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In	 many	 applications	 of	 spatial	 or	 temporal	
visualization,	 glyphs	 provide	 an	 effective	 means	
for	 encoding	 multivariate	 data.	 Glyph-based	
visualizations	are	ubiquitous	 in	modern	 life	since	
they	make	excellent	use	of	 the	human	ability	 to	
learn	abstract	and	metaphoric	representations	to	
facilitate	 instantaneous	 recognition	 and	
understanding.	 However,	 because	 glyphs	 are	
typically	 small,	 they	 are	 vulnerable	 to	 various	
perceptual	errors.	Glyphs	are	often	designed	with	
a	 high-degree	 of	 similarity	 in	 order	 to	 facilitate	
mapping	 consistency,	 semantic	 interpretation,	
learning	and	memorization.	As	shown	in	Figure	1,	
as	 the	 number	 of	 glyphs	 increase	 and	 the	
visualization	 scale	 decreases,	 in	many	 cases	 this	
will	 often	 result	 in	 glyphs	 becoming	
indistinguishable.	 Similarly,	 color	 defects	 from	
poor	 printing	 or	 uncalibrated	 display	 screens	
could	 also	 lead	 to	 difficulties	 in	 glyph	
differentiation.		
	
Whilst	 many	 glyph	 designers	 will	 often	 aim	 to	
account	 for	 perception	 and	 legibility	 in	 their	
work,	 they	 may	 also	 wish	 to	 incorporate	 their	
own	 creativity	 and	 intuition	 as	 an	 artist,	 and	 so	
there	 is	 a	 delicate	 balance	 to	 be	 addressed	

between	 the	 science	 and	 the	 art	 of	 effective	
glyph	 design.	 This	 poses	 some	 challenging	
research	 questions	 for	 glyph	 visualization,	 such	
as,	 “Is	 there	 a	 theoretical	 framework	 to	
encompass	 various	 design	 guidelines?”	 and	 “Is	
there	a	systematic	approach	to	design	a	fail-safe	
glyph	set?”	While	this	work	is	a	direct	attempt	to	
answer	 the	 second	 question,	 it	 also	 makes	 the	
connection	 between	 glyph-based	 visualization	
with	 information	 theory,	 which	 has	 been	
considered	 as	 a	 candidate	 framework	 for	
visualization	[Chen10].	
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Figure	1:	Different	types	of	quality	degeneration	are	applied	to	several	
glyphs,	each	of	which	is	encoded	using	a	single	visual	channel.	The	
original	quality	is	indicated	by	a	marker	on	the	x-axis.	When	size,	
saturation	and	luminance	are	changed,	they	become	more	difficult	to	
differentiate.	



In	 this	 article,	 we	 explore	 the	 concept	 of	
Hamming	 distance,	 a	 well-established	 measure	
from	 Information	 Theory	 that	 underpins	 the	
study	 of	 codes	 to	 support	 error	 detection	 and	
error	 correction	 by	 the	 receiver,	 without	 the	
need	 for	 corroboration	 from	 the	 sender.	 In	
particular,	we	 introduce	 the	 concept	 of	 a	quasi-
Hamming	distance	in	the	context	of	glyph	design.	
We	 examine	 the	 feasibility	 of	 estimating	 quasi-
Hamming	distance	between	a	pair	of	glyphs,	and	
the	 minimal	 Hamming	 distance	 for	 a	 glyph	 set.	
This	 measurement	 enables	 glyph	 designers	 to	
determine	 the	 differentiability	 between	 glyphs,	
facilitating	 design	 optimization	 by	 maximizing	
distances	 between	 glyphs	 under	 various	 design	

constraints.	We	demonstrate	 the	design	concept	
by	 developing	 a	 file	 system	 event	 visualization	
that	 can	 depicts	 the	 activities	 of	multiple	 users.	
Our	evaluation	 shows	 that	 the	concept	of	quasi-
Hamming	distance	allows	us	to	design	glyphs	that	
significantly	 reduce	 the	 vulnerability	 of	 glyph-
based	 visualization.	 We	 hope	 that	 this	 new	
concept	 will	 encourage	 designers	 to	 consider	
systematically	 the	 need	 for	 empowering	
visualization	users	to	detect	and	correct	potential	
communication	errors.	
	
  

A Background on Glyph Visualization 
	
Borgo	et	al.	[Borgo13]	provide	a	narrow	and	a	broad	definition	of	glyphs.	The	work	described	in	this	paper	covers	the	broad	
scope	 given	 [Borgo13],	 we	 hereby	 consider	 a	 glyph	 as	 ‘a	 small	 visual	 object	 that	 can	 be	 used	 independently	 and	
constructively	 to	depict	attributes	of	a	data	 record	or	 the	 composition	of	a	 set	of	data	 records.	 Each	glyph	can	be	placed	
independently	from	others,	while	 in	 some	cases,	 glyphs	 can	be	spatially	connected	to	 convey	the	topological	 relationships	
between	data	records	or	geometric	continuity	of	the	underlying	data	space.	Glyphs	are	a	type	of	visual	sign	that	can	make	
use	of	visual	features	of	other	types	of	signs	such	as	icons,	indices	and	symbols.’	
	
Ward	[Ward02,	Ward08]	provides	a	technical	framework	for	glyph-based	visualization	that	covers	aspects	of	visual	mapping	
and	layout	methods,	as	well	as	addressing	important	issues	such	as	bias	in	mapping	and	interpretation.	The	state	of	the	art	
report	on	glyph-based	visualization	by	Borgo	 et	al.	 [Borgo13]	also	 compiles	many	of	 the	design	guidelines	and	 techniques	
that	have	been	utilized	in	the	field.	Lie	et	al.	[Lie09]	discuss	a	variety	of	design	considerations	for	glyph-based	visualization	
including	data	mapping,	glyph	instantiation,	and	rendering,	for	three-dimensional	data.	Glyphs	have	been	used	in	a	variety	of	
different	applications.	For	example,	Legg	et	al.	[Legg12]	propose	MatchPad	for	analysing	sports	event	data	using	glyph-based	
visualization.	Kapler	and	Wright	[Kapler04]	propose	GeoTime	for	displaying	military	events	in	a	combined	temporal	and	geo-
spatial	visualization.	Pearlman	and	Rheingans	[Pearlman08]	use	glyphs	for	visualizing	network	security	events.	Suntinger	et	
al.	[Suntinger08]	use	glyph-based	event	visualization	to	create	an	Event	Tunnel	for	business	analysis	and	incident	exploration.	
Ware	and	Plumlee	[Ware13]	investigate	the	use	of	glyph-based	visualization	for	encoding	multi-variate	weather	data	such	as	
temperature,	 pressure,	 wind	 direction	 and	 wind	 speed.	 Fuchs	 et	 al.	 [Fuchs13]	 also	 conducted	 an	 evaluation	 study	 that	
addressed	temporal	glyph	designs	for	small	multiple	displays.	
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Hamming Distance 
	
In	information	theory	and	data	communication,	a	
code	consists	of	a	finite	set	of	codewords,	each	of	
which	 is	a	digital	 representation	of	a	 letter	 in	an	
alphabet.	 In	 the	 context	 of	 binary	 encoding,	
Hamming	 distance,	 proposed	 by	 Richard	
Hamming	 in	 1950	 [Hamming50]	 is	 a	measure	 of	
the	 number	 of	 bit	 positions	 in	 which	 two	
codewords	 differ.	 Considering	 all	 pairs	 of	
codewords	 in	 a	 code,	 the	 minimal	 distance	 is	
referred	 to	as	 the	minimal	Hamming	distance	of	
the	 code.	 (In	 the	 literature,	 the	word	minimal	 is	
often	 confusingly	 omitted).	 In	 communication,	
there	are	two	main	strategies	for	handling	errors	
that	occur	during	transmission.	
• Automated	 error	 detection	 allows	 the	

receiver	 to	 discover	 that	 any	 error	 has	
occurred	 and	 to	 request	 a	 retransmission	
accordingly.	

• Automated	 error	 correction	 enables	 the	
receiver	to	detect	an	error	and	deduce	what	
the	intended	transmission	must	have	been.	

	
Hamming	defined	the	following	principle:		
• Theorem.	 A	 code	 of	 d+1	 minimal	 Hamming	

distance	 can	 be	 used	 to	 detect	 d	 bits	 of	
errors	 during	 transmission.	 A	 code	 of	 2d+1	
minimal	 Hamming	 distance	 can	 be	 used	 to	
correct	 d	 bits	 of	 errors	 during	 transmission	
[Hamming50].	

	
For	 example,	 given	 a	 3-bit	 code	 as	 illustrated	 in	
Figure	 2	 there	 are	 8	 possible	 codewords.	 One	
may	 select	 a	 subset	 of	 these	 codewords	 to	
construct	 a	 code	 with	 its	 minimal	 Hamming	
distance	 equal	 to	 2	 bits	 or	 3	 bits.	 Figure	 2(a)	
shows	one	of	such	codes,	which	has	4	codewords	
and	is	of	2	bits	Hamming	distance.	This	code	can	
detect	 1-bit	 errors	 since	 any	 change	 of	 a	 valid	

codeword	 by	 1	 bit	 would	 result	 in	 an	 invalid	
codeword,	 which	 would	 lead	 the	 receiver	 to	
discover	 the	 error.	 Figure	 2(b)	 shows	 another	
code	with	 2	 codewords,	 and	 of	 3	 bits	 Hamming	
distance.	It	can	detect	2-bit	errors	and	correct	1-
bit	 errors.	When	 a	 valid	 codeword	 (e.g.,	 111)	 is	
changed	by	1	bit	during	 transmission	 (e.g.,	 110),	
the	receiver	can	detect	such	an	error	and	recover	
the	 intended	 codeword	 based	 on	 the	 nearest	
neighbor	principle.	If	a	2-bit	error	occurred	during	
transmission,	 the	 receiver	 would	 be	 able	 to	
detect	 the	 error,	 but	 could	 not	 make	 a	 correct	
‘correction’.	Nevertheless,	if	2-bit	errors	are	likely	
to	occur	 then	 this	 should	either	be	used	as	only	
an	error	detection	code,	or	a	code	with	a	 longer	
Hamming	distance	should	be	used	instead.	
	
Quasi-Hamming Distance for Glyph 
Design 
	
A	set	of	glyphs	is	a	code,	and	each	glyph	in	the	set	
is	 a	 valid	 codeword.	 During	 visualization,	 there	
can	be	errors	 in	displaying	or	perceiving	a	glyph.	
If	 a	 viewer	 can	 detect	 that	 a	 perceived	 glyph	 is	
not	quite	 `right',	 conscious	or	unconscious	effort	
can	be	made	to	correct	such	an	error.	Conscious	
effort,	which	is	an	analogy	of	error	detection	and	
repeated	transmission,	may	include	zooming	in	to	
have	 a	 close	 look,	 or	 consulting	 the	 legend.	
Unconscious	 effort,	which	 is	 an	 analogy	 of	 error	
correction,	 can	 be	 the	 result	 of	 gestalt	 effects	
(the	 nearest	 neighbor)	 [Chen14],	 or	 a	 combined	
judgement	 involving	multiple	 visual	 components	
(redundancy)	[Rheingans95].	
	
Figure	3	shows	two	example	glyph	sets,	each	with	
8	 codewords.	 Given	 the	 two	 display	 errors	
depicted	 on	 the	 left,	 i.e.,	 an	 arrow	 glyph	 is	
skewed	and	a	shape	glyph	is	occluded	by	another	
shape,	 one	 can	 detect	 both	 errors	 easily.	 The	

	

Figure	3:	Two	examples	that	illustrate	the	phenomena	of	error	
detection	and	error	correction	in	glyph-based	visualization.	In	
the	first	example,	the	orientation	of	the	glyph	on	the	left	is	
distorted	yet	a	viewer	may	sense	this	and	consult	the	legend	for	
correction.	In	the	second	example,	a	viewer	may	unconsciously	
perceive	the	glyph	on	the	left	as	a	star	shape	due	to	gestalt	
effects	and	a	priori	knowledge	about	the	glyph	set,	though	the	
top	point	of	the	star	is	missing	because	of	occlusion.	

	

Figure	2:	Two	3-bit	codes.	(a)	A	code	can	detect	1-bit	errors.	(b)	A	
code	can	detect	2-bit	errors	and	correct	1-bit	errors.	



error	 with	 the	 arrow	 glyph	 may	 need	 some	
conscious	 effort,	 whereas	 the	 shape	 error	 can	
often	 be	 corrected	 unconsciously.	 This	 suggests	
that	 it	 is	 possible	 to	 establish	 a	 conceptual	
framework,	 similar	 to	 Hamming	 distance,	 for	
error	 detection	 and	 error	 correction	 in	 glyph-
based	visualization.	
	
However,	measuring	 the	 distances	 and	 errors	 in	
visual	 perception	 is	 clearly	 not	 as	 simple	 as	
measuring	 those	 represented	 by	 binary	
codewords.	 We	 thereby	 propose	 an	
approximated	 conceptual	 framework	 based	 on	
the	principle	of	Hamming	distance,	and	we	call	it	
Quasi-Hamming	Distance	(QHD).	The	term	`quasi'	
implies	 that	 the	 distance	 measure	 is	
approximated,	 as	 is	 the	 quantitative	measure	 of	
perceptual	error.	
	
QHD	can	be	considered	as	a	kind	of	measurement	
of	 “perceptual	 distance”	 between	 two	 glyphs.	
The	 introduction	of	QHD	brings	 several	benefits.	
(i)	 It	 connects	 glyph-based	 visualization	 to	
information	 theory	 through	 an	 important	 and	
widely-used	 concept	 (i.e.,	 Hamming	 distance)	 in	
computing	and	communication.	 (ii)	 It	 relates	 the	
need	 for	 accurate	 perception	 of	 glyphs	 to	 error	
detection	 and	 correction	 by	 the	 receiver.	 (iii)	 It	
facilitates	 quantitative	 measures	 semantically	
equivalent	 to	 Hamming	 distance	 and	 its	
mathematical	implication.	
	
The	main	research	questions	are	thereby:	
• whether	 we	 can	 establish	 a	 measurement	

unit	common	to	both	measures,	and	
• how	we	can	obtain	such	measurements.	
	
For	 the	 first	 question,	we	 can	 utilize	 `bit'	 as	 the	
common	 unit	 for	 both	 distance	 and	 error	
measurement.	 Let	 us	 first	 consider	 an	 ordered	
visual	channel,	such	as	brightness	or	 length,	as	a	
code	 C.	 Theoretically	 C	 can	 have	 a	 set	 of	
codewords	 c1,	 c2,	 …,	 cn	 such	 that	 the	 difference	
between	 two	consecutive	 codewords	 is	 the	 just-
noticeable	difference	(JND)	of	this	visual	channel.	
We	 can	 define	 the	 QHD	 between	 each	 pair	 of	
codewords	ci	and	cj	as	|i-j|	bits.	 If	ci	 is	mistaken	
for	cj,	we	can	call	this	a	d-bit	error	where	d=|i-j|.	
Now	let	us	extend	this	concept	to	a	 less	ordered	
visual	channel	(e.g.,	hue)	or	an	integrated	channel	
(e.g.,	 color).	 Theoretically,	 we	 can	 construct	 a	
code	 C	 by	 uniformly	 sampling	 the	 space	 of	 the	

visual	 channel	 (e.g.,	 the	 CIE	 L*a*b*	 color	 space)	
while	 ensuring	 that	 every	 pair	 of	 samples	 differ	
by	 at	 least	 the	 JND	 of	 this	 channel.	 These	
codewords,	i.e.,	samples,	can	be	organized	into	a	
network,	 where	 the	 distance	 between	 any	 two	
codewords	 can	 be	 approximated	 proportionally	
according	to	the	JND	(i.e.,	JND	=	1	bit).	Note	that	
the	 possible	 perception	 error	 rate	 with	 a	 code	
that	maximizes	 the	number	of	 codewords	based	
on	 JND	 is	 likely	 to	be	 very	high.	 In	practice,	 one	
designs	a	glyph	set	based	only	on	a	small	subset	
of	samples	in	a	visual	channel	or	more	commonly	
in	 the	 multivariate	 space	 of	 several	 visual	
channels.	 Hence	 a	 QHD	 measure	 based	 on	 JND	
would	be	too	fine	to	use	 in	practice,	though	in	a	
longer	 term,	 JND	 can	 provide	 an	 absolute	
reference	measure	 once	 we	 have	 obtained	 such	
measures	 for	 most	 visual	 channels	 in	
visualization.	
	
This	 leads	 to	 the	 second	 research	 question,	 i.e.,	
given	 a	 glyph	 set,	 how	 can	 we	 measure	 the	
distance	 between	 glyphs?	 One	 may	 consider	
using	the	following	methods:	
	
1. Estimation	by	expert	designers.	This	practice	

has	 always	 existed	 in	 designing	 exercises	
such	 as	 for	 traffic	 signs	 and	 icons	 in	 user	
interfaces.	 To	 formalize	 this	 practice,	
designers	 can	 explicitly	 estimate	 and	 label	
the	distance	between	each	pair	of	glyphs	in	a	
glyph	set.	While	 this	approach	may	be	most	
convenient	to	the	designers,	its	effectiveness	
depends	very	much	on	the	experience	of	the	
designers	 concerned	and	 it	 is	 rather	easy	 to	
overlook	 certain	 types	 of	 display	 and	
perception	errors.	

2. Crush	 tests.	 Introduced	 by	 Maguire	 et	 al.	
[Maguire12],	 crush	 tests	 rescale	 glyphs	 to	
lower	 pixel	 resolutions,	 to	 assess	 the	
preserved	detail.	One	 can	 simulate	different	
causes	of	errors,	 such	as	 those	 illustrated	 in	
Figure	 1,	 and	 determine	 at	 which	 level	 of	
degeneration	 glyphs	 may	 become	
indistinguishable.	The	corresponding	 level	of	
degeneration	 can	be	defined	 as	QHD.	While	
this	 approach	 would	 yield	 more	 consistent	
estimation	of	QHD,	more	research	would	be	
required	to	compile	a	 list	of	different	causes	
of	 errors	 and	 define	 coherent	 levels	 of	
degeneration.	



3. Task-based	 evaluation.	 Similar	 to	 (2),	 one	
can	 simulate	 different	 visualization	
conditions,	 enlist	 users	 to	 perform	 their	
tasks,	 measure	 users'	 performance,	 and	
transform	 performance	 measures	 to	 QHD.	
This	 approach	 is	 perhaps	 most	 semantically	
meaningful	 for	 a	 particular	 glyph	 set	 in	 a	
specific	 application	 context.	 However,	 the	
performance	measures	collected	may	exhibit	
many	 confounding	 effects,	 and	 the	 specifics	
of	 the	 application	 may	 mean	 that	 only	 a	
small	 number	 of	 users	 are	 available	 for	
evaluation.	

4. User-centric	estimation.	One	may	conduct	a	
survey	among	human	participants	about	how	
easy	or	difficult	it	is	to	differentiate	different	
glyphs.	 By	 removing	 task-dependency	 in	 (3),	
more	 participants	 can	 be	 involved	 in	 such	 a	
survey,	 yielding	 more	 reliable	 estimation	 of	
QHD.	

5. Computer-based	 similarity	measures.	 There	
are	 a	 variety	 of	 image	 similarity	 measures	
already	 in	 the	 literature	 [Zitova03].	 In	 a	
longer	term,	it	is	likely	that	we	will	be	able	to	
find	 measures	 that	 are	 statistically	 close	 to	
user-centric	 estimation,	 though	 there	 is	 not	
yet	 a	 conclusive	 confirmation	 about	 optimal	
image	 similarity	 measures,	 and	 there	 are	
hardly	 any	 metrics	 specially	 designed	 for	
measuring	similarity	of	glyphs.	

	
To	demonstrate	the	feasibility	of	estimating	QHD,	
we	conducted	two	proof-of-concept	experiments	
based	on	methods	(4)	and	(5).	We	did	consider	a	
task-based	 evaluation	 (method	 3)	 as	 a	 possible	
approach,	since	the	glyph	set	under	consideration	

is	 for	 a	 file	 activity	 visualization.	 However,	 this	
additional	 cognitive	 load	 may	 distort	 the	
assessment	 of	 glyph	 similarity.	 Instead,	 for	 the	
purpose	of	 this	current	study,	method	4	allowed	
for	a	much	more	general	audience	to	participate	
in	 the	 study,	 and	 method	 5	 allows	 us	 to	
corroborate	 the	 two	 methods	 chosen.	 We	
conducted	a	survey	among	20	participants,	all	of	
whom	 are	 either	 employees	 or	 students	 at	 the	
University	 of	 Oxford.	 About	 50%	 of	 participants	
had	 encountered	 glyph-based	 visualization	
previously.	 The	 results	 of	 one	 participant	 were	
considered	as	an	outlier	and	were	not	included	in	
the	statistics.	After	a	brief	introduction	by	one	co-
author	of	this	paper,	the	participants	were	asked	
to	 rate	 how	 well	 they	 could	 differentiate	 104	
pairs	of	glyphs,	on	an	integer	scale	between	0	and	
10.		
	
The	 104	 stimuli	 pairs	 were	 divided	 into	 three	
main	 categories,	 8	 reference	 pairs,	 48	 primitive	
pairs,	 and	 48	 application-specific	 pairs.	 The	 8	
reference	 pairs	 were	 designed	 to	 define	 the	
minimal	and	maximal	QHD	 in	 the	context	of	 this	
work.	 In	four	reference	pairs,	the	two	glyphs	are	
extremely	 difficult	 to	 differentiate	 (i.e.,	 minimal	
distance).	 In	 another	 four	 pairs,	 the	 two	 glyphs	
can	be	differentiated	with	undisputable	ease	(i.e.,	
maximal	distance).	
	
The	 primitive	 pairs	 are	 divided	 into	 8	 groups,	
namely	 hue,	 shape,	 components,	 connection	
lines,	luminance,	size,	texture,	and	orientation.	In	
each	 group,	 different	 pairs	 feature	 graphs	 with	
different	 perceptual	 distances,	 allowing	 us	 to	
obtain	the	human-centric	estimation	of	 the	QHD	

	

Figure	4:	Sample	of	results	for	the	primitive	glyph	pairs	used	in	both	the	user-centric	estimation	(top)	and	by	computer-based	similarity	measure	
(bottom).	Low	values	indicate	difficult	to	differentiate	and	high	values	indicate	easy	to	differentiate.	Examples	from	Groups	A-D	are	highlighted,	
where	A)	hard	to	differentiate,	B)	easy	to	differentiate,	C)	differentiate	by	color,	and	D)	differentiate	by	shape.	The	colour	legend	shows	the	QHD	
ranges.	Red	shows	a	low	QHD	(0<=QHD<=1)	and	blue	shows	a	high	QHD	(4<=QHD<=5).		



for	 basic	 visual	 channels	 individually.	 The	
application	pairs	contain	glyphs	designed	for	our	
application	 case	 study.	 We	 will	 discuss	 these	 in	
detail	in	the	Case	Study	section.	
	
The	 96	 primitive	 and	 application-specific	 pairs	
were	mixed	together	in	a	randomized	order.	The	
8	 reference	 pairs	 were	 placed	 at	 positions	 1,	 2,	
35,	 36,	 69,	 70,	 103	 and	 104	 for	 helping	
participants	 to	 regularize	 their	 scores	 and	 for	
enabling	 us	 to	 check	 temporal	 consistency.	 The	
details	 about	 the	 questionnaire,	 the	 stimuli	
grouping	 and	 the	 survey	 results	 can	be	 found	 in	
the	 supplementary	 materials.	 Here	 we	 briefly	
describe	 the	 survey	 results	 in	 relation	 to	 the	
reference	and	primitive	pairs.	
	
As	mentioned	 early,	 we	 divided	 the	 category	 of	
reference	pairs	into	two	groups.	Group	A	consists	
of	 4	 pairs	 of	 very	 similar	 glyphs,	 and	 Group	 B	
consists	 of	 4	 pairs	 of	 very	 different	 glyphs.	 We	
expected	 that	 participants	 will	 assign	 very	 low	
scores	(difficult	to	differentiate)	to	those	in	A	and	
high	 scores	 (easy	 to	 differentiate)	 to	 those	 in	 B	
respectively.	We	place	 one	 pair	 from	A	 and	one	
from	B	at	regular	intervals.	The	average	scores	for	
the	4	pairs	 in	group	A	are	 (0.0,	0.4,	1.4	and	2.8)	
respectively	 and	 those	 for	 group	B	 are	 (9.3,	 9.0,	
8.9,	 9.7)	 respectively,	 indicating	 that	 they	 have	
statistically	 served	as	 references	 for	 the	minimal	
and	maximum	QHD	in	this	survey.	
	
The	 category	 of	 primitive	 pairs	 consists	 of	 8	
groups	 (C-J)	 for	 estimating	 QHD	 in	 relation	 to	 8	
visual	channels	(C:	hue,	D:	shape,	E:	components,	
F:	 connection	 lines,	 G:	 luminance,	 H:	 size,	 I:	
texture,	 J:	 orientation).	 A	 sample	 of	 the	 groups	
can	 be	 seen	 in	 Figure	 4,	 with	 full	 group	 details	
available	 in	 the	 supplementary	 material.	 Each	
group	 has	 6	 pairs	 of	 stimuli,	 facilitating	 pairwise	
comparison	 of	 4	 different	 codewords	 of	 each	
channel.	 For	 hue	 and	 luminance	 channels,	 after	
choosing	 the	 1st	 and	 4th	 codewords	 we	 used	 a	
perceptually	uniform	colour	model	(Hunter's	Lab)	
to	determine	the	2nd	and	3rd	codewords	at	50%	
and	75%	distance	from	the	1st.	The	upper	part	of	
Figure	4	shows	a	small	selection	of	survey	results,	
where	we	converted	the	[0,	10]	score	range	to	a	
[0,	 5]	 QHD	 range.	 We	 consider	 a	 QHD	 <2	 as	
potentially	 risky	 for	 error	 detection,	 and	 a	 QHD	
<3	as	potentially	risky	for	error	correction.	
	

In	 our	 second	 experiment,	 we	 measured	 the	
similarity	 between	 each	 pair	 of	 glyphs	 using	 a	
computer-based	 metric.	 To	 calculate	 this,	 we	
developed	a	metric	based	on	weighted	 invariant	
Image	 Moments	 [Hu62,	 Zitova03],	 a	 well-
established	 approach	 in	 Computer	 Vision	 that	 is	
widely-used	 for	 image	 similarity.	 The	 metric	
incorporates	 both	 pixel	 colour	 and	 spatial	
occupancy	 to	 assess	 the	 difference	between	 the	
two	 images.	 The	 former	 captures	 a	 variety	 of	
feature	differences	such	as	color,	luminance,	size,	
and	 orientation,	 and	 is	 defined	 as	 the	 mean	
Euclidean	 distance	 between	 all	 corresponding	
pixels	 in	the	two	images	representing	the	pair	of	
glyphs.	 The	 latter	 captures	 location-invariant	
features	such	as	spatial	occupancy,	and	is	defined	
as	the	difference	between	the	numbers	of	pixels	
with	≤	80%	luminance.	Both	difference	measures	
are	 first	 normalized	 to	 the	 [0,	 1]	 range,	 and	 are	
then	scaled	to	the	same	QHD	range	as	the	survey	
(with	 the	 same	 min,	 mean,	 max),	 before	 being	
combined	 into	a	single	metric.	The	 lower	part	of	
Figure	4	shows	the	computed	similarity	measures	
for	the	same	selection	of	stimuli	pairs.	
	
Table	1	 shows	 the	average	QHD	 results	 for	both	
the	 human-centric	 study	 and	 the	 computer	
similarity	measure,	shown	by	group.	Based	on	the	
human	 participants,	 shape,	 component	 and	
orientation	 all	 score	 QHD	 >=3,	 which	 suggests	
they	are	well	separable	visual	channels,	however	
luminance	 was	 the	 only	 group	 to	 score	 below	
QHD	 <2,	 suggesting	 this	 is	 not	 well	 separable.	
Whilst	 some	 visual	 channels	 also	 score	 similarly	
by	 the	 computer-based	 similarity	 measure	 (e.g.,	
shape,	 component,	 connection),	 other	 channels	

	 Average	QHD	
Group	 Human	 Computer	
E	(Component)	 3.5	 3.4	
D	(Shape)	 3.4	 3.5	
J	(Orientation)	 3.0	 1.6	
F	(Connection)	 2.8	 2.4	
I	(Texture)	 2.2	 3.3	
C	(Colour)	 2.2	 1.5	
H	(Size)	 2.1	 4.2	
G	(Luminance)	 1.2	 2.4	

	
Table	1:	Average	QHD	results	for	the	primitive	glyph	pairs	by	
group.	They	were	obtained	from	the	estimation	by	human	
participants	and	from	the	algorithmic	similarity	measure	by	
computer.	They	are	ordered	according	to	human	estimation.	



differ	 from	 the	 user	 feedback	 (e.g.,	 size,	
orientation).	 This	 shows	 that	 there	 is	 certainly	
further	research	to	be	conducted	 in	 this	area,	of	
how	 a	 computer	 can	 understand	 human	 visual	
perception.	
	
Case Study: Visualizing File System 
Events 
	
The	 problem	 of	 visualizing	 file	 systems	 plays	 a	
significant	 role	 in	 the	 short	history	of	 computer-
assisted	 visualization.	 In	 1991,	 Johnson	 and	
Shneiderman,	who	were	motived	by	the	need	to	
visualizing	 the	 structure	 of	 a	 file	 system,	
published	 their	 seminal	 paper	 on	 treemaps	
[Johnson91].	 Today,	 not	 only	 are	 file	 systems	
much	 larger	 and	 contain	 many	 more	 files,	 they	
are	 also	 shared	 by	 many	 more	 users	 and	 have	
many	more	 events.	 	 One	 important	 aspect	 of	 a	
file	 system	 is	 to	 support	 collaborative	 activities,	
such	as	sharing	files	within	multi-partner	projects	
and	 developing	 software	 by	 a	 team	 of	

programmers.	 While	 there	 are	 text-based	
mechanisms	for	recording	events	 in	relation	to	a	
file	 system	 or	 a	 specific	 folder,	 the	 amount	 of	
data	 contained	 in	 typical	 log	 files	 can	 easily	
escalate	 to	 the	 point	 where	 it	 becomes	 too	
overwhelming	 for	 anyone	 to	 read	 on	 a	 regular	
basis.	To	the	best	of	our	knowledge,	there	are	no	
effective	 visualization	 techniques	 for	 allowing	
users	 of	 such	 collaborative	 environments	 to	
observe	events	effectively.	
	
In	 this	case	study,	we	designed	and	developed	a	
novel	glyph-based	visualization	tool	for	observing	
events	 in	 a	 file	 system.	 There	 are	 several	
technical	 challenges.	 Firstly,	 the	 hierarchical	
nature	of	the	file	system	needs	to	be	depicted	so	
that	 the	 spatial	 context	 of	 where	 a	 particular	
event	 has	 occurred	 can	 be	 identified.	 Secondly,	
the	 temporal	 information	about	events	needs	 to	
be	conveyed	so	that	the	activity	ordering	can	also	
be	 observed	 and	 reasoned.	 Thirdly,	 there	 are	 a	
wide	 range	 of	 activities	 (e.g.,	 copying	 a	 file,	
modifying	 a	 file)	 that	 are	 typically	 performed,	

	

Figure	5:	The	18	glyphs	designed	to	represent	different	events	in	file	systems.	Each	event	is	associated	with	its	primary	glyph	representation	in	
the	second	column.	In	addition,	an	event	may	be	associated	with	special	signatures	in	terms	of	connection	(in	the	third	column)	and	semantic	
ordering	(in	the	fourth	column).	On	the	right	side,	A-D	illustrate	the	initial	designs	for	the	timeline	visualization	that	depicts	file	activity	using	
the	proposed	glyph	set	with	a	hierarchical	tree	representation	of	the	file	system	to	provide	context.		



which	 would	 need	 to	 be	 distinguishable	 in	 a	
visualization.	 Finally,	 the	 visualization	 should	
support	 collaborative	 environments	 by	 depicting	
activities	from	different	users.		
	
Designing File System Event Glyphs 
	
Like	 the	 design	 of	 most	 visual	 representations,	
the	design	of	 glyphs	 needs	 to	 achieve	 a	 balance	
among	 many	 factors	 relating	 to	 the	 data,	 user,	
task,	 and	 application.	 For	 this	 application,	 we	
consider	 that	 the	volume	of	data	 is	high,	 though	
the	data	 is	expected	 to	be	 filtered	 in	 some	way,	
such	 as	 for	 a	 specific	 portion	 of	 the	 file	 system,	
some	 specific	 file	 types,	 some	 specific	 user	
groups,	 etc.	 Nevertheless,	 the	 glyphs	 are	
expected	to	be	relatively	small,	and	plentiful	on	a	
display	 screen.	 The	 tasks	 of	 visualization	 are	
primarily	 routine	 observation,	 and	 external	
memorization	of	 the	events	 in	a	 file	system.	The	
users	 are	 expected	 to	 be	 regular	 users	who	will	
have	 motivation,	 ability,	 and	 time	 to	 familiarize	
themselves	with	multivariate	 glyphs,	 though	any	
metaphoric	 encoding	 will	 benefit	 learning	 and	
memorizing	glyphs.	
	
The	 concept	 of	 QHD	 has	 been	 considered	
throughout	 the	 design,	 development,	 evaluation	
and	application	of	 the	glyphs	 that	 are	utilized	 in	
our	 file	 activity	 visualization	 tool.	 Through	
iterative	 design,	 and	 discussion	 as	 a	 team,	 our	
understanding	 and	 appreciation	 of	 the	 concept	
have	 improved	 along	 with	 this	 process.	 As	 a	
result	of	this	process,	we	finalized	our	design	for	
18	 glyphs	 that	 represent	 the	 most	 common	
events	in	a	file	system	(shown	in	Figure	5).	These	
events	 include	 creation,	 modification,	 deletion,	
copying,	 moving	 and	 renaming.	 The	 action	 may	
be	 applied	 to	 a	 file,	 a	 directory,	 a	 device,	 a	
shortcut	 (symbolic	 link),	 or	 meta-data.	 The	
designs	 of	 these	 event	 glyphs	 were	 evolved	 in	
several	stages.	
	
Initial	Design.	We	first	designed	a	set	of	glyphs	in	
conjunction	with	 the	overall	 visual	 design	of	 the	

visualization	 tool	 (shown	 on	 the	 right	 side	 of	
Figure	 5).	 This	 allowed	 us	 to	 appreciate	 how	
these	 glyphs	 may	 be	 used,	 and	 what	 are	 the	
typical	 display	 conditions	 such	 as	 glyph	 sizes,	
density,	 and	 available	 visual	 channels.	 It	 was	 at	
this	 stage	when	we	decided	 that	 the	basic	glyph	
designs	should	not	 feature	 the	hue	channel,	and	
reserve	this	intuitive	and	powerful	visual	channel	
to	depict	user-specific	or	data-specific	variables.	
	
Expert	Estimation.	Four	visualization	researchers	
took	part	in	this	research,	and	all	had	publications	
in	areas	of	glyph-based	visualization.	We	used	our	
knowledge	 about	 different	 visual	 channels	 and	
our	 experience	 in	 glyph	 designs	 to	 improve	 the	
original	 designs.	 This	 is	 similar	 to	 the	 Estimation	
by	Expert	designers	method	discussed	previously.	
We	 noticed	 that	 although	 we	 could	 reach	
agreement	as	to	how	easy	or	difficult	it	can	be	to	
differentiate	pairs	of	 glyphs,	we	 could	not	 easily	
agree	 on	 the	 reasons	 why.	 When	 we	 explicitly	
tried	 to	 determine	 the	 QHD	 between	 a	 pair	 of	
glyphs,	 we	 were	 often	 influenced	 by	 many	
different	 features,	 such	 as	 component	 shapes,	
convexity,	 aspect	 ratio,	 and	 curvature.	 This	
experience	led	us	to	further	appreciate	the	multi-
faceted	 complexity	 in	 estimating	 QHD.	 Many	 of	
the	glyph	designs	in	Figure	5	became	stabilized	at	
this	stage.		
	
Crush	Tests.	We	applied	crush	tests	 to	all	glyphs	
designed	during	 the	case	study.	 In	several	cases,	
we	 carried	 out	 systematic	 testing	 by	 applying	
consistent	 zooming	 factors	 to	 all	 glyphs.	 More	
often,	 when	 we	 were	 considering	 individual	
glyphs,	we	carried	out	ad	hoc	crush	tests	by	using	
facilities	 in	 our	 drawing	 software,	 such	 as	
zooming,	 and	 overlaying	 a	 translucent	 shape	 on	
top	 of	 glyphs.	 At	 this	 stage,	 we	 realized	 that	
simulating	 different	 conditions	 that	would	 cause	
glyph	 quality	 to	 degenerate	 was	 not	 a	 trivial	
undertaking.	 In	many	ways,	 this	also	echoed	 the	
multi-faceted	 nature	 and	 complexity	 in	
estimating	QHD	as	mentioned	above.	
	



Human-centric	 Estimation.	 As	 discussed	 in	 the	
previous	Section,	we	conducted	a	survey	that	was	
designed	 to	 gain	 a	 better	 understanding	 about	
QHD	 in	 the	context	of	 individual	visual	channels,	
but	 also	 allowed	 us	 to	 evaluate	 the	 set	 of	
proposed	 event	 glyphs.	 We	 considered	 20	
different	glyph	designs,	for	which	there	would	be	
190	 pairwise	 comparisons.	We	 selected	 48	 pairs	
that	 were	 considered	 to	 be	 `more	 risky’	 than	
other	 pairs	 in	 terms	 of	 differentiability.	 Figure	 6	
shows	 3	 example	 questions	 from	 the	
questionnaire,	 where	 users	 were	 asked	 how	
difficult	or	easy	it	is	to	differentiate	these	pairs	of	
glyphs.	 In	 this	 particular	 example,	 the	 first	 two	
pairs	are	 from	our	proposed	glyph	set	 (Groups	S	
and	 R)	 and	 the	 third	 example	 is	 a	 primitive	 pair	
for	 measuring	 orientation	 (Group	 J).	 The	 full	
questionnaire	 is	 available	 in	 the	 supplementary	
material.	In	the	survey,	we	found	that	only	1	pair	
scored	 below	 2	 bits	 in	 terms	 of	 QHD	 in	 the	
survey.	 The	 final	 designs	 of	 the	 glyphs	 did	 not	
include	this	pair.	The	details	of	this	evaluation	are	
given	 in	 the	 following	 section	 (Evaluating	 Event	
Glyphs).	
	
Computer-based	 Similarity	 Measures.	 We	 used	
the	 same	 similarity	 metric	 as	 mentioned	
previously	 to	 measure	 the	 QHD	 of	 the	 48	 pairs	

that	 might	 be	 potentially	 risky.	 We	 found	 that	
they	all	passed	 this	QHD	 test.	The	details	of	 this	
evaluation	will	be	also	given	the	Evaluating	Event	
Glyphs	section.	
	
Deployment	 in	 Software.	 In	 addition	 to	 the	
above	 design	 effort	 based	 on	 the	 concept	 of	
QHD,	 we	 incorporated	 the	 glyph	 set	 into	 the	
visualization	 tool	 and	 used	 the	 tool	 to	 visualize	
events	 in	 a	 Dropbox	 folder.	 This	 allowed	 us	 to	
gain	 direct	 experience	 about	 how	 these	 glyphs	
might	 be	 viewed	 and	 interpreted	 in	 practical	
applications.	 The	 details	 of	 this	 deployment	 will	
be	discussed	 in	Visualizing	Dropbox	Activity	 Logs	
section.	
	
Differentiability	 is	 only	 one	 aspect	 of	 glyph	
design.	We	 have	 to	 consider	 other	 aspects	 such	
as	 how	 easy	 it	 is	 to	 learn	 and	 to	 remember	
glyphs,	 how	 glyphs	may	 be	 connected,	 and	 how	
they	may	be	ordered	if	the	corresponding	events	
happened	to	the	same	file	or	directory.	As	shown	
in	 Figure	 5	 we	 utilized	 some	 similar	 designs	 for	
files	 and	 directories	 to	 assist	 in	 learning	 and	
memorization.	Meanwhile,	we	also	consider	how	
they	 may	 be	 connected.	 The	 three	 types	 of	
connection	 lines	 as	 shown	 on	 the	 top	 of	 the	
figure	and	the	different	orientations	as	shown	in	
the	 third	 column	may	 potentially	 add	 additional	
features	 for	 differentiating	 glyphs.	 For	 example,	
all	lines	connecting	to	a	deletion	glyph	will	always	
come	 from	 left,	 and	 all	 connecting	 to	 a	 creation	
glyph	 will	 always	 extend	 towards	 right.	 All	 lines	
connecting	to	a	copy	or	move	glyph	will	suggest	a	
spatial	 shift	 vertically.	 In	 addition,	 semantic	
ordering,	such	as	to	open	a	file	and	then	read	the	
file,	 can	 also	 increase	 the	 QHD,	 as	 illustrated	 in	
Figure	5.	
	
Evaluating Event Glyphs 
	
We	evaluated	the	glyphs	in	Figure	5	based	on	the	
QHD	obtained	 from	a	 human-centric	 survey	 and	
by	 using	 computer-based	 similarity	 measures.	
This	 was	 performed	 in	 the	 same	 study	 as	
described	previously,	and	meant	that	this	allowed	
for	 a	 comparative	 analysis	 against	 the	 reference	
pairs	and	primitive	glyph	sets.	For	our	glyph	set,	
only	the	potentially	`risky	pairs’	were	evaluated.	
	

	

Figure	6:	3	examples	from	the	questionnaire.	Participants	were	
asked	"How	difficult	or	easy	is	it	to	differentiate	these	pairs	of	
glyphs?".	In	total	there	were	104	questions,	based	on	68	different	
glyphs.	



The	 human-centric	 estimation	 provided	 us	 with	
most	meaningful	 insight	about	the	quality	of	 the	
glyphs.	 The	 104	 pairs	 of	 glyphs	 evaluated	 by	
participants	have	an	average	QHD	of	2.9	bits.	The	
average	 QHD	 for	 the	 reference	 pairs	 (Groups	 A	
and	 B)	 is	 2.7	 bits.	 The	 average	 for	 the	 primitive	
pairs	(Groups	C	to	J)	is	2.6	bits.	For	our	proposed	
glyph	 set,	 the	 average	 QHD	 for	 the	 potentially	
risky	pairs	 (Groups	O	 to	Z)	 is	3.2	bits,	 suggesting	
that	these	glyphs	are	well	differentiable.	
	
Almost	 all	 of	 our	 glyph	 pairs	 have	 their	 QHD	
above	 2	 bits,	 except	 one	 pair	 (QHD	 =	 1.5	 bits)	
which	was	not	used	in	the	final	design.	The	upper	
part	 of	 Figure	 7	 shows	 a	 subset	 of	 the	 survey	
results.	 Meanwhile,	 the	 computer-based	 metric	
also	 measured	 our	 glyph	 pairs	 favorably.	 As	
mentioned	 previously,	 the	 average	 QHD	
estimated	by	the	metric	is	normalized	to	have	the	
same	min,	mean	 and	max	 as	 the	 human-centric	
estimation.	 The	 complete	 set	 of	 104	 glyph	 pairs	
have	 an	 average	 QHD	 of	 2.9	 bits.	 The	 average	
QHD	 for	 the	 reference	 pairs	 is	 2.6	 bits.	 The	
average	 for	 the	 primitive	 pairs	 is	 2.7	 bits.	 The	
average	for	the	potentially	risky	pairs	in	our	glyph	
set	is	3.1	bits,	again	suggesting	that	the	proposed	
set	 of	 glyphs	 are	 well	 differentiate.	 The	 lowest	
QHD	 for	 our	 potentially	 risks	 glyph	 pairs	 is	 2.1	
bits.	
	
The	 evaluation	 also	 revealed	 some	 interesting	
phenomena.	The	additional	features	added	to	the	
directory	 glyphs	 have	 reduced	 QHD	 among	
directory	 glyphs.	 For	 example,	 when	 comparing	
Group	 O	 and	 Group	 Q,	 where	 the	 glyphs	 for	
creation,	 modify	 metadata	 and	 modify	 content	

were	 compared	 within	 the	 context	 of	 files	 (in	
Group	 O)	 and	 directories	 (in	 Group	 Q),	 human-
centric	estimation	shows	a	noticeable	difference.	
The	 average	 QHD	 for	 Group	 O	 (files)	 is	 3.4	 bits	
and	that	for	Group	Q	(directories)	is	2.6	bits.	Yet,	
the	 glyphs	 for	 directories	 are	 similar	 to	 those	of	
files,	 with	 the	 addition	 of	 the	 rectangle	 to	 the	
right	of	the	circular	region.	Similarly,	for	Group	T	
and	 Group	 V	 where	 move,	 copy	 and	 short	 cut	
glyphs	 were	 compared,	 the	 average	 QHD	 for	
Group	 T	 (files)	 is	 3.3	 bits,	 and	 that	 for	 Group	 V	
(directories)	 is	 2.8	 bits.	 Meanwhile,	 the	
computer-based	similarity	measures	suggest	little	
difference	between	O	and	Q	and	between	T	and	
V,	 which	 given	 the	 similar	 design	 is	
understandable.	 This	 suggests	 that	 further	
research	 is	 necessary	 to	 enrich	 the	 existing	
findings	 about	 how	 the	 distance	 functions	 for	
integrated	 and	 separable	 visual	 channels	 may	
affect	perception	[Maguire12].	
	
Visualizing Dropbox Activity Log 
	
To	demonstrate	the	applicability	of	the	proposed	
glyph	 set,	 we	 developed	 an	 interactive	 tool	 for	
visualizing	 file	 event	 log	 data.	 The	 system	
comprises	 of	 a	 Python	 back-end	 for	 processing	
logs	 from	 file	 storage	 services	 such	 as	 Dropbox	
and	Git,	and	a	web-based	front-end	that	provides	
the	 user	 interface.	 The	 front-end	 was	 created	
with	a	combination	of	HTML5,	CSS	and	JavaScript	
(utilizing	Raphael.js	 for	 the	 visualization	element	
and	 jQuery	 for	 control	 of	 popup	 events).	 In	
addition	 to	glyph-based	visualization,	 the	system	
supports	a	variety	of	interactions	including:	
	

	

Figure	7:	Sample	of	results	for	the	file	visualization	glyph	pairs	used	in	both	the	user-centric	estimation	(top)	and	by	computer-based	similarity	
measure	(bottom).	Low	values	indicate	difficult	to	differentiate	and	high	values	indicate	easy	to	differentiate.	The	color	legend	shows	the	QHD	
ranges.	Red	shows	a	low	QHD	(0<=QHD<=1)	and	blue	shows	a	high	QHD	(4<=QHD<=5).	



• Filtering	 different	 types	 of	 file	 system	
events;	

• Filtering	different	users;	
• Selecting	a	specific	directory	as	a	subtree;	
• Selecting	different	time	period;	
• Zooming	 and	 scrolling	 on	 the	 directory	

axis	and	timeline;	
• Detailed	 view	 displayed	 when	 mouse	

hovers	over	glyph.	
		

Figure	 8	 shows	 an	 excerpt	 of	 the	 file	 system	
visualization,	 depicting	 events	 from	 a	
collaborative	 Dropbox.	 Since	 Dropbox	 supports	
file	 sharing	 capability,	 it	 is	 desirable	 for	 users	 to	
visualize	 events	 in	 a	 shared	 folder,	 for	 instance,	
to	 see	 which	 file	 has	 been	 created	 or	 modified	
recently	and	by	whom.	Although	the	service	does	
provide	 a	 text-based	 activity	 log	 that	 users	 can	
access,	it	is	time-consuming,	and	to	some	extent,	
tedious	to	read	a	long	list	of	events.	Glyph-based	
visualization	allows	users	 to	 gain	 an	overview	of	
the	 events	 in	 a	 shared	 folder	 at	 ease.	 Here,	 we	
make	use	of	the	glyph	set	shown	in	Figure	5,	with	
color	 used	 to	 depict	 different	 users.	 In	 this	
example,	 there	 are	 three	 different	 users	 (blue,	

orange,	 and	 green)	 who	 have	 accessed	 the	
system	during	this	time.	
	
The	 glyphs	 are	 shown	 in	 correspondence	 to	 the	
file	system	hierarchy	which	is	represented	at	each	
of	 the	 three	 time	 intervals	 by	 the	 gray	 vertical	
bars.	
It	can	be	seen	that	some	files	are	accessed	by	all	
three	users,	such	as	the	top	line	between	the	first	
and	 second	 time	 steps.	 Here,	 the	 orange	 user	
created	a	 file,	 and	 then	opened	and	modified	 it.	
Later,	the	blue	user	modified	the	metadata	of	the	
file	 (possibly	 renaming	 it	 or	 changing	 its	 access	
date).	 Afterwards,	 the	 green	 user	 opened	 and	
modified	 the	 file.	 By	 hovering	 the	 mouse	 over	
each	 glyph,	 a	 pop-up	 window	 is	 also	 displayed	
that	 provides	 further	 detail	 of	 the	 activities,	
including	 the	 sequence	 of	 file	 events	 and	 the	
associated	 file	 size.	 This	 enables	 collaborative	
colleagues	 to	 understand	 ongoing	 actions	 much	
easier,	 reducing	 the	 need	 for	 updating	 other	
users	manually.	
	
  

	

Figure	8:	Glyph-based	visualization	is	used	to	display	events	in	a	Dropbox	activity	log.	The	vertical	bars	are	abstract	representation	of	a	directory	
tree	and	the	timeline	flows	from	left	to	right.	At	(A)	we	can	see	the	case	where	a	number	of	users	have	been	modifying	the	same	file.	The	popup	
gives	more	details	about	the	modifications,	who	did	them,	and	when	to	allow	for	provenance	tracking.	At	(B)	we	have	another	interesting	case	
where	user	X	(orange)	creates	a	file,	then	user	Y	creates	a	copy	of	this	file,	opens	it	and	modifies	its	contents.	User	X	then	deletes	the	original	file	
however	a	modified	copy	exists	elsewhere.	



Conclusion 
	
We	 have	 presented	 a	 novel	 conceptual	
framework,	 called	 quasi-Hamming	 distance	
(QHD),	which	facilitates	a	systematic	approach	to	
designing	 fail-safe	 glyph	 encoding	 schemes.	 To	
demonstrate	 the	 feasibility	 of	 this	 work,	 we	
presented	 two	 proof-of-concept	 experiments,	
where	 we	 obtained	 QHD	 measures	 from	 a	
human-centric	 survey	 and	 from	 computer-based	
similarity	 measures.	 We	 also	 conducted	 a	
practical	 case	 study	 where	 Dropbox	 event	 logs	
were	 visualized	 using	 a	 fail-safe	 glyph	 set.	 From	
the	 outset,	 our	 approach	was	 to	 ensure	 a	 high-
level	of	differentiability	in	the	glyph	design,	whilst	
achieving	 requirements	 such	 as	 minimal	 use	 of	
color	and	metaphoric	consistency.	
	
We	 very	 much	 consider	 this	 as	 the	 first	 step	
towards	 the	 establishment	 of	 a	 collection	 of	
mathematical	 and	 cognitive	 theories,	
experimental	 findings	 and	 statistics,	 design	
techniques	and	computational	metrics	for	guiding	
and	 aiding	 glyph	 designs.	 This	 work	 highlights	 a	
number	 of	 gaps,	 where	 further	 research	 is	
needed.	For	example,	 it	 is	highly	desirable	for	us	
to	understand	 the	 relationship	between	 the	 JND	
measures	 of	 various	 visual	 channels	 and	
differentiability	 of	 glyphs	 encoded	 using	 such	
visual	 channels.	 It	 will	 be	 beneficial	 to	 correlate	
existing	 findings	 about	 error	 detection	 and	
correction,	 such	 as	 [Rheingans95],	 with	 QHD	
measures.	 It	 is	 also	 highly	 desirable	 to	 research	
into	computer-based	similarity	measures	that	are	
statistically	 closer	 to	 (or	 even	 better	 than)	
human-centric	 estimation	 to	 further	 aid	 glyph	
design	processes.	
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