.norge.no/</u>), while mean annual precipitation (MAP) is 800-1000
156	mm (Isaksen et al., 2011) with a late-summer maximum characteristic of the continental
157	climatic regime of eastern Norway. However, strong winds on Juvflye result in
158	comparatively little snow cover and a late maximum snow depth of only 0.5 m in May
159	(Ødegård et al., 1992): our study sites in a leeward position will accumulate
160	significantly higher values than this.

161

() O (

NAAT (1500

Permafrost is widespread in this area of Jotunheimen, where the lower limit of 162 163 discontinuous permafrost lies at ~1450 m a.s.l. (Ødegård et al., 1996; Isaksen et al., 164 2002; Harris, et al. 2009; Farbrot et al., 2011) and active-layer thickness may be up to 5 m at 1600 m a.s.l. (Hipp et al., 2014). However, the lower limit of permafrost in alpine 165 rock walls in the area is highly dependent on aspect and is likely to descend to at least 166 167 1300 m a.s.l. where these face north (Hipp et al., 2014), possibly within the range 1250-1400 m a.s.l. (Steiger et al., 2016). There can be no doubt, therefore, that the bedrock 168 cliffs characterising the cryoplanation terraces at Svartkampan are underlain by 169 170 permafrost. Permafrost is likely to have existed throughout the Holocene at altitudes 171 >1600 m a.s.l. in the study area (Lilleøren et al., 2012). At the slightly lower altitude of 172 the study sites, therefore, permafrost could have been absent during the Holocene thermal maximum of the early Holocene, although it may well have survived in the 173 north-facing bedrock cliffs. The lowest permafrost limits of the Holocene seem to have 174 occurred during the 'Little Ice Age' (Lilleøren et al., 2012), when MAAT was ~1.0 °C 175 lower than in AD 1960-1990 (Nesje et al., 2008). 176

177

178	At the maximum of the last (Weichselian) glaciation, the highest areas of
179	Jotunheimen were located close to the main ice divide and ice accumulation area of the
180	Scandinavian ice sheet. Deglaciation is considered to have occurred in the early
181	Holocene by 9.7 ka, following the Preboreal Erdalen event (cf. Dahl et al., 2002;
182	Matthews and Dresser, 2008). This conventional interpretation is consistent with basal
183	radiocarbon dates obtained from peat bogs and lakes from the valleys surrounding the
184	Galdhøpiggen massif (Barnett et al., 2000; Nesje and Dahl, 2001; Matthews et al., 2005,
185	2018b; Hormes et al., 2009), empirical evidence of deglaciation elsewhere in southern
186	Norway and broad-scale reconstruction of the Scandinavian ice-sheet deglaciation
187	(Goehring et al., 2008; Nesje, 2009; Mangerud et al., 2011; Hughes et al., 2016;
188	Stroeven et al., 2016; Marr et al., 2018).
189	
190	METHODOLOGY
191	
192	Observations and measurements were made at 10 sites on three cryoplanation terraces
193	(Figures 1c and 3). Cross-profiles of the terrace tread and backing cliff were measured
194	at each site to define the overall terrace morphology, using a 30-m tape and Abney level
195	between breaks of slope. Two excavations were made in the tread of the main terrace
196	(where the boulder cover was least extensive) to examine the subsurface, particularly
197	the bedrock profile beneath the regolith cover.
198	
199	At each site, a total of 300 Schmidt-hammer R-values were measured,
200	including: 100 boulders each from the inner and outer halves of the tread (one impact
201	per boulder), and a sample of 100 impacts from the backing cliff (impacts widely
202	spaced across the cliff face). A mechanical N-type Schmidt hammer (Proceq, 2004) was

used throughout and periodically tested on the manufacturer's test anvil to ensure no
deterioration in performance following a large number of impacts (cf. McCarroll, 1987,
1994). Schmidt-hammer measurements were restricted to boulders or bedrock of the
dominant local lithology, namely mylonitised pyroxene-granulite gneiss. Unstable or
small boulders were avoided, as were boulder or bedrock edges, joints or cracks, and
lichen-covered or wet surfaces (cf. Shakesby et al., 2006; Viles et al., 2011; Matthews
and Owen, 2016).

210

211 High-resolution, calibrated-age, Schmidt-hammer exposure-age dating (SHD) 212 techniques followed the approach developed by Matthews and Owen, (2010), Matthews 213 and Winkler (2011) and Matthews and McEwen (2013). The approach is based on 214 establishing a local, linear calibration equation relating mean Schmidt-hammer R-value 215 to rock-surface exposure age based on two surfaces of known age ('old' and 'young' control points). The control points used in this study relate to the local mylonitised 216 217 pyroxene-granulite gneiss. The 'old' control point, which is located within 200 m of the 218 western end of the main terrace (M in Figure 1c), consists of glacially-scoured bedrock 219 surfaces. The age of 9.7 ka assigned to these surfaces is the conventional age of deglaciation in central Jotunheimen (Matthews et al., 2018b; see above). The surfaces 220 221 are exposed in a small channel last occupied by meltwater during deglaciation, when water flowed north from three small lakes that currently drain towards the south-east 222 223 (Figure 1c). The bedrock surface of the modern cliff at site 8 was used as the young control 224 point with an age of zero years. This is justified on two grounds. First, this cliff surface was 225 lichen free when the R-values were measured, which indicates a surface age of <25 years 226 based on various estimates of the time required for the establishment of crustose Rhizocarpon 227 lichens in Jotunheimen (Matthews, 2005; Matthews and Vater, 2015). Second, R-values from 228 this cliff surface are similar but slightly higher than those characterising angular boulders

located about 100 m from the Vesle-Juvbreen glacier snout on terrain that, according to aerial

230 photographic evidence, has an estimated age of 50 years (Matthews et al., 2014).

231

232	The resulting Schmidt-hammer exposure ages are derived with 95% confidence
233	intervals (Ct) that depend on the error associated with the calibration equation (Cc) and
234	the error of the surface to be dated (Cs). This particular approach to SHD has been
235	successfully applied to many different types of landforms composed of coarse rock
236	particles and/or bedrock in southern Norway and elsewhere, including raised beaches
237	(Shakesby et al., 2011), rock glaciers (Matthews et al., 2013), moraines (Matthews et
238	al., 2014), pronival ramparts (Matthews and Wilson, 2015), snow-avalanche impact
239	landforms (Matthews et al., 2015), periglacial patterned ground (Winkler et al., 2016),
240	blockfields (Wilson and Matthews, 2016; Marr et al., 2018); blockstreams (Wilson et
241	al., 2017) and rock-slope failures (Matthews et al., 2018b).
242	
243	SHD was complemented by AMS radiocarbon dating of soil material within the
244	regolith that overlies the bedrock beneath the terrace tread. The dated material
245	constitutes a disturbed Humic Regosol (Ellis, 1979). Dating was carried out on bulk
246	samples following acid wash pretreatment by Beta Analytic Inc using the INTCAL13
247	database (Reimer et al., 2013) and Bayesian probability analysis (Bronk Ramsey,
248	2009).
249	
250	Organic content and particle size were measured for samples of soil and sub-
251	soil. Weight loss-on-ignition at 550 °C (Heiri et al., 2001) was determined for samples
252	dried at 105 °C. Particle size analysis involved sieving and further analysis of the <1
253	mm fraction by laser diffraction using a Mastersizer 2000 (Malvern Instruments Ltd,

254 2007; Mingard et al., 2009).

256	Clast roundness and size, and the proportion of <i>in situ</i> fractured clasts, were
257	measured on the terrace treads and cliffs as a basis for inferring the possible origins of
258	clasts and the effectiveness of frost weathering processes. Clast roundness was assessed
259	for boulders and cobbles comprising the surface of the inner and outer parts of the tread
260	separately at each site using a five-point roundness scale (Powers, 1953) and a sample
261	size of 150 clasts. Comparable samples of clasts resting on cliff ledges were also
262	examined. The size (longest visible axis) of the largest 25 clasts was recorded separately
263	for angular (roundness classes: very angular and angular) and edge-rounded clasts
264	(roundness classes: subangular, subrounded and rounded) on the terrace treads. The
265	proportion of fractured clasts on each terrace tread was determined, based on a sample
266	size of 200 clasts.
267	
268	Structural geological measurements made of the bedrock cliff included
269	horizontal and vertical joint spacing ($n = 25$): joints were defined as fractures or cracks
270	>1 m long and >1 mm wide. The strike and dip of metamorphic layering in the cliff face
271	were also measured using a compass clinometer for comparison with layering in the
272	buried bedrock terrace revealed by excavation of the regolith cover.
273	
274	RESULTS
275	
276	Terrace morphology
277	
278	Morphology of the terraces is summarised by the cross-profiles from the 10 sites

279 (Figure 4) and illustrated further by general views of selected sites (Figure 5). All profiles have a similar northerly aspect. Terrace treads are 7.0 - 22.0 m wide and 280 backing cliffs are 1.5 - 6.0 m high. Slope angles of the treads and cliffs are 2-12 ° and 281 35-80°, respectively, with a sharp break of slope or 'knickpoint' at the cliff base, 282 283 sometimes resulting in an overhang (Figure 5c). No bedrock is visible at site 4, where a 284 steep (30 °) boulder 'ramp' is assumed to bury a bedrock cliff. It should also be noted that the outer edge of the terraces at sites 5 and 6 terminate at low bedrock outcrops. At 285 286 the other sites, the outer edge of the terrace tread is defined by a marked steepening of 287 the slope. The height of the backing cliff is defined here conservatively as the relatively 288 steep lowest part of the cliff, excluding the often degraded upper parts where there is a 289 marked break of slope.

290

291 Clast characteristics on terrace treads and cliffs

292

293 Clasts on the inner part of the terrace tread (Table 1) are invariably more angular (combined angular and very angular clasts, 14-77 %) than those on the outer part (5-35 294 295 %). Furthermore, excluding site 4 (where the cliff is buried), the clasts on the cliffs are 296 substantially more angular (49-97 %) than the clasts on the inner terrace treads. 297 Although there is no trend in roundness or size of clasts along the length of the main 298 terrace, site 8 has consistently higher proportions of angular clasts than any of the other sites on both the inner and outer treads and on the backing cliff. Angular clasts 299 300 predominate on cliffs at most sites but it is only at site 8 where the proportion 301 approaches 100 %. Elsewhere, there is a variable mixture of angular and edge-rounded clasts, the proportion of angular clasts reaching only 13 % on the boulder 'ramp' at site 302 303 4.

305	The size of the angular clasts on the treads tends to be larger (79-120 cm) than
306	the size of the edge-rounded clasts (59-94 cm) with, in most cases, non-overlapping 95
307	% confidence intervals. The proportion of <i>in situ</i> fractured clasts (Figure 6a) on the
308	treads is consistently low at all sites $(3.1-12.8 \%)$ with $< 6 \%$ at most sites.
309	
310	Patterned ground on treads
311	
312	Sorted circles (Figure 6b) up to 2 m in diameter occasionally occur individually or in
313	small groups in the low-angle tread surfaces. Their fine centres are clearly recognisable,
314	but the outer boundaries of the clast-rich borders are poorly defined against the clast-
315	covered tread surface. Poorly-defined solifluction lobes also occur in a few places on
316	the treads. However, most tread surfaces are characterised by a thin cover of angular
317	and edge-rounded clasts forming a largely undifferentiated pavement of boulders and
318	cobbles. Where present, patches of fines are generally vegetated with mid-alpine grass-
319	heath and snowbed plant communities.
320	
321	Subsurface bedrock, regolith and soil characteristics
322	
323	The underlying bedrock terrace was located beneath 60-80 cm of regolith at the
324	excavation between sites 5 and 6 (Figure 7). The regolith consists of a matrix-
325	supported diamicton, the <2 mm fraction of which consists of 43-83 % sand, 16-49 %
326	silt and 2-8 % clay (n = 6 samples). Median grain-sizes of all six samples (50-150 μ m)
327	are frost susceptible according to textural limits for frost-susceptible sediments
328	(Beskow, 1935; Harris, 1981).

330	A well-developed Humic Regosol (Ellis, 1979, 1980) has developed in the
331	uppermost part of the regolith. This soil is up to 45-cm thick and characterised by
332	disturbed organic-rich, dark grey-brown layers and streaks (organic content 13.1-15.2
333	%) but no mineral horizon differentiation. With distance from the cliff base, the soil
334	becomes lighter in colour and thinner and has more of the characteristics of an alpine
335	Brown Soil (Ellis, 1979, 1980). Beneath the deepest organic-rich material, the lower
336	part of the regolith (subsoil) has a much lower organic content (0.7-2.6 %), and an
337	increasing density of rock fragments towards the underlying bedrock (see also Figure
338	6c).
339	
340	The bedrock terrace at the base of the excavation (Figure 7) has a slope of 3° ,
341	which is comparable to the slope of the terrace tread at the site (5°). That the bedrock
342	terrace is indeed <i>in situ</i> is confirmed by the strike and dip of 167° (range 154–188°; $n =$
343	3) and 22° NE (range 18–26°), which agree closely with the strike and dip in the
344	exposed adjacent cliff of 138° (range 125–177°; $n = 9$) and 18° NE (range 10–26°). It
345	should be noted that the second excavation failed to reach bedrock because of the
346	presence of numerous large boulders throughout the regolith.
347	
348	Joint spacing in cliffs
349	
350	Vertical and horizontal joints occur frequently in the cliffs, commonly with an increase
351	in density near the cliff base (Figure 6d). The spacing of both vertical and horizontal
352	joints is very variable, ranging from a few centimetres to 185 cm with no systematic
353	pattern discernible between sites. Mean vertical and horizontal joint spacing (with 95 %

354 confidence intervals) for all sites is 50 ± 10 and 26 ± 2 cm, respectively; the closer spacing of horizontal joints reflecting the greater density of joints parallel to 355 metamorphic layering, as seen in Figure 6d. 356 357 Seepage water at the cliff/tread junction 358 359 Water was observed seeping from joints at the base of the cliff at several sites despite 360 former snowbeds having melted away earlier in the summer (Figure 8). The soil at the 361 362 site of both excavations was damp, saturated with water in several places, and one of 363 the trenches was slowly filling with water in late July 2018, despite the sites having experienced a severe drought for at least a month before these observations were made. 364 365 Furthermore, a dry drainage channel crossed the tread of the terrace at site 2 beneath 366 which the sound of flowing water could be heard, possibly indicative of piping. 367 368 **R-values from terrace treads and cliffs** 369 370 R-values for cliffs vary consistently along the length of the main terrace from a mean value of 42.59 ± 2.26 at site 1 to 59.66 ± 1.24 at site 8 (Table 2). The 95 % confidence 371 372 intervals demonstrate, moreover, that this spatial variation along the main terrace is 373 highly statistically significant. Cliff sites from the upper terraces (sites 9 and 10) exhibit intermediate values. The R-value distributions (Figure 9) consolidate these results and 374 show highly variable, multimodal, negatively skewed and/or relatively broad platykurtic 375

- 376 distributions indicative of mixed-age populations and hence diachronous surfaces
- 377 (Matthews et al., 2014, 2015; Winkler et al., 2016; Marr et al., 2018). Only cliff site 8
- 378 exhibits the low-variability, unimodal, symmetrical distribution of R-values that is

expected for a surface of uniform age. There is also a strong inverse relationship for
cliff sites between R-value variability (as reflected in standard deviation values and
confidence intervals) and mean R-values, which is consistent with an increase in
variability as the extent of chemical weathering of the rock surfaces and the increase in
mean rock surface age results in decreasing R-values (Aydin and Basu, 2005; Matthews
et al, 2013, 2016).

385

Mean R-values from inner terrace treads at sites 2-8 are, in most cases, 386 387 significantly lower than those from the corresponding cliffs by up to 7 units, and mean 388 R-values from outer terrace treads tend to be even lower, though not significantly lower 389 than those from the inner treads (Table 2). These patterns suggest that the mixed-age 390 boulder populations on the inner terraces are older than those on the bedrock cliffs and 391 that the boulder populations on the outer terraces are even older. Furthermore, the long tails that characterise most of the R-value distributions in Figure 9 are clearly the result 392 393 of the relatively old component of mixed-age populations. Apart from site 1, all the 394 outer tread sites have mean R-values within the relatively narrow range of 43.19-47.47 395 and are therefore relatively old compared with the inner tread and cliff sites. Mean Rvalues from both the inner and outer treads at site 1 are, however, significantly higher 396 397 than those of the corresponding cliff, which is not consistent with the results from the other sites and requires further explanation (see discussion below). At the upper terraces 398 399 (sites 9 and 10), mean R-values from the terrace treads do not differ significantly from 400 those of their cliffs and again exhibit intermediate values compared with the sites from 401 the main terrace.

402

403 Control point R-values and calibration equation

427	SHD ages
426	
425	terrace treads and cliffs.
424	values and negatively skewed distributions that are characteristic features of most of the
423	particularly noteworthy that the distribution for the 'old' control point lacks the low R-
422	distributions with no reason to doubt they are representative of single-age surfaces. It is
421	distributions of R-values for both control points (Figure 11) exhibit symmetrical
420	surface as a modern control surface. Furthermore, the percentage frequency
419	Vesl Juvbreen glacier foreland (Matthews et al., 2014) supports our use of the cliff
418	control-point surface exceeds that of non-mylonitised boulders recently exposed on the
417	cryoplanation terraces. The fact that the mean R-value of the mylonitised 'young'
416	nevertheless represents the best available for obtaining calibrated ages for the
415	R-values with respect to non-mylonitised surfaces of the same known age, it
414	Although the 'old' control point derived from mylonite has yielded intermediate
413	
412	values may be relatively high on recently exposed mylonite surfaces.
411	order of 1.0 R-value units reflect the variability of the local bedrock and suggest that R-
410	previous work (G3, from Matthews et al., 2014). Broad confidence intervals of the
409	gneiss obtained in this study (G1 and G2 in Figure 1c and Table 3) and available from
408	are close to but differ slightly from those relating to non-mylonitised pyroxene-granulite
407	SHD calibration equation and calibration curve for this study (Figure 10). These data
406	include data from the mylonitised pyroxene-granulite gneiss surfaces used to derive the
405	R-values characterising potential control point surfaces from the local area (Table 3)

The consistent decrease in SHD age of the cliffs along the length of the main terrace from 8890 ± 1185 yr at site 1 to 0 ± 825 yr at site 8 clearly shows spatial variation in exposure age from west to east (Table 4 and Figure 12). Indeed, there is a statistically significant linear relationship (r = 0.96; p <0.001) between SHD age and distance from site 1 (Figure 13).

434

With the exception of site 1, confidence intervals show that the inner treads on 435 the main terrace are consistently older than the cliffs, and there is a clear decrease in 436 437 SHD age from sites 4 (7610 \pm 1210 yr) through 8 (2605 \pm 1000 yr), all of which have 438 inner terraces that are significantly older than their cliffs. Although the linear 439 relationship between SHD age and distance along the inner terrace is only marginally 440 statistically significant when data from all eight sites are included (r = 0.65; p < 0.10; 441 Figure 13), there is considerable improvement in the strength of this relationship (r =0.80; p < 0.05) if anomalous site 1 is omitted. The overlap in the confidence intervals for 442 443 cliffs and inner treads at sites 2 and 3 indicate, however, little evidence of a significant 444 difference in age. Also, again with the exception of site 1, the SHD ages of outer treads 445 tend to be older than the inner treads but the age difference is relatively small and statistically significant only at sites 7 and 8 (Figure 12). Thus, in general, terrace treads 446 447 are older than their corresponding cliffs, and outer treads are the oldest parts of the 448 terraces, the SHD ages of which range from 4690 ± 1025 yr at site 1 to 8575 ± 1270 yr at site 4. However, there is little evidence of any systematic variation in SHD age within 449 450 the outer treads.

451

452 The upper terraces exhibit little variation in SHD age between the two sites or 453 between cliffs and treads. With all ages between 5940 ± 1040 yr and 7855 ± 1130 yr,

the exposure ages of the upper terraces are clearly intermediate between those of theyoungest and oldest parts of the main terrace.

456

The anomalous pattern exhibited by site 1, where the cliff has a very much older exposure age than both the inner and outer treads (the SHD ages of which do not differ significantly from each other) is difficult to explain. Disturbance of the terrace tread by frost heave and frost sorting, bringing relatively unweathered boulders to the ground surface, provides a possible explanation.

462

463 ¹⁴C ages

464

465 Two radiocarbon dates from two sides of the same trench, sampled at a distance of 50-60 cm from the cliff base, yielded a calibrated age between 3854 and 4821 cal yr BP at 466 the 2σ range (Table 5 and Figure 7). This age estimate represents the maximum age of 467 468 the overlying sedimentary material of the tread and a minimum age for the underlying bedrock platform at the sample point. The single date from the second excavation, 469 470 sampled at a distance of 30 cm from the cliff, yielded the somewhat younger age 471 estimate of 3345-3084 cal yr BP. 472 473 DISCUSSION 474 **Recognising cryoplanation terraces** 475 476 Cryoplanation terraces are problematic largely because their recognition and 477 characterisation are based almost entirely on morphological evidence. There is a 478

479 tendency, moreover, to attribute all bench-like landforms on hillslopes in periglacial 480 environments to cryoplanation (Ballantyne, 2018). Furthermore, most examples 481 referred to in the literature appear to be relict and it has even been suggested that some 482 such terraces are not characteristic of a periglacial environment at all, may be pre-483 Quaternary in age and/or may simply reflect geological structure (Büdel, 1982; French, 484 2016, 2018). Although this study is heavily reliant on morphological evidence, an 485 advantage of the cryoplanation terraces at Svartkampan is that they are currently active, 486 at least in part. We are confident, therefore, that the combination of morphological 487 evidence with dating evidence, field observations relevant to structure and process, and 488 the general climatic characteristics of the sites, provides a firm basis for attributing their 489 origin to cryoplanation.

490

- 491 **Dating cryoplanation terraces**
- 492

493 There have been few previous attempts to date cryoplanation terraces, none of which 494 has had much success. Vague generalisations have resulted from relative-age dating 495 based on morphostratigraphy, weathering-rind thickness, vegetation or lichen cover 496 (Péwé, 1970; Reger, 1975; Lauriol et al., 1997; Nelson, 1998). However, it has been 497 concluded that they probably develop over very long periods of time, which supports 498 similar ideas based on the observation that they are well developed in terrain that has 499 never been glaciated or was not glaciated during the last glaciation (Reger and Péwé, 500 1976; Lauriol and Godbout, 1988; Nelson and Nyland, 2017). To the authors' 501 knowledge, the results of numerical-age dating techniques have been presented in two published papers only (Cremeens et al., 2005; Lauriol et al., 2006): the first applied ³⁶Cl 502 503 cosmogenic-nuclide exposure-age dating to two possible cryoplanation summit flats;

the second obtained nine ¹⁴C dates from the regolith cover of the treads of undoubted
 cryoplanation terraces.

506

507 In the present study we have used two numerical-age dating techniques in the 508 context of cryoplanation terraces for the first time, including the first application of 509 SHD. Comparable results have been achieved from the extensive use of SHD on bedrock exposed in the backing cliffs and on the boulder cover of treads; and these 510 results are in turn compatible with the ¹⁴C dating of organic sediments buried beneath 511 512 the surface of treads. The SHD ages provide evidence of the extent to which the terraces 513 are currently active, while the ¹⁴C ages provide estimates of maximum rates of cliff 514 recession and terrace extension during the late Holocene. However, neither approach 515 yields close estimates of landform age defined as the period of time over which the 516 cryoplanation terraces formed.

517

518 SHD ages and current activity

519

520 For a diachronous surface, SHD age estimates the average exposure-age of the sampled surface (Matthews et al., 2014, 2015; Winkler et al., 2016). The bedrock and boulder 521 522 surfaces sampled from the cryoplanation terraces in this study vary considerably in their 523 average exposure age (Table 4; Figure 12). Only the bedrock cliff sampled at site 8, with an SHD age of zero, is representative of a uniformly modern, active surface. All 524 525 the other surfaces represent mixed-age populations, with increasing levels of activity 526 and decreasing exposure-age and current activity along the length of the main terrace from west to east (sites 1 to 8). The remarkable linear SHD age and hence activity 527 528 gradient exhibited by the cliffs (Figure 13) shows not only that the cliffs at the eastern

end of the main terrace are the most active but also that those at the western end are essentially relict. Indeed, the SHD age of the cliff at site 1 (8890 ± 1185 yr) indicates very little activity except <1000 yr after deglaciation.

532

The pattern of SHD ages between the cliffs, inner treads and outer treads, which 533 534 is most apparent towards the eastern end of the main terrace (sites 5 to 8), is also 535 enlightening (Figure 12). The fact that the inner tread is significantly older than the cliff at these sites, and that the outer tread is even older (significantly so at sites 7 and 8), 536 537 points to the cliffs being the source of the relatively fresh boulders in the treads. These 538 relatively fresh boulders, having been added to an older boulder population, would have 539 reduced the average exposure-age of the surface boulders of the tread. This 540 interpretation of the ages is supported by the clast roundness analyses, which 541 demonstrate that the proportion of angular clasts in the cliffs is higher than on the treads and that the proportion on the inner treads tends to be higher than on the outer treads. 542 543 Thus, the greater proportion of weathered clasts on the treads gives rise to the older 544 SHD ages. 545

In theory, frost disturbance may reduce the exposure-age of clasts on the treads. 546 547 Frost heave and frost sorting have the potential to bring relatively unweathered clasts to 548 the surface, and frost fracturing of clasts embedded in the tread may expose fresh, unweathered rock surfaces. However, as the observed pattern of SHD ages (i.e. inner 549 550 treads are older than cliffs and outer treads are characterised by the oldest ages) is the 551 opposite of what would be the expected outcome of these disturbances, none of these disturbances are likely to have had an appreciable effect on the SHD ages (except, 552 553 perhaps, at site 1).

555 Rate of terrace formation and landform age

556

557	The radiocarbon dates of \sim 3000, 4000 and 5000 cal yr BP for organic material at the
558	base of the humic regosol at distances of 30, 50 and 60 cm, respectively, from the
559	bedrock cliff (Table 5 and Figure 7) provide maximum estimates for the rate of bedrock
560	cliff recession and terrace extension of $\sim 0.10, 0.125$ and 0.12 mm per year, respectively.
561	These values are comparable to the measured rockwall recession rates compiled from a
562	wide range of lithologies in arctic and alpine periglacial environments (Murton, 2013;
563	Ballantyne, 2018; French, 2018).
564	
565	Given that the deglaciation of Svartkampan occurred 9700 years ago, maximum
566	cliff recession rates of the order of 0.1 mm per year are insufficient for the
567	cryoplanation terraces to have been eroded entirely within the Holocene. Indeed,
568	extrapolation of this rate implies that at least 56–176 ka would be required to erode the
569	terraces, the widths of which range from 7–22 m. We conclude, therefore, that the onset
570	of terrace formation is likely to have occurred prior to the last (Weichselian) glacial
571	maximum, in periods with a periglacial climate. Subsequent survival of terraces also
572	seems likely, which would have been possible under a relatively thin, cold-based ice
573	sheet (cf. Kleman, 1994; Hättestrand and Stroeven, 2002; Juliussen and Humlum, 2007;
574	Marr et al., 2018).
575	
576	It must be acknowledged, however, that the inference of a wholly periglacial
577	origin for the terraces depends on several assumptions, namely: (1) our estimated

578 maximum rate of cliff recession is representative for the late Holocene; (2) similar rates

579 can be applied to the entire Holocene and also to pre-Holocene periglacial regimes; and 580 (3) alternative processes (such as differential subglacial erosion) did not contribute to these landforms. The third assumption may not be reasonable, given the nature of the 581 582 regolith that covers the bedrock surface of the treads. It is apparent that much of the 583 regolith consists of a diamicton, with numerous edge-rounded clasts and abundant fine 584 matrix. Similar edge-rounded clasts occur on the cliffs and completely bury the cliff at 585 site 4. Both the diamicton and the edge-rounded clasts most likely originated as till, deposited during deglaciation and subsequently reworked by periglacial mass wasting. 586 587 It is not unrealistic to suggest, therefore, that subglacial erosion through plucking 588 contributed to preparation and erosion of the cliff prior to the Holocene and hence could 589 account for a substantial share of the present-day width of the terraces.

590

591 Frost-weathering processes on the cliffs

592

593 Frost weathering is conventionally regarded as the primary process in explaining the backwearing of cliffs in the context of cryoplanation terraces (Boch and Krasnov, 1943, 594 595 Demek, 1969a; 1969b; Priesnitz, 1988; Czudek, 1995). However, the sparsity of direct 596 process studies has been universally recognised as a major problem in their 597 interpretation. Nevertheless, several lines of indirect evidence from Svartkampan point 598 strongly to the main process being the production of relatively large rock fragments by 599 frost wedging (alternatively termed macrogelivation) as a result of the freezing of water 600 in pre-existing cracks) (Murton, 2013; Ballantyne, 2018). 601 First, the modern cliff at site 8 and active parts of cliffs at the other sites are 602

603 clearly the main source of the clasts littering the inner treads of the terraces. These well-

jointed cliffs (frost-riven cliffs to use the term commonly employed in cryoplanation
research) produce clasts that match those on the inner treads in terms of exposure-age,
angularity and size. The low proportions of *in situ* fractured clasts on the treads
indicates, moreover, that comminution of existing clasts is not a feasible alternative
source for abundant, large angular clasts on the treads (cf. Berrisford, 1991).

609

610 Second, abundant moisture is available at the base of the cliffs from groundwater, which originates from permafrost thaw and summer rainfall as well as 611 612 snowmelt. Water is as essential as sub-zero temperatures for frost weathering (Hall et 613 al., 2002; Thorn and Hall, 2002; Thorn et al., 2011). It remains available at the 614 Svartkampan sites during freeze-back, enabling ice to form in pre-existing joints and 615 cracks. Frost wedging is most likely to occur at this time in response not only to the 616 volumetric expansion of ice in the cracks but also to the growth of segregation ice as 617 water migrates towards a freezing front that is penetrating deep into the cliff (cf. Walder 618 and Hallet, 1985; Matthews et al., 1986; Hallet et al., 1991; Murton et al., 2006; 619 Matsuoka and Murton, 2008). Although the development of segregation ice has been 620 investigated and discussed largely in relation to porous rocks, it would also be expected in association with interconnected microcracks in the layered mylonitised gneiss at 621 622 Svartkampan. Significantly, cryoplanation terraces and other frost-riven cliffs in the 623 Sudetes Mountains (Central Europe) appear to be preferentially associated with gneissic and schistose bedrock (Traczyk and Migon, 2000). 624

625

Third, evidence for fractured bedrock and *in situ*, loosely-attached rock
fragments forming breccia, is particularly abundant close to the foot of the cliff, both
above (Figure 6d) and below (Figure 6c) the surface of the tread. This is precisely

629 where groundwater seepage occurs, and hence where most water is available for ice 630 formation in cracks, and where frost weathering would be expected to undercut the cliff, 631 producing the sharp cliff/tread junction and maintaining the terrace cross-profile shape. 632 Maximum seepage at the cliff base is attributed to the topography of the ground surface, combined with high joint density and the configuration of the still-frozen substrate. 633 634 635 Fourth, both cliff and buried bedrock surfaces (Figure 7) cut across bedrock structures, effectively excluding an explanation based purely on geology. In the absence 636 637 of evidence for alternative processes capable of producing flights of such terraces, this 638 has generally been accepted as strong evidence for cliff recession as a result of frost 639 weathering, provided debris removal by mass wasting is sufficient to prevent the 640 accumulation of debris at the cliff base (Demek, 1969a, Presnitz, 1988; Czudek, 1995; 641 Nelson and Nyland, 2017). 642 643 Transport processes on the treads

644

645 Transport of sediments across the treads of cryoplanation terraces is commonly

646 attributed to solifluction and flowing water, with gelifluction, frost creep, slopewash,

647 sheet wash, snow meltwater, suprapermafrost meltwater, infiltration water, subsurface

flow, piping, and suffosion, all having been mentioned in the literature (Demek, 1969a;

649 Czudek and Demek, 1971; Reger and Péwé, 1975; Presnitz, 1988; Lauriol, 1990;

650 Czudek, 1995). Solifluction and various types of water flow occur at Svartkampan, but

the observational and dating evidence presented above indicate that such transport must

have been extremely slow throughout the Holocene. Although supranival transport

653 cannot be ruled out as a contributory process, the coarser material could not have been

moved by most of the water-flow processes. Furthermore, many of the edge-rounded surface clasts and most of the silty-sand matrix comprising the regolith seem to have originated as till, which was deposited during deglaciation. Subsequently, the frostsusceptible regolith was disturbed by solifluction but, according to our dating, it was transported no more than a few metres across the terraces during the Holocene.

660 Solution (Rapp, 1960; Lauriol et al., 1997; Thorn et al., 2011) and wind transport (Demek, 1969a; Lauriol et al., 1997; Lamirande et al., 1999) probably 661 662 contributed to the removal of some fines from the regolith at some places and times, but 663 these processes cannot have had a major effect on the overall volume and fabric of the regolith over the Holocene timescale. Similarly, cryoturbation and frost sorting 664 665 undoubtedly contributed to disturbance of the frost-susceptible regolith, and may well 666 have favoured infiltration, the concentration of surface and subsurface water flow and piping (Presnitz, 1988) while leaving the bulk of the regolith intact. 667

668

669 Developmental model of cryoplanation terraces

670

671 Various seasonal processes contribute to the development of active cryoplanation

672 terraces at Svartkampan. The presence of groundwater near the cliff base during autumn

and early winter freeze-back is of critical importance (Figure 14a). At this time,

674 groundwater is moving downslope under gravity along cracks and joints within the

active layer of the cliff and emerging near the base of the cliff where the groundwater

table intersects the ground surface. Permafrost and/or infiltration of rainwater must be

677 the major water source as, by this time, the late-lying snowbeds have melted away.

Also, groundwater in the active layer cannot penetrate the permafrost, which is acting as

an aquiclude, or at least an aquitard (Woo, 2012; Liao and Zhuang, 2017). Thus, above
the permafrost table, and especially at the cliff base, groundwater is available for ice
wedging and/or the growth of segregation ice during refreezing of the active layer.

683 Transportation of debris across the terrace tread takes place mainly during the 684 spring and early summer, when thaw consolidation leads to solifluction and snow 685 meltwater is abundant (Figure 14b). Also in spring and summer, melting of ice in the 686 cliff is likely to trigger rockfall onto the terrace tread, either directly or indirectly via the 687 snowbed surviving at that time on the inner tread. However, rates of solifluction are 688 very slow due to the low gradient of the tread and the outer tread tends to be more stable 689 than the inner tread, affected less by solifluction and perhaps more by cryoturbation and 690 frost sorting. Beneath the regolith-covered inner terrace tread, the active layer is likely 691 to be thinner than beneath the bedrock cliff, because of its higher ice content and consequent greater amount of latent heat required to thaw the ground. In addition, the 692 693 active layer will tend to be thinner under the snowbed due to the insulating properties of 694 late-lying snow. Conditions are different on the tread during freeze-back: the snowbed 695 has melted away, surface sediments are drier, and the reduced availability of water leads to relatively low rates of bedrock frost weathering beneath the tread. 696

697

698Over the long-term, the zone of maximum frost weathering close to the cliff699base leads to the cliff being undercut, and to parallel retreat of a near-vertical cliff700(Figure 14c). This model bears some similarity to that originally proposed by Boch and701Krasnov (1943), namely enhanced frost weathering towards the cliff base,702comparatively little lowering of the bedrock beneath the terrace tread, parallel retreat of703the cliff over time, and solifluction as the main process evacuating sediment across the

704 tread. However, several important new features of our model should be highlighted, particularly: (1) undercutting of the cliff by frost weathering at the cliff-tread junction, 705 which produces and maintains a near-vertical cliff; (2) provision of a groundwater-706 707 based mechanism for cliff recession; (3) seasonal dimensions to both cliff recession and sediment evacuation from the tread; and (4) negligible lowering over time of the near-708 709 horizontal bedrock surface beneath the tread, attributed to the thermal properties of the regolith cover, leading to a relatively thin active layer, which may not penetrate far into 710 711 the bedrock.

712

713 Structural control of terrace initiation?

714

715 As with earlier models that more-or-less require an initial cliff-like form, our model does not provide an explanation for the initiation of cryoplanation terrace 716 717 development. Without an appropriate pre-existing landform, it is difficult to see how 718 enhanced frost-weathering would produce such a cliff on a land surface with a uniform slope angle. Possible precursors (proto-cliffs) might be controlled by 719 geological structure and/or accentuated by selective glacial erosion at times when a 720 Pleistocene ice-sheet was not cold-based and protective. Dilatation joints and 721 722 exfoliation following repeated glacial loading and unloading might also be considered 723 but, ultimately, no definite answer can be given. From their alignment and location, at least some form of structural control of a proto-cliff seems likely (though subsequent 724 cliff retreat does not follow the smaller-scale bedrock structures). 725 726

727 **Permafrost promotes cryoplanation**

728

729 Reger and Péwé (1976) argued strongly that cryoplanation requires permafrost, and it 730 seems to be accepted that the most favourable conditions occur where permafrost is present under relatively continental climates (Crudek, 1995; Hall, 1998; Nelson and 731 732 Nyland, 2017). Our research at Svartkampan indicates that permafrost is an important 733 water source for frost weathering and solifluction, and that an impermeable permafrost 734 table confines meltwater flow to the active layer, contributes to the focusing of frost 735 weathering towards the cliff base, and provides a 'base level' below which frost 736 weathering is ineffective. Apparently active cryoplanation terraces have nevertheless 737 been described from areas with deep seasonal ground freezing, such as low-alpine zones and maritime polar regions (Demek 1969a; Schunke and Heckendorff, 1976; Crudek 738 739 1995). In view of slow rates of development, however, it is difficult to establish whether 740 such terraces experienced seasonal freezing throughout their development. Thus, we 741 conclude that although permafrost promotes cryoplanation it cannot yet be said to be a 742 necessary condition.

743

744 Cryoplanation is not the same as nivation

745

It has been suggested that there are similarities in the morphology and genesis of
cryoplanation terraces and nivation benches or hollows (Margold et al., 2011;

Ballantyne, 2018), and that cryoplanation and nivation can be conceptualised as

representing different parts of a single process spectrum (Hall, 1998; Thorn and Hall,

750 2002). An important insight following from our research on the Svartkampan terraces,

however, is that snow, and processes of nivation, play only a secondary role in

752 cryoplanation and the formation of cryoplanation terraces. This is in agreement with

the proposal of Hall (1998) and Thorn and Hall (2002) that cryoplanation is associated

with relatively cold climates, permafrost and snow-free conditions, whereas nivation
is characterised by the presence of snow in milder and wetter climates. Thus, we
propose that cryoplanation should be regarded as essentially distinct from nivation.

758 The characteristic process of cryoplanation and our model of cryoplanation 759 terrace development is frost weathering at the cliff base: this leads, over time, to the 760 parallel retreat of the cliff and terrace extension (Figure 14c). Thermal insulation by 761 snow dampens the annual freeze-thaw cycle rather than accentuates it (Draebing et al., 762 2017) and, most importantly, snow is normally no longer available as a moisture source 763 during freeze-back. Water for ice-growth at this time comes from groundwater – suprapermafrost meltwater flow and infiltration water from autumn rainfall - rather than 764 765 snowbeds. Thus, any late snowbeds on the terrace treads (see, for example Figure 2) are 766 an effect rather than a cause of the cryoplanation terrace and, more likely than not, slow 767 down the rate of cliff recession and terrace extension. Interestingly, the original 768 definition of nivation (Matthes, 1900) did not include frost weathering of bedrock.

769

770 Processes of nivation (snow-generated processes capable of enhancing geomorphic work) (cf. Thorn, 1976, 1988; Thorn and Hall, 1980, 2002; Nyberg, 1991; 771 772 Christiansen, 1998a, 1998b) do contribute to the transport of material across the terrace 773 tread. During spring and summer thaw, solifluction occurs beneath and in front of 774 snowbeds on the tread, and snow meltwater transports fine sediments away from the cliff while rockfall material from the cliff may undergo supranival transport (Figure 775 776 14a). However, the dates obtained on both organic sediments and surface boulders in this study demonstrate extremely slow Holocene transport rates with relatively small 777 778 quantities of material being transported for a short distance across the inner terrace

tread, which leaves the outer tread in an essentially relict state.

780

781 SUMMARY AND CONCLUSIONS

782

783	We have dated cryoplanation terraces for the first time using two different dating
784	techniques and present a process-based conceptual model of cryoplanation terrace
785	development. SHD was applied to surface boulders on terrace treads and bedrock cliffs
786	and ¹⁴ C dating was applied to organic-rich sediment within the regolith on the tread.
787	This chronological information, combined with observational evidence, has enabled
788	several controversial aspects of cryoplanation to be addressed.

789

790 The statistically significant decrease in SHD mean age (\pm 95 % confidence interval) of the cliffs along the length of the main terrace, from 8890 ± 1185 yr at site 1 791 792 to 0 ± 825 yr at site 8, demonstrates significant spatial variation in exposure age and 793 activity. This strong west-east age gradient seems to reflect subtle topographic variations with consequent effects on groundwater hydrology and frost weathering. 794 795 With the exception of site 1, the inner treads on the main terrace yielded consistently 796 older SHD ages than the cliffs, and the SHD ages of outer treads tend to be older than 797 the inner treads. None of the SHD ages are older than the Holocene but most terraces have active and relict elements. The SHD ages are complemented by three ¹⁴C dates of 798 799 between 3854 and 4821 cal yr BP (2σ range), which indicate a maximum rate of cliff recession of the order of 0.1 mm per year. Extrapolation of this rate suggests that the 800 801 terraces began to form before the last glacial maximum, survived glaciation beneath 802 cold-based ice, and resumed active development in the Holocene.

804 Excavation has demonstrated that the terraces cut across bedrock structures yet 805 most of the regolith on the terrace treads is interpreted as diamicton derived from till deposited during deglaciation and subsequently reworked by solifluction and 806 807 cryoturbation. Boulder pavement caps much of the regolith on the inner treads and the 808 pavement tends to be formed of angular boulders derived from the cliffs; whereas on 809 the outer treads, edge-rounded clasts are characteristic. The age, angularity and size of 810 clasts on the inner treads supports frost-weathering as the primary process leading to 811 cliff recession and terrace extension. During autumn freeze-back, snowbeds have 812 melted yet seepage water is still available at the cliff-base, where effective frost 813 wedging and/or the growth of segregation ice in joints and cracks is inferred to occur 814 during prolonged winter frost penetration. Thus, the availability of groundwater during 815 freeze-back is considered to be critical for cryoplanation, which proceeds slowly by 816 parallel retreat of a cliff undercut by frost weathering.

817

818 Permafrost seems to promote the formation of well-developed cryoplanation 819 terraces by providing an impermeable frost table beneath the active layer, focusing 820 groundwater flow towards the cliff base, and supplying water during spring and 821 summer thaw. Together with snowmelt, supra-permafrost meltwater promotes the 822 transport of regolith across the terrace surface, especially by solifluction following thaw 823 consolidation. However, such transport processes are very slow under the relatively 824 continental climatic conditions of northeastern Jotunheimen. It is argued that seasonal 825 frost is less likely to promote cryoplanation and terrace development. 826

827 Contrary to the view expressed in several recent publications, our results
828 suggest that cryoplanation should be seen as different from nivation. Snow appears to

829	play, at most, only a secondary role in cryoplanation. And enhanced frost weathering
830	linked to groundwater hydrology during freeze-back, which is so important for
831	cryoplanation, does not constitute a nivational process.
832	
833	ACKNOWLEDGEMENTS
834	
835	Fieldwork was carried out on the Swansea University Jotunheimen Research
836	Expeditions, 2017 and 2018. We thank Anika Donner for assistance in the field, Charles
837	Harris for discussions on the possible effects of permafrost, named (Martin Margold
838	and Atle Nesje) and unnamed reviewers for comments leading to improvement of the
839	manuscript, Ole Jakob and Tove Grindvold for logistical support, and Anna Ratcliffe
840	for drawing up the figures for publication. This paper constitutes Jotunheimen Research
841	Expeditions Contribution No. 207 (see: <u>http://jotunheimenresearch.wixsite.com/home</u>)
842	
843	REFERENCES
844	
845	Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterisation.
846	Engineering Geology 81, 1-14.
847	
848	Ballantyne, C.K., 2018. Periglacial Geomorphology. Wiley-Blackwell: Chichester.
849	
850	Barnett, C., Dumayne-Peaty, L., Matthews, J. A., 2000. Holocene climatic change and
851	tree-line response in Leirdalen, central Jotunheimen. Review of Palaeobotany and
852	Palynology 117, 119–137.
853	
854	Berrisford, M.S., 1991. Evidence for enhanced mechanical weathering associated with
855	seasonally late-lying and perennial snow patches, Jotunheimen, Norway. Permafrost
856	and Periglacial Processes 2, 331-340.
857	

858	Beskow, G., 1935. Tjälbildningen och tjällyftningen med särskild hänsyn till vägar och
859	jarnägar. Sveriges Geologiske Undersöknng, Series C 375, Årbok 26, 1-242.
860	
861	Boch, S.G., Krasnov, I.I., 1943. On altiplanation terraces and ancient surfaces of
862	levelling in the Urals and associated problems. In: Evans, D.J.A. (Ed.), (1994) Cold
863	Climate Landforms. Wiley, Chichester, pp. 177-186. [Translated from Russian]
864	
865	Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-
866	360.
867	
868	Büdel, J. 1981. Klima- Geomorphologie, 2nd edition. Bornträger, Berlin-Stuttgart.
869	
870	Christiansen, H.H., 1998a. Nivation forms and processes in unconsolidated sediments,
871	NE Greenland. Earth Surface Processes and Landforms 23, 751-760.
872	
873	Christiansen, H.H., 1998b. 'Little Ice Age' nivation activity in northeast Greenland. The
874	Holocene 8, 719-728.
875	
876	Cremeens, D.L., Darmody, R.G., George, S.E., 2005. Upper slope landforms and age of
877	bedrock exposures in the St. Francois Mountains, Missouri: a comparison of relict
878	periglacial features in the Appalachian Plateau of West Virginia. Geomorphology 70,
879	71-84.
880	
881	Czudek, T., 1995. Cryoplanation terraces – a brief review and some remarks.
882	Geografiska Annaler Series A (Physical Geography) 77A, 95-105.
883	
884	Czudek, T., Demek, J., 1971. Pleistocene cryoplanation in the Ceská Vpocina
885	highlands, Czechoslovakia. Transactions of the Institute of British Geographers 52, 95-
886	112.
887	
888	Dahl, S.O., Nesje, A., Lie, Ø., Fordheim, K., Matthews, J.A., 2002. Timing,
889	equilibrium-line altitudes and climatic implications of two early-Holocene readvances
890	during the Erdalen Event at Jostedalsbreen, western Norway. The Holocene 12, 17-25.

892	Demek, J., 1968. Cryoplanation terraces in Yakutia. Biuletyn Peryglacjalny 17, 91-116.
893	
894	Demek J., 1969a. Cryoplanation terraces, their geographical distribution, genesis and
895	development. Rozpravy Ceskoslovenské Akademie Věd, Rada Matematických a
896	Prírodních Věd Rocnik 79(4): 80pp.
897	
898	Demek, J., 1969b. Cryogene processes and the development of cryoplanation terraces.
899	Biuletyn Peryglacjalny 18, 115-125.
900	
901	Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R., Phillips, M. 2017. Thermal
902	and mechanical responses resulting from spatial and temporal snow cover variability in
903	permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost and Periglacial Processes
904	28, 140-157.
905	
906	Ellis, S., 1979. The identification of some Norwegian mountain soil types. Norsk
907	Geografisk Tidsskrift 33, 205-212.
908	
909	Ellis, S., 1980. Soil-environmental relationships in the Okstindan Mountains, north
910	Norway. Norsk Geografisk Tidsskrift 34, 167-176.
911	
912	Farbrot, H., Hipp, T.F., Etzelmüller, B., Isaksen, K., Ødegård, R.S., Schuler, T.V.,
913	Humlum, O., 2011. Air and ground temperature variations observed along elevation
914	and continentality gradients in southern Norway. Permafrost and Periglacial
915	Processes 22, 343–360.
916	
917	French, H.M., 2016. Do periglacial landforms exist? A discussion of the upland
918	landscapes of northern interior Yukon, Canada. Permafrost and Periglacial Processes
919	27, 219-228.
920	
921	French, H.M., 2018. The Periglacial Environment, 4 th edition. Wiley-Blackwell:
922	Chichester.
923	

924	Goehring, B. M., Brook, E. J., Linge, H., Raisbeck, G. M., Yiou, F., 2008. Beryllium-
925	10 exposure ages of erratic boulders in southern Norway and implications for the
926	history of the Fennoscandian Ice Sheet. Quaternary Science Reviews 27, 320-336.
927	
928	Grosso, S.A., Corte, A.E., 1991. Cryoplanation surfaces in the Central Andes at latitude
929	35° S. Permafrost and Periglacial Processes 2, 49-58.
930	
931	Hall, K., 1997. Observations on "cryoplanation" benches in Antarctica. Antarctic
932	<i>Science</i> 9, 181-187.
933	
934	Hall, K., 1998. Nivation or cryoplanation: different terms, same features? Polar
935	<i>Geography</i> 22, 1-16.
936	
937	Hall, K., André, MF., 2010. Some further observations regarding "cryoplanation
938	terraces" on Alexander Island. Antarctic Science 22, 175-183.
939	
940	Hall, K., Thorn, C.E., Matsuoka, N., Prick, A., 2002. Weathering in cold regions: some
941	thoughts and perspectives. Progress in Physical Geography 26, 577-603.
942	
943	Hallet, B., Walder, J.S., Stubbs, C.W., 1991. Weathering by segregation ice growth in
944	microcracks at sustained sub-zero temperartures: verification from an experimental
945	study using acoustic emission. Permafrost and Periglacial Processes 2, 283-300.
946	
947	Harris, C., 1981. Periglacial Mass Wasting: a Review of Research. Geobooks, Norwich
948	[British Geomorphological Research Group Research Monograph 4].
949	
950	Harris, C., Arenson, L.U., Christiansen, H.H., Etzelmüller, B., Frauenfelder, R.,
951	Gruber, S., Haeberli, W., Hauck, C., Hoelzle, M., Humlum, O., Isaksen, K., Kääb, A.,
952	Kern-Luetschg, M.A., Lehning, M., Matsuoka, N., Murton, J.B., Noezli, J., Phillips,
953	M., Ross, N., Seppälä, M., Springman, S.M., Vonder Mühll, D.V., 2009. Permafrost
954	and climate in Europe: monitoring and modelling thermal, geomorphological and
955	geotechnical responses. Earth Science Reviews 92, 117–171.
956	

957 Harris, S.A., Brouchkov, A., Cheng G., 2018. Geocryology: Characteristics and Use of

958	Frozen Ground and Periglacial Landforms. CRC Press-Balkema: Leiden.
959	
960	Hättestrand, C., Stroeven, A.P., 2002. A relict landscape in the centre of the
961	Fennoscandian glaciation: geomorphological evidence of minimal Quaternary glacial
962	erosion. Geomorphology 44, 127-143.
963	
964	Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating
965	organic and carbonate content in sediments: reproducibility and comparability of
966	results. Journal of Paleolimnology 25, 101-110.
967	
968	Hipp, T., Etzelmüller, B., Westermann, S., 2014. Permafrost in alpine rock faces from
969	Jotunheimen and Hurrungane, southern Norway. Permafrost and Periglacial
970	<i>Processes</i> 25, 1–13.
971	
972	Hormes, A., Blaauw, M., Dahl, SO., Nesje, A., Possnert, G., 2009. Radiocarbon
973	wiggle-match dating of proglacial lake sediments – implications for the 8.2 ka event.
974	Quaternary Geochronology 4, 267–277.
975	
976	Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø., Mangerud, J., Svendsen, J. L., 2016.
977	The last Eurasian ice sheets – a chronological database and time-slice reconstruction,
978	DATED-1. Boreas 45, 1–45.
979	
980	Isaksen, K., Hauck, C., Gudevang, E., Ødegård, R.S., Sollid, J.L., 2002. Mountain
981	permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on
982	BTS and DC restivity tomography data. Norsk Geografisk Tidsskrift 56, 122–136.
983	
984	Isaksen, K., Ødegård, R.S., Etzelmüller, B., Hilbich, C., Hauck, C., Farbrot, H.,
985	Eiken, T., Hagen, J.O., Hipp, T.F., 2011. Degraded mountain permafrost in southern
986	Norway: spatial and temporal variability of ground temperatures, 1999–2009.
987	Permafrost and Periglacial Processes 22, 361–377.
988	
989	Juliussen, H., Humlum, O., 2007. Preservation of blockfields beneath Pleistocene ice
990	sheets on Solen and Elgahogna, central-eastern Norway. Zeitschrift für
991	Geomorphologie N.F. 51, Supplementband 2, 113-138.

992	
993	Kleman, J., 1994. Preservation of landforms under ice sheets and ice caps.
994	Geomorphology 9, 19-32.
995	
996	Křižek, M., 2007. Periglacial landforms above the alpine timberline in the High
997	Sudetes. In Goudie, A.S and Kalvoda, J. (eds) Geomorphological Variations, 313-337.
998	P3K Publishing, Prague.
999	
1000	Lamirande, I., Lauriol, B., Lalonde, A.E., Clark, I.D., 1999. La production de limon sur
1001	tes terrasses de cryoplanation dans les Monts Richardson, Canada. Canadian Journal of
1002	Earth Sciences 36, 1645-1654. et al., 1999
1003	
1004	Lauriol, B., 1990. Cryoplanation terraces, northern Yukon. Canadian Geographer 34,
1005	347-351.
1006	
1007	Lauriol, B., Godbout, L., 1988. Les terrasses de cryoplnation dans le nord du Yukon:
1008	distribution, genèse et âge. Geographie Physique et Quaternaire 42, 303-314.
1009	
1010	Lauriol, B.M., Lalonde, A.E., Dewez, V., 1997. Weathering of quartzite on a
1011	cryoplanation terrace in northern Yukon. Permafrost and Periglacial Processes 8, 147-
1012	153.
1013	
1014	Lauriol, B., Lamirande, I., Lalonde, A.E., 2006. The Giant Steps of Bug Creek,
1015	Richardson Mountains, N.W.T., Canada. Permafrost and Periglacial Processes 17,
1016	267-275.
1017	
1018	Liao, C., Zuang, Z., 2017. Quantifying the role of permafrost distribution in
1019	groundwater and surface water interactions using a three-dimensional hydrological
1020	model. Arctic, Antarctic and Alpine Research 49, 81-100.
1021	
1022	Lilleøren, K.S., Etzelmüller, B., Schuler, T.V., Ginås, K., Humlum, O., 2012. The
1023	relative age of permafrost – estimation of Holocene permafrost limits in Norway.
1024	Global and Planetary Change 92–93, 209–223.
1025	

1026	Lutro, O., Tveten, E., 1996. Geologiske kart over Norge, bergrunnskart Årdal,
1027	1:250,000. Norges Geologiske Undersøkelse, Trondheim.
1028	
1029	Malvern Instruments Ltd., 2007. Mastersizer 2000, User Manual. MAN0384, Issue 1.0.
1030	
1031	Mangerud, J., Gyllencreutz, R., Lohne, Ø., Svendsen, J.I., 2011. Glacial history of
1032	Norway. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations -
1033	Extent and Chronology: a Closer Look. Elsevier, Amsterdam, pp. 279-298.
1034	
1035	Margold, M., Treml, V., Petr, L, Nyplová, P., 2011. Snowpatch hollows and pronival
1036	ramparts in the Krkonose Mountains, Czech Republic: distribution, morphology and
1037	chronology of formation. Geografiska Annaler Series A (Physical Geography) 93A,
1038	137-150.
1039	
1040	Marr, P., Winkler, S., Löffler, J., 2018. Investigations on blockfields and related
1041	landforms at Blåhø (Southern Norway) using Schmidt hammer exposure-age dating:
1042	palaeoclimatic and morphodynamic implications. Geografiska Annaler Series A
1043	(Physical Geography) 100A, 285-306.
1044	
1045	Matthes, F.E., 1900. Glacial sculpture of the Bighorn Mountains, Wyoming. United
1046	States Geological Survey 21 st Annual Report 1899-1900, 167-190.
1047	
1048	Matthews, J.A., 2005. 'Little Ice Age' glacier variations in Jotunheimen, southern
1049	Norway .: a study in regionally-controlled lichenometric dating of recessional moraines
1050	with implications for climate and lichen growth rates. The Holocene 15, 1-19.
1051	
1052	Matthews, J. A., McEwen, L. J., 2013. High-precision Schmidt hammer exposure-age
1053	dating (SHD) of flood berms, Vetlestølsdalen, alpine southern Norway: first
1054	application and some methodological issues. Geografiska Annaler Series A, Physical
1055	<i>Geography</i> 95, 185–194.
1056	
1057	Matthews, J. A., Owen, G., 2010. Schmidt-hammer exposure-age dating: developing
1058	linear age-calibration curves using Holocene bedrock surfaces from the Jotunheimen-
1059	Jostedalsbreen regions of southern Norway. Boreas 39, 105-115.

1060	
1061	Matthews, J.A. and Vater, A.E., 2015. Pioneer zone geo-ecological change:
1062	observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen,
1063	southern Norway. Catena 135, 219-230.
1064	
1065	Matthews, J. A., Wilson, P., 2015. Improved Schmidt-hammer exposure ages for
1066	active and relict pronival ramparts in southern Norway, and their palaeoenvironmental
1067	implications. <i>Geomorphology</i> 246, 7–21.
1068	
1069	Matthews, J. A., Winkler, S., 2011. Schmidt-hammer exposure-age dating (SHD):
1070	application to early Holocene moraines and a reappraisal of the reliability of terrestrial
1071	cosmogenic-nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway.
1072	<i>Boreas</i> 40, 256–270.
1073	
1074	Matthews, J.A., Dawson, A.G., Shakesby, R.A., 1986. Lake shoreline development,
1075	frost weathering and rock platform erosion in an alpine periglacial environment,
1076	Jotunheimen, southern Norway. Boreas 15, 33-50.
1077	
1078	Matthews, J. A., Berrisford, M.S., Dresser, P.Q., Nesje, A., Dahl, SO., Bjune, A. E.,
1079	Bakke, J., Birks, H. J. B., Lie, Ø., Dumayne-Peaty, L., Barnett, C., 2005. Holocene
1080	glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen,
1081	southern Norway, based on proximal glaciofluvial stream-bank mires. Quaternary
1082	Science Reviews 24, 67–90.
1083	
1084	Matthews, J. A., Nesje, A., Linge, H., 2013. Relict talus-foot rock glaciers at
1085	Øyberget, upper Ottadalen, southern Norway: Schmidt hammer exposure ages and
1086	palaeoenvironmental implications. Permafrost and Periglacial Processes 24, 336-
1087	346.
1088	
1089	Matthews, J. A., Winkler, S., Wilson, P., 2014. Age and origin of ice-cored moraines
1090	in Jotunheimen and Breheimen, southern Norway: insights from Schmidt-hammer
1091	exposure-age dating. Geografiska Annaler Series A, Physical Geography 96, 531-
1092	548.
1093	

1094	Matthews, J.A., McEwen, L.J., Owen, G., 2015. Schmidt-hammer exposure-age
1095	dating (SHD) of snow-avalanche impact ramparts in southern Norway: approaches,
1096	results and implications for landform age, dynamics and development. Earth Surface
1097	Processes and Landforms 40, 1705–1718.
1098	
1099	Matthews, J. A., Owen, G., Winkler, S., Vater, A. E., Wilson, P., Mourne, R.W., Hill, J.
1100	L., 2016. A rock-surface microweathering index from Schmidt hammer R-values and
1101	its preliminary application to some common rock types in southern Norway. Catena
1102	143, 35–44.
1103	
1104	Matthews, J.A., Hill, J.L., Winkler, S., Owen, G., Vater A.E., 2018a. Autosuccession in
1105	alpine vegetation: testing the concept on an altitudinal bioclimatic gradient,
1106	Jotunheimen, southern Norway. Catena 170, 169-182.
1107	
1108	Matthews, J.A., Winkler, S., Wilson, P., Tomkins, M.D., Dortch, J.M., Mourne, R.W.,
1109	Hill, J.L., Owen, G., Vater, A.E., 2018b. Small rock-slope failures conditioned by
1110	Holocene permafrost degradation: a new approach and conceptual model based on
1111	Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. Boreas 47,
1112	1144-1169.
1113	
1114	Matsuoka, N., Murton, J., 2008. Frost weathering: recent advances and future
1115	directions. Permafrost and Periglacial Processes 19, 195-210.
1116	
1117	McCarroll, D., 1987. The Schmidt hammer in geomorphology: five sources of
1118	instrument error. British Geomorphological Research Group, Technical Bulletin 36,
1119	16–27.
1120	
1121	McCarroll, D., 1994. The Schmidt hammer as a measure of degree of rock surface
1122	weathering and terrain age. In: Beck, C. (Ed.), Dating in Exposed and Surface
1123	Contexts. University of New Mexico Press, Albuquerque, pp29-45.
1124	
1125	Mingard, K., Morrell, R., Jackson, P., Lawson, S., Patel, S., Buxton, R., 2009. Good
1126	Practice Guide for Improving the Consistency of Particle Size Measurement. National
1127	Physics Laboratory, Teddington [Measurement Good Practice Guide No. 111].

1128	
1129	Murton, J.B., 2013. Rock weathering. In: Elias, S.A. (Ed), Encyclopedia of Quaternary
1130	Science, Volume 3. Elsevier, Amsterdam, pp. 500-506.
1131	
1132	Murton, J.B., Peterson, R., Osouf, JC., 2006. Bedrock fracture by ice segregation in
1133	cold regions. Science 314, 1127-1129.
1134	
1135	Nelson, F.E., 1998. Cryoplanation terrace orientation in Alaska. Geografiska Annaler
1136	Series A, Physical Geography 71, 31–41.
1137	
1138	Nelson, F.E., Nyland, K.E., 2017. Periglacial cirque analogues: elevation trends of
1139	cryoplanation terraces in eastern Berigia. Geomorphology 293, 305-217.
1140	
1141	Nesje, A., 2009. Late Pleistocene and Holocene alpine glacier fluctuations in
1142	Scandinavia. Quaternary Science Reviews 28, 2119–2136.
1143	
1144	Nesje, A., Dahl, SO., 2001. The Greenland 8200 cal. yr BP event detected in loss-
1145	on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of
1146	Quaternary Science 16, 155–166.
1147	
1148	Nesje, A., Dahl, S.O., Thun, T., Nordli, Ø., 2008. 'Little Ice Age' glacial expansion in
1149	western Scandinavia: summer temperature or winter precipitation? Climate Dynamics
1150	30, 789-801.
1151	
1152	NIJOS, 1991. Vegetasjonskart: Galdhøpiggen 1518 II (1:50,000). Norsk Institutt for
1153	Jord og Skogkartlegging (NIJOS), Ås
1154	
1155	Nyberg, R., 1991. Geomorphic processes at snowpatch sites in the Abisko Mountains,
1156	northern Sweden. Zeitschrift für Geomorphologie N.F. 35, 321-343.
1157	
1158	Ødegård, R.S., Sollid, J.L., Liestøl, O., 1987. Juvflya – Kvartærgeologi og
1159	geomorfologi M1:10.000. Geografisk Institutt, Universitetet I Oslo, Oslo
1160	

1161	Ødegård, R.S., Sollid, J.L., Liestøl, O., 1988. Periglacial forms related to terrain
1162	parameters in Jotunheimen, southern Norway. Permafrost: V International
1163	Conference on Permafrost in Trondheim, Norway, August 1988, vol. 3, Tapir,
1164	Trondheim, pp. 59–61.
1165	
1166	Ødegård, R.S., Sollid, J.L., Liestøl, O., 1992. Ground temperature measurements in
1167	mountain permafrost, Jotunheimen, southern Norway. Permafrost and Periglacial
1168	<i>Processes</i> 3, 231–234.
1169	
1170	Ødegård, R.S., Hoelzle, M., Johanen, K.V., Sollid, J.L., 1996. Permafrost mapping
1171	and prospecting in southern Norway. Norsk Geografisk Tidsskrift 50, 41-53.
1172	
1173	Peltier, L.C., 1950. The geographic cycle in periglacial regions as it relates to climatic
1174	geomorphology. Annals of the Association of American Geographers 40, 214-236.
1175	
1176	Péwé, T.L., 1970. Altiplanation terraces of early Quaternary age near Fairbanks,
1177	Alaska. Acta Geographica Loziensia 24, 357-363.
1178	
1179	Powers, M.C., 1953. A new roundness scale for sedimentary particles. Journal of
1180	Sedimentary Petrology 23, 117–119.
1181	
1182	Priesnitz, K., 1988. Cryoplanation. In: Clark, M.J. (Ed.), Advances in Periglacial
1183	Geomorphology. Wiley, Chichester, pp. 49-67.
1184	
1185	Proceq, 2004. Operating instructions. Betonprüfhammer N/NR-L/LR. Proceq SA,
1186	Schwerzenbach.
1187	
1188	Rapp, A., 1960. Recent development of mountain slopes in Karkevagge and
1189	surroundings, northern Scandinavia. Geografiska Annaler 42, 65-200.
1190	
1191	Reger, R.D., 1975. Cryoplanation terraces of interior and western Alaska. PhD Thesis,
1192	Arizona State University, Tempe, Arizona.
1193	
1194	Reger, R.D., Péwé, T.L., 1976. Cryoplanation terraces: indicators of a permafrost

- 1196
- 1197 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C.,
- 1198 Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P.,
- 1199 Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.I., Hogg, A.G.,
- 1200 Hughen, A.K., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W.,
- 1201 Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der
- 1202 Plicht, A., 2013. INTCAL13 and MARINE13 radiocarbon age calibration curves 0-
- 1203 50,000 years cal BP. *Radiocarbon* 55, 1869-1887.
- 1204
- 1205 Richter, H., Haase, G., Barthel, H., 1963. Die Golezterrassen. Petermanns
- 1206 Geogrographische Mitteillungen 107, 183-192.
- 1207
- 1208 Rixhon, G., Demoulin, A., 2013. Evolution of slopes in a cold climate. In: Giardino, R.,
- 1209 Harbor, J. (Eds), *Treatise on Geomorphology, Volume 8, Glacial and Periglacial*
- 1210 *Geomorphology*, 392-415. Academic Press: San Diego, CA.
- 1211
- 1212 Schunke, E., 1977. Periglazialformen und formengesellschaften in der europäisch
- 1213 atlantischen Arktis und Subarktis. Abhandlingen der Akademie der Wissenschaften in
- 1214 Göttingen, Mathematisch-Physicalische Klasse, Dritte Folge 31, 39-62.
- 1215
- 1216 Schunke, E., Heckendorff, W.D., 1976. Resistenzstufen und kryoplanation.
- 1217 Beobachtungen aus dem periglazialen Milieu Islands. Zeitschrift für Geomorphologie
- 1218 .Supplement Band 24, 88-98.
- 1219
- 1220 Shakesby, R.A., Matthews, J.A., Owen, G., 2006. The Schmidt hammer as a relative-
- age dating tool and its potential for calibrated age dating in Holocene glaciated
- 1222 environments. *Quaternary Science Reviews* 25, 2846–2867.
- 1223
- 1224 Shakesby, R.A., Matthews, J.A., Karlén, W., Los, S., 2011. The Schmidt hammer as a
- 1225 Holocene calibrated-age dating technique: testing the form of the R-value–age
- relationship and defining predicted errors. *The Holocene* 21, 615–628.

1228	Steiger, C., Etzelmüller, B., Westermann, S., Myhra, K.S., 2016. Modelling the
1229	permafrost distribution in steep rock walls in Norway. Norwegian Journal of Geology
1230	96, 329-341.
1231	
1232	Stroeven, A. P., H€attestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin,O.,
1233	Goodfellow, B.W., Harbor, J. M., Jansen, J.D., Olsen, L., Caffee, M.W., Fink, D.,
1234	Lundqvist, J.,Rosqvist,G.C., Strömberg,B., Jansson, K. N., 2016: Deglaciation of
1235	Fennoscandia. Quaternary Science Reviews 147, 91–121.
1236	
1237	St-Onge, D.A., 1964. Les formes de nivation de L'Ile Ellef Ringnes, Territoires du
1238	Nord-Ouest. Acta Geographica 3, 287-304.
1239	
1240	St-Onge, D.A., 1969. Nivation landforms. Geological Survey of Canada Paper 69-30,
1241	1-12.
1242	
1243	Te Punga, MT., 1956. Altiplanation terraces in southern England. Biuletyn
1244	Peryglacjalny 4, 331-338.
1245	
1246	Thorn, C.E., 1976. Quantitative evaluation of nivation in the Colorado Front Range.
1247	Geological Society of America Bulletin 87, 1169-1178.
1248	
1249	Thorn, C.E., 1988. Nivation: a geomorphic chimera. In Clark, M.J. (ed.) Advances in
1250	Periglacial Geomorphology, 3-31. Wiley: Chichester.
1251	
1252	Thorn, C.E., Hall, K., 1980. Nivation: an arctic-alpine comparison and reappraisal.
1253	Journal of Glaciology 25, 109-124.
1254	
1255	Thorn C.E., Hall, K., 2002. Nivation and cryoplanation: the case for scrutiny and
1256	integration. Progress in Physical Geography 26, 533-550.
1257	
1258	Thorn, C.E., Darmody, R.G., Dixon, J.C., 2011. Rethinking weathering and
1259	pedogenesis in alpine periglacial regions: some Scandinavian evidence. In: Martini, I.P.,
1260	French, H.M., Pérez Albertini, A. (Eds) Ice-marginal and periglacial processes and
1261	sediments. Geological Society of London, Special Publications 354, pp. 183-193.

1262	
1263	Traczyk, A., Migon, P., 2000. Cold-climate landform patterns in the Sudetes. Effects of
1264	lithology, relief and glacial history. Acta Universitatis Carolinae Geographica 35
1265	(Supplementum), 185-210.
1266	
1267	Viles, H.,Goudie, A.,Grabb, S., Lalley, J., 2011. The use of the Schmidt hammer and
1268	Equotip for rock hardness assessment in geomorphology and heritage science: a
1269	comparative analysis. Earth Surface Processes and Landforms 36, 320-333.
1270	
1271	Walder, J.S., Hallet, B., 1985. A theoretical model of the fracture of rock during
1272	freezing. Bulletin of the Geological Society of America 96, 336-346.
1273	
1274	Waters, R.S., 1962. Altiplanation terraces and slope development in Vest-Spitsbergen
1275	and south-west England. Biuletyn Peryglacjalny 11, 89-101.
1276	
1277	Washburn, A.L., 1979. Geocryology: a Survey of Periglacial Processes and
1278	Environments. Arnold, London.
1279	
1280	Wilson, P., Matthews, J.A., 2016. Age assessment and implications of late Quaternary
1281	periglacial and paraglacial landforms on Muckish Mountain, northwest Ireland, based
1282	on Schmidt-hammer exposureage dating (SHD). Geomorphology 270, 134-144.
1283	
1284	Wilson, P., Matthews, J.A., Mourne, R.W., 2017. Relict blockstreams at Insteheia,
1285	Valldalen-Tafjorden, southern Norway: their nature and Schmidt-hammer exposure
1286	age. Permafrost and Periglacial Processes 28, 286–297.
1287	
1288	Winkler, S., Matthews, J.A., Mourne, R.W., Wilson, P., 2016. Schmidt-hammer
1289	exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen,
1290	Norway, and their interpretive problems. Geografiska Annaler Series A, Physical
1291	<i>Geography</i> 98, 265–285.
1292	
1293	Woo, M., 2012. Permafrost Hydrology. Springer, Heidelberg.
1294	
1295	

1296	FIGURE CAPTIONS
1297	
1298	Figure 1. (a) Location of Jotunheimen, southern Norway; (b) location of
1299	Svartkampan, NE Jotunheimen; (c) location of the cryoplanation terraces at
1300	Svartkampan (source: http://www.norgeskart.no). Sites of control points for Schmidt-
1301	hammer exposure-age dating (M, G1 and G2; explained in the text) and location of
1302	Figure 3 are also shown.
1303	
1304	Figure 2. (a) The sequence of cryoplanation terraces at Svartkampan viewed from the
1305	north-west (23/07/2018). Numbers indicate the positions of cross-profiles and
1306	measurement sites 2-10. Note also the late-lying snowbed at the eastern end of the
1307	main terrace (to the left of site 8) and the near-absence of snow elsewhere on this
1308	terrace and on the two upper terraces (sites 9 and 10). (b) Detail of the eastern end of
1309	the main terrace (including sites 7 and 8; 22/07/2017). Note person for scale.
1310	
1311	Figure 3. Vertical aerial photograph of the cryoplanation terraces flown on
1312	25/09/2017 (source: http://www.norgeibilder.no). Numbers indicate the positions of
1313	cross-profiles and measurement sites 1-10.
1314	
1315	Figure 4. Cross-profiles of the cryoplanation terraces: sites 1-8 relate to the main
1316	terrace; sites 9 and 10 are on the upper terraces. Small numbers are slope angles of the
1317	slope segments (degrees). On each profile, the length of the terrace tread was halved
1318	to define the inner (closest to the cliff) and outer tread. Dashed lines suggest the
1319	volume of rock removed to form each terrace.
1320	
1321	Figure 5. Photographs of selected cryoplanation terraces: (a) general view of sites 1-3
1322	on the main terrace viewed from the east $(30/07/2017)$; (b) general view of sites 6-8
1323	on the main terrace from the north-west with excavation in the foreground
1324	(21/07/2018); (c) site 6 from the north (21/07/2017); (d) site 10 from the west
1325	(17/07/2018).
1326	
1327	Figure 6. Details from cryoplanation terrace treads and cliffs: (a) sorted circle on the
1328	terrace tread at site 2 (scale length = 1.0 m); (b) <i>in situ</i> split clasts at site 2; (c)
1329	fractured bedrock close to the base of the cliff at site 6; (d) breccia below soil level at

1330	the base of the cliff at the site of the excavation shown in Figure 7 (scale = 20 cm).
1331	
1332	Figure 7. Subsurface characteristics revealed by excavation of the main cryoplanation
1333	terrace between sites 5 and 6. Note especially the subsurface bedrock profile and the
1334	position of the radiocarbon dating sample at the base of the Humic Regosol.
1335	
1336	Figure 8. Standing water at the cliff/tread junction produced by water seeping from
1337	the cliff base near site 6 $(8/07/2018)$.
1338	
1339	Figure 9. Frequency histograms of R-values for cliffs, and for inner and outer terrace
1340	treads, from the 10 sites. Vertical lines represent mean R-values for 'old' and 'young'
1341	control points, respectively.
1342	
1343	Figure 10. SHD calibration equation and calibration curve with 95 % confidence
1344	interval for mylonitised pyroxene-granulite gneiss at Svartkampan.
1345	
1346	Figure 11. Percentage frequency histograms of R-values for the 'old' (9700 ka) and
1347	'young' (0 ka; grey shading) control points used in this study. Note that these
1348	symmetrical statistical distributions characteristic of single-age surfaces contrast with
1349	most of the distributions associated with the cryoplanation terraces in Figure 8.
1350	
1351	Figure 12. SHD ages for cliffs, inner treads and outer treads at sites from the main
1352	terrace (1-8) and the upper terraces (9-10). Horizontal bars are 95 % confidence
1353	intervals.
1354	
1355	Figure 13. Linear regression analyses and correlation coefficients between SHD age
1356	and distance west from site 1 for cliffs, inner treads and outer treads. Note differences
1357	in the slope, strength and statistical significance of the relationships ($n = 8$ for each).
1358	
1359	Figure 14. Schematic process-based model of cryoplanation terrace development:
1360	processes associated with an active cryoplanation terrace at Svartkampan during (a)
1361	autumn freeze-back (prior to the start of freezing) and (b) spring thaw (after thawing
1362	has started); (c) the developmental sequence of parallel cliff retreat due primarily to
1363	frost weathering of bedrock close to the cliff-tread junction. Note that diagonal lines in

1364 the bedrock represent the orientation of the mylonitic layering.