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Abstract— The need for reliable predictions in environ-
mental modelling is long known. Particularly, the predicted
weather and meteorological information about the future
atmospheric state is crucial and necessary for almost all
other areas of environmental modelling. Additionally, right
decisions to prevent damages and save lives could be taken
depending on a reliable meteorological prediction process.
Lack and uncertainty of input data and parameters constitute
the main source of errors for most of these models. In recent
years, evolutionary optimisation methods have become pop-
ular to solve the input parameter problem of environmental
models. We propose a new prediction scheme that uses a
Genetic Algorithm for parameter estimation in Numerical
Weather Prediction Models (NWP) to enhance prediction
results. The new approach is called Genetic Ensemble (G-
Ensemble) and it has been tested using historical data of
a well known weather catastrophe: Hurricane Katrina that
occurred in 2005 in the Gulf of Mexico. Obtained results
provide significant improvements in weather prediction.

Keywords: numerical weather prediction; evolutionary comput-
ing; genetic algorithm; ensemble prediction; parameter estimation.

1. Introduction
Weather forecasting and prediction is an ongoing de-

mand since thousands of years. Agriculture, education, en-
tertainment, industry, astronomy, etc. usually benefit from
an accurate knowledge of the weather future state. Global
weather predictions are held by governments and interna-
tional scientific institutions, to provide information about
the present and time evolution of the atmospheric situation.
However, regional predictions in certain zones are done by
local organizations, governments, and scientific centers to
provide predictions on basis of fine-coarse resolutions.

Weather time evolution is represented by numerical mod-
els that are commonly solved by means of computing
facilities. Efforts initiated in the 1950s when the USA
National Weather Service (NWS) [1] began to utilize some
of the early versions of computers to make large-scale
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weather forecasts. Since that time, computers have become
faster and more sophisticated being able to provide the
scientific community (particularly to the weather forecasting
community) with High Performance Computing platforms,
which allow the execution of highly computing demanding
weather forecast simulations. However, scientific applica-
tions continue to be more complex while research is getting
more sophisticated as a result of the natural human growth
of requirements. Higher accuracy, larger time scales, more
complex problems and less waiting time constitute some
of the new demands that should be considered from a
computational point of view.

Numerical Weather Prediction (NWP) models are consid-
ered as soft-real time applications. The importance of having
a degree of accuracy in the prediction in a certain time is
a real challenge. Thus, ongoing investigations concentrate
on methods to enhance the process of prediction, and to get
results of this process faster.

As most simulation software works with well-founded
and widely accepted models, the need for input parameter
optimisation to improve model output is a long-known and
often-tackled problem. Particularly in environments where
correct and timely input parameters cannot be provided, ef-
ficient computational parameter estimation and optimisation
strategies are required to minimise the deviation between the
predicted scenario and the real phenomenon behaviour. With
the continuously increasing availability of computing power,
evolutionary optimisation methods, especially Genetic Algo-
rithms (GA), have become more popular and practicable to
solve the parameter problem of environmental models.

This work presents a new meteorological prediction
scheme that uses evolutionary optimization methods that
enhance the quality of weather forecast by focusing on the
calibration of input parameters.

The rest of the paper is organized as follows: Section 2
gives an overview of NWP models with a brief description of
the Weather Research and Forecasting Model (WRF), which
constitutes the most commonly used model for weather
and meteorological predictions. Section 3 focuses on the
importance of accuracy in NWP models and it describes
also the most widely used methods for NWP enhancement
in practise. In section 4, the proposed prediction scheme
(G-Ensemble) is presented and described. Section 5 presents



experimental results obtained with a test case, where we
compare our proposal with other enhancement methods.
Finally, conclusions and future work are described in section
6

2. Numerical Weather Prediction Mod-
els and WRF

Numerical Weather Prediction is the process of guessing
the future state of the atmosphere based on current weather
conditions. Mathematical models are used to do the job,
which treats the atmosphere as a fluid. As such, the idea
of numerical weather prediction is to sample the state of the
fluid at a given time and use the equations of fluid dynamics
to estimate the state of the fluid at some time in the future.

Certain areas where atmosphere future conditions are to
be predicted are represented by three dimensional uniform-
gridded-rectangles referred as domains. The input data which
corresponds to the actual state of the atmosphere is called
initial conditions. Those initial conditions are assigned to
all points of the grid. The horizontal distance between
grid points is referred as the resolution of both the initial
conditions and prediction results. Regional models (also
known as limited-area models, or LAMs) allow for the use
of finer grid spacing (higher resolution) than global models
because the available computational resources are focused
on a specific area instead of being spread over the globe.
This allows regional models to resolve explicitly smaller-
scale meteorological phenomena that cannot be represented
on the coarser grid of a global model. Hence, a NWP model
will guess the new values of the initial conditions over future
time scale.

The Weather Research and Forecasting (WRF) [2] is
a widely-used numerical weather prediction model, which
is considered as a next-generation mesoscale numerical
weather prediction system designed to serve both opera-
tional forecasting and atmospheric research needs. WRF is
composed of a variety of programs to facilitate prediction
process, such as extracting global terrain data, designing
domains, facilitating for real observations to be injected
while model integration, and post-processing outputs.

In this work, we developed a new methodology for
meteorological prediction enhancement using WRF as the
Numerical Weather Prediction model. Although we have
applied our methodology to WRF, the proposed strategy
is a model-independent design, which could also be used
with other existing NWP models such as the PSU/NCAR
Mesoscale Model [3] known as (MM5).

3. Related Work
Reliable weather predictions may not prevent disasters,

but at least they help in preventing their horrible effects,
such as reducing the possibility of large property damages
and even could help in saving lives. Furthermore, accurate

predicted meteorological variables are critically needed for
other environmental modelling systems. For example, wind
direction and velocity variables are needed as precise as
possible to predict the expansion direction and velocity of a
fire propagation disaster predicted by wildfire models. It is
clear that, in such cases, accurate predictions may contribute
also to save human lives. Air pollution modelling and
the short behaviour of natural disasters like hurricanes are
other examples where reliable predictions of meteorological
variables are also necessary.

The importance of reliable weather predictions motivated
relevant improvements of NWP in the last 30 years. Efforts
have been done in the field to enhance predictions [4],
however, many sources of errors still remain. The main
ones are the availability and accuracy of input data (initial
conditions) on higher resolution basis, the possibility of data
injection of real observations during prediction process and
physical parametrization.

Physical parametrization is the representation of sub-grid-
scale physical processes, that is, some meteorological pro-
cesses are too small-scale to be explicitly included in NWP
models. Hence, parametrization enables the representation of
these processes by relating them to variables on the scales
(the points of the gridded domain) that the model resolves.
For example, an important meteorological process is the
surface flux of energy transmitted by the terrain which helps
in enhancing the prediction of other important variables like
near-surface temperature, sea surface temperature and even
near-surface wind velocity variables. This process normally
occurs in scales less than 1 kilometre, while NWP models
predicts normally on domains of grid-scales higher than
1 kilometre. Parametrization is needed in such cases to
represent this process on a certain domain scale. Other
examples are the typical cumulus cloud which has a scale
of less than 1 kilometre, the amount of solar radiation
that reaches the ground, and interactions with the surface,
including the generation of drag and waves by orography.
And so, all of these processes must be parametrized before
they can be included in the model.

Summarizing, there is an important need to get reliable
weather predictions, while it is also known that the major
sources of error that reduce prediction accuracy are input
data [5], availability of observed data, and the parametriza-
tion process. Thus, the efforts to enhance NWP are mainly
focusing in enhancing input data, enabling injection of
observed data, and estimating correctly the parameters of
sub-scale parametrization process.

The two mostly used NWP enhancement methods are
Three-Dimensional Variational Data Assimilation (3DVAR)
and Ensemble Prediction System (EPS), which are still a
center of continuous research. Actually, both methods fall
within the general approach of Data Assimilation (DA)
[6] for numerical prediction models. A Data Assimilation
system combines all available information about atmospheric



state to produce an estimate of initial conditions valid at
a prescribed analysis time. It proceeds by analysis cycles.
In each analysis cycle, observations of the current (and
possibly, past) state of the atmosphere are combined with
the results from a NWP model (the forecast) to produce
an analysis, which is considered as ”the best” estimate of
the initial conditions of the system. DA tries to balance the
uncertainty in input data and in the forecast. The model is
then advanced in time and its result becomes the forecast in
the next analysis cycle.

Next, we describe in more detail the two approaches that
are most widely used for NWP enhancement.

3.1 Three-Dimensional Variational Data As-
similation

3DVAR [7] uses information which include observations,
previous forecasts (background or first-guess), their respec-
tive errors and the laws of Physics to produce the analysis.

The basic goal of the 3DVAR system is to produce an
”optimal” estimation of the true atmospheric state at analysis
time, which is achieved by finding an iterative solution of
a prescribed cost function, described in detail in [7]. This
solution represents a minimum variance estimate of the true
atmospheric state having two sources of data: background
(previous forecast) and observations. This process includes
the implementation of certain algorithms to estimate back-
ground, and observation errors.

The main drawback of this method consists of the neces-
sity of roll-back the simulation process in order to inject the
new data in such a way that corrects the observed error in a
progressive way as simulations go on. This way of working
increases the execution time of the prediction process due
to the need of re-starting the model execution from scratch.

3.2 Ensemble Prediction System (EPS)
Stochastic or ”ensemble” forecasting is used to account

for uncertainty. It involves multiple forecasts created with
an individual forecast model by using different physical
parametrizations or varying initial conditions. The ensemble
forecast is usually evaluated in terms of an average of the
individual forecasts concerning one forecast variable, as well
as the degree of agreement between various forecasts within
the ensemble system, as represented by their overall spread
[8], [9]. In [10] they show how NWP models are sensitive to
the choice of physical parametrization and how an ensemble
could be established using these parametrizations.

A set of forecasts is then produced (each of which has
a different set of initial conditions or a different physical
parametrization) using a deterministic model to predict the
future state of the atmosphere, and by assuming that the
model is perfect without other errors, then the mean of all
of the executed simulations (forecasts) is considered to be
the true future state of the atmosphere.

The implementation of this method begins with the pro-
cess of determining how to select the set of the various
initial conditions or parametrizations as presented in [11]. As
soon as this set is established, the corresponding simulations
are executed to predict the relative evolution of atmospheric
fields in the short future time.

EPS could be considered as a parallel method as each en-
semble member is actually a stand-alone simulation, which
can be executed independently of the others. Therefore,
the main drawback of this scheme is the need of a huge
computing power to be able to run all simulations in parallel.

4. Genetic Ensemble (G-Ensemble)
In this section, the Genetic Ensemble (G-Ensemble) ap-

proach for prediction enhancement is described. Although
G-Ensemble uses the same principles of the EPS, it clearly
differs in the way of how ensemble members are obtained
and executed. The main idea of an EPS is to reflect possible
variations in the ranges of some input parameters, thus, they
simply run a variety of predictions, each of which is initiated
with a different combination of those input parameters. Then,
the average of all predictions results is considered as the
best prediction as it actually reflects a range of variations
in certain input parameters. We propose a new scheme of
prediction, shown in figure (1) where we introduce a pre-
prediction phase or stage, called Calibration Phase, which
ends at the moment where real observations are available.
Hence, the whole prediction process will be formed of two
stages: Calibration and Prediction, which we describe below.

Fig. 1: Two-phase prediction scheme; ti is time 00:00 of prediction
process, ti−1 is a time instant previous to Prediction Phase (initial
time of Calibration Phase), ti+1 is the future time to be predicted.
”OV ” is an observed meteorological variable at time ti, ”PV ” is
the predicted variable at the same time using a NWP model.

4.1 Calibration Phase
Considering that ti is the instant time from which the

meteorological variables are going to be predicted, Calibra-
tion Phase starts at a time prior to prediction time and ends
at time 00:00 of prediction period, i.e. calibration is done
within the period (ti−1, ti). Knowing that real observations
of meteorological variables are available at time ti, the
objective of this phase is to look for the combination of



the physical parameters, which produce less error compared
to these observed meteorological variables at the end of
the phase (at time ti). That is, as in EPS, we initialize a
set of simulations randomly, each of which has a different
physical parametrization combination. This initial set, which
we call initial ensemble, is run by the NWP model to
predict meteorological variables at time ti, then we use GA
functions to obtain an improved ensemble set (which has
less errors compared to observations at time ti) and the
process is repeated again many times to a certain number of
iterations. At the last iteration of the GA, Calibration Phase
exits with calibrated ensemble members that we refer as G-
Ensemble, each of which has a calibrated combination of
physical parameters, which produced less error than those of
the initial ensemble. At that point, we have two alternatives
for the Prediction Phase: 1) to apply the classical EPS
scheme using the obtained G-Ensemble set, or 2) to select
the ensemble member of the G-Ensemble with minimum
error, to be the single ensemble member of the simulation
that will conduct the Prediction Phase. We call this approach
Best Genetic Ensemble Member (BeGEM).

A relevant point to be considered in the Calibration Phase
is the error definition being one of the core elements of this
phase. In this work, we propose two different error functions
to be used, what we call Single-Variable and Multi-Variable.
Depending on the error function used, we have designed
two G-Ensemble strategies: Single-Variable G-Ensemble and
Multi-Variable G-Ensemble, which are described below.

4.1.1 Single-Variable G-Ensemble

The Calibration Phase is done with the goal of enhancing
predictions for a single meteorological variable. The error
function for the evaluation of ensemble members in our
GA is the Root Mean Square Deviation RMSD or Error
RMSE, shown below in equation(1). This error function is a
frequently-used measure for the evaluation of meteorological
predictions [12], which measures the differences between
values predicted by a model or an estimator and the values
actually observed from the variable being estimated. In
RMSD equation, xobs is an observed value of a variable x
and xpre is the predicted one for the same variable.

RMSD =

��n
i=1(xobs,i − xpre,i)2

n
(1)

Using RMSD error in the Calibration Phase limits our
G-Ensemble to be oriented to enhance predictions for one
meteorological variable at a time. For example, we can use it
to enhance predictions of Temperature or Precipitation, but
not for both at the same time. This occurs because the error
used produces a value of the variable unit that can not be
compared with other variables. In order to overcome such a

drawback, we proposed an alternative error function, which
we refer as Multi-Variable G-Ensemble.

4.1.2 Multi-Variable G-Ensemble
The calibration is done with the goal of enhancing the

prediction of multiple meteorological variables at the same
time. To bypass the limitation imposed by RMSD error, we
use the Normalized RMSD, see equation (2).

NRMSD =

��n
i=1(xobs,i−xpre,i)2

n

xobs(max) − xobs(min)
(2)

The Normalized RMSD (referred as NRMSD) is the
value of RMSD divided by the range of the observed values
of a certain variable. NRMSD indicates the error percent-
age of the predicted value of a certain variable, compared
to its observed values. In order to consider more than one
variable at a time, we evaluate NRMSD for all variables,
and then, we consider the addition of all of them as the
Multi-Variable error function. For example, the NRMSD
of a model that predicts Temperature (T ) and Precipitation
(P ) is the percentage obtained by the summation of two
Percentages: NRMSD(T ) and NRMSD(P ), as shown in
equation (3).

Error = NRMSD(var1) +NRMSD(var2) = value%
(3)

Therefore, the Calibration Phase and, particularly the GA,
considers this error function as the objective function used
to sort the intermediate individuals of the ensembles.

4.2 Prediction Phase
Once the Calibration Phase is finished, it is the turn of

the Prediction Phase. At this point, either the BeGEM or the
whole G-Ensemble set produced by the previous phase will
be run by the NWP model. It is expected that this ensemble
member will generate better predictions as it shown less error
in Calibration Phase. In contrast to the classical EPS, only
one simulation is executed here, while in EPS the whole
ensemble set is executed.

5. Experimental Test Case
To test our approach, we used historical data of hurricane

Katrina [13], see a picture in figure (2). Katrina occurred on
August 28, 2005 in the Gulf of Mexico and unfortunately
caused the death of more than 1,800 persons along with a
total property damage that was estimated at $81 billion (2005
USD).

To Predict meteorological variables, we used WRF as
the NWP model and, we used the coupled NOAH Land
Surface Model (NOAH LSM) [14] for land surface physical
parametrization. At runtime, NOAH LSM provides impor-
tant values to WRF that correspond to subgrid-scale evo-
lution of land surface variables (surface sensible heat flux,



Fig. 2: Satellite picture of hurricane Katrina on Aug. 29, 2005 at
12:15 p.m

surface latent heat flux, skin temperature, surface emissivity
and the reflected short-wave radiation). It calculates these
variables depending on a set of parameters that characterize
the land surface: Landuse and Soil parameters [15]. As
a result, predictions are enhanced when LSM is used as
more subgrid-scale meteorological variables are injected into
the model. However, these parameters fall within ranges
and small changes in their values produce non-negligible
differences in prediction results. The EPS comes at this point
to solve the problem by generating a number of predictions,
each of which has different values of Landuse and Soil
parameters, hence, the final result of the prediction will
be the average of the results of all predictions which are
supposed to cover an ”acceptable” variation in physical
parametrization (land surface parametrization).

The objective of the experiments is to predict meteo-
rological variables evolution from time: 12:00 h. of the
day 28/08/2005 to time 00:00 h. of 30/8/2005 (a period
of 36 hours in which the major effects of the hurricane
were produced). The evolution of meteorological variables
is produced every 3 hours.

To get the evolution of meteorological variables at 12:00
h. of 28/08/2005, we used initial conditions of the atmo-
spheric state in the zone three hours before, i.e. model started
prediction from time 09:00 of 28/08/2005. For our approach
(G-Ensemble), the Calibration Phase started from time 00:00
of 28/08/2005 to time 09:00 of the same day.

The variables predicted in our experiments were: Latent
Heat Flux LHF (W/m2), Surface Skin Tempreature TSK (K),
2-meter Tempreature (K), 10-meter Wind Velocity compo-
nents U10 and V10 (m/s), and the Accumulated Precipitation
RAINC (mm).

In the next two subsections, we discuss results by which
we make a comparison between classical EPS and the G-
Ensemble. Furthermore, we also analyse the computational
cost incurred by both approaches.

5.1 Ensemble Vs. G-Ensemble
In this section, a comparison of prediction results is done

between the classical EPS and our method (G-Ensemble).
Figure (3) shows an experiment result of using classical EPS
of 40 ensemble members (each of which has a different
Landuse and Soil parameters) to predict Latent Heat Flux
LHF variable. As shown in the figure, each line represents
the predicted values of LHF every 3 hours. The dotted line
represents the average of all of those predicted values of all
simulations, which will be considered as the best prediction
result according to the classical EPS.

Fig. 3: Classical Ensemble of size:40 to predict Latent Heat Flux
LHF.

We applied our method with Single-Variable G-Ensemble
in two different cases: to predict LHF (results shown in
figure 4) and to predict Acc. Precipitation (results shown
in figure 5). In both cases, with the same initial ensemble
members, we obtained a significant improvement in predic-
tion quality. The Genetic Algorithm of the Calibration Phase
was configured to iterate 20 times over an initial population
size of 40 individuals (initial ensemble size). Its three main
operators were configured as follows: Selection: (best one of
two) and (roulette), Crossover: (probability=0.7, type: two
points crossover), and Mutation: (probability= 0.2).

Fig. 4: Single-Variable G-Ensemble; RMSD error in prediction
of variable LHF.



Fig. 5: Single-Variable G-Ensemble; RMSD error in prediction
of variable Acc. Precipitation.

The results of the Calibration Phase are the enhanced 40
individuals (G-Ensemble members). As shown in figures 4
and 5, the average error of G-Ensemble predictions is always
less than the average error of the classical EPS referred as
Ensemble in the figures. Furthermore, if we just run a single
prediction with BeGEM of the Calibration Phase, errors are
even reduced more.

We also used our approach to enhance predictions of a set
of meteorological variables at the same time, by applying the
Multi-Variable G-Ensemble and using the error NRMSD
(shown in equations 2 and 3) in Calibration Phase as the
fitness function of the GA. In this case, we were also able
to obtain significant improvements in the prediction of a set
of meteorological variables at the same time.

Figure 6 shows the results obtained in this case. Again,
significant reduction of the NRMSD were obtained in the
prediction of a set of meteorological variables together.

Fig. 6: Multi-Variable G-Ensemble; NRMSD in prediction of
variables: Latent Heat Flux LHF, Surface Skin Tempreature TSK,
2-meter Tempreature, 10-meter Wind Velocity components U10 and
V10, and the Accumulated Precipitation RAINC.

Additionally, we observed that a reduction of the
NRMSD of a set of variables also provides an enhancement

in the prediction of each meteorological variable alone. In
other words, all six variables were better predicted when
G-Ensemble oriented to reduce the NRMSD of those
variables together. To illustrate these results, we show in
figure (7) how the corresponding prediction error of Latent
Heat Flux LHF was reduced by the G-Ensemble oriented to
reduce the NRMSD of the six variables (the same effect
was observed in the other five variables).

Fig. 7: RMSD prediction error of Latent Heat Flux LHF(W/m2)
in prediction using BeGEM produced in iterations 10 and 20 of
the Calibration Phase of the Multi-Variable G-Ensemble.

5.2 Accuracy versus Cost
The problem of the uncertainty in NWP initial condi-

tions produces what is called ”imperfectness” in prediction
accuracy. The previous mentioned methods, among others
[16]–[18], are implemented to reduce the margin of the
”imperfectness” in prediction accuracy. However, the trade-
off between cost (execution time) and prediction accuracy is
an important factor that should be considered to select the
most suitable enhancement method.

In scenarios with a limited number of computational
resources, EPS is not an eligible method as it needs lots
of resources to execute a set of predictions. Using our ap-
proach, we obtained a significant reduction of computational
time when we executed an experiment comparing classical
ensemble with G-Ensemble. Predictions were executed in
parallel over a cluster of 80 computing nodes. Figure (8)
shows the prediction error of an experiment to enhance
prediction of 6 meteorological variables, using classical EPS
and the Multi-Variable G-Ensemble in 5 different scenarios,
which correspond to different GA settings. The execution
time of all scenarios and their settings are listed in (table 1).

In four scenarios of G-Ensemble (scenarios 2, 3, 4, and
6), we observed a significant reduction in execution time
along with its corresponding reduction of prediction error. A
classical EPS of 40 ensemble members Ensemble(40) could
be replaced by any scenario of BeGEM(40) calibrated by
(5, 10, or 15) iterations of the GA. Similarly, BeGEM(20)
with 20 initial ensemble members iterated 20 times at



Fig. 8: Multi-Variable G-Ensemble; NRMSD of prediction of
variables: Latent Heat Flux LHF, Surface Skin Tempreature TSK,
2-meter Tempreature, 10-meter Wind Velocity components U10 and
V10, and the Accumulated Precipitation RAINC.

Table 1: Execution time Vs Scenario

Number Scenario G-Ensemble # of Iterations Ex.Time
1 Ensemble(40) No - 1120 m.
2 BeGEM(40) Yes 5 369 m.
3 BeGEM(40) Yes 10 709 m.
4 BeGEM(40) Yes 15 1024 m.
5 BeGEM(40) Yes 20 1549 m.
6 BeGEM(20) Yes 20 709 m.

Calibration Phase constitutes another scenario that reduces
both prediction error and execution time. Only in one case
(scenario 5), our method incurred in an execution time
larger than classical ensemble. This is due to the number of
iterations used in the Calibration Phase by the GA, which
was 20 iterations. Fortunately, significant improvement in
prediction quality (almost similar) is gained by calibrating
with less number of iterations (as in scenarios 2, 3, and 4),
or by reducing the size of initial ensemble members (as in
scenario 6). This means that this case could be prevented
by either calibrating with less number of iterations or by
reducing the size of initial ensemble members.

In summary, G-Ensemble method provides the possibility
to select between various scenarios considering a balance
between prediction quality and prediction cost.

6. Conclusions and future work
In this work, we have briefly described Numerical Weather

Prediction models, along with a description of WRF as one
of the most widely used models in the field. We highlighted
the importance of the accuracy in NWP models, discussing
also the basic two methods used for prediction enhancement.
We analysed the penalties incurred by these methods in terms
of time execution costs and prediction accuracy.

We have introduced G-Ensemble, as a new scheme that
enhances weather predictions. It uses an evolutionary algo-
rithm to estimate best possible physical parameters that will
provide more reliable predictions.

The G-Ensemble prediction scheme showed a significant
improvement in prediction quality. Thanks to the enhance-
ment in prediction accuracy, more sophisticated schemes
might be developed in the near future by injecting ob-
served meteorological variables at run-time. These results
encourage us to continue our research efforts by adding
methods that handle real observations and deciding their
injection intervals at run-time in order to get more reliable
meteorological predictions.
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