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Abstract

In this paper we will introduce the Memetic
Algorithms FRAmework, a general pur-
pose evolutionary computation framework.
MAFRA allows the construction of complex
evolutionary systems with a maximum of
reuse between different instantiations of the
framework. MAFRA has been developed in
java using design patterns to allow for its easy
extension and utilization in different problem
domains. MAFRA is an open source code
project. The files composing the Memetic Al-
gorithm Framework can be seen in Fig. 1.

1 Introduction

It is now well established that a combination of Ge-
netic Algorithms with local search are amongst the
most powerful metaheuristcs to search complex con-
tinuous or combinatorial spaces [5, 8]. GAs combined
with local search (LS) were named “Memetic Algo-
rithms” (MAs) in [10]. In the literature, MAs have
also been named Hybrid Genetic Algorithms, Genet-
ic Local Searchers, Lamarckian Genetic Algorithms,
Baldwinian Genetic Algorithms and even Parallel Ge-
netic Algorithms.

The goal of this paper is to introduce the reader to a
set of interrelated classes. These clases constitute an
object oriented framework that allows for a rapid con-
struction of novel MAs applications and experimen-
tal settings. It is not the primary goal of MAFRA
to provide with a fast “running system” but with a
fast “design and test system”. This framework will
serve object oriented (OO) programers and evolution-
ary computation developers that want to reuse not on-
ly at the code level but also at the design level. How-
ever, non OO programmers, or developers, that alredy
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have thousands of lines of code (i.e. Fortran, C, Pas-
cal) might find little benefit in using MAFRA. It is
important to note that this framework serves also to
develop pure evolutionary algorithms where no local
search is involved.

Even though many “general purpose” libraries are
available in the web for constructing evolutionary ap-
plications, just few of them are of real value if de-
veloping time and effort is considered, the reason is
that they do not exploit the possibilities of an ob-
ject oriented design, let aside the use of design pat-
terns. Quite recently several papers appeared show-
ing the benefits of an object oriented design of such
a framework([9],[1],[11],[2] and even a hierarchical and
polytyping functional programming approach has been
developed [6](see references herein).

2 Brief Introduction to Design
Patterns and Object Oriented
Frameworks

Before going into the details of MAFRA’s architec-
tural design and use we will briefly introduce the con-
cepts of design patterns and frameworks. The roots
of design patterns are due to the contemporary archi-
tect Christopher Alexander ' who wrote several book-
s related to urban planning and architectural design.
Patterns (and Pattern Languages) are used to cap-
ture experiences in the design of solutions to difficult
but ubiquitous problems and to describe best practices
in such a way that other designers can reuse not on-
ly “computer code” but fundamentally “designs”. A
software framework is intimately related to design pat-
terns. A framework is a reusable architecture (i.e. a
collection of classes), seldom a complete application,
that provides the skeleton and basic behavior of a cer-
tain kind of software product. It explicitly defines a
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contextual background of “memes”, metaphors, ideas,
etc which collaborate and interact in a given prob-
lem domain. The skeleton provided by a framework
is usually “filled” or completed with specific plug-ins
that are connected through some hot-spots or plug-
points. These plug-points are usually implemented by
delegation, call-backs or polymorphism [3]. The read-
er should not confuse a framework with a program-
ming library. There is an important difference between
the two. When the former is used, the user needs to
implement just a few call back functions that will be
called from within the framework. It is the framework
the responsible for doing almost all the work. A pro-
gramming library is just a collection of methods and
constants that need not show any cohesion at all. In
general a framework is a collection of tightly related
classes whose interrelation is usually given by the de-
sign patterns that the framework implements.

2.1 The Design Patterns Used in MAFRA

It is out of the scope of this paper the detailed expla-
nation of what is and how to use a design pattern. A
concise book on the topic is [3]. In MAFRA the fol-
lowing design patterns from Gamma et al’s book are
extensively used:

e Abstract Factory which provides an interface
for creating families of related objects without
specifying their concrete implementations. In this
way one can guarantee that the system is inde-
pendent on how the specific objects are defined,
created or manipulated. See 4.1 and 4.2.4.

e Factory Method which defines an interface for
creating an object, but lets subclasses decide
which class to instantiate. This pattern allows
a class to defer instantiation to subclasses. See
4.2.4.

e Strategy defines a family of algorithms, encap-
sulates each one, and make them interchangeable.
Strategy lets the algorithm vary independently
from clients that use it. See 4.2.3.

e Template Method defines the skeleton of an
algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses
redefine certain steps or aspects of an algorithm
without changing the algorithm. See 4.3.

e Visitor represents an operation to be performed
on the elements of an object structure. Visitor lets
you define new operations without changing the
classes of the elements on which it will operates.
See 4.4.

For java implementations of these patterns the reader
is referred to [4].

3 MAFRA Architecture

In Fig. 2 we show a class association diagram of classes
EvolutivePlan, Problem,Plan and GA. EvolutivePlan
class is the class that holds the three main parts of
an evolutionary system: a GA, a problem to be solved
and a plan. The plan will use the GA to solve the
given problem. The Problem class provides the basic
mechanisms by which a problem is defined. It specifies
operations to read a problem instance, to create and
check the feasibility of a solution, compute its fitness,
etc.

Plan class, which is abstract, implements a Template
Method Pattern. In essence it is the responsible of
the interaction between the parts of the evolutionary
system. Its subclasses redefine all or some of the DoN-
ame(...) (see 4.3) methods as a way of defining a con-
crete and complete behaviour for an evolutive plan.

A GA instance interacts with several different strate-
gies that specify the way to perform mutations, local
search, crossover, selection,etc. This strategies rep-
resent algorithms that might be interchanged at the
application level without affecting any other part of
the application. In Fig. 3 it is possible to see this
relations.

4 MAFRA'*‘s Patterns and Use Case

We will shortly explain how we use the design patterns
mentioned before in the construction of the framework.
A use case based on the Counting Ones problems will
clarify the concepts.

4.1 Abstract Factory Pattern

We will explain the Abstract Factory Pattern by its
use in the definition of the CrossOverFactory class. In
general the designer of the framework can not antic-
ipate the kind of encodings that the user will utilize
to define the individuals of a population. However, he
must provide a way to perform a crossover between
two or more solutions. To accomplish this we can use
the design shown in figure 4.

In this figure we define a CrossOverFactory class which
prescribes an interface to create crossover objects.
There will be several sorts of crossover objects: one-
point, two-point, uniform, etc. Each one of these ob-
jects will know how to mate 2,3 or more individuals
using the appropriate number of ‘crossing over’ points.



According to the specific encoding of a solution (i.e. a
String encoding, binary encoding, etc) there will exist
subclasses of CrossOverFactory class that will create
the appropriate instance of a crossover object. In the
figure mentioned, two subclasses appear: BitSetEn-
codingXFactory and StrinEncodingXFactory. The us-
er application will use the appropriate class according
to the representation needed. Each one of those sub-
classes co-operate with the AbstractCrossOver hierar-
chy to actually return a crossover instance. In this way
it is very easy to prototype a system with a given en-
coding an later, just changing the appropriate factory
it is possible to use a, i.e., more efficient encoding.

4.2 The Counting Ones Problem: A Use
Case

In this section we describe a use case of MAFRA
using the well known COnes which is defined by
Counting Ones Problem

Instance: An integer k& > 0.

Solution: A binary string S, such that |S| = k.
Measure: The number of 1’s (ones) present in S

4.2.1 Code Example

Let us analyze a piece of java code needed to run an
application based on MAFRA to solve COnes. The
code will make explicit the use of the hot-spots. Please
note that the line numbers to the left of each code
line are not part of the source code but only serve to
facilitate the following explanations.

1 import java.util.*;
2 public class Test{

3 public static void main(String [largv) throws CloneNotSupportedException
4 {

5 /* General Evolutionary Plan Variables */

6 EvolutionaryPlan theEvolutionaryPlan;
7 GA myGa;

8 SimpleGAPlan myPlan;

9 /* CrossOver Stage Variables */

10 MatingStrategy myMatingStrategy;

11 BitSetEncodingXFactory myCrossOverFactory;
12 TournamentSelectionMethod myMatingSelectionMethod;
13 /* Mutation Stage Variables */

14 MutationStrategy myMutationStrategy;
15 BitSetEncodingMFactory myMutationFactory;
16 /* Selection Stage Variables */

17 SelectionStrategy mySelectionStrategy;
18 MuPlusLambdaSelectionStrategyExecutor myMPLSExecutor;

19 /* Problem and Individual Variables */

20 OneMaxProblem myProblem;

21 IndividualBitSetFactory myFactory;

22 /* Individual and Population Variables */

23 Population myPopulation;

24 Population my0ffsprings;

25 BitSetIndividual anIndividual;

26 BitSet aChromosome ;

27 /* Visitors Variables */

28 FitnessVisitor aFitnessVisitor;

29 DisplayVisitor aDisplayVisitor;

30 SortingVisitor aSortingVisitor;
31 /* General Variables */
32 Hashtable args;
33 long i,j,gene;
34 /* General Initialization */
35 MAFRA_Random.initialize(27131411);
36 aSortingVisitor = new SortingVisitor();
37 aDisplayVisitor = new DisplayVisitor();
38 myProblem = new OneMaxProblem(100) ;
39 aFitnessVisitor = new FitnessVisitor(myProblem);
40 /* Populations Initialization*/
41 myFactory = new IndividualBitSetFactory(myProblem);
42 myPopulation = new Population(20,myFactory);
43 myPopulation.setName ("Parents") ;
44 myPopulation.acceptVisitor(aDisplayVisitor);
45 myOffsprings = new Population();
46 myPopulation.copyTo (my0ffsprings,20) ;
47 myOffsprings.setName ("0ffsprings");
48 my0ffsprings.acceptVisitor(aDisplayVisitor);
49 /* Mutation Stage Initalization */
50 myMutationFactory = new BitSetEncodingMFactory();
51 myMutationStrategy = new MutationStrategy(myMutationFactory);
52 args = new Hashtable();
53 args.put ("Population",my0ffsprings);
54 args.put ("ProbabilityPerIndividual”, new Double(0.0));
55 myMutationStrategy.setArguments (args);
56 /* CrossOver Stage Initialization */
57 myCrossOverFactory = new BitSetEncodingXFactory();
58 myMatingSelectionMethod = new TournamentSelectionMethod() ;
59 myMatingStrategy =
new MatingStrategy(myCrossOverFactory,myMatingSelectionMethod) ;
60 args = new Hashtable();
61 args.put ("offspringsPopulation",my0ffsprings);
62 args.put ("parentsPopulation",myPopulation) ;
63 args.put ("matingProbability",new Double(1.0));
64 args.put ("lambda",new Long(20));
65 args.put ("matingPoolSize", new Long(100));
66 myMatingStrategy.setArguments (args) ;
67 /* Selection Stage Initialization */
68 myMPLSExecutor =
new MuPlusLambdaSelectionStrategyExecutor(myPopulation,my0ffsprings,20,20);
69 mySelectionStrategy = new SelectionStrategy(myMPLSExecutor);
70 /* GA setting */
71 myGa = new GA();
72 myGa.addMatingStrategy(myMatingStrategy) ;
73 myGa.addMutationStrategy (myMutationStrategy) ;
74 myGa.addSelectionStrategy(mySelectionStrategy) ;
75 myGa.addVisitor ("sortingVisitor",aSortingVisitor);
76 myGa.addVisitor("displayVisitor",aDisplayVisitor);
77 myGa.addVisitor("fitnessVisitor",aFitnessVisitor);
78 myGa.addPopulation("parentsPopulation",myPopulation);
79 myGa.addPopulation("offspringsPopulation",my0ffsprings);
80 myGa.addParameter("maxGenerationsNumber" ,new Long(50));
81 myPlan = new SimpleGAPlan(myGa);
82 theEvolutionaryPlan =
new EvolutionaryPlan(myGa,myProblem,myPlan,null,null,null);
83 theEvolutionaryPlan.run();
84 }
85 }

4.2.2 Understanding The Code

In order to integrate MAFRA into a running applica-
tion the user must define an evolutionary plan. The
evolutionary plan, given by an instance of the class
EvolutionaryPlan is defined by a GA, a plan, a prob-
lem, a statistician, a log and a display object. See
figure 2. For each one of those objects an appropriate
class in MAFRA exists. The variable definitions be-
tween lines 5 and 30 shows the classes involved. Once
all the objects are defined and initialized it is possible
to create a new evolutionary plan and to run it. This is
accomplished in lines 81 to 83. Note that the class Sim-
pleGAPlan is a subclass of Plan. The object myGa,



which is an instance of class GA, is defined and set in
lines 70 to 80. As the reader can see in the UML docu-
mentation, an instance of a GA can be initialized with
instances of the following classes: FinalizationStrate-
gy, InitializePopStrategy, RestartPopStrategy, Muta-
tionStrategy, SelectionStrategy, MatingStrategy and
LocalSearchStrategy. In our case, because we are us-
ing a simple plan composed by mating, selection and
mutation phases alone, only the associated instances
are used. The above mentioned classes implements the
Strategy Pattern. An example of its use is explained
in 4.2.3. The GA is also given the visitors, populations
and miscellaneous parameters that define its behavior.

Due to the fact that different instantiations of MAFRA
might need a variety of parameters to initialize the
strategies used, they are given using a hash table. Each
entry to the argument’s hash table is an association
composed by a key (the name of the parameter) and
a value. See the javadoc documentation files for the
reserved parameters’ names.

4.2.3 Specifying a Strategy

The classes with names of the form XXXXStrategy
implement a Strategy pattern. These are subclasses
of Strategy which implement the Executor interface.
In essence, any instance of Strategy or one of its sub-
classes implements the execute() method. Each class
that implements a strategy holds an object that will
perform a specific algorithm. The body of the ex-
ecute() method might have additional code (default
code). Some strategies receive during creation time
an instance of a factory that creates the appropriate
executor. See UML documentation, javadoc files and
source code for details. As an example consider lines
67 to 69 where a selection strategy is created with an
executor object as parameter. In this case the executor
is a particular instantiation of a (u + A) selection. It
receives as parameters, the populations to work with
(parents and offsprings), p and A.

In [7] several memetic algorithms were compared on
the TSP and the Protein Folding problem domains.
In the experiments described therein, different MAs
were obtained just by changing the following line in
the application main code:

myLocalSearchStrategy = new
ElitistLinearAnnealinglocalSearchStrategy(myLocalSearchFactory) ;

to

myLocalSearchStrategy = new
ElitistHillClimberLocalSearchStrategy(myLocalSearchFactory) ;

to

myLocalSearchStrategy = new
ElitistLocalSearchStrategy(myLocalSearchFactory);

The application employed different local search strate-
gies which in turns used a local search factory. The
factory provides with a set of basic ‘move’ operators.
An important feature to bear in mind is that MAFRA
allows a dynamic loading and unloading of strategies,
hence, allowing to change (i.e.) the local search strat-
egy on-line.

4.2.4 Using Factories

Two patterns related with factories are described bel-
low.

The Abstract Factory Pattern:

The strategies mentioned in the previous section make
extensive use of the Abstract Factory pattern to
achieve a reusable design. Consider for example lines
56 to 66 where the mating strategy is initialized by re-
ceiving a TournamentSelectionMethod instance and a
factory for AbstractCrossOver instances. In this case
the factory is BitSetEncodingXFactory. The user must
note that if we decide to change the encoding of our
problem from BitSet to String we only need to in-
stantiate a StringEncodingXFactory and pass it to the
MatingStrategy (see line 59). The new factory will be
responsible of providing the MatingStrategy instance
with a crossover object that “knows” how to perform
(i.e.) a two parents one point crossover under a string
encoding.

The Factory Method:

The Factory Method pattern is used by ProblemFac-
tory and IndividualFactory classes. Both of this class-
es are intimately related to Population and Individ-
ual classes. Between lines 38 and 42 a ProblemFac-
tory subclass instance, in this case OneMaxProblem
(COnes), is instantiated and passed onto a specific fac-
tory for individuals in the BitSetEncoding. In turns,
this instance will be used by the population to create
and initialize new individuals under a specific problem
and encoding.

4.3 The Template Method Pattern

The Template Method Patterns provide with a gen-
eral purpose algorithms which can be easily tailored
to different situations. The class Plan (see UML de-
sign) implements this pattern and is used in line 81.
SimpleGAPlan overrides just a few methods from its
superclass, this methods are DoReproduce(), DoMu-
tate() and DoUpdatePopulation(). When a plan is re-
quested to execute, the run method in the superclass
is launched. This method has a fixed skeleton:



1 /%% Executes the plan.*/

2 public void run()

3 {

4 DoInitPopulation();

5 while (!DoCheckTermination())
6 {

7 DoReproduce () ;

8 DoFineGrainSchedulerX();

9 DoMutate();

10 DoFineGrainSchedulerM();

11 DoCoarseGrainScheduler();

12 DoUpdatePopulation();

13 DoRestartPopulation() ;

14 DoMetaScheduler();

15 generationsNow++;

16 showPopulation() ;

17 }

18 3

where the

default implementation of all the DoXXXX() meth-
ods is “{}” (an empty body). Hence subclasses, by
redefining those methods, can implement a plethora
of different plans.

4.4 The Visitor Pattern

In this use case we used three different visitors, name-
ly SortVisitor, FitnessVisitor, and DisplayVisitor. If
the user wants to change how and when the fitness is
calculated, the only thing he needs to do is to redefine
the FitnessVisitor. If a different way of displaying the
solutions is required, changing just the DisplayVisitor
will do the job. In the same way, if a new kind of
operation or measurement needs to be applied to the
population or its individuals it can be defined using a
new visitor, in such a way that it is unnecessary to re-
define any other class in the application or in MAFRA.

5 Conclusions and Further Work

Due to space limitation we were only able to introduce
MAFRA. We have been working with it on several
problems, TSP,NK-Landscapes,Max-SAT, COnes, etc
and it was straight forward to adapt to new encodings
or evolutionary scenarios. Its actual version supports
not only MAs but also co-evolutionary schemes where
several populations evolve at once. We plan to ad-
d multi-criteria functionality in the immediate future.
An Important feature that will be added to the frame-
work is a top-level GUI that will allow an interactive
construction of evolutionary applications. It will rep-
resent each strategy that defines an application by a
box that will be filled with the appropriate object in-
stances taken from a toolbox of available operators.
This top-level design tool will make MAFRA much
more easy to use by non OO programers and evolu-
tionary computation scientist in general.
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Figure 1: The MAFRA project
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Figure 3: The classes that collaborate whith GA
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Figure 4: Abstract Factory Design Pattern: a CrossOverFactory example



