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Abstract

Microbial fuel cells (MFCs) are gaining interest due to higher power production achieved by deep analysis of

their characteristics and their effect on the overall efficiency. To date, investigations on MFC efficiency, can

only be based on laboratory experiments or mathematical modelling. However, there is only a handful of

rule-based mathematical modelling due to the difficulties imposed by the high sensitivity of the MFC system

to environmental parameters and the highly complex bacterial consortia that dictate its behavior. Thus,

an application of an artificial neural network (ANN) is proposed to simulate the polarisation of cylindrical

MFCs with different materials as the separation membranes. ANNs are ideal candidates for investigating

these systems, as there is no need for explicit knowledge of the detailed rules that govern the system.

The ANN developed here is a feed-forward back-propagation network with a topology of 4-10-1 neurons

that approximates the voltage of each MFC at a given state. Two different membrane materials with two

different electrode configurations were assembled and utilized in laboratory experiments to produce the data

set on which the ANN was trained upon. For the whole data set the correlation coefficient (R) between real

values and outputs of the network was 0.99662.
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1. Introduction

The ability of Microbial Fuel Cells (MFCs) to extract electricity while processing waste-water has brought

them in the spotlight of many researchers’ interest. This is achieved by the employment of the metabolism

of a microbial biofilm as an oxidation agent. A MFC is divided into two compartments, the anode and

the cathode, by a membrane that allows the movement of positively charged ions. The biofilm is attached

on the anode electrode and the bacteria that constitute it produce electrons and positively charged ions,

as part of their metabolism. The electrons flow through the anode electrode through an external circuit

to the cathode electrode, while the positively charged ions diffuse through the membrane to the cathode

department. Positively charged ions and electrons merge with oxygen in the cathode electrode to fulfill the

reduction-oxidation reaction cycle.



The task of optimizing MFC technology is heavily based on laboratory tests [1, 2, 3] that usually involve

changing one parameter at a time. However, due to high costs and long time intervals required in laboratory

tests, mathematical modelling and simulated optimisation of MFCs has been proposed as a viable alternative

[4, 5, 6, 7, 8, 9, 10, 11], even though such modelling is subject to some level of abstraction.

Additionally, some parameters that are critical for the efficiency of MFCs are difficult to control or

even measure in situ. Some of these parameters are the biofilm thickness on the anode electrode, the

actual composition of the bacteria consortium in the biofilm, their growth rate and substrate utilization

rate [12, 13, 14, 15, 16]. An alternative that can alleviate these difficulties is modelling MFCs with machine

learning techniques. In this way only system inputs and outputs are required, while the rules governing the

system will be unveiled by the algorithm, without any prior high-level knowledge required of the system in

question.

Consequently, there is a current trend in using (artificial neural networks) machine learning solutions in

modelling and predicting the performance of MFCs. Using ANN does not involve developing an ensemble

of highly accurate formulas that describe all processes (physical, biological and electro-chemical) that occur

within the system. On the contrary, only input and output data are required and the ANN uncovers in

an automatic way the relations between inputs and outputs. Thus, no explicit knowledge of the system is

required (however, expertise on the field on MFC is required to help selecting and using the meaningful

inputs that have effects on the outputs).

The field of artificial neural networks (ANNs) is highly inspired by the way that the human brain

functions. The motivation derives from the fact that the brain computes in a completely different method

than well-established digital computers. While digital computers are developed in a highly organized manner

with modules that perform specific and predefined functions, the brain works in a nonlinear and parallel

manner with high complexity. The advantages of ANNs that are simplified models of the way parts of the

human brain work, are their parallel distributed structure as well as the ability to learn and, therefore,

generalize. Generalization is defined as the ability to produce good estimated outputs for inputs that were

not processed during the learning function of the network.

In the present study a cylindrical type of MFCs was studied. Two different materials for membrane were

used. Moreover, different configurations of the anode and cathode compartments were investigated. One

with the anode on the outside (cathode on the inside) and one with the anode on the inside (cathode on the

outside). The four test cases were run in triplicate, thus resulting in 12 MFCs.

A forward-fed and back-propagation ANN with topology of 4-10-1 neurons was developed. The four

input neurons represent the four input parameters and the output neuron, the voltage of the MFC. The

data set that was produced by the laboratory experiments, consisted of 264 samples (12 MFCs × 22 values

of load resistances). The correlation coefficient (R) between real values and outputs of the network was

0.99662 for all the values in the data set (training, validation and testing fragments).
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2. Previous Work

Recognizing the difficulties of designing a detailed rule-based model to simulate the outputs of a MFC

there were several attempts to predict the output of a system with an ANN. In [17] a fully connected

multi-layer perceptron ANN [forward-fed and back-propagation neural network (FFBPNN)] was developed

to approximate the current output of MFCs. Inputs were pH, biological oxygen demand, chemical oxygen

demand and total suspended solids (TSS). The data set used was extracted from previously published

investigations that involved functionality of MFCs fed with several types of waste-water, like brewery waste,

sugar industry, dairy wastewater, municipal wastewater and waste from the paper industry.

Moreover, the authors of [18] approximated with an ANN the outputs of a membrane-less MFC that

they fabricated. The inputs for the network were temperature, pH and electron acceptor concentration,

whereas power and current density were selected as the outputs. By using different amounts of hidden layer

neurons, the best results were produced with three neurons. The coefficient of determination (R2) reported

for this architecture was 0.9886 for the testing data set.

Nonetheless, additional approaches of artificial intelligence (AI) were tested (like multi-gene genetic

programming (MGGP) and support vector regression) in comparison with ANN for the approximation of the

MFC outputs [19]. In this previous study [19] only two input parameters were used, namely temperature and

ferrous sulfate concentrations. The goal was to predict the output voltage during two different functionality

periods of the system, before and after start-up. The data set used was extracted from previously published

investigations. The MGGP method proved as the most efficient one, providing coefficient of determination

(R2) as high as 0.9872, while the ANN as high as 0.9588 for a testing fragment of the data set.

Another algorithm that ANNs were compared with in the context of MFC modelling, was adaptive neuro-

fuzzy inference system (ANFIS) [20]. The authors of that study defined as inputs the ionic strength, initial

pH, medium nitrogen concentration and temperature, whereas the outputs were power density and Columbic

efficiency. The data set used was once more derived by previously published results. The conclusion drawn

was that while both approaches provide very accurate estimations (indicated with several measures like

average relative error, absolute average relative error, standard deviation and the correlation coefficients),

the ANN approach is simpler to implement

The authors of [21] used an ANN to simulate the power generation in a MFC, considering the anode

electrode positioning and the flow rate. They set up laboratory experiments of MFCs with altering the

angle of the anode electrode at 0, 45 and 90◦ with respect to the flow direction and the flow rate at 1 and

2 mL/min. These parameters along with time were used as inputs, whereas the output of the network was

the power generated. The results from the trained network were in good agreement with the measured ones,

showing a coefficient of determination of 0.99944.

Moreover, the loading of common fuel for MFCs, such as domestic wastewater, with powdered giant
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reed, was studied and approximated by an ANN [22]. The network was trained with the data acquired by

laboratory runs with different concentrations of giant reed and particle sizes. The output of the network

was defined as the power density of the MFC and the inputs as the duration in days, the concentration of

giant reed in wastewater and its particle sizes. Several numbers of neuron in the hidden layer were tested,

with the best performance reached with 12 neurons with a coefficient of determination of 0.9993.

In [23] the performance of 33 MFCs were examined in terms of power density, Coulombic efficiency

and COD removal rates. The MFCs were subject to different conditions, such as conductivity, nitrogen,

phosphorus concentrations, substrate type and substrate concentration. They were fed with eight separate

substrates (acetate, butyrate, fumarate, glucose, fructose, galactitol, bovine serum albumin, diesel range

hydrocarbon mixture) and three different types of wastewater (brewery, potato processing and dried fruit

processing). To predict the aforementioned three measures of performance, three ANNs with different con-

figurations were trained upon the data extracted. The first kind of network utilized the wastewater/solution

parameters to project the taxon composition and then both for the performance parameters. The second

kind of network is like the first kind but uses only the predicted taxonomy to provide the performance

parameters. While the third kind uses only wastewater/solution parameters to predict both taxonomy and

performance. According to the authors, the motivation of the different types of ANNs was the attempt to

extract data associations between biofilm composition, reactor outputs and wastewater compositions. The

first kind of ANN proved to be more efficient in calculating Coulombic efficiency and COD removal rates.

Additionally, other types of bioreactor were studied with ANNs. For instance, the bio-hydrogen yield in

microbial electrolysis cells (MECs) was modelled with ANNs equipped with a different number of neurons in

the hidden layer [24]. The inputs were defined as substrate type, substrate concentration, pH, temperature,

applied voltage and reactor configuration. The data set used was once more derived from previously pub-

lished work. The most accurate result, providing a coefficient of determination (R2) of 0.90, was achieved

with six neurons in the hidden layer.

Finally, more data-driven models studying MFCs were presented using different approaches, like a non-

parametric Gaussian process regression (GPR) model [25] and a support vector regression forward and

inverse model [26].

Drawing inspiration from the aforementioned studies we utilised the ANN methodology to simulate the

polarisation curves of MFCs with different membrane material and configurations of electrodes. No previous

study using ANNs was approximating polarisation curves. Moreover, the load resistance was not used in any

of the previous published works as an input parameter of the network. Nonetheless, despite the fact that

the majority of previous work use small data sets (from 17 to 200 data samples) with unique input-output

pair values, in this study the produced data set, that is used to train the network, is more extensive (i.e.

264 data samples) and contains more than one instance for the same set of inputs. The result is a more

accurate model of the polarisation behaviour, which successfully simulates even the overshoot phenomenon,

4



which has not been previously demonstrated in MFC modelling papers.

3. Methods

Two types of membranes with different materials were used for building the MFCs under study. One

type was terracotta cylinders (Weston Mill Pottery, Nottinghamshire, UK) of 7 cm length, with 1.5 cm inner

diameter and wall thickness of 1 mm. The other type was brown-black clay cylinder (Goerg & Schneider,

Siershahn, Germany) of 7 cm length, with 1.7 cm inner diameter and wall thickness of 2 mm. The cylinders

were placed in cylindrical plastic housing to provide the anode or cathode compartment, with a maximum

fuel capacity of 60 ml. The anode electrode was a layer of carbon fibre veil (carbon loading 20 gm−2) in

a rectangular shape with a total macro surface area of 270 cm2 (PRF Composite Materials, Dorset, UK),

folded and wrapped around the outside or placed inside the cylindrical membranes and held with stainless

steel wire, which was also equipped as a current collector and the connection point. Open-to-air type

cathodes made of heat-pressed activated carbon onto the carbon fibre veil were used. MFCs were inoculated

with 1:1 mixture of human urine and activated sewage sludge (Wessex Water Scientific Laboratory, Cam

Valley, Saltford, UK) enriched with 1% tryptone, 0.5% yeast extract and 0.5% sodium acetate. The MFCs

were fed with human urine continuously at a flow rate of 14 mLh−1 and initially loaded with an external

resistance of 500 Ω. The anode of each MFC was matured for 12 days, prior to starting the polarisation

curve experiments.

The behaviour of MFCs exhibited during polarisation tests was investigated here. These tests were

executed within several hours (i.e. c. 3 hours for 12 values of resistance) and some key parameters of

MFC performance can be considered constant. Thus, they were not included as ANN inputs. One of these

parameters is temperature, given the thermostatic wetlab environment.

A standard type of ANN for function fitting was selected, namely a two-layer feed-forward back-

propagation neural network. Forward feeding describes the way an output is calculated, whereas, back-

propagation is the training algorithm of the network. The neurons are completely connected. There is one

hidden layer with neurons implementing a sigmoid transfer function and one output node implementing a

linear transfer function.

The aforementioned type of ANN is formed by a predefined finite amount of successive layers. Every layer

is accommodating a finite number of neurons (the elementary entity of a neural network). All neurons on a

layer are connected to all the neurons on the subsequent layer, and also the previous one. The connections

are also known as synapses. The data are fed from one layer to the other through the synapses and the

neurons, in a forward manner (from the input layer to the output, as in Fig. 1), this is why this ANN is

named feed-forward [27].

More specifically, every neuron in the input layer has an output (same as the input) value denoted as x0j .
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Figure 1: Topology of ANN (with one output).

Then, the kth neuron in the ith layer receives the output from each jth neuron of the (i−1)th layer, denoted

as xij , multiplied by the weight of the synapses, denoted as wijk. All the products are added within each

neuron, a bias value is subtracted from the sum and the result is applied to the neuron’s transfer function.

The output of the kth neuron routed towards the (i+ 1)th layer is:

xi+1,k = σ

(∑
j

wijkxij − θik

)
(1)

where σ is a predetermined transfer function. Here the sigmoid function was used for the hidden layer:

σ(ξ) =
1

1 + e−ξ
(2)

The procedure that determines the values of the weights of the synapses is known as training. A

common method of training is the back-propagation, which is a gradient descent method. As this procedure

is complicated and out of the scope of the present work it will not be explained in detail, but the reader can

refer to numerous works that explain in depth the well-established training procedure of ANN [28, 29].

The topology of the network is depicted in Fig. 1. The input nodes represent the input parameters, i.e.

logarithmic value of load resistance, cylinder material, electrode location and cathode electrode size. The

hidden layer consisted of ten neurons for the initially developed network, while this number was altered to

find the most efficient predicting topology. The output neuron represents the MFC’s voltage output.

The data set acquired by the aforementioned laboratory experiments, comprised 264 samples (12 MFCs

× 22 values of load resistance). For the training procedure, the data set was randomly divided in 70% (184
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samples) for the training set, 15% (40 samples) for the validation set and 15% (40 samples) for the test set.

The Levenberg-Marquardt algorithm was used for training the network.

4. Results
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Figure 2: Regression plots showing network results compared with targets for (A) training, (B) validation, (C) test and (D)

whole data set.

The regression plots illustrated in Fig. 2 indicate the accuracy of the ANN. The majority of the value

points are adequately close to the 45◦ line (which indicates a perfect fit of the modelled data to the real

data). The correlation coefficient (R) values are 0.99703, 0.99588, 0.99486 and 0.99662 for the training,

validation, test and whole data set.
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After the network was trained and tested, it was used to produce data (here voltage), for the cases

present in the training data set, for illustrating reasons of its outputs. The following figures present the

polarisation curves (Figs. 3-6(a)) and the voltage-resistance curves (Figs. 3-6(b)) for every different type

of MFCs. Note that the measured values (represented as blue diamonds) as well as the simulated values

(represented as black circles) are shown for each case. The current values for the polarisation curves were

calculated with Ohm’s law, using the predicted voltage and the given resistance. Moreover, the red dashed

lines (in Figs. 3-6(b)) represent the distance of one standard deviation from the average mathematical value

of the measured voltages for every type of MFCs.

Namely, in Fig. 3 the outputs of the ANN are shown for the case of MFCs (T Cout) with terracotta

membrane, cathode (35cm2) on the outside of the ceramic cylinder (at the same values of resistances used

in lab).
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Figure 3: T Cout type of MFCs (a) polarisation curves and (b) voltage-resistance curve, real data (in blue, diamonds), simulated

data (in black, circles).

In Fig. 4 the outputs of the ANN are illustrated for the case of MFCs (T Cin) with terracotta membrane,

cathode (24.5cm2) on the inside of the ceramic cylinder (at the same values of resistances used in lab).

In Fig. 5 the outputs of the ANN are shown for the case of MFCs (B Cout) with brown terracotta

membrane, cathode (40cm2) on the outside of the ceramic cylinder (at the same values of resistances used

in lab).

In Fig. 6 the outputs of the ANN are illustrated for the case of MFCs (B Cin) with brown terracotta

membrane, cathode (28cm2) on the inside of the ceramic cylinder (at the same values of resistances used in

lab).

Despite the fact that there may seem to be a higher loss of accuracy when decreasing the resistance
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Figure 4: T Cin type of MFCs (a) polarisation curves and (b) voltage-resistance curve, real data (in blue, diamonds), simulated

data (in black, circles).
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Figure 5: B Cout type of MFCs (a) polarisation curves and (b) voltage-resistance curve, real data (in blue, diamonds), simulated

data (in black, circles).

load in the polarisation curves (Figs. 3-6(a)), this is not true. Because the current in these curves was

calculated via Ohm’s law, the errors of the predicted voltage are amplified with the low values of resistance.

It is apparent that there is no bias in the accuracy levels in the regression plots (Fig. 2) and the voltage to

resistance plots (Figs. 3-6(b)).

The results presented in Figs. 2-6 are derived from a single ANN with topology 4-10-1, which was trained

on a randomly selected subset of the whole data-set containing the measurements of all 4 types of MFCs.

In order to study the effect that the number of neurons in the hidden layer has onto the accuracy of the
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Figure 6: B Cin type of MFCs (a) polarisation curves and (b) voltage-resistance curve, real data (in blue, diamonds), simulated

data (in black, circles).

network, the following tests were executed. Several different topologies of ANNs were developed with the

hidden layer neurons varying from 3 up to 15. Each topology was tested for 10 runs to alleviate a possible

impact that the initial random fragmentation of the data set (into training, validation and testing sets) has

on the performance of the network. Namely, each ANN with the same topology was retrained from scratch,

using every time a different training subset randomly selected from the whole set of data extracted from the

4 types of MFCs.

The distribution of correlation coefficients and mean square error of the ANNs outputs are shown in Figs.

7 and 8, respectively. It can be observed that the topologies providing the higher performance and being

less affected by the initial random fragmentation of the data set are with 10 and 15 neurons in the hidden

layer. More specifically, the topology with 10 neurons, has a correlation coefficient median of 0.99683, while

the one with 15 neurons is even more efficient with a correlation coefficient median of 0.99709.

5. Conclusions

Using ANNs to predict MFC outputs is becoming a popular method due to their fast implementation

and their dissociation of the need for detailed knowledge of the underlying rules. When compared with

rule-based models, which can provide intermediate equations and phenomena occurring within the system,

ANNs have the advantage of being developed very fast and easy, but as they are trained upon specific output

data, they can not provide any additional output. Nonetheless, analyzing the weights of the neurons in the

network can unveil the relations of inputs and outputs. Such an analysis can reveal the relative importance

of the inputs when forming the outputs [30].
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Figure 7: Distribution of correlation coefficient of the networks’ outputs with the real data set, for variable numbers of neurons

in the hidden layer.
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Figure 8: Distribution of mean square error of output voltage (in mV) for variable numbers of neurons in the hidden layer.

In this study, an ANN was developed with a topology of 4-10-1 that predicts the voltage output of a

MFC during a polarisation test. The ANN proved to be accurate in its predictions, for instance after a

single training the network demonstrated a correlation coefficient (R) of 0.99662 for the entire data set.

As an aspect of future work, the element of time is going to be added in the ANN, in order to predict
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the outputs of a MFC as a time series. Developing this type of ANN would be a first step towards designing

an efficient fast responding controller for MFCs. As MFCs are susceptible to changes in the association of

voltage and current, conventional maximum power point tracking algorithms are inadequate, particularly

when voltage overshoot is observed. Thus, smarter techniques of energy harvesting control are suggested for

MFCs [31] and direct methanol fuel cells [32]. In particular, ANN have been successfully used as parts of

power controllers in applications from photovoltaics and batteries [33, 34] to wind turbines [35] to fuel cells

[36].

As shown in Figs. 3, 4 and 5 in particular, the model was able to accurately simulate the overshoot

phenomenon, which is an indication of suboptimal system performance, especially in the higher current

ranges, and is an indication of ionic depletion in the anode [37, 38]. Such a phenomenon may be caused

by bacterial starvation, immature biofilm, hydraulic blockage or suboptimal reactor design and these are

usually elements that are not considered in modelling MFCs. To the best of the Authors’ knowledge, this is

the first time that such a behaviour has been replicated in an ANN model.
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