
Computer Standards & Interfaces 94 (2025) 104011

A
0
n

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Leveraging activation and optimisation layers as dynamic strategies in the

multi-task fuzzing scheme
Sadegh Bamohabbat Chafjiri ∗, Phil Legg , Michail-Antisthenis Tsompanas , Jun Hong
Computer Science Research Centre, University of the West of England, Bristol, UK

A R T I C L E I N F O

Keywords:
Fuzzing
Neural network
LReLU
Nadam optimisation
Sensitivity analysis

 A B S T R A C T

Fuzzing is a common technique for identifying vulnerabilities in software. Recent approaches, like She et al.’s
Multi-Task Fuzzing (MTFuzz), use neural networks to improve fuzzing efficiency. However, key elements like
network architecture and hyperparameter tuning are still not well-explored. Factors like activation layers,
optimisation function design, and vanishing gradient strategies can significantly impact fuzzing results by
improving test case selection. This paper delves into these aspects to improve neural network-driven fuzz
testing.

We focus on three key neural network parameters to improve fuzz testing: the Leaky Rectified Linear Unit
(LReLU) activation, Nesterov-accelerated Adaptive Moment Estimation (Nadam) optimisation, and sensitivity
analysis. LReLU adds non-linearity, aiding feature extraction, while Nadam helps to improve weight updates
by considering both current and future gradient directions. Sensitivity analysis optimises layer selection for
gradient calculation, enhancing fuzzing efficiency.

Based on these insights, we propose LMTFuzz, a novel fuzzing scheme optimised for these Machine Learning
(ML) strategies. We explore the individual and combined effects of LReLU, Nadam, and sensitivity analysis, as
well as their hybrid configurations, across six different software targets. Experimental results demonstrate that
LReLU, individually or when paired with sensitivity analysis, significantly enhances fuzz testing performance.
However, when combined with Nadam, LReLU shows improvement on some targets, though less pronounced
than its combination with sensitivity analysis. This combination improves accuracy, reduces loss, and increases
edge coverage, with improvements of up to 23.8%. Furthermore, it leads to a significant increase in unique
bug detection, with some targets detecting up to 2.66 times more bugs than baseline methods.
1. Introduction

Fuzzing has emerged as a powerful automated software testing
technique, playing a critical role in identifying vulnerabilities and
enhancing software robustness. It systematically subjects programs to
dynamically generated inputs, uncovering flaws that could otherwise
remain undetected [1,2].

Initially conceived as random input generation, fuzzing has since
evolved into a sophisticated approach [3–7], leveraging structured [8–
10] and feedback-driven methodologies [11,12] to improve test case
generation efficiency. More recently, the integration of ML techniques
[13] has further transformed fuzzing by enabling adaptive input gener-
ation, enhancing test case prioritisation, and optimising bug detection
strategies [14,15,15–20] through better bug classification and auto-
mated bug analysis [21–25]. It has also advanced data flow interpre-
tation, program property prediction, and guided mutation strategies,
addressing ambiguity in defect identification [26–29].

∗ Corresponding author.
E-mail address: sadegh.bamohabbatchafjiri@uwe.ac.uk (S. Bamohabbat Chafjiri).

Despite these advancements, significant challenges remain in en-
hancing the efficacy of ML-based fuzzing. Key areas such as activation
functions, optimisation strategies, and post-training sensitivity anal-
ysis have not been sufficiently explored in the context of fuzzing,
limiting potential gains in performance and vulnerability detection.
This paper introduces LMTFuzz, an enhanced ML-driven fuzzing frame-
work, which addresses these challenges by integrating advanced ac-
tivation functions, optimisation algorithms, and sensitivity analysis in
MTFuzz [30].

Specifically, we replace the standard ReLU [31] with Leaky ReLU
(LReLU) [31] to mitigate the ‘‘dying ReLU’’ problem, and adopt the
Nadam [32,33] optimiser in place of Adam to improve training stabil-
ity and convergence speed. Additionally, we incorporate post-training
sensitivity analysis to prioritise fuzzing test cases based on their gra-
dient magnitudes [34]. Through these innovations, we aim to im-
prove fuzzing performance, particularly in seed selection, vulnerability
discovery, and overall fuzzing efficiency.
https://doi.org/10.1016/j.csi.2025.104011
Received 10 October 2024; Received in revised form 14 March 2025; Accepted 31
vailable online 12 April 2025
920-5489/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
March 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/csi
https://www.elsevier.com/locate/csi
https://orcid.org/0000-0003-2110-0185
https://orcid.org/0000-0003-3460-5609
https://orcid.org/0000-0002-6607-7831
mailto:sadegh.bamohabbatchafjiri@uwe.ac.uk
https://doi.org/10.1016/j.csi.2025.104011
https://doi.org/10.1016/j.csi.2025.104011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
This research addresses the following questions:

• How does the use of LReLU activation layers affect fuzzing per-
formance in comparison to the baseline ReLU function employed
in MTFuzz?

• What are the comparative effects of the Nadam optimisation tech-
nique versus the baseline Adam optimiser on enhancing fuzzing
performance?

• To what extent does post-training sensitivity analysis influence
the overall effectiveness of fuzzing outcomes?

To find answers to the questions posed above, this paper contributes
to the field in the following key ways:

• First, we investigate the role of activation functions by analysing
LReLU as an alternative to MTFuzz’s standard ReLU. LReLU’s
allowance for small negative gradients in inactive units could im-
prove gradient flow, mitigate dead neurons, and enhance model
expressiveness in fuzzing applications. Given the iterative na-
ture of fuzzing, better gradient flow could lead to improved
convergence rates and deeper code coverage.

• Second, we examine Nadam as an alternative optimiser to Adam,
examining the effect of Nadam’s combination of Nesterov mo-
mentum and adaptive moment estimation could improve training
stability and convergence speed in fuzzing models. While Adam
has been widely used, Nadam’s potential benefits, especially in
the context of fuzzing, remain underexplored.

• Finally, we incorporate post-training sensitivity analysis to quan-
tify the impact of different network layers on test case generation
efficiency. By ranking input features based on their gradient mag-
nitudes, this analysis could provide insights into how ML models
prioritise fuzzing paths, ultimately leading to a more effective test
case selection strategy.

These enhancements are designed to optimise ML-driven fuzzing by
refining seed selection, enhancing vulnerability detection, and improv-
ing overall fuzzing efficiency through the introduction of a novel activa-
tion layer and a new optimiser, along with the proposal of a new sen-
sitivity analysis—an element that MTFuzz currently lacks. While MT-
Fuzz outperforms fuzzers like Neuzz [35], Angora [36], FairFuzz [37],
AFL [38], and AFLFast [39], it still has limitations, such as inefficient
seed selection and underutilised ML-driven optimisations. LMTFuzz
addresses these deficiencies by optimising ML-driven approaches, offer-
ing notable improvements. We evaluate LMTFuzz through experiments
comparing it exclusively to MTFuzz, which, due to its demonstrated
superiority, serves as a strong baseline. Our comparison focuses on code
coverage, vulnerability detection, and operational efficiency, advancing
the integration of ML techniques in fuzzing for more effective software
testing.

The structure of the paper is as follows: Section 2 provides the
necessary background and related work to contextualise our study.
Section 3 outlines the adopted methodology and experimental frame-
work. Section 4 provides a detailed overview of the experimental
setup, including hyperparameter tuning, the testing environment, and
introduces the fuzzing targets. Section 5 presents observations based
on the collected results and provides an in-depth evaluation of these
findings. Section 6 explores potential avenues for future research, while
Section 7 concludes with a summary of key insights and contributions.

2. Related work

To address the challenges in software security [40,41] and oppor-
tunities highlighted in Section 1, it is essential to examine the existing
body of work that integrates optimisation strategies, neural network
architectures, and fuzzing methodologies. The literature provides a
comprehensive foundation on the application of Stochastic Gradient
Descent (SGD) and its variants in deep neural networks (DNNs) and
2
reinforcement learning (RL), both of which have demonstrated signifi-
cant potential in advancing fuzzing techniques and improving software
security.

In the context of DNNs, SGD has been a fundamental approach
for model optimisation, widely applied in fuzzing tasks. For example,
Grieco et al. introduced VDiscover, a system that utilises SGD to com-
bine static and dynamic features with ML techniques such as random
oversampling to detect memory corruptions in operating systems [42].

Additionally, GANFuzz integrated Generative Adversarial Networks
(GANs) with Long Short-Term Memory (LSTM) networks and the policy
gradient method to assess industrial network protocols, employing SGD
with dropout and L2 regularisation techniques [43].

In another application, DeepSmith [44] leveraged standard SGD
over 50 epochs with a learning rate schedule that decayed by 5% per
epoch, ensuring stable training. The system used forget gates and voting
heuristics for differential testing during compiler validation.

Beyond classical optimisation, gradient-based techniques have
emerged as effective tools in guiding fuzzing processes. For instance,
GradFuzz [45] introduced gradient vector coverage as a novel coverage
metric to guide fuzzers towards crash-inducing paths in DNN-based
fuzzing, using gradients to prioritise testing efforts.

Another approach involved guiding gradients smoothly using non-
linear techniques such as sigmoid, Softmax, and tanh functions. NEUZZ
[35] extended this concept by employing gradient-guided input genera-
tion and program smoothing techniques like Gaussian and sigmoid (for
the output layer), improving fuzzers’ ability to efficiently explore more
program states.

Recent advances have also explored the integration of SGD within
reinforcement learning (RL)-based fuzzing approaches. Patil and Kanade
[46] adapted AFL’s heuristics into a contextual bandit framework,
framing the fuzzing process as a reinforcement learning problem. This
allowed dynamic adjustments of fuzzing iterations using the policy
gradient method with nonlinear functions (tanh and Softmax), im-
proving test case generation efficiency based on real-time feedback.
Similarly, AgentFuzz [47] combined gradient-based optimisation with
a DRL framework to mutate seeds in a deep learning model, identifying
potentially vulnerable areas more efficiently. This was achieved by
using gradient-based adversarial attack methods to generate diverse
test cases capable of inducing larger loss values, thereby revealing
system failures faster. PreFuzz [48] further enhanced gradient guidance
and mutation effectiveness by introducing an efficient edge selection
mechanism, reducing computational overhead and improving fuzzing
outcomes.

Despite the success of SGD in these applications, challenges such as
sensitivity to learning rate selection and vulnerability to local minima
remain. To address these issues, advanced variants of SGD, such as
Adam, have been proposed. These optimisers introduce adaptive learn-
ing rates and momentum terms, which help prevent overshooting dur-
ing optimisation and provide resilience against noisy gradients, making
them well-suited for complex fuzzing tasks where the underlying search
space is highly dynamic.

Nichols et al. employed GANs alongside AFL for seed file initial-
isation in their ‘‘Faster Fuzzing’’ framework, using the binary cross-
entropy loss function and training the model with ReLU as the inner
activation layer, tanh as the output activation layer, and the Adam
optimiser [49].

In V-Fuzz, Li et al. utilised SGD and its variant, the Adam optimi-
sation algorithm, for both training and pretraining tasks in the context
of vulnerability-oriented prediction, leveraging attributed control flow
graphs [50]. In this approach, the tanh and sigmoid functions were
employed as nonlinear activation functions, while ReLU served as the
rectified linear unit. These methods minimised the cross-entropy loss
function, with Adam providing adaptive learning rates and momentum
to improve convergence and performance during pretraining. Together,
SGD and Adam ensured efficient iterative optimisation of the model
parameters throughout the training process.

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Jeon and Moon’s ‘‘Dr. PathFinder’’ [51] integrated DRL techniques
with fuzzing by employing an RL agent to evaluate branch states during
concolic execution, using the Adam optimiser. This approach priori-
tised the exploration of ‘‘deep’’ execution paths over ‘‘shallow’’ ones,
reducing unnecessary exploration and enhancing memory efficiency.

A notable example of such integration is MTFuzz, proposed by
She et al. [30], which is recognised as one of the most recent and
effective machine learning (ML)-based fuzzing schemes. It utilises a
multi-task neural network model with sigmoid activation and the Adam
optimiser to guide the fuzzing mutation process. MTFuzz employs
‘‘hard parameter sharing’’ across multiple tasks, such as edge coverage,
approach-sensitive edge coverage, and context-sensitive edge coverage.
The loss functions are tailored to each task to maximise the overall
effectiveness of the fuzzing process.

Despite the widespread adoption of ReLU and Adam in these ap-
plications, the literature reveals a notable lack of exploration into
alternative activation functions and optimisation techniques. For in-
stance, the LReLU activation function, which mitigates the ‘‘dying
ReLU’’ problem by allowing a small, non-zero gradient for negative
inputs, has seen limited application in the fuzzing domain, despite
its potential to enhance model performance. Similarly, while Adam is
commonly employed due to its adaptive learning rate and momentum,
its more advanced variant, Nadam – which incorporates Nesterov mo-
mentum – remains underutilised in fuzzing-related research. This gap
highlights a valuable opportunity for further investigation into how
LReLU and Nadam could improve fuzzing effectiveness, particularly in
scenarios involving complex neural network architectures or dynamic
search spaces. Moreover, the sensitivity analysis of gradient calcu-
lations across different layers remains an underexplored area in the
existing literature. These gaps underscore the potential for advancing
the state of the art, providing a strong foundation for the present
study to contribute meaningful insights into activation functions and
optimisation strategies that can enhance fuzzing techniques.

3. Methodology

This research adopts a structured methodology to assess the impact
of activation functions, optimisation techniques, and sensitivity analy-
sis on the performance of a Multi-Task Neural Network (MTNN) fuzzing
scheme. Our approach focuses on three primary components, each cor-
responding to a specific research question. Moreover, it investigates the
collective influence of these techniques on overall fuzzing performance,
particularly concerning edge coverage within a defined time constraint.

3.1. Understanding the baseline model

MTFuzz framework utilises an MTNN integrated with a ‘‘hard pa-
rameter sharing’’ approach, employing three distinct methodologies:

• ‘‘Edge Coverage’’
• ‘‘Approach-sensitive Edge Coverage’’
• ‘‘Context-sensitive Edge Coverage’’
Approach-sensitive edge coverage evaluates the proximity of unex-

plored edges using a numerical scale from 0 to 1, allowing for efficient
modifications of input data to target these edges.

Context-sensitive edge coverage identifies the call context of explored
edges, providing insights into the program’s internal states and enhanc-
ing the differentiation of inputs activating the same edge from distinct
contexts.

MTFuzz employs a compact embedding technique to capture critical
input features while minimising bitmap size. This approach reduces
edge explosion and enhances performance via transfer learning, en-
abling effective sharing of representations across parsers for XML and
ELF binaries.

Among these methodologies, both edge coverage and context-
sensitive edge coverage are framed as classification tasks, whereas
3
approach-sensitive edge coverage is structured as a regression task.
Consequently, the loss functions for each methodology are tailored to
their specific task requirements.

The architecture of the MTNN includes shared initial layers and
task-specific output layers, allowing for a unified feature representa-
tion. Its overall loss function is a weighted combination of task-specific
losses.
Algorithm 1 Logical Inconsistency in MTFuzz ‘‘if’’ statement for Rare
Edge Selection
1: Input: round_cnt, label (shape: [𝑚, 𝑛]), seed (shape: [𝑝]), edge_num
2: Output: interested_indices, rand_seed1, weighted
3: if

(

round_cnt
2

mod 2
)

= 3 then
4: 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← random choice from range(𝑙𝑎𝑏𝑒𝑙.𝑠ℎ𝑎𝑝𝑒[1], 𝑒𝑑𝑔𝑒_𝑛𝑢𝑚,

replace=True)
5: 𝑟𝑎𝑛𝑑_𝑠𝑒𝑒𝑑1 ← random choice from range(𝑠𝑒𝑒𝑑.𝑠ℎ𝑎𝑝𝑒[0], 𝑒𝑑𝑔𝑒_𝑛𝑢𝑚,

replace=True)
6: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ← False
7: end if
8: Return: interested_indices, rand_seed1, weighted
This model uses supervised learning with backpropagation to min-

imise a multi-task loss function, with task weights adjusted based on
significance. Training parameters, such as epochs, optimiser choice,
learning rate, and hyperparameters, follow the baseline model, which
is optimised for performance, except for a correction to the MTFuzz
code.

We identified an issue in the Github repository for the MTFuzz
project (specifically concerning the nn.py code file) [52] that we docu-
ment here. Algorithm 1 illustrates whether to use rare edge selection in
the original code of MTFuzz. There is a logical inconsistency within the
‘‘if’’ statement. Specifically, the expression if (int(round_cnt/2)
% 2) == 3, where round_cnt serves as the iteration counter, is
logically flawed. The modulus operation %2 only yields results of either
0 or 1, making it impossible for the expression to evaluate to 3. To
correct this, we modified the condition in our experiments to: if
(int(round_cnt/2) % 2) == 1.

For completeness, we performed a comparative analysis between
the original and modified statements to evaluate the fuzzing perfor-
mance, with readelf serving as the software target. Whilst both
approaches achieved similar edge coverage in our testing, we chose
to conduct our further experimentation with the corrected code if
(int(round_cnt/2) % 2) == 1 to ensure a robust approach to our
testing methodology.

3.2. Our proposed solution

Fig. 1 illustrates the overall workflow of the proposed approach.
While the initial phase, which involves training the multitask feed-
forward neural network, closely follows the method used in MTFuzz,
our approach introduces a new technique for training the network to
generate sparse test cases. These test cases are designed to focus on
parts of the input data that, when altered, have the potential to trigger
different branches or execution paths in the software—i.e., the input
bytes most likely to affect code coverage. This approach is referred to as
Leveraged MTFuzz (LMTFuzz), emphasising the use of activation layers
and preventing the issue of dying nodes through LeakyReLU, a method
specifically intended to address this challenge.

In the following sections, we present the mathematical foundations
of our approach and each solution, emphasising their direct impact as
observed in both individual and combined testing.

3.3. LReLU vs. ReLU activation functions

The activation functions ReLU and LReLU are essential for incor-
porating non-linearity into neural networks, enabling them to capture
intricate relationships within data. ReLU is frequently favoured due

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Fig. 1. Workflow of LMTFuzz.

to its ability to streamline gradient calculations, enhance training ef-
ficiency, and yield favourable results across various applications. The
ReLU activation function [53,54] is defined as:
𝑓 (𝑥) = max(0, 𝑥) (1)

In ReLU, the output is 0 for negative inputs and equal to the input
for positive inputs. This can cause the ‘‘dying ReLU’’ problem, where
neurons become inactive when the input is negative or updates lead
the neuron to remain in the negative regime, resulting in:
𝜕𝑓 (𝑥)
𝜕𝑥

= 0, for 𝑥 < 0 (2)

This prevents neurons from updating during backpropagation; specifi-
cally, neurons with negative pre-activation (𝑥 < 0) do not contribute to
gradient updates, resulting in a sparse gradient flow. This can hinder
model training, particularly when features associated with negative
activations are important. In contrast, LReLU [31] addresses this limi-
tation by permitting a small, non-zero gradient for negative inputs. The
LReLU activation function introduces a small slope for negative inputs
to alleviate this issue:

𝑓 (𝑥) =

{

𝑥, if 𝑥 > 0
𝛼𝑥, if 𝑥 ≤ 0

(3)

where 𝛼 is a small positive constant. For LReLU, the gradient is:
𝜕𝑓 (𝑥)
𝜕𝑥

=

{

1, if 𝑥 > 0
𝛼, if 𝑥 ≤ 0

(4)

Analysing the differences between LReLU and ReLU is key to iden-
tifying which enhances model performance in terms of convergence,
stability, and accuracy. LReLU plays a critical role in both classification
and regression tasks, as discussed in the following subsections.

3.3.1. Classification loss and LReLU
Classification tasks in MTFuzz, uses binary cross-entropy loss. For

binary classification, the loss is defined as:
BCE = −

∑

𝑖
𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖) (5)

where 𝑦𝑖 is the true label, and 𝑦̂𝑖 is the predicted probability from the
sigmoid output.

Gradient Analysis for Classification: For a classification network
with LReLU activations, the gradient of the loss BCE with respect to
an intermediate LReLU activation 𝑥 is:
𝜕BCE
𝜕𝑥

=
𝜕BCE
𝜕𝑓 (𝑥)

⋅
𝜕𝑓 (𝑥)
𝜕𝑥

(6)

Therefore, unlike ReLU, LReLU allows gradients to propagate through
inactive neurons by maintaining a small but nonzero derivative (𝜕𝑓 (𝑥)𝜕𝑥 =
𝛼 for 𝑥 < 0). This prevents vanishing updates, ensuring continuous
feature learning and mitigating the ‘‘dead neuron’’ problem. By preserv-
ing gradient flow, LReLU enhances convergence stability and enables
the network to extract meaningful features even from negative inputs,
improving edge- and context-sensitive representations.
4
3.3.2. Regression loss and LReLU
For regression tasks, a common loss function is Mean Squared Error

(MSE):

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (7)

where 𝑦𝑖 is the true value and 𝑦̂𝑖 is the predicted output. If a neu-
ron enters the negative regime (i.e., 𝑥 < 0), the gradient is zero
(𝜕𝑓 (𝑥)𝜕𝑥 = 0), which means no weight updates will occur. This leads
to slower learning, especially in tasks like approach-sensitive coverage,
where negative activations can carry valuable information. In contrast,
the small negative slope (𝛼) in LReLU ensures that even for negative
values of 𝑥, the neuron will still contribute to the gradient, improving
the smoothness of the loss landscape and accelerating convergence.

Gradient Analysis for Regression: The gradient of the MSE loss
with respect to an LReLU activation 𝑥 is:
𝜕MSE
𝜕𝑥

= 2(𝑦 − 𝑦̂) ⋅
𝜕𝑓 (𝑥)
𝜕𝑥

(8)

For negative 𝑥, the gradient is scaled by 𝛼, ensuring that the model
receives stable weight updates even for inactive neurons. This leads to
more reliable learning and better approach-sensitive coverage, where
even neurons that are ‘‘inactive’’ during certain phases of training
still contribute meaningfully to the model’s updates. Therefore, from
a loss function perspective, LReLU plays a significant role in both
classification and regression tasks.

3.4. Nadam vs. Adam optimiser

The Adam optimiser is widely acknowledged for its adaptive learn-
ing rate, which combines the strengths of Root Mean Square Propaga-
tion (RMSProp) and SGD with momentum, thereby facilitating faster
convergence. In contrast, the inclusion of Nesterov momentum intro-
duces a subtle anticipation of gradient updates, which can further
optimise performance. While Adam’s adaptive learning rate and inte-
gration of RMSProp with SGD momentum allow for faster convergence
compared to SGD, Nadam further enhances these capabilities by incor-
porating Nesterov momentum. Research by Dozat [32] demonstrates
that Nadam outperforms Adam in terms of both accuracy and loss
reduction during training, positioning it as a promising alternative in
some applications beyond fuzzing. In the following subsections, we
explore the mathematical foundation of Nadam to assess whether it
may improve fuzzing performance.

1. Gradient Computation (this stage remains the same as in
Adam): The initial phase involves calculating the gradient of the loss
function with respect to the model parameters, a vital process that is
also utilised in the Adam optimisation algorithm.
𝑔 = ∇ 𝐽 (𝜃) (9)
𝑡 𝜃 𝑡 𝑡

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
where 𝑔𝑡 is the gradient of the loss function 𝐽𝑡 with respect to the
parameters 𝜃𝑡 at time step 𝑡, with respect to the shared parameters 𝜃.
The combined gradient for the shared layers is then computed by ag-
gregating the per-task gradients, optionally weighted by a task-specific
importance factor 𝑤𝑡:

𝑔shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑔𝑡 (10)

where 𝑇 is the total number of tasks and 𝑤𝑡 represents a task-specific
weighting factor.

2. Nesterov-accelerated First Moment based on Exponential
Moving Averages of the Gradient: To enhance momentum and ac-
celerate convergence, Nadam applies Nesterov acceleration to the first
moment estimate. The key distinction between Adam and Nadam lies
in how the first moment (momentum) is computed. In Adam, the
momentum term is updated using a conventional exponential moving
average of gradients, given by:
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (11)

where 𝛽1 represents the decay rate for the first moment, commonly
referred to as momentum, and is typically set close to 1 (e.g., 0.9). In
the case of shared layers, the first moment can be aggregated using a
weighted sum:

𝑚shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑚𝑡 (12)

However, Nadam introduces Nesterov acceleration by incorporating a
lookahead mechanism, modifying the first moment estimate as
follows:

𝑚̂𝑡 =
𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡

1 − 𝛽𝑡1
(13)

For shared layers, the corrected first moment is aggregated as:

𝑚̂shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑚̂𝑡 (14)

This formulation anticipates future updates by integrating the gradient
into the momentum component, improving convergence.

3. Second Moment (this stage remains the same as in Adam):
The second moment, which quantifies the variance of gradients, is
computed similarly to Adam’s approach:
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (15)

where 𝛽2 is the decay rate associated with the second moment, a
component inherited from the RMSProp algorithm, typically set to
around 0.999. For shared layers, the second moment can be aggregated
across tasks as:

𝑣shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑣𝑡 (16)

4. Bias Correction: In the early stages of Adam optimisation, the
moving averages of the gradients tend to be biased towards zero due
to their initialisation at zero. This bias can distort the estimates of the
first and second moments, particularly during the initial time steps. To
mitigate this bias, Adam employs bias-correction formulas to provide
more accurate estimates. The bias-corrected estimates for the first and
second moments are given by:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
(17)

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
(18)

These formulas correct the estimates of the first moment (𝑚𝑡) and
second moment (𝑣𝑡) by adjusting for the bias introduced by their initial
values, particularly during the early time steps. In the case of Nadam,
5
the bias correction is similarly applied to the second moment for shared
layers as follows:

𝑣̂shared =
𝑇
∑

𝑡=1
𝑤𝑡 ⋅ 𝑣̂𝑡 (19)

This formulation helps improve the accuracy of the parameter updates
by compensating for the early bias in the second moment estimate. The
bias correction ensures that the optimisation process remains stable and
efficient throughout training.

5. Parameter Update: The parameter update equation in Nadam
follows a similar structure to Adam but with adjustments to the first
moment. The update equation is:
𝜃𝑡+1 = 𝜃𝑡 −

𝜂
√

𝑣̂𝑡 + 𝜖
𝑚̂𝑡 = 𝜃𝑡 −

𝜂
√

𝑣̂shared + 𝜖
𝑚̂shared (20)

where 𝜂 is the learning rate and 𝜖 is a small constant for numerical
stability. Nadam improves convergence by incorporating a look-ahead
gradient calculation. The key difference from Adam lies in the update
method for the momentum term. By integrating gradients and momen-
tum across tasks, Nadam optimises shared layers in multi-task learning,
offering faster convergence and computational efficiency for complex
targets.

3.5. Optimal layer selection through sensitivity analysis in the multiple tasks
environment

Sensitivity analysis is a valuable technique for identifying the layers
in a neural network that most influence output variations. This method
plays a crucial role in optimising the selection of layers for gradient
calculations, which are important for tasks like backpropagation and
saliency mapping. By focusing on key layers, it reduces computational
overhead and improves model interpretability. The goal is to fine-tune
the most influential parameters, enhancing overall model performance
and ensuring more targeted gradient updates. This process helps ad-
just gradient propagation based on layer sensitivity, leading to better
training dynamics and enhanced model robustness. The following sub-
sections outline the key steps of the methodology: a formal definition
of layer sensitivity based on gradient magnitudes, a mathematical
relationship between sensitivity scores and task performance, gradient
aggregation across multiple tasks, a theoretical formulation of the
impact of sensitivity analysis on gradient flow during training, and
fuzzing behaviour.

3.5.1. Formal definition of layer sensitivity
Layer sensitivity can be formally defined as the gradient of the

model’s loss with respect to the output of a particular layer, which
measures the responsiveness of that layer to small perturbations in the
input. Mathematically, the sensitivity 𝑆𝑙 of a layer 𝑙 can be expressed
as:

𝑆𝑙 = mean
(

|

|

|

|

𝜕
𝜕𝐎𝑙

|

|

|

|

)

(21)

where  is the loss function, and 𝐎𝑙 represents the output of layer 𝑙.
This sensitivity score quantifies how much the output of a layer changes
with respect to changes in the model’s input, providing a measure of
the layer’s importance in the model’s decision-making process.

3.5.2. Sensitivity scores and task-specific performance
To align sensitivity analysis with task-specific performance, we

propose a relationship between the sensitivity scores and the model’s
performance on a given task. This relationship helps in adjusting the
learning process such that more sensitive layers have a greater impact
on optimising the model for the task at hand. The task-specific per-
formance  can be related to the sensitivity scores by the weighted
sum:

 =
𝑛
∑

𝑤𝑙 ⋅ 𝑆𝑙 (22)

𝑙=1

S. Bamohabbat Chafjiri et al.

s

Computer Standards & Interfaces 94 (2025) 104011
where 𝑤𝑙 is a task-specific weight that reflects the importance of layer
𝑙 for a particular task, and 𝑆𝑙 is the sensitivity score of that layer.
This relationship ensures that layers with higher sensitivity scores
contribute more to the overall performance, directly influencing the
model’s optimisation process in a way that reflects task-specific needs.

3.5.3. Gradient aggregation over multiple tasks
In multi-task learning scenarios, it is essential to aggregate gradients

across tasks while maintaining the influence of sensitivity scores. To
achieve this, we aggregate gradients across layers by computing the
gradient of the loss with respect to the model’s parameters, taking
into account both task-specific weights and layer sensitivities. The
aggregated gradient ∇𝑊 𝑙

agg for each layer 𝑙 is given by:

∇𝑊 𝑙
agg =

𝑇
∑

𝑡=1
𝑤𝑙

𝑡 ⋅ ∇𝑊
𝑙
𝑡 (23)

where 𝑇 is the number of tasks, 𝑤𝑙
𝑡 is the task-specific weight for

layer 𝑙 under task 𝑡, and ∇𝑊 𝑙
𝑡 is the gradient of the loss with respect

to the weights of layer 𝑙 for task 𝑡. This formulation ensures that
gradients from all tasks are weighted according to their relevance and
the sensitivity of each layer, allowing for efficient multi-task learning.

3.5.4. Impact on gradient flow during training
The incorporation of sensitivity analysis into the gradient flow

modifies the backpropagation process by prioritising layers with higher
sensitivity scores. This prioritisation affects the weight updates, where
the update for the weights 𝑊 𝑙 of layer 𝑙 is adjusted by a factor
proportional to its sensitivity:

𝛥𝑊 𝑙 = −𝜂 ⋅ 𝑆𝑙 ⋅ ∇𝑊 𝑙 (24)

Here, 𝜂 is the learning rate, and ∇𝑊 𝑙 is the gradient of the loss
function with respect to the weights of layer 𝑙. The term 𝑆𝑙 acts as a
scaling factor that controls the magnitude of the update for layers with
higher sensitivity, ensuring that these layers have a greater influence
on the optimisation process. This modification to the gradient flow
encourages faster convergence in sensitive layers and enhances the
overall stability of the training process.

3.5.5. Sensitivity scores and fuzzing behaviour
Fuzzing behaviour refers to the process of generating adversarial

perturbations to test the robustness of the model. Sensitivity analysis
plays a crucial role in this process by identifying layers that are more
sensitive to small changes in input, which are most susceptible to adver-
sarial manipulation. To generate adversarial examples, we compute the
gradients of the loss with respect to the model’s input data, taking into
account the sensitivity of each layer. The total gradient ∇ is computed
as:

total_grads =
𝑛
∑

𝑙=1
𝑆𝑙 ⋅ ∇𝑊 𝑙 (25)

This aggregated gradient reflects the combined influence of each layer’s
sensitivity on the overall model. The adversarial perturbations are then
generated by manipulating the input data in the direction of the most
influential gradients, which are determined by the sensitivity scores.
Layers with higher sensitivity scores are more likely to contribute
significantly to the adversarial perturbations, resulting in more targeted
and effective attacks. This relationship between sensitivity and fuzzing
behaviour allows for more efficient adversarial training and model
robustness evaluation.
6
3.5.6. Task-specific weighting of gradients based on sensitivity
Finally, in a framework that incorporates sensitivity analysis, task-

specific weighting of gradients is necessary to prioritise layers that are
more relevant to specific tasks. The weight for each layer 𝑙 under task
𝑡 is determined by the sensitivity score:

𝑤𝑙
𝑡 =

𝑆𝑙
𝑡

∑

𝑙′ 𝑆
𝑙′
𝑡

(26)

This ensures that layers with higher sensitivity scores, which are more
influential for the task at hand, will contribute more to the gradient
updates during training. By assigning appropriate task-specific weights,
the model can be optimised more effectively for each task, while still
ensuring that sensitive layers are prioritised across the entire training
process.
Algorithm 2 Sensitivity Analysis Algorithm
1: Input: model, input_data
2: Output: sensitivity_scores
3: sensitivity_scores = {}
4: for each layer in model.layers do
5: if layer has output then
6: layer_name = layer.name
7: layer_output_func = create function to compute the output of layer
8: layer_output = layer_output_func(input_data)
9: sensitivity_score = mean of absolute values of layer_output
10: sensitivity_scores[layer_name] = sensitivity_score
11: end if
12: end for
13: Return: sensitivity_scores

3.5.7. Algorithmic representation of sensitivity analysis and adversarial
attack generation

To formalise this process algorithmically, the sensitivity_
analysis presented in Algorithm 2 computes sensitivity scores for
each layer in a neural network model, offering a measure of how each
layer’s output responds to variations in the input data through the
following phases:

1. Start: Begin the process of layer analysis.
2. Aggregate Gradients from Multiple Layers: Collect gradient
information from different layers to get a comprehensive view
of their contributions.

3. Analyse Intermediate Layers: Examine how intermediate lay-
ers contribute to the network’s predictions.

4. Perform Sensitivity Analysis: Systematically assess how change
in each layer affect the output, identifying key layers.

5. Identify ‘‘high-sensitivity layers’’: Determine which layers are
most influential for fine-tuning and model optimisation.

This process helps identify which layers are most influential in the
model’s behaviour. The function takes two inputs: the neural network
model (model) and the data used for analysis (input_data). For
each layer in the model, the function checks if the layer has an output.
If so, it creates a Keras function that computes the layer’s output for the
given input data. After obtaining the output, the function calculates the
sensitivity score for that layer by computing the mean of the absolute
values of the layer’s output. The sensitivity score reflects the layer’s
responsiveness to the input data, where higher values indicate that
small changes in the input lead to more significant changes in the
output of that layer.

The function then returns a dictionary where the keys are the
layer names and the values are their corresponding sensitivity scores.
This analysis allows for a deeper understanding of the contribution of
each layer to the overall model behaviour, particularly in adversarial
attack generation. By identifying layers that are more sensitive to input
changes, this method can help focus attacks on those layers, leading to
more targeted and effective adversarial attacks. This strategy provides
a more detailed and rigorous evaluation than deterministic models that
select layers without such analysis.

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Algorithm 3 Adversarial Attack Samples Generation Using Sensitivity
Analysis
1: Input: list_of_seed_indices, model, layer_list, seed
2: Output: adversarial_list
3: adversarial_list = {} #Initialise adversarial examples list
4: total_grads = None # Initialise gradient accumulation
5: input_data = reshape seed[list_of_seed_indices[0]] to shape (1, seed.shape[1]) #Reshape

seed for model input
6: sensitivity_scores = sensitivity_analysis(model, input_data) # Compute sensitivity scores

for layers by Algorithm 2
7: sorted_layers = sort layer_list by sensitivity_score in descending order # Sort layers by

sensitivity
8: for (layer_name, layer) in sorted_layers do
9: if layer has output then
10: loss = layer.output[:, random_index(layer.output.shape[-1])] # Choose random

output for loss
11: grads = gradients of loss w.r.t model.input # Compute gradients
12: iterate = create function for loss and grads # Create gradient evaluation function
13: for index in range(len(list_of_seed_indices)) do
14: x = reshape seed[list_of_seed_indices[index]] to shape (1, seed.shape[1]) #

Reshape each seed
15: loss_value, grads_value = iterate([x]) # Evaluate gradients
16: if total_grads is None then
17: total_grads = abs(grads_value) # Initialise gradient accumulation
18: else
19: total_grads += abs(grads_value) # Accumulate gradients
20: end if
21: end for
22: end if
23: end for
24: influential_indices = flip argsort(total_grads, axis=1)[-MAX_FILE_SIZE:] # Get most

influential feature indices
25: val = sign of total_grads[0][influential_indices] # Determine perturbation direction
26: for index in range(len(list_of_seed_indices)) do
27: adversarial_list.append((influential_indices, val, seed[list_of_seed_indices[index]])) #

Store adversarial example
28: end for
29: Return: adversarial_list # Return the list of adversarial examples

Algorithm 3 presents a framework for generating adversarial attack
samples within the baseline MTFuzz [30]. This framework incorporates
a modified sensitivity analysis, which we developed and integrated to
enhance the attack generation process by leveraging sensitivity scores.
This algorithm details the computation of sensitivity scores for each
layer in the model and demonstrates how these scores are leveraged to
generate adversarial perturbations.

This sensitivity-aware approach provides a more nuanced strategy
compared to deterministic models that select layers arbitrarily without
such evaluation. It allows for a more targeted and effective manipu-
lation of gradients in adversarial training, ultimately contributing to
the development of more robust models. By focusing on the layers
that contribute most significantly to model performance (as identified
through sensitivity analysis), adversarial attacks can be optimised to
maximise their impact.

3.6. Combined testing scheme based on selection of best model

Integrating LReLU with sensitivity analysis or LReLU with Nadam is
expected to enhance the training process, boost model generalisation,
and increase execution path diversity, ultimately leading to a more
efficient fuzzing process and improved edge coverage. This is partic-
ularly beneficial in scenarios where dead neurons caused by gradient
vanishing are problematic or when faster convergence and optimal
layer selection are critical. LReLU effectively mitigates gradient vanish-
ing, Nadam accelerates convergence with momentum-based updates,
and sensitivity analysis optimises parameter weighting. The overall
payoff  in terms of edge coverage is modelled as a function of the
contributions from LReLU (𝜆), Nadam (𝜈), and Sensitivity Analysis (𝜎):
 = 𝑓 (𝐶; 𝜆, 𝜈, 𝜎) (27)

where 𝑓 represents the combined effect of these techniques on max-
imising edge coverage.
7
This formulation ensures that optimising aligns with selecting the
best combination of activation functions (LReLU vs. ReLU), optimis-
ers (Nadam vs. Adam), and sensitivity analysis techniques, ultimately
leading to an improved fuzzing framework.

4. Experimental framework

This section outlines the fuzzing experiment configuration, includ-
ing the benchmark, testing environment, and hyperparameters.

4.1. Software targets under test

Fuzzing targets refer to the specific system components or software
being tested through fuzzing. These targets can span various domains,
such as file formats, network protocols, APIs, embedded systems, or
web applications. For this study, we conducted our experiments on six
linux software tools: djpeg, mutool, size, nm, hb-fuzzer, and
readelf. These tools come from different software packages, with
only size, nm, and readelf being extracted from binutils-2.30.
The categorisation of these tools is shown in Table 1. The selected
target tools (djpeg, mutool, size, nm, hb-fuzzer, readelf) are builtin
targets within MTFuzz. Since the original MTFuzz paper includes these
targets, we chose to maintain them to ensure direct comparability with
the baseline results presented in the original work. This allows readers
to easily assess how our approach performs relative to MTFuzz and
other state-of-the-art fuzzers that the baseline has already been shown
to outperform.

4.2. Testing environment

To assess the impact of resource allocation on MTFuzz’s perfor-
mance, we conducted fuzzing tests over a 24-h period. The experiments
were conducted on a desktop workstation running VMware Workstation
17 on Windows 11 Pro, utilising six virtual machines (VMs) for six
targets running Kali Linux, each with 8 GB of RAM allocated. Each Kali
VM had access to 80 GB of disk space and shared CPU resources from
the Windows host, ensuring sufficient resources for the fuzzing tasks.
This configuration was chosen to simulate a distributed environment
and investigate how multi-task learning scales with parallel task execu-
tion during fuzzing. Each of the baseline MTFuzz and three LMTFuzz
versions was run on identical VM snapshots, with the six parallel VMs
representing testing on six different targets. All conditions were kept
consistent across all fuzzers to ensure reliable and comparable results.

The host machine was equipped with 10 CPU cores and 64 GB of
RAM to meet the parallelism and memory demands of the virtualised
setup, with at least one core logically dedicated to each VM. Addition-
ally, the host machine had access to at least 3 terabytes of storage
space, ensuring ample capacity for storing the data generated during
the experiments. This setup was designed to prevent bottlenecks and
ensure a precise evaluation of the impact of resource allocation on
gradient calculation within multi-task learning.

4.3. Activation and optimisation hyperparameters

We define the specific parameters and configurations used in our
fuzzing experiments to ensure reproducibility and accuracy. First, we
detail the activation function parameters, with particular emphasis on
LReLU. For this activation function, we set the slope of the negative
region to 𝛼 = 0.01. This choice of 𝛼 = 0.01 was determined through
preliminary experiments, which demonstrated that it provided optimal
performance in terms of edge coverage and overall fuzzing effective-
ness, outperforming other 𝛼 values such as 0.1, 0.2, 0.3, and 0.4. This
value follows conventional practices, where minor negative values are
allowed to pass through the activation function, thus mitigating issues
associated with vanishing gradients. While further optimisation of 𝛼 is
a promising direction for future research, this study primarily focuses

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Table 1
Command-line tools used for processing different file types, along with their corresponding source packages and descriptions.
 Input Tool Source Package Description
 JPEG image djpeg libjpeg-9c A command-line tool to decompress JPEG images.
 PDF file mutool MuPDF-1.12.0 A tool from MuPDF for working with PDF

documents.

 Object file size binutils-2.30 Displays the size of sections in object files.
 nm -C binutils-2.30 Lists symbols from object files with demangling of

C++ symbols.

 Text file hb-fuzzer Harfbuzz-1.7.6 A tool for fuzz-testing the Harfbuzz text shaping
engine.

 ELF file readelf -a binutils-2.30 Displays detailed information about ELF
(Executable and Linkable Format) files.

on evaluating the impact of LReLU’s non-zero gradient on fuzzing
performance.

Further, we outline the optimisation algorithms employed in the
experiments, specifically Adam and Nadam. Both optimisers are ini-
tialised with a learning rate coefficient, 𝜂 = 0.001. This learning
rate was intentionally retained to match the value used in MTFuzz’s
implementation of Adam, ensuring a fair comparison between the two
optimisation strategies. By keeping 𝜂 constant, we are able to isolate
and evaluate the impact of the optimisation strategy itself without
confounding it with variations in the learning rate. Additionally, the
choice of 𝜂 = 0.001 is commonly used in the literature, as it strikes
a balance between efficient convergence and stability across different
experimental iterations.

5. Evaluation

In this section, we begin by observing the experimental results
obtained from the methods and optimisers used in the baseline model
of MTFuzz, as presented in Table 2. These results are then compared
with those of the baseline model to assess performance differences.
Subsequently, we examine the impact of activation functions, optimisa-
tion techniques, and their influence on training, accuracy, and fuzzing
performance. Furthermore, Table 3 provides detailed explanations of
each column in Table 2, offering insights into their role and significance
in evaluating the performance of ML models.

Our study isolates and evaluates the individual effects of three key
components—LReLU, Nadam, and sensitivity analysis. By varying one
component at a time while keeping the others constant, we assess the
unique contribution of each to overall performance. Subsequently, we
combine Nadam and sensitivity analysis with LReLU, focusing on their
integration due to LReLU’s effectiveness in preventing dead neurons.
This approach aims to improve metrics such as edge coverage, maxi-
mum accuracy, and minimum loss. By evaluating each component both
independently and in combination with LReLU, we ensure a thorough
analysis of their collective impact.

To understand variations in model performance, we analyse six key
indicators: Maximum Accuracy, Loss at Maximum Accuracy, Iteration
for Maximum Accuracy, Minimum Loss, Accuracy at Minimum Loss,
and Iteration for Minimum Loss. These metrics help identify the train-
ing iteration where the model achieves its lowest loss, which may differ
from the iteration of peak accuracy.

Each column in Table 2 plays a critical role in assessing the per-
formance of various ML models, offering a comprehensive view of
models strengths and areas for improvement compared to baseline
model of MTFuzz. We observe both maximum accuracy and minimum
loss metrics separately. This is due to the fact that Accuracy measures
the proportion of correct predictions, while loss quantifies how well the
model fits the data. As a result, the point at which accuracy reaches its
maximum may not necessarily coincide with the point where the loss is
minimised, leading to different values for each metric and the iteration
in which they occur.
8
Therefore, while maximum accuracy and minimum loss may align
at times, they often occur at different iterations due to their distinct
progress during training. Achieving lower loss is crucial for improving
model performance, as it typically indicates better generalisation and
more efficient learning, particularly in fuzzing, where it enhances the
model’s ability to detect vulnerabilities. This structure allows for easy
comparison, helping to identify which model performs best under
various conditions.

In the following subsections, we evaluate the methods used in the
baseline model through comparative analyses of different activation
functions, optimisation techniques, and a sensitivity analysis, exploring
their impact on training, accuracy, and fuzzing performance.

5.1. Max accuracy

Maximum accuracy in DNN-enabled fuzzing refers to the ability
of deep neural networks (DNNs) to precisely identify vulnerabilities
and generate effective test inputs. It represents the highest level of
accuracy a DNN can achieve in predicting fuzzing-related outcomes.
In this context, LReLU and its variant, Sensitivity with LReLU, consis-
tently outperform baseline models across most evaluation tools (four
out of six). Furthermore, LReLU, its sensitivity-enhanced variant, and
Sensitivity itself collectively demonstrate improved performance in five
out of six assessments on djpeg, mutool, size, nm, and readelf.
This finding underscores the effectiveness of integrating LReLU and
sensitivity analysis in significantly improving accuracy across various
analytical tools.

The performance of LReLU and its sensitivity-enhanced variant
did not improve in the case of hb-fuzzer. In this specific target,
performance marginally worsened. This variability can be attributed
to several factors. First, different fuzzing targets may not always align
with the strengths of a particular model. For example, complex targets
like hb-fuzzer may exhibit lower sensitivity to activation function
changes due to inherent noise or complexity. Additionally, the effec-
tiveness of activation functions such as LReLU depends on the fuzzing
environment’s ability to support gradient propagation. In environments
with lower gradient sensitivity, such as hb-fuzzer, further optimi-
sation may have less impact. Other influencing factors include model
architecture, training data, and hyperparameters such as learning rates
and optimisation algorithms. Fine-tuning these elements could en-
hance performance across more targets, emphasising the importance of
adapting DNN-based fuzzing strategies to specific target characteristics.

5.2. Loss metrics

To provide a more comprehensive evaluation, we present both
maximum accuracy and minimum loss values, along with their corre-
sponding pairs. For further details, please refer to the columns labeled
Loss at Maximum Accuracy and Minimum Loss or the Max
Accuracy and Accuracy at Min Loss for comparison.

As shown in Table 2, the models focusing on minimum loss, includ-
ing LReLU, Sensitivity, and their combined variant (Sensitivity with

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Table 2
Comparison of models across different tools.
 Model Total

Iterations
Max
Accuracy

Iteration of Max
Accuracy

Loss at Max
Accuracy

Min Loss Iteration of Min
Loss

Accuracy at Min
Loss

Max Edge
Coverage

Average Total
Executions

Max Dimension
(pair)

Unique Bugs

 djpeg
 Baseline 10 0.8849 10 0.1027 0.1027 10 0.8849 2375 3873131.4 (2418, 1374) 376
 LReLU 12 0.8887 12 0.0953 0.0953 12 0.8887 2385 3845286.3 (2664, 1431) 591
 Nadam 11 0.8217 11 0.1359 0.1353 9 0.816 2391 3856704.9 (2695, 1463) 423
 Hybrid 12 0.8559 11 0.1184 0.1184 11 0.8559 2391 4100812.7 (2644, 1438) 265
 Sensitivity 9 0.8835 9 0.0985 0.0985 9 0.8835 2389 3916204.8 (2508, 1393) 178
 Sensitivity with LReLU 9 0.8886 9 0.0978 0.0978 9 0.8886 2365 3951695.9 (2464, 1392) 308
 mutool
 Baseline 6 0.9606 5 0.0287 0.0287 5 0.9606 5357 3545334.7 (2603, 1962) 73
 LReLU 9 0.9613 2 0.0309 0.0275 6 0.9613 5563 4037122.0 (2699, 2041) 116
 Nadam 9 0.9331 7 0.0493 0.0481 6 0.9324 5468 3619220.7 (2783, 2014) 140
 Hybrid 9 0.9439 4 0.0419 0.0419 4 0.9439 5431 3640603.9 (2707, 2026) 126
 Sensitivity 8 0.9659 6 0.0249 0.0244 8 0.9659 5412 3390770.4 (2718, 2034) 122
 Sensitivity with LReLU 8 0.9627 4 0.0280 0.0267 8 0.9626 5527 3470468.3 (2742, 2040) 154
 size
 Baseline 9 0.9108 1 0.1499 0.0709 8 0.8578 5175 5705240.7 (2318, 2402) 4
 LReLU 13 0.9146 1 0.1453 0.0590 13 0.8427 6135 6248035.7 (2299, 2744) 4
 Nadam 14 0.807 9 0.0896 0.0703 14 0.806 6222 6102337.7 (2636, 3010) 2
 Hybrid 13 0.8333 7 0.0937 0.0683 13 0.8187 6161 6161699.8 (2349, 2814) 2
 Sensitivity 8 0.9090 1 0.1487 0.0668 8 0.8633 4923 5358260.4 (2056, 2304) 0
 Sensitivity with LReLU 8 0.9147 2 0.1152 0.0693 8 0.8661 4972 4709890.4 (1959, 2217) 3
 nm
 Baseline 7 0.9129 3 0.1020 0.0741 7 0.8647 6762 6208137.2 (2679, 3175) 6
 LReLU 9 0.9038 3 0.1166 0.0735 9 0.8472 7886 5867734.0 (3185, 4063) 1
 Nadam 9 0.8338 5 0.1119 0.1119 5 0.8338 7918 5827720.0 (3183, 4023) 2
 Hybrid 9 0.8770 4 0.0900 0.0763 8 0.8401 8183 5652667.2 (3421, 4358) 22
 Sensitivity 6 0.9299 3 0.0794 0.0477 6 0.9031 8378 4623163.3 (3725, 4527) 12
 Sensitivity with LReLU 6 0.9289 3 0.0794 0.0482 6 0.9016 8234 4603283.5 (3723, 4404) 0
 hb-fuzzer
 Baseline 6 0.9191 2 0.079 0.0622 4 0.8979 8899 6036131.6 (5744, 4462) 0
 LReLU 10 0.9178 2 0.0799 0.0645 4 0.8917 9493 6137737.6 (6776, 5032) 0
 Nadam 11 0.8923 2 0.096 0.074 4 0.8734 9071 5521524.5 (5866, 4586) 0
 Hybrid 10 0.8868 2 0.0996 0.0757 4 0.8628 9152 5549557.3 (6203, 4696) 0
 Sensitivity 6 0.9085 2 0.0839 0.0663 4 0.893 8798 5604992.0 (5398, 4344) 0
 Sensitivity with LReLU 6 0.9102 2 0.0827 0.0669 4 0.8843 8963 5534210.8 (5381, 4484) 0
 readelf
 Baseline 6 0.8931 1 0.1534 0.0928 2 0.8719 10134 5192164.8 (12838, 6480) 6313
 LReLU 10 0.9178 2 0.0799 0.0645 4 0.8917 10607 6237030.0 (14094, 6965) 5980
 Nadam 9 0.8728 1 0.1721 0.109 2 0.843 10355 5121424.4 (13610, 6695) 894
 Hybrid 9 0.8748 1 0.1707 0.1054 2 0.8536 10070 5362083.7 (13737, 6546) 885
 Sensitivity 6 0.878 2 0.0928 0.068 3 0.8444 9334 3418821.8 (13269, 6346) 1094
 Sensitivity with LReLU 6 0.8998 1 0.1488 0.0625 6 0.7817 10070 5643668.0 (13091, 6586) 5334
LReLU), consistently achieved the lowest loss rates across most targets.
However, in the case of hb-fuzzer, the minimum loss rate and loss
at maximum accuracy were comparable to, but not superior to, the
baseline model.

In fact, the baseline model exhibited higher loss values for 5 out
of 6 targets, underscoring a notable performance gap when compared
to LReLU, Sensitivity, and Sensitivity with LReLU. Additionally, LReLU
outperformed both Sensitivity and Sensitivity with LReLU on 3 out
of 6 targets in terms of achieving the lowest loss rate. On the other
hand, Sensitivity and the combined variant surpassed LReLU on 2 and
1 targets, respectively. Thus, we conclude that LReLU remains the
best-performing model in terms of minimising loss.

5.3. Edge coverage

The results demonstrate that LReLU achieves consistently high max-
imum edge coverage across all models, indicating its effectiveness as a
testing strategy. This robust performance suggests that LReLU is well-
suited for applications requiring comprehensive edge coverage. One
of the key reasons for its superior performance is the way LReLU
allows for more effective exploration of the input space compared to
other activation functions, making it particularly effective in identify-
ing diverse edge cases during fuzz testing. While the Sensitivity model
exhibited the lowest edge coverage specifically on the size target, it
still performed comparably well on other targets, indicating its overall
reliability.

LReLU, along with its combined variants, consistently secured top
positions in edge coverage across a variety of targets. The superior
9
edge coverage achieved by LReLU can be attributed to its smoother
gradient properties, which help in better navigating the loss landscape
and achieving more thorough exploration of the edge cases. Notably,
LReLU achieved the highest edge coverage for three targets: mutool,
hb-fuzzer, and readelf, underscoring its versatility and effective-
ness across diverse applications. Furthermore, Nadam and its hybrid
model incorporating LReLU both ranked equally in first place for the
djpeg target, and first and second for the size target, highlight-
ing the benefits of model integration for enhanced coverage, with
LReLU consistently being a critical component of the top-performing
configurations.

Moreover, LReLU maintained an impressive third position on the
size target, following its hybrid version with Nadam, showcasing its
competitiveness even when not in the top spot. Nadam’s performance
was also noteworthy, achieving the highest edge coverage for two
targets – djpeg and size – suggesting that Nadam can serve as a
robust alternative in specific contexts. This highlights that while LReLU
is consistently a top performer, in certain scenarios, integrating other
models, such as Nadam, can provide additional benefits.

Lastly, the Sensitivity model, along with its variant combined with
LReLU, attained the highest edge coverage on the nm target. This find-
ing emphasises the importance of exploring different model combina-
tions to optimise edge coverage and suggests that further investigations
into hybrid models may yield additional insights into enhancing testing
effectiveness. The combination of Sensitivity with LReLU, in particular,
seems to leverage the strengths of both models, providing enhanced
edge coverage that would not be achievable by either model alone.

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Table 3
Explanation of key metrics.
 Column name Description Significance

Model

Lists the various ML models evaluated,
each with different training techniques.

Comparing models helps assess performance
differences and determine which configuration
yields the best results.

 Total Iterations The number of training or testing
iterations reached by each model within
24 h. The final iteration count may
include both completed and incomplete
iterations terminated at the 24-h mark.

More iterations may lead to a more thorough
evaluation but risk overfitting.

 Max Accuracy The highest accuracy achieved by each
model during evaluation, which does not
necessarily occur at the iteration
corresponding to the minimum loss.

Indicates the model’s best performance, reflecting
its ability to predict or classify correctly.

 Iteration of Max Accuracy The iteration during which the model
achieved its maximum accuracy.

Helps in tracking model performance over time
and assessing if further fine-tuning is necessary.

 Loss for Max Accuracy The loss rate associated with the model’s
highest accuracy.

Lower loss values at high accuracy suggest
effective training and model robustness.

 Min Loss The lowest loss rate recorded during
evaluation, providing insight into the
model’s error minimisation, which does
not necessarily occur at the iteration
corresponding to the maximum accuracy.

Provides insight into the model’s generalisation
capabilities and error minimisation.

 Iteration of Min Loss The iteration during which the model
achieved its lowest loss.

Shows how the model’s training progressed and
whether further improvements are needed.

 Accuracy for Min Loss The accuracy corresponding to the
minimum loss value recorded.

Assesses the model’s balance between accuracy
and error reduction.

 Max Edge Coverage Refers to the maximum code edge
coverage during testing.

High edge coverage indicates thorough testing,
contributing to improved fuzzing performance and
potentially enabling the detection of more
sophisticated software bugs.

 Average Total Executions The average number of test executions
performed for each model.

Increased executions may enhance coverage and
bug detection but also raise computational costs.
Therefore, achieving better coverage with the
lowest average number of total executions is
crucial.

 Max Dimension (pair) The maximum dimensions of input data
used during training or testing.

Helps to understand the data complexity and its
influence on model learning, as well as the
model’s ability to capture sophisticated bugs. If it
does not lead to issues such as overfitting, this
complexity can be valuable for detecting more
sophisticated bugs.

 Unique Bugs The number of unique bugs including
unique crashes and unique hangs
detected by the model during testing.

Indicates the effectiveness of the model in
identifying issues in real-world software.

In conclusion, our analysis underscores the effectiveness of LReLU
and its variants in achieving high edge coverage across multiple targets.
It also highlights the potential of hybrid models for improving perfor-
mance in specific scenarios. The comparative advantage of LReLU in
these tests can be attributed to its ability to better explore edge cases,
and the hybrid models further illustrate the potential for combining
activation functions to achieve optimal coverage.

5.4. Discovery of new edges

In fuzzing, particularly when leveraging deep neural networks
(DNNs), a ‘‘new edge’’ refers to the identification of a previously
unexplored path or behaviour in the target program’s control flow
during testing. At each iteration of the experiment, new edge discovery
signifies that the generated input has triggered a transition between
basic blocks in the program’s control flow graph (CFG) that had not
been executed in prior runs. Since the total number of newly discovered
edges is unique to each fuzzer for a specific iteration, tracking this met-
ric over time reveals patterns of edge discovery, providing insight into
the fuzzer’s capability to explore deeper and more complex program
states.

New edge discovery is a widely recognised indicator of a fuzzer’s
effectiveness and exploratory power over time, as a higher rate of
10
unique edge discoveries suggests that the fuzzer is efficiently generating
diverse and meaningful test cases. Over multiple iterations, analysing
the rate at which new edges are discovered can highlight trends in ex-
ploration efficiency. For example, a fuzzer that maintains a consistently
high rate of new edge discovery in the early stages demonstrates strong
initial exploration capabilities, while one that continues discovering
new edges in later stages exhibits long-term effectiveness in overcom-
ing input saturation. Thus, evaluating new edge discovery patterns
across iterations provides a quantifiable measure of both short-term and
long-term fuzzing efficiency.

Fig. 2 presents the newly discovered edges identified through dif-
ferent methodologies over a 24-h period. The figures illustrate varying
behaviours, generally showing a peak at the beginning, with some
models requiring more iterations to reach the end of this duration.
This initial peak can be attributed to the fact that, early in the fuzzing
process, the model is likely to uncover a broader range of unexplored
edges quickly. Sensitivity analysis demonstrates either an increase or a
gradual decrease in newly discovered edges during the final iterations
for five targets (e.g., djpeg, size, nm, mutool, and readelf).
This indicates consistent edge discovery, with particularly strong per-
formance observed for nm and an increase in new edge discovery
during the final iterations for readelf, size, and nm, which is
advantageous. The observed increase in new edge discovery in the

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
Fig. 2. New edge discovery patterns of different methodologies on various targets across iterations over time.
Note: The time slots are approximate, and some models did not discover new edges during the final hours.
final iterations for these targets suggests that the fuzzing model is
beginning to uncover deeper, more complex paths in the control flow.
These paths could involve more sophisticated code branches or corner
cases that were less likely to be triggered during earlier iterations. For
example, some complex conditions or specific input constraints could
have only been met after repeated exploration, leading to the discovery
of previously inaccessible control flow paths.

In other words, while most other methodologies exhibited a de-
creasing trend over this timeframe, sensitivity analysis on four targets
– and its variant (sensitivity with LReLU) on a few targets (i.e., nm,
size, and djpeg) – demonstrated a distinct pattern of new edge
discovery towards the end of the period. This behaviour suggests that
the sensitivity analysis model is fine-tuning its exploration strategy
over time, focusing on areas that had not been explored adequately in
previous iterations. This phenomenon likely arises from the adjustment
of fuzzing parameters or the identification of under-represented code
regions that require specific, less obvious inputs to trigger new tran-
sitions. It is also possible that, during the later stages of fuzzing, the
model is able to exploit specific patterns learned from previous inputs,
resulting in more targeted exploration that unveils hidden code paths.

The behaviour observed in the sensitivity analysis model suggests
that a conditional branch (e.g., an ‘‘if’’ statement) was executed dif-
ferently towards the end of the iterations, resulting in the discovery
of a new code path. This shift in execution flow is likely due to the
model’s ability to discover specific input values that alter the conditions
11
of these branches, causing them to take different paths that were
previously unexecuted. As the fuzzing model gains more insight into the
program’s control flow through sensitivity analysis, it becomes better
at identifying the right conditions to trigger these unvisited branches,
leading to the discovery of new edges.

Although sensitivity analysis did not outperform the LReLU model
in edge coverage, even with the distinct behaviour of new edge discov-
ery, the outcome remains significant and provides meaningful insights
for our research findings. The distinctive performance of sensitivity
analysis, particularly its ability to uncover new edges in later iterations,
highlights its potential as a complementary approach to traditional
models like LReLU. While the LReLU model may cover a broad spec-
trum of edges more quickly, sensitivity analysis provides a more strate-
gic exploration that can uncover additional code paths in later stages
of fuzzing, offering a deeper understanding of program behaviour.

5.5. Discovery of unique bugs

The baseline model demonstrates significantly lower bug detection
across the evaluated tools, except for two targets: size and readelf,
where LReLU and its variant incorporating Sensitivity analysis still rank
closely behind. Across other targets, LReLU and its combined variants
exhibit a strong capability for detecting unique bugs, achieving top
ranks as follows: LReLU in its pure form identified 591 unique bugs

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
in the djpeg target, while its combination with Sensitivity analysis de-
tected 154 unique bugs in mutool. Additionally, when integrated with
Nadam, LReLU identified 22 unique bugs in the nm target. Notably,
LReLU, in conjunction with the baseline model, also outperformed
other models on the size target. Meanwhile, Nadam consistently
achieved a first-place ranking for mutool, a second-place ranking for
djpeg, and a third-place ranking for size, following LReLU combined
with Sensitivity analysis.

In summary, LReLU demonstrates a positive impact on the identi-
fication of unique bugs, with Nadam also contributing significantly in
the our findings.

5.6. Total executions and max dimension

In this section, we examine both Total Executions and Maximum
Dimension. In terms of total executions, we found that a higher total
number of executions can sometimes correlate with increased iterations
and improved coverage; however, efficiency varies among different
models. For instance, the Sensitivity model demonstrates effective bug
detection with fewer total executions in specific tools, such as mutool
and nm. Additionally, regarding data dimension, LReLU, Nadam, and
their hybrid model consistently yield reliable results in enhancing cov-
erage dimensions across nearly all targets. In contrast, the Sensitivity
analysis and its variant achieve commendable but lower rankings across
only four targets (i.e., djpeg, mutool, nm, and readelf), while still
outperforming the baseline model overall.

5.7. Analysing the efficacy of lrelu and its variants compared to the baseline
through the lens of game theory

The incorporation of LReLU activation layers significantly enhances
fuzzing performance relative to the baseline ReLU function employed
in MTFuzz, as well as in comparison to other recommended techniques
discussed in this paper, such as sensitivity analysis. Models that utilise
LReLU and its variant integrated with sensitivity analysis consistently
achieve higher overall maximum accuracy, reduced loss rates, and im-
proved edge coverage across a range of evaluation tools. This suggests
that LReLU is more effective in capturing nuanced patterns within the
data, thereby leading to more successful fuzzing outcomes.

Furthermore, when evaluating the Nadam optimisation technique
against the baseline Adam optimiser, Nadam exhibits a pronounced
capacity to enhance edge coverage and unique bug detection in cer-
tain scenarios, which should not be overlooked. Notably, the perfor-
mance of Nadam is comparable to that of hybrid models, highlighting
its potential as a robust alternative for optimising fuzzing perfor-
mance. Additionally, the implementation of post-training sensitivity
analysis significantly influences the overall effectiveness of fuzzing
outcomes. By fine-tuning model parameters and enhancing decision-
making processes, sensitivity analysis not only elevates accuracy but
also substantially contributes to the efficiency of performance in some
targets.

The performance of LReLU and its variants, including those with
sensitivity analysis and Nadam, can indeed be interpreted through the
lens of game theory, particularly in terms of strategy selection and
equilibrium concepts.

In this framework, various activation functions and optimisation
techniques, such as LReLU, sensitivity with LReLU, and sensitivity
alone, can be conceptualised as competing strategies within a game-
theoretic context. Each strategy is designed to optimise a particular
outcome as‘‘payoff’’. The ‘‘payoff’’ in this scenario can be interpreted as
the model’s performance metrics, such as accuracy, loss, edge coverage,
and unique bug detection. LReLU consistently achieves the highest
performance across all metrics, making it the dominant strategy, as it
yields the greatest payoff compared to the other strategies.

The performance hierarchy, based on maximum accuracy, indicates
a potential equilibrium in the model prediction game, with LReLU
12
emerging as the top-performing strategy. This is followed by the combi-
nation of sensitivity and LReLU, which represents an equilibrium state
for these methods. Lastly, sensitivity alone performs the weakest across
nearly all targets among them. These techniques consistently outper-
form Nadam and its variant, which rank lower across all targets in
terms of maximum accuracy. This indicates that methods such as LReLU
and its variant with sensitivity are more effective across almost all
target metrics, yielding the highest payoff as defined by Eq. (27). This
can be mathematically expressed by comparing the partial derivatives
of the payoff function  with respect to 𝜆, 𝜈, and 𝜎. If the value of 𝜆
consistently yields a higher payoff than the other strategies, LReLU can
be considered a dominant strategy. Thus, based on our experimental
findings, the following order represents the dominance strategy:
𝜕
𝜕𝜆

> 𝜕
𝜕𝜎

> 𝜕
𝜕𝜈

(28)

This order suggests that once the models are trained using these
techniques, they demonstrate varying levels of accuracy and reach a
state of equilibrium within their variants, where transitioning to an
alternative technique would not lead to significant improvements in
results for the specific problem at hand and it aligns closely with the
principles of adaptive strategies in game theory. It is because when
considering the iterative training process of the models, it can be
viewed as a dynamic game where strategies evolve in response to
feedback (performance metrics) over time. The modifications facilitated
by sensitivity analysis represent a form of strategic adaptation, enabling
the model to enhance its performance in reaction to the results observed
during the training phase.

In conclusion, analysing LReLU through game theory emphasises
the strategic selection of methods and highlights the dynamics of
optimal performance. While the baseline model is functional, there is
considerable potential for improvement.

6. Future work

This study provides valuable insights into the integration of LReLU,
Nadam, and sensitivity analysis for improving fuzzing techniques. How-
ever, our use of fixed hyperparameters – LReLU with an 𝛼 of 0.01 and
Nadam with an 𝜂 of 0.001 – limits the scope of exploration. The impact
of varying 𝛼 and 𝜂 values on performance remains underexplored,
highlighting a key avenue for future research. Systematic hyperparam-
eter tuning, using methods like grid search, Bayesian optimisation, or
reinforcement learning, could uncover a broader range of values and
enhance both model performance and bug detection.

Furthermore, exploring alternative activation functions, such as
Parametric Rectified Linear Unit (PReLU) [55], Randomised ReLU
(RReLU), Gaussian Error Linear Units (GELUs), and Self-Normalising
Neural Networks [56], is essential. These functions mitigate the issue of
dead neurons in traditional ReLU-based activations by providing non-
zero gradients for negative inputs. Notably, PReLU and GELUs have
shown promise in enhancing model performance by improving gradient
flow, which is critical for fuzzing tasks requiring extensive path explo-
ration. These activation functions may enable more efficient gradient
propagation, uncovering previously unexplored paths. A comparative
analysis of their effects on gradient flow, network generalisation, and
computational efficiency could provide valuable insights into their
potential for advancing fuzzing techniques and addressing challenges
related to gradient propagation and model convergence.

Furthermore, Our study encountered hardware limitations that re-
stricted the expansion of testing to additional scenarios, such as the
use of LSTM networks or Transformer models. LSTMs are effective
at handling sequential data and maintaining context over time, while
Transformers, with their self-attention mechanisms, excel in capturing
long-range dependencies. These features could enhance fuzzing tasks,
particularly when dealing with time-dependent or sequence-sensitive
inputs, enabling better coverage and more efficient exploration of
fuzzing paths. Integrating LSTM or Transformer models may offer

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
a promising approach to improving fuzzing architectures by better
contextualising temporal inputs and identifying greater path diversity.

Future work should aim to overcome these constraints, enabling
the evaluation of a broader range of targets and configurations. This
would provide valuable insights into the applicability and robustness
of our findings across diverse contexts. By addressing these areas,
future research could enhance the understanding and implementation
of effective fuzzing methodologies, particularly regarding activation
layers, optimisers, and sensitivity analysis. Ultimately, such efforts
would contribute to more robust bug detection and improve software
testing practices.

7. Conclusion

This paper investigates the integration of LReLU, Nadam, and sen-
sitivity analysis to enhance fuzzing for accuracy rate, loss rate, edge
coverage, and bug detection. Our findings reveal that LReLU, especially
when combined with sensitivity analysis, significantly enhances detec-
tion efficiency, with performance improvements varying depending on
the targeted bugs.

LReLU enhances classification and regression performance by pre-
venting neuron inactivity and allowing small negative activations to
contribute to feature extraction. This improves edge/context sensitivity,
making LReLU a superior alternative to ReLU. In classification, it boosts
gradient propagation and stability, while in regression, it mitigates
vanishing gradients, resulting in smoother loss landscapes and better
convergence. When paired with sensitivity analysis, LReLU ensures
consistent gradient flow across both positive and negative regions,
optimising learning by focusing on layers with higher sensitivity. This
approach strengthens model resilience, especially against adversarial
challenges.

Nadam demonstrates rapid convergence, particularly in adversarial
sample generation tasks. However, its momentum update strategy can
occasionally lead to fluctuations, which may limit its effectiveness
for certain targets. While Nadam is an excellent choice for tasks that
demand fast convergence, Adam remains a dependable alternative for
applications where stable and predictable performance is essential.

The adaptive learning stage, guided by sensitivity analysis, priori-
tised fuzzing test cases based on the magnitudes of their gradients.
By using backpropagation to minimise a multi-task loss function, task
weights were dynamically adjusted according to their relative impor-
tance, enhancing the efficiency and effectiveness of the fuzz testing
process. This framework offers valuable insights into the strategic
selection of methods, emphasising the competitive dynamics that im-
pact model performance. Understanding these dynamics will enable
future research to better adapt the proposed techniques and optimise
outcomes.

This study highlights significant advancements in fuzzing tech-
niques while acknowledging the limitations of these approaches. The
performance of LReLU is sensitive to hyperparameter choices, neces-
sitating further tuning to ensure consistent results across tasks. We
recommend exploring hyperparameter optimisation strategies, such as
grid search or Bayesian optimisation, to enhance LReLU’s stability.
Although Nadam accelerates convergence, its susceptibility to fluctu-
ations may limit its applicability in certain contexts. Future research
could focus on developing hybrid models that combine Nadam with
other optimisers to address momentum-related fluctuations or refining
its momentum update strategy for improved stability across tasks.

Ultimately, this research provides a strategic framework for improv-
ing bug detection and software testing, highlighting the importance of
ongoing exploration in these methodologies. Future work should focus
on overcoming existing limitations and refining these techniques to
boost their performance across a wider array of tasks, ensuring their
effectiveness in real-world applications.
13
CRediT authorship contribution statement

Sadegh Bamohabbat Chafjiri: Writing – review & editing, Writ-
ing – original draft, Visualization, Validation, Software, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Phil
Legg: Writing – review & editing, Validation, Supervision, Method-
ology, Conceptualization. Michail-Antisthenis Tsompanas: Writing –
review & editing, Supervision. Jun Hong: Writing – review & editing,
Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research was supported by the PhD Studentship scheme within
College of Arts, Technology and Engineering at the University of the
West of England.

Data availability

Data will be made available on request.

References

[1] B.P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of
UNIX utilities, Commun. ACM 33 (12) (1990) 32–44, http://dx.doi.org/10.1145/
96267.96279.

[2] M. Woo, S.K. Cha, S. Gottlieb, D. Brumley, Scheduling black-box mutational
fuzzing, in: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS ’13, Association for Computing Machinery,
New York, NY, USA, 2013, pp. 511–522, http://dx.doi.org/10.1145/2508859.
2516736.

[3] Peach fuzzer, 2023, https://peachfuzzer.com/. (last accessed: 27 May 2023).
[4] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, G. Vigna, SNOOZE:

Toward a stateful NetwOrk protocol fuzZEr, in: Proceedings of the Information
Security Conference, 2006.

[5] P. Godefroid, A. Kiezun, M.Y. Levin, Grammar-based whitebox fuzzing, in:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 206–215.

[6] V.-T. Pham, M. Böhme, A. Roychoudhury, Model-based whitebox fuzzing for
program binaries, in: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 543–553.

[7] R. Hastings, B. Joyce, Purify: Fast detection of memory leaks and access errors,
in: Proceedings of USENIX Winter’92 Conference, 1992, pp. 125–138.

[8] M. Felderer, M. Büchler, M. Johns, A.D. Brucker, R. Breu, A. Pretschner, Chapter
one - security testing: A survey, in: A. Memon (Ed.), in: Advances in Computers,
vol. 101, Elsevier, 2016, pp. 1–51, http://dx.doi.org/10.1016/bs.adcom.2015.11.
003.

[9] C. Miller, Z.N.J. Peterson, Analysis of Mutation and Generation-Based Fuzzing,
Tech. Rep., 2007.

[10] X. Zhu, S. Wen, S. Camtepe, Y. Xiang, Fuzzing: A survey for roadmap, ACM
Comput. Surv. 54 (11s) (2022) 1–36, http://dx.doi.org/10.1145/3512345.

[11] R. Majumdar, K. Sen, Hybrid concolic testing, in: Proceedings of the 29th
International Conference on Software Engineering, 2007, pp. 416–426, http:
//dx.doi.org/10.1109/ICSE.2007.41.

[12] I. Yun, S. Lee, M. Xu, Y. Jang, T. Kim, QSYM : A practical concolic execution
engine tailored for hybrid fuzzing, in: 27th USENIX Security Symposium, USENIX
Security 18, 2018, pp. 745–761.

[13] D. Molnar, P. Godefroid, M. Levin, Automated whitebox fuzz testing, in: Network
and Distributed System Security Symposium, NDSS, 2008, pp. 416–426.

[14] M. Böhme, V.-T. Pham, M.-D. Nguyen, A. Roychoudhury, Directed greybox
fuzzing, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2329–2344.

[15] S. Mallissery, Y.-S. Wu, Demystify the fuzzing methods: A comprehensive survey,
ACM Comput. Surv. 56 (3) (2023) http://dx.doi.org/10.1145/3623375.

[16] G.J. Saavedra, K.N. Rodhouse, D.M. Dunlavy, P.W. Kegelmeyer, A review of
machine learning applications in fuzzing, 2019, http://dx.doi.org/10.48550/
ARXIV.1906.11133, arXiv, arXiv:1906.11133.

http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/2508859.2516736
http://dx.doi.org/10.1145/2508859.2516736
http://dx.doi.org/10.1145/2508859.2516736
https://peachfuzzer.com/
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb7
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb9
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb9
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb9
http://dx.doi.org/10.1145/3512345
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSE.2007.41
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb14
http://dx.doi.org/10.1145/3623375
http://dx.doi.org/10.48550/ARXIV.1906.11133
http://dx.doi.org/10.48550/ARXIV.1906.11133
http://dx.doi.org/10.48550/ARXIV.1906.11133
http://arxiv.org/abs/1906.11133

S. Bamohabbat Chafjiri et al. Computer Standards & Interfaces 94 (2025) 104011
[17] Y. Wang, P. Jia, L. Liu, J. Liu, A systematic review of fuzzing based on machine
learning techniques, PLoS One 15 (2020) http://dx.doi.org/10.1371/journal.
pone.0237749.

[18] S. Miao, J. Wang, C. Zhang, Z. Lin, J. Gong, X. Zhang, J. Li, Deep learning
in fuzzing: A literature survey, in: 2022 IEEE 2nd International Conference
on Electronic Technology, Communication and Information, ICETCI, 2022, pp.
220–223, http://dx.doi.org/10.1109/ICETCI55101.2022.9832143.

[19] C. Daniele, S.B. Andarzian, E. Poll, Fuzzers for stateful systems: Survey and
research directions, ACM Comput. Surv. (2024) http://dx.doi.org/10.1145/
3648468, Just Accepted.

[20] S. Bamohabbat Chafjiri, P. Legg, J. Hong, M.-A. Tsompanas, Vulnerability
detection through machine learning-based fuzzing: A systematic review, Comput.
Secur. 143 (2024) 103903, http://dx.doi.org/10.1016/j.cose.2024.103903, URL
https://www.sciencedirect.com/science/article/pii/S0167404824002050.

[21] S. Tripathi, G. Grieco, S. Rawat, Exniffer: Learning to prioritize crashes by
assessing the exploitability from memory dump, in: 2017 24th Asia-Pacific
Software Engineering Conference, APSEC, 2017, pp. 239–248, http://dx.doi.org/
10.1109/APSEC.2017.30.

[22] L. Zhang, V.L.L. Thing, Assisting vulnerability detection by prioritizing crashes
with incremental learning, in: TENCON 2018 - 2018 IEEE Region 10 Conference,
2018, pp. 2080–2085, http://dx.doi.org/10.1109/TENCON.2018.8650188.

[23] Y. Chen, M. Ahmadi, R. Mirzazade farkhani, B. Wang, L. Lu, MEUZZ: Smart
seed scheduling for hybrid fuzzing, in: Proceedings of the 23rd International
Symposium on Research in Attacks, Intrusions and Defenses, RAID ’20, 2020.

[24] Y.-D. Lin, Y.-K. Lai, Q.T. Bui, Y.-C. Lai, ReFSM: Reverse engineering from protocol
packet traces to test generation by extended finite state machines, J. Netw. Com-
put. Appl. 171 (2020) 102819, http://dx.doi.org/10.1016/j.jnca.2020.102819,
URL https://www.sciencedirect.com/science/article/pii/S1084804520302897.

[25] Y. Huang, H. Shu, F. Kang, Y. Guang, Protocol reverse-engineering methods
and tools: A survey, Comput. Commun. 182 (2022) 238–254, http://dx.doi.org/
10.1016/j.comcom.2021.11.009, URL https://www.sciencedirect.com/science/
article/pii/S0140366421004382.

[26] V. Raychev, M. Vechev, A. Krause, Predicting program properties from ‘‘big
code’’, in: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15, Association for Computing
Machinery, New York, NY, USA, 2015, pp. 111–124, http://dx.doi.org/10.1145/
2676726.2677009.

[27] X. Sun, Y. Fu, Y. Dong, Z. Liu, Y. Zhang, Improving fitness function for
language fuzzing with PCFG model, in: 2018 IEEE 42nd Annual Computer
Software and Applications Conference, Vol. 01, COMPSAC, 2018, pp. 655–660,
http://dx.doi.org/10.1109/COMPSAC.2018.00098.

[28] J. Wang, B. Chen, L. Wei, Y. Liu, Skyfire: Data-driven seed generation for fuzzing,
in: 2017 IEEE Symposium on Security and Privacy, SP, 2017, pp. 579–594,
http://dx.doi.org/10.1109/SP.2017.23.

[29] S. Karamcheti, G. Mann, D. Rosenberg, Adaptive grey-box fuzz-testing with
Thompson sampling, in: Proceedings of the 11th ACM Workshop on Artificial
Intelligence and Security, AISec ’18, Association for Computing Machinery, New
York, NY, USA, 2018, pp. 37–47, http://dx.doi.org/10.1145/3270101.3270108.

[30] D. She, R. Krishna, L. Yan, S. Jana, B. Ray, MTFuzz: Fuzzing with a multi-task
neural network, in: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, in: ESEC/FSE 2020, Association for Computing Machinery,
New York, NY, USA, 2020, pp. 737–749, http://dx.doi.org/10.1145/3368089.
3409723.

[31] A.L. Maas, A.Y. Hannun, A.Y. Ng, et al., Rectifier nonlinearities improve neural
network acoustic models, in: Proc. Icml, vol. 30, Atlanta, GA, 2013, p. 3.

[32] T. Dozat, Incorporating nesterov momentum into adam, in: ICLR 2016 - Work-
shop International Conference on Learning Representations, Caribe Hilton, San
Juan, Puerto Rico, 2016, URL http://www.iclr.cc.

[33] S. Ruder, An overview of gradient descent optimization algorithms, 2017, arXiv:
1609.04747, URL https://arxiv.org/abs/1609.04747.

[34] J.Y. Choi, C.-H. Choi, Sensitivity analysis of multilayer perceptron with differ-
entiable activation functions, IEEE Trans. Neural Netw. 3 (1) (1992) 101–107,
http://dx.doi.org/10.1109/72.105422.

[35] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, S. Jana, NEUZZ: Efficient fuzzing with
neural program smoothing, in: 2019 IEEE Symposium on Security and Privacy,
Vol. 1, SP, 2019, pp. 803–817, http://dx.doi.org/10.1109/SP.2019.00052.

[36] P. Chen, H. Chen, Angora: Efficient fuzzing by principled search, in: 2018 IEEE
Symposium on Security and Privacy, SP, 2018, pp. 711–725, http://dx.doi.org/
10.1109/SP.2018.00046.
14
[37] C. Lemieux, K. Sen, FairFuzz: a targeted mutation strategy for increasing greybox
fuzz testing coverage, in: Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 475–485, http://dx.doi.org/10.1145/
3238147.3238176.

[38] M. Zalewski, American fuzzy lop (AFL), 2023, https://lcamtuf.coredump.cx/afl/.
(last accessed: 27 May 2023).

[39] M. Böhme, V.-T. Pham, A. Roychoudhury, Coverage-based greybox fuzzing as
Markov chain, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, Association for Computing Machinery,
New York, NY, USA, 2016, pp. 1032–1043, http://dx.doi.org/10.1145/2976749.
2978428.

[40] M. Sutton, A. Greene, P. Amini, Fuzzing: Brute Force Vulnerability Discovery,
Addison-Wesley Professional, 2007.

[41] A. Takanen, J.D. Demott, C. Miller, Fuzzing for Software Security Testing and
Quality Assurance, second ed., Artech House, 2018.

[42] G. Grieco, G.L. Grinblat, L. Uzal, S. Rawat, J. Feist, L. Mounier, Toward large-
scale vulnerability discovery using machine learning, in: Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, CODASPY ’16,
Association for Computing Machinery, New York, NY, USA, 2016, pp. 85–96,
http://dx.doi.org/10.1145/2857705.2857720.

[43] Z. Hu, J. Shi, Y. Huang, J. Xiong, X. Bu, GANFuzz: A GAN-based industrial
network protocol fuzzing framework, in: Proceedings of the 15th ACM Interna-
tional Conference on Computing Frontiers, CF ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 138–145, http://dx.doi.org/10.1145/
3203217.3203241.

[44] C. Cummins, P. Petoumenos, A. Murray, H. Leather, Compiler fuzzing through
deep learning, in: Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, in: ISSTA 2018, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 95–105, http://dx.doi.
org/10.1145/3213846.3213848.

[45] L.H. Park, S. Chung, J. Kim, T. Kwon, GradFuzz: Fuzzing deep neural networks
with gradient vector coverage for adversarial examples, Neurocomputing 522
(2023) 165–180, http://dx.doi.org/10.1016/j.neucom.2022.12.019, URL https:
//www.sciencedirect.com/science/article/pii/S0925231222015168.

[46] K. Patil, A. Kanade, Greybox fuzzing as a contextual bandits problem, 2018,
arXiv, arXiv:1806.03806.

[47] T. Li, X. Wan, M.M. Özbek, AgentFuzz: Fuzzing for deep reinforcement learning
systems, in: 2022 IEEE International Symposium on Software Reliability En-
gineering Workshops, ISSREW, 2022, pp. 110–113, http://dx.doi.org/10.1109/
ISSREW55968.2022.00049.

[48] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu, H. Cui,
L. Zhang, Evaluating and improving neural program-smoothing-based fuzzing,
in: Proceedings of the 44th International Conference on Software Engineering,
ICSE ’22, Association for Computing Machinery, New York, NY, USA, 2022, pp.
847–858, http://dx.doi.org/10.1145/3510003.3510089.

[49] N. Nichols, M. Raugas, R. Jasper, N. Hilliard, Faster fuzzing: Reinitialization with
deep neural models, 2017, arXiv:1711.02807.

[50] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu, R. Beyah, V-Fuzz:
Vulnerability prediction-assisted evolutionary fuzzing for binary programs, IEEE
Trans. Cybern. 52 (5) (2022) 3745–3756, http://dx.doi.org/10.1109/TCYB.2020.
3013675.

[51] S. Jeon, J. Moon, Dr.PathFinder: hybrid fuzzing with deep reinforcement concolic
execution toward deeper path-first search, Neural Comput. Appl. 34 (13) (2022)
10731–10750, http://dx.doi.org/10.1007/s00521-022-07008-8.

[52] R. Krishna, Dongdongshe, Helpacksi, Fuzzing with a multi-task neural network:
nn.py, 2020, GitHub, URL https://github.com/rahlk/MTFuzz/blob/master/nn.
py. (Accessed: 04 October 2024), GitHub repository, https://github.com/rahlk/
MTFuzz/blob/master/nn.py.

[53] J. Xu, Z. Li, B. Du, M. Zhang, J. Liu, Reluplex made more practical: Leaky ReLU,
in: 2020 IEEE Symposium on Computers and Communications, ISCC, 2020, pp.
1–7, http://dx.doi.org/10.1109/ISCC50000.2020.9219587.

[54] S.R. Dubey, S.K. Singh, B.B. Chaudhuri, Activation functions in deep learn-
ing: A comprehensive survey and benchmark, Neurocomputing 503 (2022)
92–108, http://dx.doi.org/10.1016/j.neucom.2022.06.111, URL https://www.
sciencedirect.com/science/article/pii/S0925231222008426.

[55] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification, in: 2015 IEEE International
Conference on Computer Vision, ICCV, 2015, pp. 1026–1034, http://dx.doi.org/
10.1109/ICCV.2015.123.

[56] Y. Bai, RELU-function and derived function review, SHS Web Conf. 144 (2022)
02006, http://dx.doi.org/10.1051/shsconf/202214402006.

http://dx.doi.org/10.1371/journal.pone.0237749
http://dx.doi.org/10.1371/journal.pone.0237749
http://dx.doi.org/10.1371/journal.pone.0237749
http://dx.doi.org/10.1109/ICETCI55101.2022.9832143
http://dx.doi.org/10.1145/3648468
http://dx.doi.org/10.1145/3648468
http://dx.doi.org/10.1145/3648468
http://dx.doi.org/10.1016/j.cose.2024.103903
https://www.sciencedirect.com/science/article/pii/S0167404824002050
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/TENCON.2018.8650188
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb23
http://dx.doi.org/10.1016/j.jnca.2020.102819
https://www.sciencedirect.com/science/article/pii/S1084804520302897
http://dx.doi.org/10.1016/j.comcom.2021.11.009
http://dx.doi.org/10.1016/j.comcom.2021.11.009
http://dx.doi.org/10.1016/j.comcom.2021.11.009
https://www.sciencedirect.com/science/article/pii/S0140366421004382
https://www.sciencedirect.com/science/article/pii/S0140366421004382
https://www.sciencedirect.com/science/article/pii/S0140366421004382
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1109/COMPSAC.2018.00098
http://dx.doi.org/10.1109/SP.2017.23
http://dx.doi.org/10.1145/3270101.3270108
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1145/3368089.3409723
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb31
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb31
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb31
http://www.iclr.cc
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1109/72.105422
http://dx.doi.org/10.1109/SP.2019.00052
http://dx.doi.org/10.1109/SP.2018.00046
http://dx.doi.org/10.1109/SP.2018.00046
http://dx.doi.org/10.1109/SP.2018.00046
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
https://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb40
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb40
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb40
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb41
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb41
http://refhub.elsevier.com/S0920-5489(25)00040-6/sb41
http://dx.doi.org/10.1145/2857705.2857720
http://dx.doi.org/10.1145/3203217.3203241
http://dx.doi.org/10.1145/3203217.3203241
http://dx.doi.org/10.1145/3203217.3203241
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1016/j.neucom.2022.12.019
https://www.sciencedirect.com/science/article/pii/S0925231222015168
https://www.sciencedirect.com/science/article/pii/S0925231222015168
https://www.sciencedirect.com/science/article/pii/S0925231222015168
http://arxiv.org/abs/1806.03806
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1145/3510003.3510089
http://arxiv.org/abs/1711.02807
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1007/s00521-022-07008-8
https://github.com/rahlk/MTFuzz/blob/master/nn.py
https://github.com/rahlk/MTFuzz/blob/master/nn.py
https://github.com/rahlk/MTFuzz/blob/master/nn.py
https://github.com/rahlk/MTFuzz/blob/master/nn.py
https://github.com/rahlk/MTFuzz/blob/master/nn.py
https://github.com/rahlk/MTFuzz/blob/master/nn.py
http://dx.doi.org/10.1109/ISCC50000.2020.9219587
http://dx.doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1051/shsconf/202214402006

	Leveraging activation and optimisation layers as dynamic strategies in the multi-task fuzzing scheme
	Introduction
	Related Work
	Methodology
	Understanding the Baseline Model
	Our Proposed Solution
	LReLU vs. ReLU Activation Functions
	Classification Loss and LReLU
	Regression Loss and LReLU

	Nadam vs. Adam Optimiser
	Optimal Layer Selection through Sensitivity Analysis in the Multiple Tasks environment
	Formal Definition of Layer Sensitivity
	Sensitivity Scores and Task-Specific Performance
	Gradient Aggregation Over Multiple Tasks
	Impact on Gradient Flow During Training
	Sensitivity Scores and Fuzzing Behaviour
	Task-Specific Weighting of Gradients Based on Sensitivity
	Algorithmic Representation of Sensitivity Analysis and Adversarial Attack Generation

	Combined Testing Scheme Based on Selection of Best Model

	Experimental Framework
	Software targets under test
	Testing environment
	Activation and optimisation hyperparameters

	Evaluation
	Max Accuracy
	Loss Metrics
	Edge Coverage
	Discovery of New Edges
	Discovery of Unique Bugs
	Total Executions and Max Dimension
	Analysing the Efficacy of LReLU and Its Variants Compared to the Baseline Through the Lens of Game Theory

	Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

