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Abstract

We introduce HAPP, a high-accuracy pipeline for processing deep metabarcoding data,
leveraging data richness to enhance the signal-to-noise-ratio. Starting with denoised
amplicon sequence variants, the pipeline consists of four steps: (1) additional chimera
removal, using UCHIME and a strict sample-based approach; (2) taxonomic annotation,
combining k-mer matching (SINTAX) to a reference library with phylogenetic placement
(EPA-NG) on a reference tree; (3) OTU clustering using SWARM, an open-source algorithm
with precision and recall comparable to RESL used in circumscribing BOLD BINs; and (4)
noise filtering (NUMTs and sequencing errors), using a new algorithm introduced here,
NEEAT, which combines “echo” signals across samples with detection of unusual
evolutionary signatures among clusters with similar DNA sequences. HAPP computations
are parallelized across taxa, making analyses tractable on very large datasets. The
performance of HAPP was validated through extensive benchmarks, involving CO1 data
from BOLD and Malaise trap data, demonstrating significant improvements over the state of
the art.

Main

DNA metabarcoding—PCR amplification of a marker gene from an environmental sample
followed by high-throughput sequencing1—has revolutionized the collection of biodiversity
data thanks to its high efficiency and low cost. However, the data generated are noisy2,3,4. In
addition to the authentic amplicon sequence variants (ASVs), data may include sequences
containing chimeras (sequences of mixed origin, often formed during PCR amplification),
remaining errors accumulated through the PCR and sequencing steps, and off-target
sequences (in the case of mitochondrial marker genes, often in the form of nuclear DNA of
mitochondrial origin, or NUMTs5.

Interpreting the authentic ASV data presents additional challenges. Identifying the species in
the sequenced sample typically involves the clustering of ASVs into operational taxonomic
units (OTUs). Recognizing the conspecific nature of ASVs that differ by one or a few
single-nucleotide polymorphisms (SNPs) may be straightforward but the OTU clustering is
often complicated by conspecific ASVs separated by larger genetic distances. Finally, the
short sequence length makes it difficult to annotate the ASVs taxonomically by matching
them to reference libraries or placing them in phylogenetic trees. The last decade has seen
considerable work towards addressing each of these challenges, and a plethora of tools are
now available for cleaning, clustering and annotating metabarcoding data. Yet, how to select
and combine these tools in generating optimal data on authentic taxa remains a daunting
challenge.

At the same time, we are now seeing a significant expansion in the scope of DNA
metabarcoding projects. The biomes investigated are sampled more intensely, the samples
are sequenced more deeply, and the amplified sequences tend to be longer6 7. We refer to
this as ‘deep metabarcoding’. The methods are also increasingly applied to macrobial
diversity and to markers appropriate for these organisms, such as the mitochondrial gene
cytochrome c oxidase 1 (CO1). The advent of deep metabarcoding justifies a reassessment
of available tools and how they can be combined into an optimal workflow for the new data
streams. The data richness and the application to macrobial diversity also provide new
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opportunities for refining and ground truthing existing tools and developing new ones. In the
present paper, we pursue these themes in developing a new high-accuracy pipeline for
processing deep metabarcoding data, HAPP.

To properly benchmark any pipeline for deep metabarcoding data, realistic test data is
needed. Ideally, the data should cover a range of taxa and biogeographic regions, as
different faunas and floras pose different challenges. Here, we focus on a uniquely large
data set generated in the Insect Biome Atlas (IBA) project and covering arthropod
communities from Sweden and Madagascar6. The core data consists of 6,483 weekly
Malaise trap samples (4,560 from Sweden and 1,923 from Madagascar)—estimated to
contain 9 million specimens and tens of thousands of species—subjected to deep
metabarcoding (ca. 1 M read-pairs per sample) of a 418 bp stretch of CO1. Importantly, the
data cover a range of diverse taxa with dramatically different life histories, from small and
ubiquitous decomposers like bristletails to large and rare predators like dragonflies, and two
regions with dramatically different coverage in available reference databases. The power of
the benchmarking is augmented by the fact that the knowledge of different taxa in the
Swedish insect fauna is well characterized and partly virtually complete8, and that a carefully
curated and extensive CO1 reference library is available from the neighbouring country
Finland9.

In the evaluations of current and new tools underlying the design of HAPP, we complement
benchmarking on these data with tests using the entire set of CO1 data from BOLD. This
allows us to highlight specific properties through experimentation with reference databases,
and to reveal the performance in a range of real settings, from analysis of well-known groups
with nearly complete reference libraries to the other extreme. Specifically, we designed
HAPP for post-processing of data from a standard pipeline producing denoised ASVs, such
as DADA2, using four major steps: chimera removal, taxonomic annotation, clustering, and
noise filtering.

It is well known that partial sequences of different origin may fuse together during PCR
amplification to form hybrid ASVs, or chimeras. The chimeras typically do not match
authentic sequences and can easily be mistaken for previously unknown OTUs. Standard
metabarcoding pipelines include chimera removal but our initial benchmarking revealed that
the default method in DADA2 was insufficient, suggesting that chimeras may be particularly
problematic in deep metabarcoding. Therefore, we added a chimera removal step in HAPP.
Several powerful tools exist, including ChimeraChecker10, ChimeraSlayer11 and Perseus12.
Some of them rely on trusted reference databases, while others allow de novo detection of
chimeras; the latter is more adequate for metabarcoding. We focused on UCHIME, one of
the most accurate and fastest of the available tools13. It compares each ASV to other ASVs
in decreasing order of abundance. Alignments between the query and candidate parents are
constructed and scored according to a scheme designed to identify chimeras. We explored
several different strategies in applying UCHIME to deep metabarcoding data.

Taxonomic annotation is an essential step in processing metabarcoding data. It can be
achieved by matching ASVs directly to sequences in a reference library, or by placing them
in a phylogenetic tree of reference sequences. In general, the former is expected to work
well when reference libraries are complete or nearly so, while the latter should be more
reliable when this is not the case14. We explored five different tools for taxonomic annotation
in HAPP. For phylogenetic annotation, we chose the evolutionary placement algorithm
(EPA), which places query sequences in a reference tree using maximum likelihood 14.
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Specifically, we used the EPA-NG version15 , followed by taxonomy assignment of query
sequences using Gappa16.

For matching against a reference library, we tested both k-mer based and alignment-based
approaches. The RDP classifier17, which is widely used in microbiome analyses, relies on a
k-mer-based naive Bayesian approach, followed by bootstrapping to generate confidence
estimates. Specifically, we used the DADA218 implementation of the RDP classifier. We also
explored SINTAX19 implemented in VSEARCH20, in which a non-Bayesian k-mer algorithm
finds the top hit and then applies bootstrapping to provide estimates of confidence. Finally,
among the k-mer tools, we tested a multinomial naive Bayes classifier trained on the
reference library, implemented in QIIME221. For alignment-based similarity matching against
the reference library, we focused on VSEARCH through the QIIME2 interface. It uses an
alignment matching method similar to BLAST, and then computes a consensus taxonomy for
the matches.

Clustering of ASVs into species is another essential step in processing metabarcoding data.
For CO1 barcode sequences, often targeted in macrobial metabarcoding projects, the
refined single linkage (RESL) algorithm has been particularly influential. It was developed to
cluster the BOLD reference library22 into putative species, called BINs (Barcode Index
Numbers)23. The algorithm employs single-linkage clustering to identify putative clusters,
followed by Markov clustering using simulated random walks24 aimed at refining the
resolution of cluster boundaries based on similarity and connectivity. Unfortunately, the
RESL algorithm is not available as open-source code. Metabarcoding projects sometimes
cluster ASVs indirectly according to RESL criteria by matching them to BOLD BINs. This
approach is referred to as closed-reference clustering, or open-reference clustering if
combined with de novo clustering of unmatched ASVs25,26. Whether RESL itself scales
sufficiently to be feasible for de novo clustering of deep metabarcoding data remains an
open question. Deep metabarcoding data differs from BOLD sequences in one important
respect: the amount of sequence data per sampled species is much higher, potentially
simplifying the task of recognizing species clusters. This suggests that other algorithms may
be more appropriate for deep metabarcoding data.

In developing HAPP, we focused on three open-source algorithms designed for clustering
metabarcoding data: SWARM, OptiClust and dbOTU3. SWARM shares many features with
RESL. It is a two-phased, agglomerative, unsupervised single-linkage-clustering
algorithm27,28. During the growth phase, SWARM delineates OTUs based on sequence
differences between aligned pairs of amplicons, computed using k-mer comparisons and a
custom global pairwise alignment algorithm. The maximum distance allowed between
sequences in the same OTU is a tuning parameter set by the user. During the breaking
phase, SWARM uses amplicon abundance information and the internal structure of OTUs to
refine clustering results.

OptiClust is based on minimizing the discord between the desired maximum intra-cluster
distance between sequence pairs (a tuning parameter) and the actual pairwise distances
within and between clusters29. By default, the discord is measured using Matthew’s
correlation coefficient, balancing true positives (pairs below the threshold in the same OTU)
and true negatives (pairs above the threshold in different OTUs) against false positives
(pairs above the threshold in the same OTU) and false negatives (pairs below the threshold
in different OTUs).
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The dbOTU3 algorithm is unique in that it uses the distribution of ASVs across samples in
addition to the genetic distances used by most other methods30,31. The sample distribution
should be a particularly good source of information in clustering deep metabarcoding data.
The algorithm has two tuning parameters: the genetic distance criterion and the distributional
similarity threshold.

Finally, it has become increasingly obvious that off-target sequences represent a significant
source of noise in metabarcoding; they may be particularly prevalent in deep metabarcoding
because of the deep sequencing. In the case of mitochondrial markers, off-target sequences
often represent NUMTs, which may be present in large numbers in the genome32. Several
characteristics can be used to identify NUMTs. Protein-coding mitochondrial sequences
typically lose their function when they are copied to the nucleus, resulting in an accumulation
of mutations, insertions and deletions over time. One might also expect NUMTs to be
present in lower numbers than the mitochondrial sequences they originated from, as the
nuclear genome copy number is lower than that of the mitochondrial genome by a factor of
100–10,00033,34. However, many NUMT variants, represented by multiple copies each, can
be present within a genome, and changes in primer binding sites can also bias PCR
amplification rates toward generating more NUMT copies.

Initially, NUMTs are identical to their parent sequence, and cause no problem if they appear
in the data. When sufficient time has passed, the NUMTs are easy to identify based on frame
shifts or stop codons. It is the time in-between that is problematic, as the NUMTs can then be
mistaken for authentic mitochondrial sequences representing distinct species.

One way of identifying NUMTs is to focus on evolutionary signatures, as NUMTs should differ
from functional genes subject to strong constraining selection. Evolutionary signatures
should also reveal amplification and sequencing errors, as well as off-target sequences that
are not NUMTs. To utilize this signal, one can fit a profile hidden Markov model (HMM) to the
protein coded by the target gene, and identify outliers in the metabarcoding data as likely
NUMTs 35. Another possibility, explored here, is to compare the evolutionary distance to the
edit distance (number of changes needed to go from one sequence to another) of similar
ASVs. At a given edit distance, pairs of authentic ASVs should have fewer non-synonymous
substitutions than pairs including one NUMT.

A completely different approach is to look for “echoes” in the distribution among samples, as
NUMTs should consistently co-occur with their parent sequences, but in lower copy
numbers. The same may be true for many types of amplification or sequencing errors. The
“echo” signal is explored by LULU36, which looks for less abundant sequences matching the
distribution across samples of more common ones that are within a predefined genetic
distance (default is 84% similarity). As originally described, LULU groups the echo
sequences with their parents, but the same principle can be used to filter them out as noise.

A third possibility is to filter out NUMTs and potential errors simply by applying an abundance
threshold, as they are unlikely to generate ASVs with large read numbers4. The metaMATE
tool37 represents a particularly sophisticated use of abundance filters, optimizing them
separately for different organism groups and datasets.

Here, we introduce a new noise filtering algorithm, NEEAT (noise reduction using echos,
evolutionary signals and abundance thresholds), which combines these techniques, and we
benchmark it against LULU, HMM filtering and abundance filtering.
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The design of HAPP is based on the results of these efforts. It integrates all tools required
for post-processing metabarcoding data into a highly configurable and scalable workflow.

Results
The HAPP pipeline reconstructs species-level OTUs from deep metabarcoding data. As
input, it expects denoised ASVs and their counts across samples from a standard workflow,
such as DADA218. After an initial quality filtering that removes ASVs outside the expected
size-range or with stop codons in the expected reading frame, post-processing is applied in
the four steps described above: chimera removal, taxonomic annotation, OTU clustering,
and noise filtering. We present the benchmarking results for each step first, and then discuss
the design of HAPP.

Extra chimera filtration for improved data quality

We benchmarked four different strategies for removing chimeras from denoised ASV data.
Specifically, we assessed whether chimera removal could be improved in deep
metabarcoding through more reliable detection of chimeric parents across all samples
(batchwise method), compared to relying entirely on finding parents in the same sample
(samplewise method). For both methods, we tested lenient and strict requirements on
chimera-parent co-occurrence (see Methods). We found that the two samplewise methods
removed considerably more ASVs than the batchwise methods, while simultaneously
improving the clustering results as indicated by the higher recall and smaller cluster:species
ratios (both metrics reflecting the degree to which OTUs are matching and not over-splitting
species; Fig. 1). Thus, the samplewise methods had a better signal to noise ratio. The strict
samplewise method performed slightly better than the lenient alternative in terms of trusted
ASVs (see Methods) or reads removed. Enforcing a strict chimera-parent matching criterion
improved the false positive ratio considerably for the batchwise method (reflected by the
smaller number of trusted ASVs and reads removed) but it did not improve the false negative
ratio (reflected by the number of ASVs and proportion abundant ASVs removed), or the
clustering results. In conclusion, the strict samplewise method performed best; it removed a
large amount of chimeric sequences while retaining the vast majority of authentic ASVs.

Fig. 1: Benchmarking of chimera removal methods. Each panel shows a quality metric
for the four chimera removal methods tested (see Methods for detailed description of the
metrics). The benchmarking was run on the early version of the Swedish IBA data (636,297
ASVs).

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2024. ; https://doi.org/10.1101/2024.12.20.629441doi: bioRxiv preprint 

https://paperpile.com/c/w867L7/VJTF
https://doi.org/10.1101/2024.12.20.629441
http://creativecommons.org/licenses/by/4.0/


Improved taxonomic classification by combining k-mer and phylogenetic
approaches

To benchmark the different taxonomic classification algorithms, we used a customized
version of the BOLD database (see Methods) and generated different query
sequences/reference database combinations, each with 1000 randomly sampled query
sequences with a known taxonomy obtained from BOLD. These ranged from the easiest
(case 1), where identical sequences to the queries remained in the database, to the hardest
(case 5), where sequences of the same orders but not families remained in the database
(Fig. 2a). For both query and database sequences, only the 418 bases of the CO1 gene
corresponding to the barcode region sequenced in the IBA project were used.

We found that the k-mer based tools SINTAX19 (‘vsearch_sintax’) and SKLEARN
(‘qiime2_sklearn’) had the highest number of correctly assigned species when all sequences
were kept in the reference database (case 1) and when sequences identical to the query
sequence were removed but sequences belonging to the same species remained in the
database (case 2; Fig. 2a). The third k-mer based tool, the RDP classifier (‘dada2_rdp’), had
significant problems even in these simple cases. The alignment-based VSEARCH tool
(‘qiime2_vsearch’) showed low numbers of assigned species in both case 1 and 2 but results
improved for higher taxonomic ranks. When the reference database was filtered to remove
the sequences corresponding to either the species (case 3), genus (case 4), or family (case
5) of the query, SINTAX was more conservative than SKLEARN and made considerably
fewer (incorrect) predictions at the ranks where reference sequences were missing.
Interestingly, VSEARCH had the highest number of correctly assigned queries at the family
level in case 3 (species missing) and case 4 (genus missing), indicating that this method
works better than the k-mer based classifiers for higher taxonomic ranks when the reference
database is incomplete.

Due to its overall good performance and robustness to parameter choice, SINTAX was
chosen as the default option for taxonomic assignment in HAPP. However, it had a low
classification rate at the order level when the family was missing in the database, which
could be problematic for ecosystems with poor representation in the reference database.
This was indeed observed when applying SINTAX on IBA data from Madagascar, but not
when applied to the Swedish data (Fig. 2b), consistent with a more extensive and less
cataloged arthropod diversity in Madagascar. Considering that phylogenetic approaches are
potentially more efficient when close reference sequences are lacking, we included such a
method (EPA-NG) in the benchmarking, utilizing a phylogenetic tree of 49,358 insects
derived by extension and quality filtering of a published tree38 (see Methods). Indeed,
annotation rate was doubled compared to SINTAX and approached 100% at order level
when the family was missing in the reference, and likewise drastically increased at family
level when the genus was missing, while still giving low false annotation rates (Fig. 2a).
Applying it to the IBA ASVs annotated as class Insecta or Collembola by SINTAX but
unclassified at the order level more than doubled the annotation rate at the order level for the
Madagascar data (from 28 to 58%), but only marginally increased the rate for the Swedish
data (78 to 80%), consistent with the in silico test (Fig. 2b).
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Fig. 2: Benchmarking of taxonomic assignment tools. a. Barplots of correct, unassigned
and incorrect sequences for different ranks and test cases. ‘dada2_rdp’ = DADA2
assignTaxonomy (an RDP classifier), ‘qiime2_vsearch’ and ‘qiime2_sklearn’ = QIIME2
feature-classifier vsearch and sklearn, respectively, ‘vsearch_sintax’ = SINTAX algorithm
implemented in VSEARCH, ‘epa-ng.baseball’, ‘epa-ng.dynamic’ and ‘epa-ng.none’ =
EPA-NG phylogenetic placement with baseball heuristics, dynamic heuristics and no
heuristics, respectively, followed by assignments with GAPPA. b. Percentages of sequences
classified at each rank on two real-world datasets from Madagascar (‘MG’, 701,769 ASVs)
and Sweden (‘SE’, 821,559 ASVs) using the SINTAX algorithm. For the taxonomic rank
‘order’ we also show the percentage of classified sequences obtained when running
EPA-NG (dynamic heuristics) on sequences that were annotated as unassigned Insecta by
SINTAX, then taking order-level assignments from the EPA-NG result.

Optimized sequence clustering to recover species-level OTUs
We benchmarked different ASV clustering methods on the Swedish IBA data, after chimeras
had been removed, with performance being evaluated using the SINTAX assignments of
ASVs to species. The precision (tendency of OTUs to consist of a single species) was high
for all tools (in the interval 0.89-0.99; Fig 3a) but recall was lower, with mean values ranging
from 0.09 to 0.82. This indicates that, under the parameters tested in our benchmark, the
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tools were prone to oversplit ASVs, i.e. placing apparently conspecific ASVs into different
clusters. This was especially evident for dbOTU3 which had the lowest recall value (0.025)
of the tools tested.

Both SWARM and OptiClust use thresholds of sequence similarity to cluster ASVs, either in
the form of maximum allowed 'differences' between sequences (SWARM, default=1) or a
maximum ‘distance cutoff' (OptiClust, default=0.03). The default settings resulted in low
recall values (0.80 for OptiClust and 0.31 for SWARM). Increasing the maximum allowed
differences for SWARM and the distance cutoff for OptiClust notably improved recall, which
reached ≥0.9 for SWARM at differences ≥9 and for OptiClust at distance cutoff ≥0.04, with
only marginal decreases in precision. However, for OptiClust, cutoff values >0.07 resulted in
a sharp decrease in precision with little gain in recall. Assessing the performance using the
F-score, which is the harmonic mean of precision and recall, we found that OptiClust with a
cutoff of 0.05 and SWARM with a difference of 15 gave the best, and highly similar, metrics
(F-scores of 0.95 for both OptiClust and SWARM; Fig 3b).

To assess the performance of the open-source tools against the closed-source RESL
algorithm23, we downloaded the complete BOLD database (from 06-Jul-2022) and calculated
precision and recall values (treating BIN assignments as ‘ASV clusters’) for 3,953,373
sequences with both BIN and species assignments (Fig. 3a, diamond; Fig. 3b, dotted line).
The results show that RESL clustering of BOLD sequences into BINs performs on par with
SWARM and OptiClust clustering of deep metabarcoding reads. Using closed-reference
clustering of metabarcoding reads against BOLD gave similar results (Supplementary Fig.
S1).

In terms of runtime, SWARM and OptiClust showed similar performance in our benchmark,
with the former slightly ahead; both tools were considerably faster than dbOTU3 (Fig. 3c).
Unlike the other tools, SWARM does not require a pairwise distance matrix to be computed
beforehand, and it also has better multi-threading support than OptiClust. SWARM and
OptiClust are still actively maintained, while dbOTU3 has been archived and has not been
updated in the past 6 years. Because of its active developer community, its robust
performance across settings, and its computational efficiency, we chose SWARM as the
default clustering method in HAPP.
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Fig. 3: Benchmarking of ASV clustering tools. a. Precision vs. recall for each run of the
different tools. Colors correspond to the different runs and the legend shows the settings
used: ‘sw’ is the difference cutoff in Swarm, ‘op’ the distance cutoff in OptiClust, and ‘db’ the
distance and abundance cutoffs in dbOTU3. The diamond symbol shows the precision and
recall of the RESL-generated BINs in the BOLD database (‘BOLD-max’). b. F-score values
(harmonic mean of precision and recall) of the different runs for each tool. The dashed line
shows the F-score of the BINs in the BOLD database. c. Runtime statistics for the different
tools obtained from the same run settings. Each point shows the time to cluster ASVs
belonging to a single taxonomic family. For SWARM, the number of threads is indicated on
the y-axis (‘swarm_t10’ = 10 threads).

A new algorithm for effectively removing NUMTs and other noise
Despite the extra chimera filtering step, we noted that the IBA data included a significant
amount of noise, which was particularly obvious for well known groups in the Swedish fauna
like Lepidoptera (butterflies and moths). However, existing noise filtering algorithms use
overly simple criteria, focus on a single criterion, or are too computationally complex to be
applied to deep metabarcoding data. Therefore, we designed a new, scalable algorithm
based on a combination of criteria, NEEAT.

To address scalability, we apply NEEAT to clustered data rather than single ASVs, which has
often been the case in previous algorithms. Also, we apply NEEAT to taxonomically
partitioned datasets, allowing it to be run in parallel using the same strategy adopted by
HAPP for other steps in the pipeline.

Taxonomy. In a detailed analysis of Swedish IBA data for Lepidoptera7, we noted that
taxonomic annotation failures at higher ranks are often associated with non-authentic CO1
sequences. Therefore, NEEAT includes a filter that removes clusters with annotation failures
at higher taxonomic ranks. The rank at which failures are considered to signal noise is a
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user-provided setting (default order level). NEEAT uses three additional criteria to filter out
noise clusters: echoes, evolutionary signatures, and read abundance.

Echoes. Like LULU, NEEAT searches across samples for unusual co-occurrence patterns
among genetically similar clusters. Noise OTUs—both NUMTs and recurring sequencing
errors—may be expected to consistently occur in samples together with their parent OTUs
(containing the corresponding authentic sequences) but in lower read numbers. Tuning
parameters of this filter include the maximum distance between echo and parent cluster, the
minimum fraction of echo samples with parent present, the max read ratio threshold and
type (‘max’ or ‘mean’ across samples), and whether a significant correlation between echo
and parent read numbers is required.

Evolutionary signatures. For protein-coding sequences, NEEAT compares evolutionary
and edit distances among sequences to find clusters likely to represent NUMTs, off-target
sequences, or chimeras missed in previous filtering steps. Specifically, we use an
evolutionary distance taking chemical similarities between amino acids into account, and a
metric that is sensitive to unexpectedly large evolutionary distances at small edit distances
(see Methods). To improve performance, searches are limited to the N nearest neighbors (in
terms of edit distances), with N being a tuning parameter. NEEAT uses two versions of this
filter, a local filter requiring a minimum sample overlap between the clusters, and a global
filter without this requirement.

Abundance threshold. Finally, NEEAT also implements an abundance threshold for the
mean or max (default ‘max’) number of cluster reads.

We benchmarked NEEAT against abundance filtering, as in metaMATE, profile HMM
filtering, and LULU. The tests used the Hexapoda (classes Insecta and Collembola) subset
of the final Swedish IBA dataset, after chimera filtering, annotated by SINTAX and clustered
by SWARM (d=15) as described above. We measured false positives (authentic OTUs
removed) as a weighted average of the number of unique BOLD BINs and trusted ASVs
(see Methods) removed, and false negatives as a weighted average of the number of
remaining duplicated BOLD BINs and spurious OTUs—OTUs in well-known insect families
(>99% of expected species recorded8) not matching species in BOLD.

NEEAT significantly outperformed abundance filtering, HMM filtering and LULU abundance
filtering in this benchmark (Fig. 4a). In tests of individual filters, the NEEAT echo algorithm
did slightly better than LULU (Supplementary Fig. S2), and the NEEAT evolutionary
algorithm (both local and global) outperformed HMM filtering by a large margin
(Supplementary Fig. S3). The performance of the abundance filter was insensitive to the
type of reads used (raw, calibrated, proportional to sample reads, or proportional to
non-spike-in reads); however, filtering on the max read number was better than filtering on
the mean (Supplementary Fig. S4). The false positive rate increased fairly rapidly with
increasing thresholds for all major orders except the Diptera.

To assess the effectiveness of the taxonomic annotation filter, we compared the proportion of
reads that would be removed by applying the criterion at different ranks for the IBA data from
Sweden and Madagascar. The barcode reference library and reference tree include virtually
all Swedish Hexapoda families, suggesting that most of the annotation failures at this level or
above are likely to represent noise. As the noise level should be similar, a significant drop in
the proportion of retained reads for Madagascar—with incomplete reference library and
tree—would suggest that annotation failures include many false positives, that is, authentic
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OTUs. The results (Fig. 4b) show that the phylogenetic placement method (EPA-NG) is
considerably more robust to gaps in the reference tree than alignment-based (VSEARCH) or
k-mer-based methods (SINTAX) are to gaps in the barcode library, despite the latter
including two orders of magnitude more sequences. The drop is larger for reads than for
unique ASVs or clusters, suggesting that annotation failures mainly affect the dominant taxa
in Madagascar samples (Supplementary Fig. S5). The lower annotation success of EPA-NG
at the family level and below is likely due to poor coverage of the most species-rich insect
families in the reference tree (Fig. 4b).

Fig. 4: Benchmarking of noise filtering tools. a. Performance of noise filtering on the
Swedish IBA data on hexapods using an abundance threshold (raw counts, with varying
cutoff in terms of max number of reads), an HMM profile model (with varying bitscore cutoff),
the LULU algorithm (default settings) and the NEEAT algorithm (Pareto front of settings
explored here). b. Annotation success of different taxonomic annotation algorithms (sintax, a
k-mer-based tool; vsearch, an alignment-based tool; and epang, a phylogenetic placement
tool) on Swedish and Malagasy IBA data. c-d. The number of OTUs found in the Swedish
IBA data before (c) and after (d) noise filtering with NEEAT, plotted against the number of
species recorded from Sweden. Each point represents one family; the colors represent the
estimated proportion of the total Swedish species diversity that is currently known8. Analysis
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of the Lepidoptera7 suggests that the IBA data typically contains slightly more than 50%
(dotted line) of the known species (full line) in well-known insect groups (dark purple). Poorly
known families (lighter colors) may be represented by more species than currently known.

Overall, the NEEAT algorithm is quite effective in reducing noise in the Swedish IBA data
(Figs. 4c, d). Detailed analysis of the Lepidoptera suggests that the data include roughly half
the Swedish fauna of most families7. After NEEAT filtering, only a handful of well-known
hexapod families fall significantly outside this range (Fig. 4d).

The HAPP pipeline provides a flexible and performant workflow

We designed HAPP as an open-source Snakemake39 workflow that performs pre-filtering
(ASV length and stop codons), chimera removal, taxonomic annotation, ASV clustering of
non-chimeric sequences, and noise removal by NEEAT (Fig. 5). The default choice of tools
and settings reflects the benchmarking results described above but HAPP supports the full
range of clustering and annotation tools included in the benchmarking, and can easily be
extended to accommodate additional tools. The workflow supports splitting the input ASVs
by taxonomy (e.g., by class or order) and running the clustering software on each split
separately, with the assumption that ASVs assigned to different taxa at this level should not
cluster together. This can be useful for large datasets because it lowers the number of
pairwise comparisons and allows for parallelization of several steps in the workflow. HAPP is
available at https://github.com/insect-biome-atlas/happ.

Fig. 5. Design of the HAPP pipeline. After prefiltering to remove sequences of unexpected
length or with in-frame stop codons, the pipeline involves four steps: (i) chimera filtering, (ii)
taxonomic annotation, (iii) clustering and (iv) noise filtering. Parallelization is implemented by
splitting the input into equally sized chunks in the taxonomic assignment step, and into
taxonomic groups in the clustering and noise filtering steps.

Discussion
Deep metabarcoding projects come with unique challenges and opportunities. The deep
sequencing and the large number of samples can reveal species that would otherwise have
been missed. At the same time, the data comes with significant numbers of chimeras,
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NUMTs and other types of noise. Thus, utilizing the full potential of deep metabarcoding
requires powerful bioinformatic tools.

In this paper, we presented HAPP, a pipeline designed specifically for processing deep
metabarcoding data. The pipeline includes optimised procedures for chimera removal,
taxonomic annotation, OTU clustering and removal of noise OTUs. For the former steps,
HAPP is based on existing tools, while a novel algorithm (NEEAT) was developed for the
removal of noise OTUs. Each of the steps was optimized using a combination of in silico
tests and benchmarking with real metabarcoding data.

The IBA data6 used for benchmarking HAPP allowed us to perform tests across a range of
settings, from small or moderately diverse groups with virtually complete reference libraries
(many Swedish insects) to megadiverse taxa that are largely missing in current databases
(some Swedish arthropods, most Malagasy taxa). Taken together, the benchmark results
suggest that HAPP will be useful for many types of deep metabarcoding projects.

Our results emphasize the importance of filtering out chimeras from deep metabarcoding
data. We found that the standard chimera filtering (‘removeBimeraDenovo’) in a commonly
used ASV denoising pipeline (DADA218) was inadequate. Applying a second filtering pass in
HAPP identified an additional 15% of ASVs in the Swedish IBA data as chimeras. Tweaking
the DADA2 settings might bring down the frequency of chimeras, but the extra chimera
removal in HAPP has a negligible rate of false positives, so there is little gain in bypassing it.

Among the taxonomic annotation tools we tested, SINTAX19 performed best in our in silico
tests using CO1 sequences from BOLD, in particular at lower taxonomic ranks. However,
both our in silico tests and IBA data benchmarks revealed that SINTAX was overly
conservative in assigning queries at higher taxonomic ranks. This was particularly obvious
for the Madagascar data (Fig. 4b; Supplementary Fig. S5) despite new taxa at this level
being unlikely to occur in the data. This profile contrasts starkly with that of phylogenetic
placement using EPA-NG and Gappa14–16, which performed well at higher taxonomic ranks
while being unreliable at lower ranks (undoubtedly due to the poor coverage in the reference
tree). This suggests that combining SINTAX and EPA-NG may be advantageous. We found
that EPA-NG doubled the annotation rate at the order level for the Madagascar IBA data,
while having only marginal effect on the Swedish data, consistent with the expected
differences in the completeness of the reference libraries. As the available reference trees
increase in coverage, we expect phylogenetic methods to gain ground. Given the current
state, where no method can handle all contexts, we designed HAPP to support a range of
taxonomic annotation tools and combinations of them.

BOLD and similar reference databases are invaluable resources for taxonomic annotation.
However, relying on closed-reference clustering, where metabarcoding reads are assigned
to clusters by matching them to existing records, is not adequate for the megadiverse and
poorly covered organism groups often targeted in metabarcoding. Deep metabarcoding is
likely to yield substantially more data per target OTU than contained in the reference
databases, allowing OTUs to be circumscribed more effectively through de novo clustering.
We think this explains why OptiClust29 and SWARM28 perform so well in our benchmarks,
better than closed-reference clustering using BOLD BINs (Supplementary Fig. 1). Clearly,
the computational efficiency of OptiClust and SWARM is sufficient for de novo clustering of
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deep metabarcoding data. Unlike the RESL algorithm used by BOLD23, both of these
algorithms are open source, supporting reproducible science and community-based
refinement.

Filtering out data based on read numbers is often used as the main or sole cleaning step for
metabarcoding data37,40. However, our results suggest that such abundance filtering is
ineffective because deep metabarcoding data contain many authentic OTUs with few reads:
the false positives rise quickly as the abundance threshold is increased (Supplementary Fig.
S4). However, because most groups seem to be associated with many low-read but
authentic OTUs in our tests, we find it difficult to justify the use of taxon-specific thresholds
as recommended by Andújar et al. (2021)37.

The widely used LULU tool36 can be understood as a special case of our echo algorithm, but
we succeeded in improving performance slightly by ordering clusters first in terms of sample
numbers and then read numbers, instead of just read numbers, allowing more echoes to be
correctly identified when passing down the list. We also found that relaxing the read ratio
threshold, targeting the mean rather than the max across samples, usually leads to
performance gains, in contrast with LULU recommendations.

The work on profile HMMs35 represents one of the most sophisticated attempts yet to use
evolutionary signatures to separate noise from signal in metabarcoding data. However, our
benchmarking indicates that it is quite ineffective compared to our approach, using pairwise
comparisons of the ratio between edit distance and evolutionary distance. We think the
reason for this is that the CO1 protein varies across the insect phylogeny, such that a single
HMM profile is insufficient to accurately capture small deviations. This problem may be
aggravated by taxon biases in the training data, resulting in poor fit of the model to the
dominant groups in the metabarcoding data.

The optimal NEEAT performance was obtained with stringent settings for each of the
component filters. The Pareto front was dominated by combinations using low thresholds for
the read ratio in the echo filter (much lower than LULU defaults), high thresholds for the
distance ratio in the evolutionary signature filter, and a low maximal read number in the
abundance filter. Our results suggest that annotation failures can also be used for noise
filtering but that the taxonomic rank at which it is applied needs to be adjusted according to
the completeness of the reference database. For instance, detailed analysis of the Swedish
IBA data for Lepidoptera suggests that SINTAX annotation failures at the family level are
often associated with noise ASVs in this dataset7.

Even though HAPP makes substantial improvements over the state of the art, there is clearly
room for further improvement. Both the echo and evolutionary signature algorithms are
heuristic in that they start from the most abundant cluster, assume it represents an authentic
marker sequence, and then sequentially test and add sequences to the trusted set. An
obvious improvement would be to revisit and continuously update the circumscription of the
trusted set, even though it would increase the computational complexity. The success of the
phylogenetic approach in improving the taxonomic annotation at higher ranks—despite the
limited size of the reference tree—suggests that noise filtering could also be improved by
considering phylogenetic information. The fact that our pairwise evolutionary signature
algorithm outperformed the global HMM profile approach points in the same direction.
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Finally, switching to a proper probabilistic framework, and explicitly considering error models
in that context, would also seem worthwhile exploring.

Despite the potential for further improvement, we think our benchmarks show that HAPP is
sufficiently mature to be trusted for standard monitoring of well-known faunas, while at the
same time being powerful enough to be used in exploring the diversity and composition of
species groups or regional faunas that are largely unknown or poorly represented in
reference databases.
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Methods

Benchmarking datasets
Deep metabarcoding data. The deep metabarcoding data we used for benchmarking
originate from the Insect Biome Atlas (IBA) project6. The project sampled the terrestrial
arthropod faunas of Sweden and Madagascar using Malaise traps, soil samples and litter
samples. The samples were metabarcoded using several different protocols, targeting a 418
bp region of CO1, were sequenced on the NovaSeq6000 platform. The raw sequences were
preprocessed as described in Miraldo et al. (2024). Briefly, read trimming and filtering was
applied using a Snakemake workflow available at
https://github.com/insect-biome-atlas/amplicon-multi-cutadapt, followed by filtering to remove
sequences containing stop codons in the expected read-frame. Finally, the reads were
denoised using the nf-core/ampliseq Nextflow workflow (v2.4.0)41, which uses the DADA2
algorithm18 to infer amplicon sequence variants (ASVs) from the preprocessed reads. This
workflow also uses the DADA2 removeBimeraDenovo function for chimera removal using
the following settings: 'method="consensus", minSampleFraction = 0.9, ignoreNNegatives =
1, minFoldParentOverAbundance = 2, minParentAbundance = 8, allowOneOff = FALSE,
minOneOffParentDistance = 4, maxShift = 16'. We used two versions of the data for
benchmarking: (1) an early version, restricted to mild lysis of the Malaise trap samples
(4,560 samples from Sweden and 1,923 from Madagascar), containing 636,297 and 559,023
ASVs, respectively; and (2) a final version, containing CO1 data from all sample types (mild
lysis and homogenates of Malaise trap samples, as well as soil and litter samples) (total of
5,804 and 2,111 samples containing 821,559 and 701,769 ASVs, for Sweden and
Madagascar respectively). The data are available from
https://doi.org/10.17044/scilifelab.25480681.v1 and
https://doi.org/10.17044/scilifelab.25480681.v6.

Taxonomic reference databases based on BOLD. We generated a reference database for
benchmarking taxonomic assignment tools from sequences in the BOLD database23. Firstly
sequence and taxonomic information for records in BOLD were downloaded from the GBIF
Hosted Datasets (https://hosted-datasets.gbif.org/ibol/). This data was then filtered to only
keep records annotated as ‘COI-5P’ and assigned to a BOLD BIN ID. The taxonomic
information, as processed by GBIF, was parsed in order to assign species names and
resolve higher level ranks for each BIN ID. Sequences were processed to remove gap
characters and leading and trailing Ns. After this, any sequences with remaining
non-standard characters were removed. Sequences were then clustered at 100% identity
using VSEARCH20. This clustering was done separately for sequences assigned to each BIN
ID. The processed database is available at the SciLifeLab Figshare repository42; we used
version 4 of the database (https://doi.org/10.17044/scilifelab.20514192.v4). For the purposes
of benchmarking, sequences were trimmed to the 418 bp region matching the barcode
region used in this study. We refer to this in the following as the ‘custom BOLD database’.

The above database adopts GBIF’s name resolution algorithm for BINs with several
taxonomic name annotations, using an 80% threshold for accepting a name as the
consensus annotation. For gauging the performance of clustering tools against the RESL
algorithm used to generate BOLD BINs, we also downloaded the complete BOLD database
(from 06-Jul-2022). From this database, information on 3,953,373 sequences with both
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BOLD BIN and species assignments were extracted and used to compute precision and
recall values, treating BIN assignments (the output of RESL) as ‘ASV clusters’. No cleaning
of taxonomic annotations was applied in this case.

For some benchmarks, we also used a carefully curated and almost complete barcode
reference library for the Finnish fauna of arthropods9, which is a small subset of BOLD
(FinBOL). We expected this library to contain less noise than BOLD in general, and good
coverage of the authentic CO1 ASVs likely to be encountered in Swedish arthropods. We
refer to IBA ASVs with identical matches over the full ASV sequence to FinBOL reference
sequences as ‘trusted ASVs’.

Chimera removal
We explored postprocessing chimera removal strategies for deep metabarcoding data based
on the UCHIME de novo algorithm13. Specifically, we applied UCHIME with default settings
in either a ‘batchwise’ or ‘samplewise’ mode. In the ‘batchwise’ mode, chimera detection is
run directly on the full ASV dataset while in ‘samplewise’ mode, the ASV dataset is split into
sample-specific fasta files containing sequences with a count > 0 in the sample. This means
that the candidate parents for each ASV are restricted to the sequences present in the same
sample. In addition, we implemented cutoffs on either the fraction of samples in which
chimeric ASVs had to be present with their parents (for ‘batchwise’) or the fraction of
samples in which ASVs had to be identified as chimeric (for ‘samplewise’), testing both
‘lenient’ and ‘strict’ settings (Table 1).

Table 1. Chimera detection settings. Four different strategies were tested. We used either
a batchwise or samplewise approach, and then enforced a lenient or strict requirement on
the parent-chimera co-occurrence pattern.

Notes: 1Method name used in Fig. 1.
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Name1 Mode Settings

batchwise.strict batchwise ASVs had to share samples with
both parents in≧ 50% of samples
in which they were present

batchwise.lenient batchwise ASVs had to share samples with
both parents in≧ 1 sample

samplewise.strict samplewise ASVs had to be identified as
chimeric in all samples where they
were present in order to be
removed

samplewise.lenient samplewise ASVs had to be identified as
chimeric in≧ 1 sample in order to
be removed

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2024. ; https://doi.org/10.1101/2024.12.20.629441doi: bioRxiv preprint 

https://paperpile.com/c/w867L7/6v8X
https://paperpile.com/c/w867L7/mKdY
https://doi.org/10.1101/2024.12.20.629441
http://creativecommons.org/licenses/by/4.0/


We benchmarked the performance of the chimera detection on the initial version of the
Swedish IBA data (636,297 ASVs), using the following evaluation metrics (with
corresponding labels in Fig. 1 in parenthesis): (1) total number of ASVs removed (‘ASVs
removed’); (2) proportion of the removed ASVs that were abundant, that is, found in more
than one sample (‘% abundant ASVs removed’); (3) proportion of ASVs identical to
sequences in FinBOL removed (‘% trusted ASVs removed’); (4) total number of reads
removed (‘Million reads removed’); (5) Number of reads of ASVs identical to FinBOL
removed (‘Trusted reads removed’); (6) generated clusters to the number of unique species
annotations in the cleaned data (‘Cluster:species ratio’); (7) number of species split across
multiple clusters in the cleaned data (‘Multicluster species’’); and (8) precision, (9) recall and
(10) F-score (harmonic mean of precision and recall) for the clustering (‘Precision’, ‘Recall’
and ‘F-score’, respectively), assessed against the SINTAX assignment of ASVs to species
(see below).

Precision and recall were calculated as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ,  𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where TP = true positives, FP = false positives and FN = false negatives. TP was calculated
by counting the number of times two ASVs belonging to the same ASV cluster also belonged
to the same species, while FN was calculated by counting the number of times two ASVs
that belonged to the same species were placed into different ASV clusters. FP was
calculated as

𝐹𝑃 =  𝑁𝑃 −  𝑇𝑃

where NP is the total number of within-cluster pairs, that is the total number of possible ASV
pairs within each cluster, summed over all clusters. For the evaluation metrics based on
clustering, we used OptiClust29 as implemented in mothur v1.44.1143 with a cutoff of 0.025.

Taxonomic assignment
We benchmarked the performance of four different tools for taxonomic assignment of ASVs
against a reference database: SINTAX19 implemented in VSEARCH20, DADA2
assignTaxonomy18 (an RDP-classifier type of tool), and SKLEARN and VSEARCH
implemented in Qiime2 via the ‘classify-sklearn’ and ‘classify-consensus-vsearch’ pipelines
in the ‘feature-classifier’ plugin44. We also tested a phylogenetic placement tool (EPA-NG
combined with GAPPA for taxonomic annotation) with three different settings for the heuristic
placement algorithm used (Table 2). The reference database was the custom BOLD
database described above. For the phylogenetic placement, we used a phylogenetic tree of
49,331 Hexapoda sequences with representative outgroups from taxa likely to be present in
the IBA data. As a core, we used the tree of38. From this tree, we removed all sequences
with frame shifts or stop codons, as well as all outgroup sequences (they were sprinkled
across the tree); this gave us the ingroup tree. We then assembled CO1 data for relevant
outgroups, missing Hexapoda classes (Collembola, Protura and Diplura), and a couple of
ingroup representatives from GenBank and Bellini et al. (2023)45, preferably complete CO1
sequences when available. The DNA sequences were converted to amino-acid sequences
and aligned using MAFFT46, and then converted back to a nucleotide alignment using
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PAL2NAL47. Relationships among the taxa in this dataset were inferred using MrBayes
3.2.7a48 and a constrained backbone tree representing well established relationships and
highly supported groups in the analysis of Bellini et al. (2023)45. Finally, the pruned Chesters
tree was grafted onto a tree sampled from the posterior estimate from this analysis,
replacing the ingroup representatives. All CO1 sequences in the final tree were realigned
using MAFFT and PAL2NAL as described above, followed by removal of all sites present in
less than 90% of taxa; this resulted in a final alignment of the same length as the original
Chesters alignment. The reference tree and all data and scripts used in obtaining it are
available from https://github.com/orgs/insect-biome-atlas/paper-bioinformatic-methods.

Table 2. Taxonomic annotation tools and settings. We tested four different tools for
annotations based on matching to a reference database (SINTAX, DADA2, SKLEARN and
VSEARCH), and one tool (EPA-NG) with three different heuristics for phylogenetic
placement in a reference tree.

Name1 Tool Type Version Settings (if
different from

default)

Reference

sintax SINTAX kmer 2.21.2
(vsearch)

–sintax_cutoff 0.8
–randseed 15
–threads 1

Edgar (2016),
Rognes et al.
(2016)

dada2_rdp DADA2 kmer 1.30.0 minBoot=80 Callahan et al.
(2016)

qiime_sklearn SKLEARN kmer 2023.9
(QIIME2)

Bolyen et al.
(2019)

qiime_vsearch VSEARCH alignment 2023.9
(QIIME2)

Bolyen et al.
(2019)

epa-ng_baseball EPA-NG phylogenetic --baseball-heur Barbera et al.
(2019); Czech
et al. (2020)

epa-ng_dynamic EPA-NG phylogenetic Barbera et al.
(2019); Czech
et al. (2020)

epa-ng_none EPA-NG phylogenetic --no-heur Barbera et al.
(2019); Czech
et al. (2020)

Notes:
1Method name used in Fig. 2.
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For benchmarking, we generated five combinations of test/train datasets using the custom
BOLD CO1 reference database described above. For each combination, 1000 species were
randomly sampled and one sequence was selected from each species and added to the test
dataset. Specifically, the examined cases (matching the cases in Fig. 2) were (from simple to
more challenging):

1. Keep all sequences in the reference database or tree, including the test sequences.
2. Remove all sequences identical to sequences in the test dataset from the reference

database, but keep at least one sequence for each test species. For phylogenetic
placement algorithms, use Insecta sequences from the reference database for which
the species is represented in the tree but the specific sequence is missing.

3. Remove all species in the test dataset from the reference database, but keep at least
one sequence for each test genus. For phylogenetic placement algorithms, use
Insecta sequences from the reference database for which the species is missing but
the corresponding genus is present in the reference tree.

4. Remove all genera in the test dataset from the reference database, but keep at least
one sequence for each test family. For phylogenetic placement algorithms, use
Insecta sequences from the reference database for which the genus is missing but
the corresponding family is present in the reference tree.

5. Remove all families in the test dataset from the reference database, but keep at least
one sequence for each test order. For phylogenetic placement algorithms, use
Insecta sequences from the reference database for which the family is missing but
the corresponding order is present in the reference tree.

For case 5 (family absent) only 490 species (instead of 1000) could be randomly sampled
from the phylogenetic reference and placed into the test dataset.

In terms of benchmark metrics, we looked at the number of correctly assigned, incorrectly
assigned and unassigned sequences for each of the five test cases. To further elucidate the
performance “in the wild”, with various completeness of the reference databases and in the
presence of noise among query sequences, we compared the performance of the selected
tools in taxonomic annotation of the final IBA datasets for Sweden and Madagascar.

ASV clustering
We benchmarked the performance of three open-source tools for clustering metabarcoding
ASVs into OTUs: (1) SWARM v3.1.028; (2) OptiClust29 as implemented in mothur v1.44.1143;
and (3) dbOTU3 v1.5.331.

For benchmarking, we used the initial IBA dataset for Sweden after removal of chimeras
using the strict samplewise method described above. We ran each tool with a range of
parameters (Table 3), and evaluated results by calculating precision and recall values given
the SINTAX assignment of ASVs to species using the custom BOLD database, as described
above.

We also wanted to compare the performance of these open-source tools to the
closed-source RESL algorithm used to compute OTU clusters (BINs) for the BOLD
database23. There are two ways in which RESL clustering performance can be compared to
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open-source tools for clustering of metabarcoding data: (1) open-source tools can be applied
to the BOLD database, for which the RESL results are known (the BIN clusters); or (2) RESL
results for a metabarcoding dataset can be inferred by closed-reference matching to the
BOLD database, and interpreting the assignments of BINs to ASVs as the likely result of
RESL clustering. Each of these methods has its advantages and disadvantages: The first
approach compares the performance on a dataset of mostly authentic full-length CO1
barcode sequences, that is, slightly longer sequences than a deep metabarcoding dataset,
but also a database with a sparse and uneven coverage of the diversity of most biomes
studied by metabarcoding. Thus, the results may not be relevant for deep metabarcoding
data. The second approach potentially yields results that are more appropriate for clustering
of metabarcoding data, but the RESL results are only indirectly inferred in ways that can be
beneficial for RESL (its clusters are based on longer sequences, helping it interpret the
cluster structure of the OTUs) or problematic for RESL (it does not have access to the better
coverage of the studied biome represented by the deep metabarcoding data). We opted for
using the latter method here (Supplementary Fig. S1).

Table 3. Settings used in benchmarking ASV clustering tools. In all cases, ‘eval1’
represents default settings, which are shown in full. For other runs, only settings that differ
from default values are shown

Name1 Swarm Opticlust dbOTU3

eval1
(default)

d=1, fastidious=True,
boundary=3

cutoff=0.03 dist=0.1, abund=10

eval2 d=3 cutoff=0.01 dist=0.01, abund=10

eval3 d=5 cutoff=0.015 dist=0.1, abund=30

eval4 d=7 cutoff=0.02 dist=0.15, abund=10

eval5 d=9 cutoff=0.025 dist=0.01, abund=0

eval6 d=11 cutoff=0.04 dist=0.1, abund=0

eval7 d=13 cutoff=0.05 dist=0.15, abund=0

eval8 d=15 cutoff=0.07 dist=0.01, abund=20
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eval9 d=25 cutoff=0.1 dist=0.1, abund=20

eval10 d=30 cutoff=0.15 dist=0.15, abund=20

Notes:
1Method name used in Fig. 3.

Design of the NEEAT algorithm
Each NEEAT filter was coded in a separate R script. The filters were designed as follows.

Echo filter. The echo filter takes the OTU table (‘counts’) and the pairwise distance values
from vsearch (‘matchlist’) as input, in addition to parameter settings. First, the OTUs are
ordered by number of samples (primary criterion) and number of reads (secondary criterion),
from largest to smallest. The top OTU is regarded as authentic. Each of the following OTUs
is then compared to the n closest previously identified authentic clusters (‘n_closest’, default
10) within the desired distance (‘min_match’, default 84% identity). For each potential parent
cluster, the algorithm checks whether it co-occurs with the potential echo in the required
proportion of samples (‘min_overlap’, default 0.95), and whether the read number criteria are
fulfilled. If ‘require_corr’ is TRUE and the parent and echo co-occur in more than three
samples, then a linear model is fit to the read numbers of parent and echo, and it is checked
whether the regression is significant (p value smaller than ‘max_p_val’, default 0.05) and the
coefficient is smaller than ‘max_read_ratio’ (default 1.0). In all other cases, it is simply
checked whether the read ratio is smaller than ‘max_read_ratio’. The read ratio type
(‘read_ratio_type’) can be set to either ‘max’ or ‘mean’ of reads across samples where both
parent and echo occur.

Evolutionary signature filter (‘Evo’ filter). This filter compares edit distances (computed
with vsearch) to evolutionary distances between sequence pairs. To compute the latter, we
first aligned ASV sequences by translating them to amino-acid sequences using the R
package APE 49, aligning them with MAFFT46 using the ‘--auto’ option, and converting them
back to nucleotide alignments using PAL2NAL47. We then computed two different metrics,
‘dadn’ and ‘wdadn’. The former is simply the ratio between nonsynonymous (amino-acid)
and synonymous differences. The latter weighted the amino-acid difference according to a
biochemical similarity metric50.

The evo filter orders OTUs in the same way as the echo filter. The top OTU is regarded as
authentic, and the other OTUs are compared to authentic neighbors using ‘min_match’ and
‘n_closest’ criteria, as for the echo filter. In the local version of the evo filter
(‘require_overlap’, default ‘TRUE’), a minimum sample overlap (‘min_overlap’, default 0.95)
is also required. If the ratio between the desired type of evolutionary distance (‘dist_type’,
default ‘wdadn’) and the edit distance is larger than the threshold (‘dist_threshold’, default
1.0), the OTU is flagged as non-authentic.

Abundance filter. This filter simply flags OTUs with read numbers below the desired ‘cutoff’
as noise. The cutoff type (‘cutoff_type’) can be set to ‘sum’, in which case the sum of reads
across samples is compared to the threshold, or to ‘max’, in which case the max reads in
any sample is used instead.
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Taxonomic annotation filter. This filter simply removes OTUs with uncertain annotation at
the desired taxonomic rank (‘assignment_rank’, default ‘Order’), relying on HAPP annotation
conventions (see below).

NEEAT. In NEEAT, we apply the filters in sequence, using the retained OTUs from each step
as input to the next. NEEAT first applies the echo filter and then the evo filter in local mode,
the evo filter in global mode, the abundance filter, and finally the taxonomic annotation filter.

Benchmarking of noise filtering algorithms
To benchmark noise filtering algorithms, we used the Swedish IBA data for orders of
Hexapoda. The taxonomic assignment of each OTU was based on the assignment of the
representative ASV, that is, the ASV with the highest median read number across samples of
all ASVs included in the OTU. To measure false positives (authentic OTUs filtered out), we
used a weighted average of the number of unique BOLD BINs and the number of trusted
OTUs (the OTUs containing trusted ASVs from FinBOL) removed. To measure false
negatives (non-authentic OTUs remaining) we used a weighted average of the number of
duplicated BOLD BINs and the number of ‘spurious’ OTUs remaining. An OTU was
considered spurious if it belonged to a well-known family (>99% of species known according
to Ronquist et al. 2020) but none of the included ASVs matched a species in the reference
library.

We first benchmarked the component filters individually, exploring a range of settings and
using LULU36 and an HMM profile model35 as references for the echo and evo filter,
respectively (Supplementary Figs. 2-4). We then computed the Pareto front of the NEEAT
filter by combining individual filters under parameter settings with a low level of false
positives (as false positives add up in NEEAT), and then removing those combinations that
were dominated in the two performance dimensions by other combinations.

These tests filtered out all OTUs with uncertain annotations at the order level. To assess the
performance of the annotation filter, we compared the annotation success for a fauna that is
well covered in the reference library and phylogeny (IBA data from Sweden) with one that is
not (IBA data from Madagascar). The proportion of noise OTUs should be similar for both
faunas; thus, differences in annotation rate should be due to the effect of coverage in
reference databases.

Design of the HAPP pipeline
HAPP was designed as a Snakemake workflow. The user supplies two input files to the
pipeline: a FASTA file of ASVs and a tab-separated file with counts of each ASV in all
samples. The pipeline first pre-filters the ASVs, removing sequences that fall outside a user
defined length interval (default: 403 - 418 bp) as well as those with in-frame stop codons.
Taxonomy is assigned to the filtered ASVs using a two-step approach combining SINTAX
and EPA-NG. Chimera filtering is applied to the filtered ASVs using the uchime_denovo
algorithm and a user configurable filtering criteria (default: samplewise). The taxonomic
assignments are then used to split the filtered, non-chimeric sequences into taxonomic
subsets at a user configurable rank (default: Family). Each subset is then clustered into
OTUs in parallel using all clustering software configured by the user (default: SWARM). The
OTUs for all subsets are gathered per clustering software and are then split into order-level
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subsets. Each of these subsets are then filtered for noise in parallel, taking the abundance of
OTUs into account as well as applying the NEEAT algorithm to OTUs.

Additional filtering steps in HAPP. HAPP includes several additional filtering steps not
discussed above. First, it allows filtering out of clusters occurring in more than a specified
fraction of negative controls, and extra abundance filtering (if the NEEAT filtering is deemed
insufficient). Both of these filters are applied per dataset. The user controls the filters by
supplying a metadata file specifying which samples are blanks/negative controls as well as
which samples belong to what datasets.

HAPP also allows the user to filter out spike-in clusters based on user-provided species
annotations or BOLD BIN annotations. As an alternative, an occurrence threshold (clusters
of specified higher taxa occurring in more than x% of samples are deemed as spike-in
clusters) can be used to identify and remove spike-in clusters.

Handling of ambiguous taxonomic annotations. HAPP uses several approaches to
handle and resolve ambiguities in taxonomic annotations. An ASV is labeled as ‘unassigned’
if the taxonomic annotation algorithm failed to assign the ASV to a taxon at this rank. If the
ASV is assigned to a taxon named ‘Taxon_name’ at the next higher rank, it is labeled as
‘unassigned.Taxon_name’. If the ASV is unassigned at the next higher rank, the annotation
at that level is simply copied to the lower rank. Ambiguities may also arise from the reference
database itself. For the reference database we used, the taxon annotation of the sequences
in each BOLD BIN was resolved by GBIF, if all sequences did not have the same taxon
annotation in BOLD. Specifically, GBIF used an 80% cut-off to call a taxon annotation; BOLD
BINs with more conflict among sequence annotations were not resolved to a name at that
rank. In the case ASVs match such unresolved annotations in the reference database,
HAPP labels the ASVs with the lowest rank that was fully resolved, followed by an
underscore and one ‘X’ for each lower rank that was unresolved. For instance, a BIN in the
family Hepialidae unresolved at the genus and species levels would be leveled at the
species level as ‘Hepialidae_XX’.

Further ambiguities could result in the clustering of ASVs into OTUs. HAPP uses a method
similar to the GBIF name resolution mechanism in obtaining a consensus assignment. First,
HAPP takes all taxonomic assignments from cleaned ASVs for each cluster, and then
iterates from the lowest (most resolved) taxonomic rank to the highest. At each rank,
taxonomic assignments for all ASVs in the cluster are gathered and weighted by their total
read counts. If the weighted assignment make up 80% or more of the assignments at that
rank, that taxonomy is propagated to the ASV cluster, including parent rank assignments. If
no taxonomic assignment is above the 80% threshold, the algorithm continues to the parent
rank. Taxonomic assignments at any available child ranks are set to the consensus
assignment and prefixed with ‘unresolved.’.

To illustrate the taxonomic annotation resolution algorithm in HAPP, consider the following
example of an ASV cluster with five ASVs:

ASV_ID Family Genus Species Reads

asv1 Family1 Genus1 Species1 10
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asv2 Family1 Genus1 Species1 10

asv3 Family1 Genus2 Species2 50

asv4 Family1 Genus2 Species2 10

asv5 Family1 Genus2 Species3 20

At rank=Species the percentage of assignments would be Species1=20% ((10+10)/100),
Species2=60% ((50+10)/100), Species3=20% (20/100) meaning no assignment reached
above the 80% threshold. Moving up to rank=Genus the values would be Genus1=20%,
Genus2=80% which would assign Genus2 as the consensus. The ASV cluster would then
be given the taxonomic assignment ‘Family1, Genus2, unresolved.Genus2’.

HAPP also computes the ‘representative’ ASV of each cluster as the ASV with the highest
mean read number across samples of all ASVs belonging to the cluster. As an alternative to
the consensus algorithm described above, it is also possible to use the assignment of the
representative ASV for the entire OTU.
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