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ABSTRACT

Whilst much research focusses on challenges related to achieving SDG 6.1 (universal and equitable access to safe and affordable drinking
water), there has been less attention to challenges of safe transport, storage and use of collected water. In particular, there are relatively
few high-quality datasets quantifying the number and volume of water containers used by households for such purposes. This paper reports
results from the application of machine learning (ML) techniques to a database of images of domestic water storage collected during 2022 as
part of an initiative to improve water supply in southern Bangladesh. Because the number of different water container types was relatively
small, it was possible to train an ML algorithm to identify water containers and estimate water storage with greater than 90% accuracy. These
results have allowed the rapid creation of a unique high-quality, high-resolution dataset describing water storage quantitatively in a study
community. This dataset includes data quantifying the number of vessels as well as their individual and aggregated water storage volumes.
The paper discusses policy implications for the study location specifically before concluding with suggestions for the inclusion of this sort of
analysis in ongoing studies of household and community scale water insecurity.
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HIGHLIGHTS

® Machine learning can speed up the processing of images of water storage taken during conventional household water access question-
naires.

® Accurate quantification of available water storage can assist in water services programme planning.

® Machine learning-assisted analysis of over 800 images collected during household research in Bangladesh in 2022 showed that the aver-
age storage per person is only 2.5 L.

INTRODUCTION

In water-insecure communities, the humble (often yellow) ‘jerry can’ is a familiar sight, often alongside a jumble of other
(usually plastic) water storage containers (Figure 1). In 2022, for example, there were over 1.5 billion people worldwide
who were dependent on water provisioning arrangements that required collection and transport from remote locations
and storage in the home prior to use (GBD 2016 Diarrhoeal Disease Collaborators 2018; Priiss-Ustiin ef al. 2019; Staddon
& Brewis 2024). Fetching water from the source to home with these commonly used containers generates immediate risks
from the journey itself as well as risks associated with subsequent management of transported and stored water. In addition
to chronic musculoskeletal problems caused by repeatedly carrying water even short distances, transporting water manually
also carries with it a higher likelihood of acute injury, particularly bone fractures and muscle and ligament damage (Geere
et al. 2010). Research has also found that fetched and then stored water is very often contaminated with microbiological and
other contaminants within 12 h of collection (Opryszko et al. 2013; Meierhofer et al. 2019; Nurjana et al. 2023). Although
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Figure 1 | Variation in size and shape of commonly used domestic water containers (Source: Staddon personal collection).

water containers are a very important aspect of domestic water security around the world, they have received relatively little
attention in the research and policy literature (Wani et al. 2022; Staddon & Brewis 2024).

Water and Sanitation for Health (WASH) researchers frequently use survey questionnaires to elicit data about type, volume
and quality of water storage infrastructure including containers at the household scale. The ability to triangulate survey-
derived qualitative data with data generated through machine learning (ML) analysis of collected images offers a number
of important advantages. First, there are obvious issues with self-reported data on topics like water storage, including the
inability to exactly recall or express storage in numbers of containers and their volumes. Second, because WASH research
often involves lengthy questionnaires covering a variety of subtopics, any opportunity to automate data analysis in a subtopic
area could help reduce overall survey length and the resulting burden on respondent households. Third, there may be useful
information to be generated from comparing self-reported water storage and ML-derived estimates, in terms of a better under-
standing of cultural and other biases inherent in conventional WASH research. Finally, it may be possible for ML analysis to
generate data about related topics of interest including cleanliness of containers, the prevalence of appropriate capping/clos-
ing of openings and appropriateness of storage locations — all important factors in water quality management.

The applications of ML-driven object detection are vast but as yet little applied to WASH research. For instance, in auton-
omous driving, object detection systems play a critical role in identifying pedestrians (Wu et al. 2018; Shahbaz & Jo 2021),
vehicles (Diwan ef al. 2023), and traffic signs, ensuring safer navigation (Wang et al. 2023a). In the retail sector, they facilitate
better inventory management and enable cashier-less checkout experiences (Wang ef al. 2023b). In healthcare (Wu ef al.
2018), object detection aids in medical image analysis, from detecting tumours in radiology scans to tracking cells in
microscopy images (Chowdhury ef al. 2023), and in water management, ML-based object detection has been used to track
qualitative and quantitative changes in surface water features using satellite imagery (Kashtan & Hnatushenko 2024; Liu
& Li 2024).

This paper introduces an artificial intelligence powered algorithm situated at the intersection of computer vision and ML,
specifically for assessing the number and volume of water containers from photographs collected as part of conventional
WASH research. The primary technical goal here is to utilize automated object detection to correctly identify commonly
used water storage containers, such as bottles, buckets, jugs, and more. These data can be used to quickly assess the adequacy
of domestic storage volumes in humanitarian and development contexts and to evaluate the impact of specific programme
interventions such as the distribution of water containers.

The subsequent sections of the paper are organized as follows:

* Section 2 presents the methodology and discusses key aspects of the ML algorithm used, offering quantitative and qualitat-
ive insights into its performance.

* Section 3 presents data on model accuracy in terms of precision and recall statistics.

* Section 4 discusses the results of applying this algorithm to a collection of images of water storage collected in 2022 in
Bangladesh.

The final section of the paper discusses some areas for future development, that will be of interest to WASH researchers.
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METHODOLOGY USED FOR THE PILOT

In 2022, the UK-based charity Groundwater Relief, the University of the West of England and Asian University for Women in
Bangladesh led a study of water infrastructure needs in Teknaf Upazila, located in the southernmost part of Bangladesh. In
recent years, this part of Bangladesh has received more than one million Rohingya refugees fleeing government-backed per-
secution in neighbouring Burma (Myanmar); which has placed great strain on underdeveloped water services infrastructure.
This new work was built on earlier studies undertaken by the project team (e.g., Akhter et al. 2020; Rafa et al. 2020) but
specifically sought to capture data about the relative water insecurity experience of host communities and refugee households
across wet and dry seasons. During the household survey data collection phase, more than 800 photographs of respondent
households’ water fetching and storage containers were collected. These images were confirmed to not have identifying data
and were made available for the model creation.

The trial algorithm employs YOLO (Jocher ef al. 2022), or ‘You Only Look Once’ as an object detection algorithm due to
its proven efficiency and efficacy. Imagine if you could look at a photo and immediately point out objects in it, like cars, dogs,
or people (water bottles in this study). Now, imagine doing that as fast as flipping through a large stack of pictures. This is
essentially what YOLO does; it is a technology that helps computers recognize and find objects in images and videos very
quickly and efficiently. YOLO is optimized for fast inference performing object bounding and labelling in a single pass
(Fan & Song 2024; Liang et al. 2024). Additionally, later versions of YOLO offer a PyTorch implementation with automatic
data augmentation, hyperparameter tuning, and pre-trained model support making it highly accessible for both researchers
and developers.

Imagine you have an NxN grid overlay on your photo, like a Noughts and Crosses board but with considerably more
squares. YOLO splits each image into a grid, and each square of the grid is responsible for detecting objects that fall
within it. This helps the system quickly identify different objects in various parts of the image. In each square of the grid,
YOLO predicts two things: the probability of an object being present and the precise location of the object (by drawing a
box around it). For example, if there is a water bottle in the photo, YOLO will highlight the water bottle and tell you exactly
where it is. YOLO does not just detect objects; it also classifies them. This means it recognizes what each object is - whether it
is a dog, a bicycle, or a water bottle. It does this by using a database of known objects (derived during model training) and
matching what it sees to what it has learned. While our YOLO-based object detection model shows promising results, we
acknowledge the necessity for further validation with larger and more diverse datasets before advocating for widespread prac-
tical implementation.

For this project, the algorithm was trained on a Windows 11 PC equipped with a Core i9 3 GHz CPU, 32 GB of RAM, and a
24GB Nvidia RTX 4090 GPU. Implementation and training were carried out using the PyTorch deep learning library (Paszke
et al. 2019), with support from the Ultralytics codebase (Jocher ef al. 2022). The process is easy to set up and could be divided
into two steps: (1) Annotating the dataset with respective objects, and (2) Training an ML model on the dataset. A small data-
set, say 100-150 images, could be annotated in 2-3 h which in turn could be used to train an ML model (say 1-2 h). In other
words, this sort of system could be set up in only 4-5 h by someone comfortable with running desk-based computer models.
Significant coding expertise is not required.

To create a training and validation split, the dataset was randomly partitioned into 80% for training and 20% for validation.
The training dataset was manually categorized into eight distinct classes, including: ‘bottle 0.5, ‘bottle 1,” ‘drum 20,” §ug 5,
§ugl0,” ‘bucket 5, ‘bucket 10,” and ‘kholash 5. The numeric suffix in each class label specifies the volume of the respective
object. The training set also included some background images designed to help train disambiguation into the model (distinc-
tion of foreground, background, etc.). When unknown images are presented to the trained model it places bounding boxes
around predicted objects (Figure 2).

Evaluation of results was conducted through the creation of a confusion matrix and statistics on precision (ratio of true
positives to all positives) and recall (ratio of true positives to true positives plus false negatives). Model performance was rep-
resented through precision (P), recall (R) and mean average precision (mAP) @ 0.5 intersection over union statistics.

HOW GOOD WERE THE MODELS AT IDENTIFYING WATER CONTAINERS?

Of the five ML models assessed, it was YOLOV5s that performed best across all types of water storage containers, achieving
an overall precision of 87.7%. Table 1 presents a quantitative analysis of the five different models tested. Notably, the ‘Kho-
lash-5’ container type achieves the highest precision at nearly 99%. This outcome may be attributed to the fact that ‘Kholash’
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Figure 2 | Sample model output on test set.

is the most prevalent water container type within the dataset meaning that the ML model had much more training data for
this object type. It is moreover a very distinctive and unique water container shape (Figure 1, middle panel). Conversely, the
‘Bucket 5’ type of container (5 L cylindrical bucket) was only correctly identified 69.7% of the time and with a higher number
of false negatives leading also to a lower recall score. Images including a standard scale object (usually a 500- or 1,000-mL
PET plastic water bottle) allowed higher rates of precision across all object classes, and we note that both precision and recall
were very good for these containers across all container types.

The Confusion Matrix for YOLO V5s (Figure 3) provides more detailed information about exactly where the model had
trouble correctly predicting trained objects. Specifically, and as hinted above, ‘Bucket-5" and ‘Bucket-10" are more frequently
confused with each other. Also, note the tendency in some cases for objects to be confused with background. In the former
case, it is likely that perspective makes two different-sized versions of the same object more difficult for the model to dis-
tinguish, whilst for the latter case lighting levels and shading may be the culprit. In both cases, additional training with
images constructed to replicate commonly encountered combinations of lighting/shading and different-sized versions of
the same thing will improve model performance for these objects.

Although not uniformly accurate across all container types, YOLO V5s performed well enough to support estimation of
domestic water storage capabilities, to which we turn in the next section.

RESULTS OF PILOT: WATER STORAGE IN TEKNAF UPAZILA, BANGLADESH

Figure 4 shows the results for analysis using YOLO V5s of images collected from 288 households during the data collection
phase in 2022. 1t is clear that in these communities, the 5 L kholash is by far the most common water container used by
respondent households. From a WASH planning perspective, this is a useful finding for the following reasons:

- Kholashs are usually made of aluminium, making them more robust than plastic vessels, though also more expensive.

- The design usually allows for a tight-fitting plate-type lid, helping to prevent recontamination of collected water, and

- The vessel is better suited than other vessel types for carrying on the head or the hip, possibly reducing the likelihood of
musculoskeletal injuries (Geere ef al. 2010; Venkataramanan et al. 2020).

Though far less prevalent, the next three most common water containers are the 500 mL bottle (n# = 118), the 10-L bucket
(n=109) and the 1 L bottle (» =95), which suggests that very many water containers are in fact reused containers originally
obtained for other purposes. Especially for the 500 mL and 1 L plastic bottles, this may bring larger health risks related to
their construction from PET plastic and the difficulty of properly cleaning them (Ioannidou et al. 2016; Staddon & Brewis
2024).

Downloaded from http://iwaponline.com/washdev/article-pdf/15/6/493/1566850/washdev2025260.pdf

bv auest



Table 1 | Precision (P), recall (R) and mean average precision (mAP) @ 0.5 intersection over union (I0U) statistics for the five YOLO models tested

YoLOov5n YOLOV5s YOLOV5m YoLov5l YOLOV5X

Class Instances P R mAP P R mAP P R mAP P R mAP P R mAP
All 1,191 0.838 0.787 0.836 0.877 0.851 0.867 0.859 0.809 0.86 0.876 0.814 0.864 0.849 0.805 0.8
Bottle 0.5 70 0.849 0.886 0.896 0.898 0.843 0.95 0.819 0.9 0.92 0.94 0.9 0.945 0.855 0.871 0.91
Drum 20 107 0.888 0.813 0.882 0.899 0.911 0.91 0.929 0.86 0.91 0.92 0.86 0.92 0.883 0.85 0.888
Kholash 5 107 0.962 0.956 0.976 0.98 0.967 0.981 0.986 0.962 0.98 0.981 0.962 0.98 0.978 0.954 0.982
Bottle 1 367 0.924 0.787 0.876 0.902 0.898 0.92 0.885 0.806 0.874 0.903 0.861 0.903 0.86 0.815 0.795
Bucket 5 108 0.629 0.423 0.511 0.697 0.635 0.59 0.652 0.51 0.581 0.703 0.433 0.562 0.667 0.462 0.445
Jug 5 104 0.753 0.753 0.806 0.855 0.801 0.88 0.892 0.788 0.873 0.853 0.753 0.834 0.855 0.767 0.58
Jug 10 55 0.941 0.873 0.931 0.935 0.927 0.947 0.923 0.873 0.931 0.943 0.909 0.946 0.924 0.891 0.833
Bucket 10 234 0.761 0.803 0.813 0.847 0.829 0.824 0.785 0.774 0.809 0.768 0.833 0.819 0.767 0.833 0.804

The bold values show the best performance of the given metrics in a particular ‘class’.
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Next, we looked at the mix of water containers used by households to fetch and store water. As noted previously, the kho-
lash is the most prevalent water container, possessed by 66% of households. The most common combination of water
containers is one 500 L kholash, and one 10 L bucket, which may well represent the maximum carrying capacity for a

single person.’

Finally, we present the total volume of water storage per household by utilizing model results together with the household
population data also collected as part of the survey process. Figure 5 shows that the vast majority of households have signifi-
cantly less than 10 L of water stored per person, with the mean average storage being 4.5 L/person and the modal (most

! The average water fetching time (including waiting) was 30 min per trip, with most households making 1-2 trips per day.
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common) value is 2.5 L/person implying that at least six water fetching trips might be required each day to achieve WHO
guidelines for emergency humanitarian response. Since the vast majority of surveyed households reported that they made
three or fewer trips per day, it is clear that basic needs are not being met.

CONCLUSION: UTILITY OF ML FOR ASSESSING DOMESTIC WATER STORAGE

In the absence of a piped to home water supply, a key pinch point in achieving SDG 6.1 (Universal Access to Clean and
Abundant Drinking Water) is the availability of containers that can safely hold a sufficient volume of water for domestic
needs. This paper demonstrates a novel method of extracting useful water storage data from photographs taken during con-
ventional household WASH surveys. Using a readily available ML system called YOLO V5s we were able to extract
information about quantities of water stored and storage vessel types with a high degree of accuracy and reliability. With
this new data in hand, it was easy to calculate water sufficiency relative to reported household size and compare this against
the WHO 15 L per person per day standard. We were also able to further contextualize this storage information with col-
lected data on the number and length of water-fetching journeys per day. We suggest such ML-based techniques could,
with only a small amount of training, become a useful tool in water security research and humanitarian practice.

From a technical perspective, we note that even with relatively few training images (less than 700) the ML algorithm
demonstrated impressive precision and recall, even with complications related to poor lighting, shading, occlusion of
target objects by other objects, angles of view, etc. Notwithstanding these difficulties, we achieved 90% accuracy or better
for all but one object class. Further training of the algorithm, with either real-world images or images specially constructed
to be challenging, will only improve object detection accuracy.

Our dataset is limited in size as this is a proof-of-concept paper. However, we have employed techniques such as data aug-
mentation/cross-validation to improve generalizability. Additionally, we are exploring the integration of larger datasets and
alternative approaches (e.g., ensemble methods) to enhance model robustness in future work.

We also expect that other models, such as Microsoft’s Florence-2 may be able to more efficiently automate the image analy-
sis process, including offering summary narratives with desired statistics for each image analysed as well as for entire sets of
images.

While we have made progress in using ML techniques to describe water storage quantitatively, this approach may have only
limited relevance to water quality assessment. Specifically, while it may be possible to identify those that are excessively dirty
or stored on dirt floors these characteristics are only indirectly linked to the quality of stored water.
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