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 A B S T R A C T

Fuzzing is a common technique for identifying vulnerabilities in software. Recent approaches, like She et al.’s 
Multi-Task Fuzzing (MTFuzz), use neural networks to improve fuzzing efficiency. However, key elements like 
network architecture and hyperparameter tuning are still not well-explored. Factors like activation layers, 
optimisation function design, and vanishing gradient strategies can significantly impact fuzzing results by 
improving test case selection. This paper delves into these aspects to improve neural network-driven fuzz 
testing.

We focus on three key neural network parameters to improve fuzz testing: the Leaky Rectified Linear Unit 
(LReLU) activation, Nesterov-accelerated Adaptive Moment Estimation (Nadam) optimisation, and sensitivity 
analysis. LReLU adds non-linearity, aiding feature extraction, while Nadam helps to improve weight updates 
by considering both current and future gradient directions. Sensitivity analysis optimises layer selection for 
gradient calculation, enhancing fuzzing efficiency.

Based on these insights, we propose LMTFuzz, a novel fuzzing scheme optimised for these Machine Learning 
(ML) strategies. We explore the individual and combined effects of LReLU, Nadam, and sensitivity analysis, as 
well as their hybrid configurations, across six different software targets. Experimental results demonstrate that 
LReLU, individually or when paired with sensitivity analysis, significantly enhances fuzz testing performance. 
However, when combined with Nadam, LReLU shows improvement on some targets, though less pronounced 
than its combination with sensitivity analysis. This combination improves accuracy, reduces loss, and increases 
edge coverage, with improvements of up to 23.8%. Furthermore, it leads to a significant increase in unique 
bug detection, with some targets detecting up to 2.66 times more bugs than baseline methods.
1. Introduction

Fuzzing has emerged as a powerful automated software testing 
technique, playing a critical role in identifying vulnerabilities and 
enhancing software robustness. It systematically subjects programs to 
dynamically generated inputs, uncovering flaws that could otherwise 
remain undetected [1,2].

Initially conceived as random input generation, fuzzing has since 
evolved into a sophisticated approach [3–7], leveraging structured [8–
10] and feedback-driven methodologies [11,12] to improve test case 
generation efficiency. More recently, the integration of ML techniques
[13] has further transformed fuzzing by enabling adaptive input gener-
ation, enhancing test case prioritisation, and optimising bug detection 
strategies [14,15,15–20] through better bug classification and auto-
mated bug analysis [21–25]. It has also advanced data flow interpre-
tation, program property prediction, and guided mutation strategies, 
addressing ambiguity in defect identification [26–29].
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Despite these advancements, significant challenges remain in en-
hancing the efficacy of ML-based fuzzing. Key areas such as activation 
functions, optimisation strategies, and post-training sensitivity anal-
ysis have not been sufficiently explored in the context of fuzzing, 
limiting potential gains in performance and vulnerability detection. 
This paper introduces LMTFuzz, an enhanced ML-driven fuzzing frame-
work, which addresses these challenges by integrating advanced ac-
tivation functions, optimisation algorithms, and sensitivity analysis in 
MTFuzz [30]. 

Specifically, we replace the standard ReLU [31] with Leaky ReLU 
(LReLU) [31] to mitigate the ‘‘dying ReLU’’ problem, and adopt the 
Nadam [32,33] optimiser in place of Adam to improve training stabil-
ity and convergence speed. Additionally, we incorporate post-training 
sensitivity analysis to prioritise fuzzing test cases based on their gra-
dient magnitudes [34]. Through these innovations, we aim to im-
prove fuzzing performance, particularly in seed selection, vulnerability 
discovery, and overall fuzzing efficiency.
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This research addresses the following questions:

• How does the use of LReLU activation layers affect fuzzing per-
formance in comparison to the baseline ReLU function employed 
in MTFuzz?

• What are the comparative effects of the Nadam optimisation tech-
nique versus the baseline Adam optimiser on enhancing fuzzing 
performance?

• To what extent does post-training sensitivity analysis influence 
the overall effectiveness of fuzzing outcomes?

To find answers to the questions posed above, this paper contributes 
to the field in the following key ways:

• First, we investigate the role of activation functions by analysing 
LReLU as an alternative to MTFuzz’s standard ReLU. LReLU’s 
allowance for small negative gradients in inactive units could im-
prove gradient flow, mitigate dead neurons, and enhance model 
expressiveness in fuzzing applications. Given the iterative na-
ture of fuzzing, better gradient flow could lead to improved 
convergence rates and deeper code coverage.

• Second, we examine Nadam as an alternative optimiser to Adam, 
examining the effect of Nadam’s combination of Nesterov mo-
mentum and adaptive moment estimation could improve training 
stability and convergence speed in fuzzing models. While Adam 
has been widely used, Nadam’s potential benefits, especially in 
the context of fuzzing, remain underexplored.

• Finally, we incorporate post-training sensitivity analysis to quan-
tify the impact of different network layers on test case generation 
efficiency. By ranking input features based on their gradient mag-
nitudes, this analysis could provide insights into how ML models 
prioritise fuzzing paths, ultimately leading to a more effective test 
case selection strategy.

These enhancements are designed to optimise ML-driven fuzzing by 
refining seed selection, enhancing vulnerability detection, and improv-
ing overall fuzzing efficiency through the introduction of a novel activa-
tion layer and a new optimiser, along with the proposal of a new sen-
sitivity analysis—an element that MTFuzz currently lacks. While MT-
Fuzz outperforms fuzzers like Neuzz [35], Angora [36], FairFuzz [37], 
AFL [38], and AFLFast [39], it still has limitations, such as inefficient 
seed selection and underutilised ML-driven optimisations. LMTFuzz 
addresses these deficiencies by optimising ML-driven approaches, offer-
ing notable improvements. We evaluate LMTFuzz through experiments 
comparing it exclusively to MTFuzz, which, due to its demonstrated 
superiority, serves as a strong baseline. Our comparison focuses on code 
coverage, vulnerability detection, and operational efficiency, advancing 
the integration of ML techniques in fuzzing for more effective software 
testing.

The structure of the paper is as follows: Section 2 provides the 
necessary background and related work to contextualise our study. 
Section 3 outlines the adopted methodology and experimental frame-
work. Section 4 provides a detailed overview of the experimental 
setup, including hyperparameter tuning, the testing environment, and 
introduces the fuzzing targets. Section 5 presents observations based 
on the collected results and provides an in-depth evaluation of these 
findings. Section 6 explores potential avenues for future research, while 
Section 7 concludes with a summary of key insights and contributions.

2. Related work

To address the challenges in software security [40,41] and oppor-
tunities highlighted in Section 1, it is essential to examine the existing 
body of work that integrates optimisation strategies, neural network 
architectures, and fuzzing methodologies. The literature provides a 
comprehensive foundation on the application of Stochastic Gradient 
Descent (SGD) and its variants in deep neural networks (DNNs) and 
2 
reinforcement learning (RL), both of which have demonstrated signifi-
cant potential in advancing fuzzing techniques and improving software 
security.

In the context of DNNs, SGD has been a fundamental approach 
for model optimisation, widely applied in fuzzing tasks. For example, 
Grieco et al. introduced VDiscover, a system that utilises SGD to com-
bine static and dynamic features with ML techniques such as random 
oversampling to detect memory corruptions in operating systems [42].

Additionally, GANFuzz integrated Generative Adversarial Networks 
(GANs) with Long Short-Term Memory (LSTM) networks and the policy 
gradient method to assess industrial network protocols, employing SGD 
with dropout and L2 regularisation techniques [43].

In another application, DeepSmith [44] leveraged standard SGD 
over 50 epochs with a learning rate schedule that decayed by 5% per 
epoch, ensuring stable training. The system used forget gates and voting 
heuristics for differential testing during compiler validation.

Beyond classical optimisation, gradient-based techniques have
emerged as effective tools in guiding fuzzing processes. For instance, 
GradFuzz [45] introduced gradient vector coverage as a novel coverage 
metric to guide fuzzers towards crash-inducing paths in DNN-based 
fuzzing, using gradients to prioritise testing efforts.

Another approach involved guiding gradients smoothly using non-
linear techniques such as sigmoid, Softmax, and tanh functions. NEUZZ
[35] extended this concept by employing gradient-guided input genera-
tion and program smoothing techniques like Gaussian and sigmoid (for 
the output layer), improving fuzzers’ ability to efficiently explore more 
program states.

Recent advances have also explored the integration of SGD within 
reinforcement learning (RL)-based fuzzing approaches. Patil and Kanade
[46] adapted AFL’s heuristics into a contextual bandit framework, 
framing the fuzzing process as a reinforcement learning problem. This 
allowed dynamic adjustments of fuzzing iterations using the policy 
gradient method with nonlinear functions (tanh and Softmax), im-
proving test case generation efficiency based on real-time feedback. 
Similarly, AgentFuzz [47] combined gradient-based optimisation with 
a DRL framework to mutate seeds in a deep learning model, identifying 
potentially vulnerable areas more efficiently. This was achieved by 
using gradient-based adversarial attack methods to generate diverse 
test cases capable of inducing larger loss values, thereby revealing 
system failures faster. PreFuzz [48] further enhanced gradient guidance 
and mutation effectiveness by introducing an efficient edge selection 
mechanism, reducing computational overhead and improving fuzzing 
outcomes.

Despite the success of SGD in these applications, challenges such as 
sensitivity to learning rate selection and vulnerability to local minima 
remain. To address these issues, advanced variants of SGD, such as 
Adam, have been proposed. These optimisers introduce adaptive learn-
ing rates and momentum terms, which help prevent overshooting dur-
ing optimisation and provide resilience against noisy gradients, making 
them well-suited for complex fuzzing tasks where the underlying search 
space is highly dynamic.

Nichols et al. employed GANs alongside AFL for seed file initial-
isation in their ‘‘Faster Fuzzing’’ framework, using the binary cross-
entropy loss function and training the model with ReLU as the inner 
activation layer, tanh as the output activation layer, and the Adam 
optimiser [49].

In V-Fuzz, Li et al. utilised SGD and its variant, the Adam optimi-
sation algorithm, for both training and pretraining tasks in the context 
of vulnerability-oriented prediction, leveraging attributed control flow 
graphs [50]. In this approach, the tanh and sigmoid functions were 
employed as nonlinear activation functions, while ReLU served as the 
rectified linear unit. These methods minimised the cross-entropy loss 
function, with Adam providing adaptive learning rates and momentum 
to improve convergence and performance during pretraining. Together, 
SGD and Adam ensured efficient iterative optimisation of the model 
parameters throughout the training process.
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Jeon and Moon’s ‘‘Dr. PathFinder’’ [51] integrated DRL techniques 
with fuzzing by employing an RL agent to evaluate branch states during 
concolic execution, using the Adam optimiser. This approach priori-
tised the exploration of ‘‘deep’’ execution paths over ‘‘shallow’’ ones, 
reducing unnecessary exploration and enhancing memory efficiency.

A notable example of such integration is MTFuzz, proposed by 
She et al. [30], which is recognised as one of the most recent and 
effective machine learning (ML)-based fuzzing schemes. It utilises a 
multi-task neural network model with sigmoid activation and the Adam 
optimiser to guide the fuzzing mutation process. MTFuzz employs 
‘‘hard parameter sharing’’ across multiple tasks, such as edge coverage, 
approach-sensitive edge coverage, and context-sensitive edge coverage. 
The loss functions are tailored to each task to maximise the overall 
effectiveness of the fuzzing process.

Despite the widespread adoption of ReLU and Adam in these ap-
plications, the literature reveals a notable lack of exploration into 
alternative activation functions and optimisation techniques. For in-
stance, the LReLU activation function, which mitigates the ‘‘dying 
ReLU’’ problem by allowing a small, non-zero gradient for negative 
inputs, has seen limited application in the fuzzing domain, despite 
its potential to enhance model performance. Similarly, while Adam is 
commonly employed due to its adaptive learning rate and momentum, 
its more advanced variant, Nadam – which incorporates Nesterov mo-
mentum – remains underutilised in fuzzing-related research. This gap 
highlights a valuable opportunity for further investigation into how 
LReLU and Nadam could improve fuzzing effectiveness, particularly in 
scenarios involving complex neural network architectures or dynamic 
search spaces. Moreover, the sensitivity analysis of gradient calcu-
lations across different layers remains an underexplored area in the 
existing literature. These gaps underscore the potential for advancing 
the state of the art, providing a strong foundation for the present 
study to contribute meaningful insights into activation functions and 
optimisation strategies that can enhance fuzzing techniques.

3. Methodology

This research adopts a structured methodology to assess the impact 
of activation functions, optimisation techniques, and sensitivity analy-
sis on the performance of a Multi-Task Neural Network (MTNN) fuzzing 
scheme. Our approach focuses on three primary components, each cor-
responding to a specific research question. Moreover, it investigates the 
collective influence of these techniques on overall fuzzing performance, 
particularly concerning edge coverage within a defined time constraint.

3.1. Understanding the baseline model

MTFuzz framework utilises an MTNN integrated with a ‘‘hard pa-
rameter sharing’’ approach, employing three distinct methodologies:

• ‘‘Edge Coverage’’
• ‘‘Approach-sensitive Edge Coverage’’
• ‘‘Context-sensitive Edge Coverage’’
Approach-sensitive edge coverage evaluates the proximity of unex-

plored edges using a numerical scale from 0 to 1, allowing for efficient 
modifications of input data to target these edges.

Context-sensitive edge coverage identifies the call context of explored 
edges, providing insights into the program’s internal states and enhanc-
ing the differentiation of inputs activating the same edge from distinct 
contexts.

MTFuzz employs a compact embedding technique to capture critical 
input features while minimising bitmap size. This approach reduces 
edge explosion and enhances performance via transfer learning, en-
abling effective sharing of representations across parsers for XML and 
ELF binaries.

Among these methodologies, both edge coverage and context-
sensitive edge coverage are framed as classification tasks, whereas 
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approach-sensitive edge coverage is structured as a regression task. 
Consequently, the loss functions for each methodology are tailored to 
their specific task requirements.

The architecture of the MTNN includes shared initial layers and 
task-specific output layers, allowing for a unified feature representa-
tion. Its overall loss function is a weighted combination of task-specific 
losses.
Algorithm 1 Logical Inconsistency in MTFuzz ‘‘if’’ statement for Rare 
Edge Selection
1: Input: round_cnt, label (shape: [𝑚, 𝑛]), seed (shape: [𝑝]), edge_num 
2: Output: interested_indices, rand_seed1, weighted 
3: if 

(

round_cnt
2

mod 2
)

= 3 then 
4: 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← random choice from range(𝑙𝑎𝑏𝑒𝑙.𝑠ℎ𝑎𝑝𝑒[1], 𝑒𝑑𝑔𝑒_𝑛𝑢𝑚,

replace=True)
5: 𝑟𝑎𝑛𝑑_𝑠𝑒𝑒𝑑1 ← random choice from range(𝑠𝑒𝑒𝑑.𝑠ℎ𝑎𝑝𝑒[0], 𝑒𝑑𝑔𝑒_𝑛𝑢𝑚,

replace=True)
6: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ← False
7: end if
8: Return: interested_indices, rand_seed1, weighted
This model uses supervised learning with backpropagation to min-

imise a multi-task loss function, with task weights adjusted based on 
significance. Training parameters, such as epochs, optimiser choice, 
learning rate, and hyperparameters, follow the baseline model, which 
is optimised for performance, except for a correction to the MTFuzz 
code.

We identified an issue in the Github repository for the MTFuzz 
project (specifically concerning the nn.py code file) [52] that we docu-
ment here. Algorithm 1 illustrates whether to use rare edge selection in 
the original code of MTFuzz. There is a logical inconsistency within the 
‘‘if’’ statement. Specifically, the expression if (int(round_cnt/2) 
% 2) == 3, where round_cnt serves as the iteration counter, is 
logically flawed. The modulus operation %2 only yields results of either 
0 or 1, making it impossible for the expression to evaluate to 3. To 
correct this, we modified the condition in our experiments to: if 
(int(round_cnt/2) % 2) == 1.

For completeness, we performed a comparative analysis between 
the original and modified statements to evaluate the fuzzing perfor-
mance, with readelf serving as the software target. Whilst both 
approaches achieved similar edge coverage in our testing, we chose 
to conduct our further experimentation with the corrected code if 
(int(round_cnt/2) % 2) == 1 to ensure a robust approach to our 
testing methodology.

3.2. Our proposed solution

Fig.  1 illustrates the overall workflow of the proposed approach. 
While the initial phase, which involves training the multitask feed-
forward neural network, closely follows the method used in MTFuzz, 
our approach introduces a new technique for training the network to 
generate sparse test cases. These test cases are designed to focus on 
parts of the input data that, when altered, have the potential to trigger 
different branches or execution paths in the software—i.e., the input 
bytes most likely to affect code coverage. This approach is referred to as
Leveraged MTFuzz (LMTFuzz), emphasising the use of activation layers 
and preventing the issue of dying nodes through LeakyReLU, a method 
specifically intended to address this challenge.

In the following sections, we present the mathematical foundations 
of our approach and each solution, emphasising their direct impact as 
observed in both individual and combined testing.

3.3. LReLU vs. ReLU activation functions

The activation functions ReLU and LReLU are essential for incor-
porating non-linearity into neural networks, enabling them to capture 
intricate relationships within data. ReLU is frequently favoured due 
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Fig. 1. Workflow of LMTFuzz.
 

to its ability to streamline gradient calculations, enhance training ef-
ficiency, and yield favourable results across various applications. The 
ReLU activation function [53,54] is defined as: 
𝑓 (𝑥) = max(0, 𝑥) (1)

In ReLU, the output is 0 for negative inputs and equal to the input 
for positive inputs. This can cause the ‘‘dying ReLU’’ problem, where 
neurons become inactive when the input is negative or updates lead 
the neuron to remain in the negative regime, resulting in: 
𝜕𝑓 (𝑥)
𝜕𝑥

= 0, for 𝑥 < 0 (2)

This prevents neurons from updating during backpropagation; specifi-
cally, neurons with negative pre-activation (𝑥 < 0) do not contribute to 
gradient updates, resulting in a sparse gradient flow. This can hinder 
model training, particularly when features associated with negative 
activations are important. In contrast, LReLU [31] addresses this limi-
tation by permitting a small, non-zero gradient for negative inputs. The 
LReLU activation function introduces a small slope for negative inputs 
to alleviate this issue: 

𝑓 (𝑥) =

{

𝑥, if 𝑥 > 0
𝛼𝑥, if 𝑥 ≤ 0

(3)

where 𝛼 is a small positive constant. For LReLU, the gradient is: 
𝜕𝑓 (𝑥)
𝜕𝑥

=

{

1, if 𝑥 > 0
𝛼, if 𝑥 ≤ 0

(4)

Analysing the differences between LReLU and ReLU is key to iden-
tifying which enhances model performance in terms of convergence, 
stability, and accuracy. LReLU plays a critical role in both classification 
and regression tasks, as discussed in the following subsections.

3.3.1. Classification loss and LReLU
Classification tasks in MTFuzz, uses binary cross-entropy loss. For 

binary classification, the loss is defined as: 
BCE = −

∑

𝑖
𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖) (5)

where 𝑦𝑖 is the true label, and 𝑦̂𝑖 is the predicted probability from the
sigmoid output.

Gradient Analysis for Classification: For a classification network 
with LReLU activations, the gradient of the loss BCE with respect to 
an intermediate LReLU activation 𝑥 is: 
𝜕BCE
𝜕𝑥

=
𝜕BCE
𝜕𝑓 (𝑥)

⋅
𝜕𝑓 (𝑥)
𝜕𝑥

(6)

Therefore, unlike ReLU, LReLU allows gradients to propagate through
inactive neurons by maintaining a small but nonzero derivative ( 𝜕𝑓 (𝑥)𝜕𝑥 =
𝛼 for 𝑥 < 0). This prevents vanishing updates, ensuring continuous 
feature learning and mitigating the ‘‘dead neuron’’ problem. By preserv-
ing gradient flow, LReLU enhances convergence stability and enables 
the network to extract meaningful features even from negative inputs, 
improving edge- and context-sensitive representations.
4 
3.3.2. Regression loss and LReLU
For regression tasks, a common loss function is Mean Squared Error 

(MSE): 

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (7)

where 𝑦𝑖 is the true value and 𝑦̂𝑖 is the predicted output. If a neu-
ron enters the negative regime (i.e., 𝑥 < 0), the gradient is zero 
( 𝜕𝑓 (𝑥)𝜕𝑥 = 0), which means no weight updates will occur. This leads 
to slower learning, especially in tasks like approach-sensitive coverage, 
where negative activations can carry valuable information. In contrast, 
the small negative slope (𝛼) in LReLU ensures that even for negative 
values of 𝑥, the neuron will still contribute to the gradient, improving 
the smoothness of the loss landscape and accelerating convergence.

Gradient Analysis for Regression: The gradient of the MSE loss 
with respect to an LReLU activation 𝑥 is: 
𝜕MSE
𝜕𝑥

= 2(𝑦 − 𝑦̂) ⋅
𝜕𝑓 (𝑥)
𝜕𝑥

(8)

For negative 𝑥, the gradient is scaled by 𝛼, ensuring that the model 
receives stable weight updates even for inactive neurons. This leads to 
more reliable learning and better approach-sensitive coverage, where 
even neurons that are ‘‘inactive’’ during certain phases of training 
still contribute meaningfully to the model’s updates. Therefore, from 
a loss function perspective, LReLU plays a significant role in both 
classification and regression tasks.

3.4. Nadam vs. Adam optimiser

The Adam optimiser is widely acknowledged for its adaptive learn-
ing rate, which combines the strengths of Root Mean Square Propaga-
tion (RMSProp) and SGD with momentum, thereby facilitating faster 
convergence. In contrast, the inclusion of Nesterov momentum intro-
duces a subtle anticipation of gradient updates, which can further 
optimise performance. While Adam’s adaptive learning rate and inte-
gration of RMSProp with SGD momentum allow for faster convergence 
compared to SGD, Nadam further enhances these capabilities by incor-
porating Nesterov momentum. Research by Dozat [32] demonstrates 
that Nadam outperforms Adam in terms of both accuracy and loss 
reduction during training, positioning it as a promising alternative in 
some applications beyond fuzzing. In the following subsections, we 
explore the mathematical foundation of Nadam to assess whether it 
may improve fuzzing performance.

1. Gradient Computation (this stage remains the same as in 
Adam): The initial phase involves calculating the gradient of the loss 
function with respect to the model parameters, a vital process that is 
also utilised in the Adam optimisation algorithm. 
𝑔 = ∇ 𝐽 (𝜃 ) (9)
𝑡 𝜃 𝑡 𝑡
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where 𝑔𝑡 is the gradient of the loss function 𝐽𝑡 with respect to the 
parameters 𝜃𝑡 at time step 𝑡, with respect to the shared parameters 𝜃. 
The combined gradient for the shared layers is then computed by ag-
gregating the per-task gradients, optionally weighted by a task-specific 
importance factor 𝑤𝑡: 

𝑔shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑔𝑡 (10)

where 𝑇  is the total number of tasks and 𝑤𝑡 represents a task-specific 
weighting factor.

2. Nesterov-accelerated First Moment based on Exponential 
Moving Averages of the Gradient: To enhance momentum and ac-
celerate convergence, Nadam applies Nesterov acceleration to the first 
moment estimate. The key distinction between Adam and Nadam lies 
in how the first moment (momentum) is computed. In Adam, the 
momentum term is updated using a conventional exponential moving 
average of gradients, given by: 
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (11)

where 𝛽1 represents the decay rate for the first moment, commonly 
referred to as momentum, and is typically set close to 1 (e.g., 0.9). In 
the case of shared layers, the first moment can be aggregated using a 
weighted sum: 

𝑚shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑚𝑡 (12)

However, Nadam introduces Nesterov acceleration by incorporating a 
lookahead mechanism, modifying the first moment estimate as
follows: 

𝑚̂𝑡 =
𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡

1 − 𝛽𝑡1
(13)

For shared layers, the corrected first moment is aggregated as: 

𝑚̂shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑚̂𝑡 (14)

This formulation anticipates future updates by integrating the gradient 
into the momentum component, improving convergence.

3. Second Moment (this stage remains the same as in Adam):
The second moment, which quantifies the variance of gradients, is 
computed similarly to Adam’s approach: 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (15)

where 𝛽2 is the decay rate associated with the second moment, a 
component inherited from the RMSProp algorithm, typically set to 
around 0.999. For shared layers, the second moment can be aggregated 
across tasks as: 

𝑣shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑣𝑡 (16)

4. Bias Correction: In the early stages of Adam optimisation, the 
moving averages of the gradients tend to be biased towards zero due 
to their initialisation at zero. This bias can distort the estimates of the 
first and second moments, particularly during the initial time steps. To 
mitigate this bias, Adam employs bias-correction formulas to provide 
more accurate estimates. The bias-corrected estimates for the first and 
second moments are given by:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
(17)

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
(18)

These formulas correct the estimates of the first moment (𝑚𝑡) and 
second moment (𝑣𝑡) by adjusting for the bias introduced by their initial 
values, particularly during the early time steps. In the case of Nadam, 
5 
the bias correction is similarly applied to the second moment for shared 
layers as follows: 

𝑣̂shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑣̂𝑡 (19)

This formulation helps improve the accuracy of the parameter updates 
by compensating for the early bias in the second moment estimate. The 
bias correction ensures that the optimisation process remains stable and 
efficient throughout training.

5. Parameter Update: The parameter update equation in Nadam 
follows a similar structure to Adam but with adjustments to the first 
moment. The update equation is: 
𝜃𝑡+1 = 𝜃𝑡 −

𝜂
√

𝑣̂𝑡 + 𝜖
𝑚̂𝑡 = 𝜃𝑡 −

𝜂
√

𝑣̂shared + 𝜖
𝑚̂shared (20)

where 𝜂 is the learning rate and 𝜖 is a small constant for numerical 
stability. Nadam improves convergence by incorporating a look-ahead 
gradient calculation. The key difference from Adam lies in the update 
method for the momentum term. By integrating gradients and momen-
tum across tasks, Nadam optimises shared layers in multi-task learning, 
offering faster convergence and computational efficiency for complex 
targets.

3.5. Optimal layer selection through sensitivity analysis in the multiple tasks 
environment

Sensitivity analysis is a valuable technique for identifying the layers 
in a neural network that most influence output variations. This method 
plays a crucial role in optimising the selection of layers for gradient 
calculations, which are important for tasks like backpropagation and 
saliency mapping. By focusing on key layers, it reduces computational 
overhead and improves model interpretability. The goal is to fine-tune 
the most influential parameters, enhancing overall model performance 
and ensuring more targeted gradient updates. This process helps ad-
just gradient propagation based on layer sensitivity, leading to better 
training dynamics and enhanced model robustness. The following sub-
sections outline the key steps of the methodology: a formal definition 
of layer sensitivity based on gradient magnitudes, a mathematical 
relationship between sensitivity scores and task performance, gradient 
aggregation across multiple tasks, a theoretical formulation of the 
impact of sensitivity analysis on gradient flow during training, and 
fuzzing behaviour.

3.5.1. Formal definition of layer sensitivity
Layer sensitivity can be formally defined as the gradient of the 

model’s loss with respect to the output of a particular layer, which 
measures the responsiveness of that layer to small perturbations in the 
input. Mathematically, the sensitivity 𝑆𝑙 of a layer 𝑙 can be expressed 
as: 

𝑆𝑙 = mean
(

|

|

|

|

𝜕
𝜕𝐎𝑙

|

|

|

|

)

(21)

where  is the loss function, and 𝐎𝑙 represents the output of layer 𝑙. 
This sensitivity score quantifies how much the output of a layer changes 
with respect to changes in the model’s input, providing a measure of 
the layer’s importance in the model’s decision-making process.

3.5.2. Sensitivity scores and task-specific performance
To align sensitivity analysis with task-specific performance, we 

propose a relationship between the sensitivity scores and the model’s 
performance on a given task. This relationship helps in adjusting the 
learning process such that more sensitive layers have a greater impact 
on optimising the model for the task at hand. The task-specific per-
formance  can be related to the sensitivity scores by the weighted
sum: 

 =
𝑛
∑

𝑤𝑙 ⋅ 𝑆𝑙 (22)

𝑙=1
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where 𝑤𝑙 is a task-specific weight that reflects the importance of layer 
𝑙 for a particular task, and 𝑆𝑙 is the sensitivity score of that layer. 
This relationship ensures that layers with higher sensitivity scores 
contribute more to the overall performance, directly influencing the 
model’s optimisation process in a way that reflects task-specific needs.

3.5.3. Gradient aggregation over multiple tasks
In multi-task learning scenarios, it is essential to aggregate gradients 

across tasks while maintaining the influence of sensitivity scores. To 
achieve this, we aggregate gradients across layers by computing the 
gradient of the loss with respect to the model’s parameters, taking 
into account both task-specific weights and layer sensitivities. The 
aggregated gradient ∇𝑊 𝑙

agg for each layer 𝑙 is given by: 

∇𝑊 𝑙
agg =

𝑇
∑

𝑡=1
𝑤𝑙

𝑡 ⋅ ∇𝑊
𝑙
𝑡 (23)

where 𝑇  is the number of tasks, 𝑤𝑙
𝑡 is the task-specific weight for 

layer 𝑙 under task 𝑡, and ∇𝑊 𝑙
𝑡  is the gradient of the loss with respect 

to the weights of layer 𝑙 for task 𝑡. This formulation ensures that 
gradients from all tasks are weighted according to their relevance and 
the sensitivity of each layer, allowing for efficient multi-task learning.

3.5.4. Impact on gradient flow during training
The incorporation of sensitivity analysis into the gradient flow 

modifies the backpropagation process by prioritising layers with higher 
sensitivity scores. This prioritisation affects the weight updates, where 
the update for the weights 𝑊 𝑙 of layer 𝑙 is adjusted by a factor 
proportional to its sensitivity: 

𝛥𝑊 𝑙 = −𝜂 ⋅ 𝑆𝑙 ⋅ ∇𝑊 𝑙 (24)

Here, 𝜂 is the learning rate, and ∇𝑊 𝑙 is the gradient of the loss 
function with respect to the weights of layer 𝑙. The term 𝑆𝑙 acts as a 
scaling factor that controls the magnitude of the update for layers with 
higher sensitivity, ensuring that these layers have a greater influence 
on the optimisation process. This modification to the gradient flow 
encourages faster convergence in sensitive layers and enhances the 
overall stability of the training process.

3.5.5. Sensitivity scores and fuzzing behaviour
Fuzzing behaviour refers to the process of generating adversarial 

perturbations to test the robustness of the model. Sensitivity analysis 
plays a crucial role in this process by identifying layers that are more 
sensitive to small changes in input, which are most susceptible to adver-
sarial manipulation. To generate adversarial examples, we compute the 
gradients of the loss with respect to the model’s input data, taking into 
account the sensitivity of each layer. The total gradient ∇ is computed 
as: 

total_grads =
𝑛
∑

𝑙=1
𝑆𝑙 ⋅ ∇𝑊 𝑙 (25)

This aggregated gradient reflects the combined influence of each layer’s 
sensitivity on the overall model. The adversarial perturbations are then 
generated by manipulating the input data in the direction of the most 
influential gradients, which are determined by the sensitivity scores. 
Layers with higher sensitivity scores are more likely to contribute 
significantly to the adversarial perturbations, resulting in more targeted 
and effective attacks. This relationship between sensitivity and fuzzing 
behaviour allows for more efficient adversarial training and model 
robustness evaluation.
6 
3.5.6. Task-specific weighting of gradients based on sensitivity
Finally, in a framework that incorporates sensitivity analysis, task-

specific weighting of gradients is necessary to prioritise layers that are 
more relevant to specific tasks. The weight for each layer 𝑙 under task 
𝑡 is determined by the sensitivity score: 

𝑤𝑙
𝑡 =

𝑆𝑙
𝑡

∑

𝑙′ 𝑆
𝑙′
𝑡

(26)

This ensures that layers with higher sensitivity scores, which are more 
influential for the task at hand, will contribute more to the gradient 
updates during training. By assigning appropriate task-specific weights, 
the model can be optimised more effectively for each task, while still 
ensuring that sensitive layers are prioritised across the entire training 
process.
Algorithm 2 Sensitivity Analysis Algorithm
1: Input: model, input_data 
2: Output: sensitivity_scores 
3: sensitivity_scores = {} 
4: for each layer in model.layers do 
5: if layer has output then 
6: layer_name = layer.name 
7: layer_output_func = create function to compute the output of layer 
8: layer_output = layer_output_func(input_data) 
9: sensitivity_score = mean of absolute values of layer_output 
10: sensitivity_scores[layer_name] = sensitivity_score
11: end if
12: end for
13: Return: sensitivity_scores

3.5.7. Algorithmic representation of sensitivity analysis and adversarial 
attack generation

To formalise this process algorithmically, the sensitivity_
analysis presented in Algorithm 2 computes sensitivity scores for 
each layer in a neural network model, offering a measure of how each 
layer’s output responds to variations in the input data through the 
following phases:

1. Start: Begin the process of layer analysis.
2. Aggregate Gradients from Multiple Layers: Collect gradient 
information from different layers to get a comprehensive view 
of their contributions.

3. Analyse Intermediate Layers: Examine how intermediate lay-
ers contribute to the network’s predictions.

4. Perform Sensitivity Analysis: Systematically assess how change
in each layer affect the output, identifying key layers.

5. Identify ‘‘high-sensitivity layers’’: Determine which layers are 
most influential for fine-tuning and model optimisation.

This process helps identify which layers are most influential in the 
model’s behaviour. The function takes two inputs: the neural network 
model (model) and the data used for analysis (input_data). For 
each layer in the model, the function checks if the layer has an output. 
If so, it creates a Keras function that computes the layer’s output for the 
given input data. After obtaining the output, the function calculates the 
sensitivity score for that layer by computing the mean of the absolute 
values of the layer’s output. The sensitivity score reflects the layer’s 
responsiveness to the input data, where higher values indicate that 
small changes in the input lead to more significant changes in the 
output of that layer.

The function then returns a dictionary where the keys are the 
layer names and the values are their corresponding sensitivity scores. 
This analysis allows for a deeper understanding of the contribution of 
each layer to the overall model behaviour, particularly in adversarial 
attack generation. By identifying layers that are more sensitive to input 
changes, this method can help focus attacks on those layers, leading to 
more targeted and effective adversarial attacks. This strategy provides 
a more detailed and rigorous evaluation than deterministic models that 
select layers without such analysis.
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Algorithm 3 Adversarial Attack Samples Generation Using Sensitivity 
Analysis
1: Input: list_of_seed_indices, model, layer_list, seed 
2: Output: adversarial_list 
3: adversarial_list = {} #Initialise adversarial examples list
4: total_grads = None # Initialise gradient accumulation
5: input_data = reshape seed[list_of_seed_indices[0]] to shape (1, seed.shape[1]) #Reshape 

seed for model input
6: sensitivity_scores = sensitivity_analysis(model, input_data) # Compute sensitivity scores 

for layers by Algorithm 2
7: sorted_layers = sort layer_list by sensitivity_score in descending order # Sort layers by 

sensitivity
8: for (layer_name, layer) in sorted_layers do 
9: if layer has output then 
10: loss = layer.output[:, random_index(layer.output.shape[-1])] # Choose random 

output for loss
11: grads = gradients of loss w.r.t model.input # Compute gradients
12: iterate = create function for loss and grads # Create gradient evaluation function
13: for index in range(len(list_of_seed_indices)) do 
14: x = reshape seed[list_of_seed_indices[index]] to shape (1, seed.shape[1]) # 

Reshape each seed
15: loss_value, grads_value = iterate([x]) # Evaluate gradients
16: if total_grads is None then 
17: total_grads = abs(grads_value) # Initialise gradient accumulation
18: else 
19: total_grads += abs(grads_value) # Accumulate gradients
20: end if
21: end for
22: end if
23: end for
24: influential_indices = flip argsort(total_grads, axis=1)[-MAX_FILE_SIZE:] # Get most 

influential feature indices
25: val = sign of total_grads[0][influential_indices] # Determine perturbation direction
26: for index in range(len(list_of_seed_indices)) do 
27: adversarial_list.append((influential_indices, val, seed[list_of_seed_indices[index]])) # 

Store adversarial example
28: end for
29: Return: adversarial_list # Return the list of adversarial examples

Algorithm 3 presents a framework for generating adversarial attack 
samples within the baseline MTFuzz [30]. This framework incorporates 
a modified sensitivity analysis, which we developed and integrated to 
enhance the attack generation process by leveraging sensitivity scores. 
This algorithm details the computation of sensitivity scores for each 
layer in the model and demonstrates how these scores are leveraged to 
generate adversarial perturbations.

This sensitivity-aware approach provides a more nuanced strategy 
compared to deterministic models that select layers arbitrarily without 
such evaluation. It allows for a more targeted and effective manipu-
lation of gradients in adversarial training, ultimately contributing to 
the development of more robust models. By focusing on the layers 
that contribute most significantly to model performance (as identified 
through sensitivity analysis), adversarial attacks can be optimised to 
maximise their impact.

3.6. Combined testing scheme based on selection of best model

Integrating LReLU with sensitivity analysis or LReLU with Nadam is 
expected to enhance the training process, boost model generalisation, 
and increase execution path diversity, ultimately leading to a more 
efficient fuzzing process and improved edge coverage. This is partic-
ularly beneficial in scenarios where dead neurons caused by gradient 
vanishing are problematic or when faster convergence and optimal 
layer selection are critical. LReLU effectively mitigates gradient vanish-
ing, Nadam accelerates convergence with momentum-based updates, 
and sensitivity analysis optimises parameter weighting. The overall 
payoff   in terms of edge coverage is modelled as a function of the 
contributions from LReLU (𝜆), Nadam (𝜈), and Sensitivity Analysis (𝜎):
 = 𝑓 (𝐶; 𝜆, 𝜈, 𝜎) (27)

where 𝑓 represents the combined effect of these techniques on max-
imising edge coverage.
7 
This formulation ensures that optimising aligns with selecting the 
best combination of activation functions (LReLU vs. ReLU), optimis-
ers (Nadam vs. Adam), and sensitivity analysis techniques, ultimately 
leading to an improved fuzzing framework.

4. Experimental framework

This section outlines the fuzzing experiment configuration, includ-
ing the benchmark, testing environment, and hyperparameters.

4.1. Software targets under test

Fuzzing targets refer to the specific system components or software 
being tested through fuzzing. These targets can span various domains, 
such as file formats, network protocols, APIs, embedded systems, or 
web applications. For this study, we conducted our experiments on six 
linux software tools: djpeg, mutool, size, nm, hb-fuzzer, and
readelf. These tools come from different software packages, with 
only size, nm, and readelf being extracted from binutils-2.30. 
The categorisation of these tools is shown in Table  1. The selected 
target tools (djpeg, mutool, size, nm, hb-fuzzer, readelf) are builtin 
targets within MTFuzz. Since the original MTFuzz paper includes these 
targets, we chose to maintain them to ensure direct comparability with 
the baseline results presented in the original work. This allows readers 
to easily assess how our approach performs relative to MTFuzz and 
other state-of-the-art fuzzers that the baseline has already been shown 
to outperform.

4.2. Testing environment

To assess the impact of resource allocation on MTFuzz’s perfor-
mance, we conducted fuzzing tests over a 24-h period. The experiments 
were conducted on a desktop workstation running VMware Workstation 
17 on Windows 11 Pro, utilising six virtual machines (VMs) for six 
targets running Kali Linux, each with 8 GB of RAM allocated. Each Kali 
VM had access to 80 GB of disk space and shared CPU resources from 
the Windows host, ensuring sufficient resources for the fuzzing tasks. 
This configuration was chosen to simulate a distributed environment 
and investigate how multi-task learning scales with parallel task execu-
tion during fuzzing. Each of the baseline MTFuzz and three LMTFuzz 
versions was run on identical VM snapshots, with the six parallel VMs 
representing testing on six different targets. All conditions were kept 
consistent across all fuzzers to ensure reliable and comparable results.

The host machine was equipped with 10 CPU cores and 64 GB of 
RAM to meet the parallelism and memory demands of the virtualised 
setup, with at least one core logically dedicated to each VM. Addition-
ally, the host machine had access to at least 3 terabytes of storage 
space, ensuring ample capacity for storing the data generated during 
the experiments. This setup was designed to prevent bottlenecks and 
ensure a precise evaluation of the impact of resource allocation on 
gradient calculation within multi-task learning.

4.3. Activation and optimisation hyperparameters

We define the specific parameters and configurations used in our 
fuzzing experiments to ensure reproducibility and accuracy. First, we 
detail the activation function parameters, with particular emphasis on 
LReLU. For this activation function, we set the slope of the negative 
region to 𝛼 = 0.01. This choice of 𝛼 = 0.01 was determined through 
preliminary experiments, which demonstrated that it provided optimal 
performance in terms of edge coverage and overall fuzzing effective-
ness, outperforming other 𝛼 values such as 0.1, 0.2, 0.3, and 0.4. This 
value follows conventional practices, where minor negative values are 
allowed to pass through the activation function, thus mitigating issues 
associated with vanishing gradients. While further optimisation of 𝛼 is 
a promising direction for future research, this study primarily focuses 
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Table 1
Command-line tools used for processing different file types, along with their corresponding source packages and descriptions.
 Input Tool Source Package Description  
 JPEG image djpeg libjpeg-9c A command-line tool to decompress JPEG images.  
 PDF file mutool MuPDF-1.12.0 A tool from MuPDF for working with PDF 

documents.
 

 Object file size binutils-2.30 Displays the size of sections in object files.  
 nm -C binutils-2.30 Lists symbols from object files with demangling of 

C++ symbols.
 

 Text file hb-fuzzer Harfbuzz-1.7.6 A tool for fuzz-testing the Harfbuzz text shaping 
engine.

 

 ELF file readelf -a binutils-2.30 Displays detailed information about ELF 
(Executable and Linkable Format) files.

 

on evaluating the impact of LReLU’s non-zero gradient on fuzzing 
performance.

Further, we outline the optimisation algorithms employed in the 
experiments, specifically Adam and Nadam. Both optimisers are ini-
tialised with a learning rate coefficient, 𝜂 = 0.001. This learning 
rate was intentionally retained to match the value used in MTFuzz’s 
implementation of Adam, ensuring a fair comparison between the two 
optimisation strategies. By keeping 𝜂 constant, we are able to isolate 
and evaluate the impact of the optimisation strategy itself without 
confounding it with variations in the learning rate. Additionally, the 
choice of 𝜂 = 0.001 is commonly used in the literature, as it strikes 
a balance between efficient convergence and stability across different 
experimental iterations.

5. Evaluation

In this section, we begin by observing the experimental results 
obtained from the methods and optimisers used in the baseline model 
of MTFuzz, as presented in Table  2. These results are then compared 
with those of the baseline model to assess performance differences. 
Subsequently, we examine the impact of activation functions, optimisa-
tion techniques, and their influence on training, accuracy, and fuzzing 
performance. Furthermore, Table  3 provides detailed explanations of 
each column in Table  2, offering insights into their role and significance 
in evaluating the performance of ML models.

Our study isolates and evaluates the individual effects of three key 
components—LReLU, Nadam, and sensitivity analysis. By varying one 
component at a time while keeping the others constant, we assess the 
unique contribution of each to overall performance. Subsequently, we 
combine Nadam and sensitivity analysis with LReLU, focusing on their 
integration due to LReLU’s effectiveness in preventing dead neurons. 
This approach aims to improve metrics such as edge coverage, maxi-
mum accuracy, and minimum loss. By evaluating each component both 
independently and in combination with LReLU, we ensure a thorough 
analysis of their collective impact.

To understand variations in model performance, we analyse six key 
indicators: Maximum Accuracy, Loss at Maximum Accuracy, Iteration 
for Maximum Accuracy, Minimum Loss, Accuracy at Minimum Loss, 
and Iteration for Minimum Loss. These metrics help identify the train-
ing iteration where the model achieves its lowest loss, which may differ 
from the iteration of peak accuracy.

Each column in Table  2 plays a critical role in assessing the per-
formance of various ML models, offering a comprehensive view of 
models strengths and areas for improvement compared to baseline 
model of MTFuzz. We observe both maximum accuracy and minimum 
loss metrics separately. This is due to the fact that Accuracy measures 
the proportion of correct predictions, while loss quantifies how well the 
model fits the data. As a result, the point at which accuracy reaches its 
maximum may not necessarily coincide with the point where the loss is 
minimised, leading to different values for each metric and the iteration 
in which they occur.
8 
Therefore, while maximum accuracy and minimum loss may align 
at times, they often occur at different iterations due to their distinct 
progress during training. Achieving lower loss is crucial for improving 
model performance, as it typically indicates better generalisation and 
more efficient learning, particularly in fuzzing, where it enhances the 
model’s ability to detect vulnerabilities. This structure allows for easy 
comparison, helping to identify which model performs best under 
various conditions.

In the following subsections, we evaluate the methods used in the 
baseline model through comparative analyses of different activation 
functions, optimisation techniques, and a sensitivity analysis, exploring 
their impact on training, accuracy, and fuzzing performance.

5.1. Max accuracy

Maximum accuracy in DNN-enabled fuzzing refers to the ability 
of deep neural networks (DNNs) to precisely identify vulnerabilities 
and generate effective test inputs. It represents the highest level of 
accuracy a DNN can achieve in predicting fuzzing-related outcomes. 
In this context, LReLU and its variant, Sensitivity with LReLU, consis-
tently outperform baseline models across most evaluation tools (four 
out of six). Furthermore, LReLU, its sensitivity-enhanced variant, and 
Sensitivity itself collectively demonstrate improved performance in five 
out of six assessments on djpeg, mutool, size, nm, and readelf. 
This finding underscores the effectiveness of integrating LReLU and 
sensitivity analysis in significantly improving accuracy across various 
analytical tools.

The performance of LReLU and its sensitivity-enhanced variant 
did not improve in the case of hb-fuzzer. In this specific target, 
performance marginally worsened. This variability can be attributed 
to several factors. First, different fuzzing targets may not always align 
with the strengths of a particular model. For example, complex targets 
like hb-fuzzer may exhibit lower sensitivity to activation function 
changes due to inherent noise or complexity. Additionally, the effec-
tiveness of activation functions such as LReLU depends on the fuzzing 
environment’s ability to support gradient propagation. In environments 
with lower gradient sensitivity, such as hb-fuzzer, further optimi-
sation may have less impact. Other influencing factors include model 
architecture, training data, and hyperparameters such as learning rates 
and optimisation algorithms. Fine-tuning these elements could en-
hance performance across more targets, emphasising the importance of 
adapting DNN-based fuzzing strategies to specific target characteristics.

5.2. Loss metrics

To provide a more comprehensive evaluation, we present both 
maximum accuracy and minimum loss values, along with their corre-
sponding pairs. For further details, please refer to the columns labeled
Loss at Maximum Accuracy and Minimum Loss or the Max 
Accuracy and Accuracy at Min Loss for comparison.

As shown in Table  2, the models focusing on minimum loss, includ-
ing LReLU, Sensitivity, and their combined variant (Sensitivity with 
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Table 2
Comparison of models across different tools.
 Model Total 

Iterations
Max 
Accuracy

Iteration of Max 
Accuracy

Loss at Max 
Accuracy

Min Loss Iteration of Min 
Loss

Accuracy at Min 
Loss

Max Edge 
Coverage

Average Total 
Executions

Max Dimension 
(pair)

Unique Bugs

 djpeg  
 Baseline 10 0.8849 10 0.1027 0.1027 10 0.8849 2375 3873131.4 (2418, 1374) 376  
 LReLU 12 0.8887 12 0.0953 0.0953 12 0.8887 2385 3845286.3 (2664, 1431) 591  
 Nadam 11 0.8217 11 0.1359 0.1353 9 0.816 2391 3856704.9 (2695, 1463) 423  
 Hybrid 12 0.8559 11 0.1184 0.1184 11 0.8559 2391 4100812.7 (2644, 1438) 265  
 Sensitivity 9 0.8835 9 0.0985 0.0985 9 0.8835 2389 3916204.8 (2508, 1393) 178  
 Sensitivity with LReLU 9 0.8886 9 0.0978 0.0978 9 0.8886 2365 3951695.9 (2464, 1392) 308  
 mutool  
 Baseline 6 0.9606 5 0.0287 0.0287 5 0.9606 5357 3545334.7 (2603, 1962) 73  
 LReLU 9 0.9613 2 0.0309 0.0275 6 0.9613 5563 4037122.0 (2699, 2041) 116  
 Nadam 9 0.9331 7 0.0493 0.0481 6 0.9324 5468 3619220.7 (2783, 2014) 140  
 Hybrid 9 0.9439 4 0.0419 0.0419 4 0.9439 5431 3640603.9 (2707, 2026) 126  
 Sensitivity 8 0.9659 6 0.0249 0.0244 8 0.9659 5412 3390770.4 (2718, 2034) 122  
 Sensitivity with LReLU 8 0.9627 4 0.0280 0.0267 8 0.9626 5527 3470468.3 (2742, 2040) 154  
 size  
 Baseline 9 0.9108 1 0.1499 0.0709 8 0.8578 5175 5705240.7 (2318, 2402) 4  
 LReLU 13 0.9146 1 0.1453 0.0590 13 0.8427 6135 6248035.7 (2299, 2744) 4  
 Nadam 14 0.807 9 0.0896 0.0703 14 0.806 6222 6102337.7 (2636, 3010) 2  
 Hybrid 13 0.8333 7 0.0937 0.0683 13 0.8187 6161 6161699.8 (2349, 2814) 2  
 Sensitivity 8 0.9090 1 0.1487 0.0668 8 0.8633 4923 5358260.4 (2056, 2304) 0  
 Sensitivity with LReLU 8 0.9147 2 0.1152 0.0693 8 0.8661 4972 4709890.4 (1959, 2217) 3  
 nm  
 Baseline 7 0.9129 3 0.1020 0.0741 7 0.8647 6762 6208137.2 (2679, 3175) 6  
 LReLU 9 0.9038 3 0.1166 0.0735 9 0.8472 7886 5867734.0 (3185, 4063) 1  
 Nadam 9 0.8338 5 0.1119 0.1119 5 0.8338 7918 5827720.0 (3183, 4023) 2  
 Hybrid 9 0.8770 4 0.0900 0.0763 8 0.8401 8183 5652667.2 (3421, 4358) 22  
 Sensitivity 6 0.9299 3 0.0794 0.0477 6 0.9031 8378 4623163.3 (3725, 4527) 12  
 Sensitivity with LReLU 6 0.9289 3 0.0794 0.0482 6 0.9016 8234 4603283.5 (3723, 4404) 0  
 hb-fuzzer  
 Baseline 6 0.9191 2 0.079 0.0622 4 0.8979 8899 6036131.6 (5744, 4462) 0  
 LReLU 10 0.9178 2 0.0799 0.0645 4 0.8917 9493 6137737.6 (6776, 5032) 0  
 Nadam 11 0.8923 2 0.096 0.074 4 0.8734 9071 5521524.5 (5866, 4586) 0  
 Hybrid 10 0.8868 2 0.0996 0.0757 4 0.8628 9152 5549557.3 (6203, 4696) 0  
 Sensitivity 6 0.9085 2 0.0839 0.0663 4 0.893 8798 5604992.0 (5398, 4344) 0  
 Sensitivity with LReLU 6 0.9102 2 0.0827 0.0669 4 0.8843 8963 5534210.8 (5381, 4484) 0  
 readelf  
 Baseline 6 0.8931 1 0.1534 0.0928 2 0.8719 10134 5192164.8 (12838, 6480) 6313  
 LReLU 10 0.9178 2 0.0799 0.0645 4 0.8917 10607 6237030.0 (14094, 6965) 5980  
 Nadam 9 0.8728 1 0.1721 0.109 2 0.843 10355 5121424.4 (13610, 6695) 894  
 Hybrid 9 0.8748 1 0.1707 0.1054 2 0.8536 10070 5362083.7 (13737, 6546) 885  
 Sensitivity 6 0.878 2 0.0928 0.068 3 0.8444 9334 3418821.8 (13269, 6346) 1094  
 Sensitivity with LReLU 6 0.8998 1 0.1488 0.0625 6 0.7817 10070 5643668.0 (13091, 6586) 5334  
LReLU), consistently achieved the lowest loss rates across most targets. 
However, in the case of hb-fuzzer, the minimum loss rate and loss 
at maximum accuracy were comparable to, but not superior to, the 
baseline model.

In fact, the baseline model exhibited higher loss values for 5 out 
of 6 targets, underscoring a notable performance gap when compared 
to LReLU, Sensitivity, and Sensitivity with LReLU. Additionally, LReLU 
outperformed both Sensitivity and Sensitivity with LReLU on 3 out 
of 6 targets in terms of achieving the lowest loss rate. On the other 
hand, Sensitivity and the combined variant surpassed LReLU on 2 and 
1 targets, respectively. Thus, we conclude that LReLU remains the 
best-performing model in terms of minimising loss.

5.3. Edge coverage

The results demonstrate that LReLU achieves consistently high max-
imum edge coverage across all models, indicating its effectiveness as a 
testing strategy. This robust performance suggests that LReLU is well-
suited for applications requiring comprehensive edge coverage. One 
of the key reasons for its superior performance is the way LReLU 
allows for more effective exploration of the input space compared to 
other activation functions, making it particularly effective in identify-
ing diverse edge cases during fuzz testing. While the Sensitivity model 
exhibited the lowest edge coverage specifically on the size target, it 
still performed comparably well on other targets, indicating its overall 
reliability.

LReLU, along with its combined variants, consistently secured top 
positions in edge coverage across a variety of targets. The superior 
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edge coverage achieved by LReLU can be attributed to its smoother 
gradient properties, which help in better navigating the loss landscape 
and achieving more thorough exploration of the edge cases. Notably, 
LReLU achieved the highest edge coverage for three targets: mutool,
hb-fuzzer, and readelf, underscoring its versatility and effective-
ness across diverse applications. Furthermore, Nadam and its hybrid 
model incorporating LReLU both ranked equally in first place for the
djpeg target, and first and second for the size target, highlight-
ing the benefits of model integration for enhanced coverage, with 
LReLU consistently being a critical component of the top-performing 
configurations.

Moreover, LReLU maintained an impressive third position on the 
size target, following its hybrid version with Nadam, showcasing its 
competitiveness even when not in the top spot. Nadam’s performance 
was also noteworthy, achieving the highest edge coverage for two 
targets – djpeg and size – suggesting that Nadam can serve as a 
robust alternative in specific contexts. This highlights that while LReLU 
is consistently a top performer, in certain scenarios, integrating other 
models, such as Nadam, can provide additional benefits.

Lastly, the Sensitivity model, along with its variant combined with 
LReLU, attained the highest edge coverage on the nm target. This find-
ing emphasises the importance of exploring different model combina-
tions to optimise edge coverage and suggests that further investigations 
into hybrid models may yield additional insights into enhancing testing 
effectiveness. The combination of Sensitivity with LReLU, in particular, 
seems to leverage the strengths of both models, providing enhanced 
edge coverage that would not be achievable by either model alone.
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Table 3
Explanation of key metrics.
 Column name Description Significance  
 
Model

Lists the various ML models evaluated, 
each with different training techniques.

Comparing models helps assess performance 
differences and determine which configuration 
yields the best results.

 

 Total Iterations The number of training or testing 
iterations reached by each model within 
24 h. The final iteration count may 
include both completed and incomplete 
iterations terminated at the 24-h mark.

More iterations may lead to a more thorough 
evaluation but risk overfitting.

 

 Max Accuracy The highest accuracy achieved by each 
model during evaluation, which does not 
necessarily occur at the iteration 
corresponding to the minimum loss.

Indicates the model’s best performance, reflecting 
its ability to predict or classify correctly.

 

 Iteration of Max Accuracy The iteration during which the model 
achieved its maximum accuracy.

Helps in tracking model performance over time 
and assessing if further fine-tuning is necessary.

 

 Loss for Max Accuracy The loss rate associated with the model’s 
highest accuracy.

Lower loss values at high accuracy suggest 
effective training and model robustness.

 

 Min Loss The lowest loss rate recorded during 
evaluation, providing insight into the 
model’s error minimisation, which does 
not necessarily occur at the iteration 
corresponding to the maximum accuracy.

Provides insight into the model’s generalisation 
capabilities and error minimisation.

 

 Iteration of Min Loss The iteration during which the model 
achieved its lowest loss.

Shows how the model’s training progressed and 
whether further improvements are needed.

 

 Accuracy for Min Loss The accuracy corresponding to the 
minimum loss value recorded.

Assesses the model’s balance between accuracy 
and error reduction.

 

 Max Edge Coverage Refers to the maximum code edge 
coverage during testing.

High edge coverage indicates thorough testing, 
contributing to improved fuzzing performance and 
potentially enabling the detection of more 
sophisticated software bugs.

 

 Average Total Executions The average number of test executions 
performed for each model.

Increased executions may enhance coverage and 
bug detection but also raise computational costs. 
Therefore, achieving better coverage with the 
lowest average number of total executions is 
crucial.

 

 Max Dimension (pair) The maximum dimensions of input data 
used during training or testing.

Helps to understand the data complexity and its 
influence on model learning, as well as the 
model’s ability to capture sophisticated bugs. If it 
does not lead to issues such as overfitting, this 
complexity can be valuable for detecting more 
sophisticated bugs.

 

 Unique Bugs The number of unique bugs including 
unique crashes and unique hangs 
detected by the model during testing.

Indicates the effectiveness of the model in 
identifying issues in real-world software.

 

In conclusion, our analysis underscores the effectiveness of LReLU 
and its variants in achieving high edge coverage across multiple targets. 
It also highlights the potential of hybrid models for improving perfor-
mance in specific scenarios. The comparative advantage of LReLU in 
these tests can be attributed to its ability to better explore edge cases, 
and the hybrid models further illustrate the potential for combining 
activation functions to achieve optimal coverage.

5.4. Discovery of new edges

In fuzzing, particularly when leveraging deep neural networks 
(DNNs), a ‘‘new edge’’ refers to the identification of a previously 
unexplored path or behaviour in the target program’s control flow 
during testing. At each iteration of the experiment, new edge discovery 
signifies that the generated input has triggered a transition between 
basic blocks in the program’s control flow graph (CFG) that had not 
been executed in prior runs. Since the total number of newly discovered 
edges is unique to each fuzzer for a specific iteration, tracking this met-
ric over time reveals patterns of edge discovery, providing insight into 
the fuzzer’s capability to explore deeper and more complex program 
states.

New edge discovery is a widely recognised indicator of a fuzzer’s 
effectiveness and exploratory power over time, as a higher rate of 
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unique edge discoveries suggests that the fuzzer is efficiently generating 
diverse and meaningful test cases. Over multiple iterations, analysing 
the rate at which new edges are discovered can highlight trends in ex-
ploration efficiency. For example, a fuzzer that maintains a consistently 
high rate of new edge discovery in the early stages demonstrates strong 
initial exploration capabilities, while one that continues discovering 
new edges in later stages exhibits long-term effectiveness in overcom-
ing input saturation. Thus, evaluating new edge discovery patterns 
across iterations provides a quantifiable measure of both short-term and 
long-term fuzzing efficiency.

Fig.  2 presents the newly discovered edges identified through dif-
ferent methodologies over a 24-h period. The figures illustrate varying 
behaviours, generally showing a peak at the beginning, with some 
models requiring more iterations to reach the end of this duration. 
This initial peak can be attributed to the fact that, early in the fuzzing 
process, the model is likely to uncover a broader range of unexplored 
edges quickly. Sensitivity analysis demonstrates either an increase or a 
gradual decrease in newly discovered edges during the final iterations 
for five targets (e.g., djpeg, size, nm, mutool, and readelf). 
This indicates consistent edge discovery, with particularly strong per-
formance observed for nm and an increase in new edge discovery 
during the final iterations for readelf, size, and nm, which is 
advantageous. The observed increase in new edge discovery in the 
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Fig. 2. New edge discovery patterns of different methodologies on various targets across iterations over time.
Note: The time slots are approximate, and some models did not discover new edges during the final hours.
final iterations for these targets suggests that the fuzzing model is 
beginning to uncover deeper, more complex paths in the control flow. 
These paths could involve more sophisticated code branches or corner 
cases that were less likely to be triggered during earlier iterations. For 
example, some complex conditions or specific input constraints could 
have only been met after repeated exploration, leading to the discovery 
of previously inaccessible control flow paths.

In other words, while most other methodologies exhibited a de-
creasing trend over this timeframe, sensitivity analysis on four targets 
– and its variant (sensitivity with LReLU) on a few targets (i.e., nm,
size, and djpeg) – demonstrated a distinct pattern of new edge 
discovery towards the end of the period. This behaviour suggests that 
the sensitivity analysis model is fine-tuning its exploration strategy 
over time, focusing on areas that had not been explored adequately in 
previous iterations. This phenomenon likely arises from the adjustment 
of fuzzing parameters or the identification of under-represented code 
regions that require specific, less obvious inputs to trigger new tran-
sitions. It is also possible that, during the later stages of fuzzing, the 
model is able to exploit specific patterns learned from previous inputs, 
resulting in more targeted exploration that unveils hidden code paths.

The behaviour observed in the sensitivity analysis model suggests 
that a conditional branch (e.g., an ‘‘if’’ statement) was executed dif-
ferently towards the end of the iterations, resulting in the discovery 
of a new code path. This shift in execution flow is likely due to the 
model’s ability to discover specific input values that alter the conditions 
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of these branches, causing them to take different paths that were 
previously unexecuted. As the fuzzing model gains more insight into the 
program’s control flow through sensitivity analysis, it becomes better 
at identifying the right conditions to trigger these unvisited branches, 
leading to the discovery of new edges.

Although sensitivity analysis did not outperform the LReLU model 
in edge coverage, even with the distinct behaviour of new edge discov-
ery, the outcome remains significant and provides meaningful insights 
for our research findings. The distinctive performance of sensitivity 
analysis, particularly its ability to uncover new edges in later iterations, 
highlights its potential as a complementary approach to traditional 
models like LReLU. While the LReLU model may cover a broad spec-
trum of edges more quickly, sensitivity analysis provides a more strate-
gic exploration that can uncover additional code paths in later stages 
of fuzzing, offering a deeper understanding of program behaviour.

5.5. Discovery of unique bugs

The baseline model demonstrates significantly lower bug detection 
across the evaluated tools, except for two targets: size and readelf, 
where LReLU and its variant incorporating Sensitivity analysis still rank 
closely behind. Across other targets, LReLU and its combined variants 
exhibit a strong capability for detecting unique bugs, achieving top 
ranks as follows: LReLU in its pure form identified 591 unique bugs 
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in the djpeg target, while its combination with Sensitivity analysis de-
tected 154 unique bugs in mutool. Additionally, when integrated with 
Nadam, LReLU identified 22 unique bugs in the nm target. Notably, 
LReLU, in conjunction with the baseline model, also outperformed 
other models on the size target. Meanwhile, Nadam consistently 
achieved a first-place ranking for mutool, a second-place ranking for
djpeg, and a third-place ranking for size, following LReLU combined 
with Sensitivity analysis.

In summary, LReLU demonstrates a positive impact on the identi-
fication of unique bugs, with Nadam also contributing significantly in 
the our findings.

5.6. Total executions and max dimension

In this section, we examine both Total Executions and Maximum 
Dimension. In terms of total executions, we found that a higher total 
number of executions can sometimes correlate with increased iterations 
and improved coverage; however, efficiency varies among different 
models. For instance, the Sensitivity model demonstrates effective bug 
detection with fewer total executions in specific tools, such as mutool
and nm. Additionally, regarding data dimension, LReLU, Nadam, and 
their hybrid model consistently yield reliable results in enhancing cov-
erage dimensions across nearly all targets. In contrast, the Sensitivity 
analysis and its variant achieve commendable but lower rankings across 
only four targets (i.e., djpeg, mutool, nm, and readelf), while still 
outperforming the baseline model overall.

5.7. Analysing the efficacy of lrelu and its variants compared to the baseline 
through the lens of game theory

The incorporation of LReLU activation layers significantly enhances 
fuzzing performance relative to the baseline ReLU function employed 
in MTFuzz, as well as in comparison to other recommended techniques 
discussed in this paper, such as sensitivity analysis. Models that utilise 
LReLU and its variant integrated with sensitivity analysis consistently 
achieve higher overall maximum accuracy, reduced loss rates, and im-
proved edge coverage across a range of evaluation tools. This suggests 
that LReLU is more effective in capturing nuanced patterns within the 
data, thereby leading to more successful fuzzing outcomes.

Furthermore, when evaluating the Nadam optimisation technique 
against the baseline Adam optimiser, Nadam exhibits a pronounced 
capacity to enhance edge coverage and unique bug detection in cer-
tain scenarios, which should not be overlooked. Notably, the perfor-
mance of Nadam is comparable to that of hybrid models, highlighting 
its potential as a robust alternative for optimising fuzzing perfor-
mance. Additionally, the implementation of post-training sensitivity 
analysis significantly influences the overall effectiveness of fuzzing 
outcomes. By fine-tuning model parameters and enhancing decision-
making processes, sensitivity analysis not only elevates accuracy but 
also substantially contributes to the efficiency of performance in some 
targets.

The performance of LReLU and its variants, including those with 
sensitivity analysis and Nadam, can indeed be interpreted through the 
lens of game theory, particularly in terms of strategy selection and 
equilibrium concepts.

In this framework, various activation functions and optimisation 
techniques, such as LReLU, sensitivity with LReLU, and sensitivity 
alone, can be conceptualised as competing strategies within a game-
theoretic context. Each strategy is designed to optimise a particular 
outcome as‘‘payoff’’. The ‘‘payoff’’ in this scenario can be interpreted as 
the model’s performance metrics, such as accuracy, loss, edge coverage, 
and unique bug detection. LReLU consistently achieves the highest 
performance across all metrics, making it the dominant strategy, as it 
yields the greatest payoff compared to the other strategies.

The performance hierarchy, based on maximum accuracy, indicates 
a potential equilibrium in the model prediction game, with LReLU 
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emerging as the top-performing strategy. This is followed by the combi-
nation of sensitivity and LReLU, which represents an equilibrium state 
for these methods. Lastly, sensitivity alone performs the weakest across 
nearly all targets among them. These techniques consistently outper-
form Nadam and its variant, which rank lower across all targets in 
terms of maximum accuracy. This indicates that methods such as LReLU 
and its variant with sensitivity are more effective across almost all 
target metrics, yielding the highest payoff as defined by Eq. (27). This 
can be mathematically expressed by comparing the partial derivatives 
of the payoff function   with respect to 𝜆, 𝜈, and 𝜎. If the value of 𝜆
consistently yields a higher payoff than the other strategies, LReLU can 
be considered a dominant strategy. Thus, based on our experimental 
findings, the following order represents the dominance strategy: 
𝜕
𝜕𝜆

> 𝜕
𝜕𝜎

> 𝜕
𝜕𝜈

(28)

This order suggests that once the models are trained using these 
techniques, they demonstrate varying levels of accuracy and reach a 
state of equilibrium within their variants, where transitioning to an 
alternative technique would not lead to significant improvements in 
results for the specific problem at hand and it aligns closely with the 
principles of adaptive strategies in game theory. It is because when 
considering the iterative training process of the models, it can be 
viewed as a dynamic game where strategies evolve in response to 
feedback (performance metrics) over time. The modifications facilitated 
by sensitivity analysis represent a form of strategic adaptation, enabling 
the model to enhance its performance in reaction to the results observed 
during the training phase.

In conclusion, analysing LReLU through game theory emphasises 
the strategic selection of methods and highlights the dynamics of 
optimal performance. While the baseline model is functional, there is 
considerable potential for improvement.

6. Future work

This study provides valuable insights into the integration of LReLU, 
Nadam, and sensitivity analysis for improving fuzzing techniques. How-
ever, our use of fixed hyperparameters – LReLU with an 𝛼 of 0.01 and 
Nadam with an 𝜂 of 0.001 – limits the scope of exploration. The impact 
of varying 𝛼 and 𝜂 values on performance remains underexplored, 
highlighting a key avenue for future research. Systematic hyperparam-
eter tuning, using methods like grid search, Bayesian optimisation, or 
reinforcement learning, could uncover a broader range of values and 
enhance both model performance and bug detection.

Furthermore, exploring alternative activation functions, such as 
Parametric Rectified Linear Unit (PReLU) [55], Randomised ReLU 
(RReLU), Gaussian Error Linear Units (GELUs), and Self-Normalising 
Neural Networks [56], is essential. These functions mitigate the issue of 
dead neurons in traditional ReLU-based activations by providing non-
zero gradients for negative inputs. Notably, PReLU and GELUs have 
shown promise in enhancing model performance by improving gradient 
flow, which is critical for fuzzing tasks requiring extensive path explo-
ration. These activation functions may enable more efficient gradient 
propagation, uncovering previously unexplored paths. A comparative 
analysis of their effects on gradient flow, network generalisation, and 
computational efficiency could provide valuable insights into their 
potential for advancing fuzzing techniques and addressing challenges 
related to gradient propagation and model convergence.

Furthermore, Our study encountered hardware limitations that re-
stricted the expansion of testing to additional scenarios, such as the 
use of LSTM networks or Transformer models. LSTMs are effective 
at handling sequential data and maintaining context over time, while 
Transformers, with their self-attention mechanisms, excel in capturing 
long-range dependencies. These features could enhance fuzzing tasks, 
particularly when dealing with time-dependent or sequence-sensitive 
inputs, enabling better coverage and more efficient exploration of 
fuzzing paths. Integrating LSTM or Transformer models may offer 
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a promising approach to improving fuzzing architectures by better 
contextualising temporal inputs and identifying greater path diversity.

Future work should aim to overcome these constraints, enabling 
the evaluation of a broader range of targets and configurations. This 
would provide valuable insights into the applicability and robustness 
of our findings across diverse contexts. By addressing these areas, 
future research could enhance the understanding and implementation 
of effective fuzzing methodologies, particularly regarding activation 
layers, optimisers, and sensitivity analysis. Ultimately, such efforts 
would contribute to more robust bug detection and improve software 
testing practices.

7. Conclusion

This paper investigates the integration of LReLU, Nadam, and sen-
sitivity analysis to enhance fuzzing for accuracy rate, loss rate, edge 
coverage, and bug detection. Our findings reveal that LReLU, especially 
when combined with sensitivity analysis, significantly enhances detec-
tion efficiency, with performance improvements varying depending on 
the targeted bugs.

LReLU enhances classification and regression performance by pre-
venting neuron inactivity and allowing small negative activations to 
contribute to feature extraction. This improves edge/context sensitivity, 
making LReLU a superior alternative to ReLU. In classification, it boosts 
gradient propagation and stability, while in regression, it mitigates 
vanishing gradients, resulting in smoother loss landscapes and better 
convergence. When paired with sensitivity analysis, LReLU ensures 
consistent gradient flow across both positive and negative regions, 
optimising learning by focusing on layers with higher sensitivity. This 
approach strengthens model resilience, especially against adversarial 
challenges.

Nadam demonstrates rapid convergence, particularly in adversarial 
sample generation tasks. However, its momentum update strategy can 
occasionally lead to fluctuations, which may limit its effectiveness 
for certain targets. While Nadam is an excellent choice for tasks that 
demand fast convergence, Adam remains a dependable alternative for 
applications where stable and predictable performance is essential.

The adaptive learning stage, guided by sensitivity analysis, priori-
tised fuzzing test cases based on the magnitudes of their gradients. 
By using backpropagation to minimise a multi-task loss function, task 
weights were dynamically adjusted according to their relative impor-
tance, enhancing the efficiency and effectiveness of the fuzz testing 
process. This framework offers valuable insights into the strategic 
selection of methods, emphasising the competitive dynamics that im-
pact model performance. Understanding these dynamics will enable 
future research to better adapt the proposed techniques and optimise 
outcomes.

This study highlights significant advancements in fuzzing tech-
niques while acknowledging the limitations of these approaches. The 
performance of LReLU is sensitive to hyperparameter choices, neces-
sitating further tuning to ensure consistent results across tasks. We 
recommend exploring hyperparameter optimisation strategies, such as 
grid search or Bayesian optimisation, to enhance LReLU’s stability. 
Although Nadam accelerates convergence, its susceptibility to fluctu-
ations may limit its applicability in certain contexts. Future research 
could focus on developing hybrid models that combine Nadam with 
other optimisers to address momentum-related fluctuations or refining 
its momentum update strategy for improved stability across tasks.

Ultimately, this research provides a strategic framework for improv-
ing bug detection and software testing, highlighting the importance of 
ongoing exploration in these methodologies. Future work should focus 
on overcoming existing limitations and refining these techniques to 
boost their performance across a wider array of tasks, ensuring their 
effectiveness in real-world applications.
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