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 A B S T R A C T

We compare the interaction between the crude oil and US stock markets in regimes where oil price uncertainty 
is high versus low, using a smooth transition vector autoregressive model. Our results show that supply- and 
demand-side shocks from the oil market, as well as stock market shocks, tend to have greater effect sizes in 
the lower oil price uncertainty regime. These asymmetric findings are consistent with the premise that shocks 
occurring in a relatively calmer environment are inclined to surprise market participants more, thereby eliciting 
amplified responses, than during an environment where oil price uncertainty is anticipated to be higher.
1. Introduction

Oil price uncertainty has an adverse impact on economic activ-
ity (Jo, 2014), negatively affecting investment, durables consumption, 
and aggregate output (Elder and Serletis, 2010). Yet, previous studies 
demonstrate that oil price uncertainty has an insignificant effect on the 
US stock returns (see, e.g., Alsalman, 2016) and others find that the 
converse is true (see, e.g., Bams et al., 2017). There are also discrep-
ancies about whether the responses of US stock returns to increases 
and decreases in oil prices are symmetric (see, e.g., Alsalman, 2016) or 
asymmetric (see, e.g., Rahman, 2022). On the latter point on the non-
linear effects of oil prices, Lee et al. (1995) hypothesise and empirically 
establish that an oil price change is likely to have a greater impact on 
real output if it arises as a surprise in an environment where oil prices 
are stable, rather than in an environment where oil price fluctuations 
are volatile and uncertain.

In this paper, we extend the premise of Lee et al. (1995) to the oil-
stock market relationship. In particular, we compare the interaction 
between the crude oil and US stock markets in two states of the 
world: when oil price uncertainty is high and low. Understanding how 
dynamics in the crude oil and US stock markets vary across different 
oil price uncertainty regimes is useful, as market participants and 
policymakers make use of such information for risk management and 
policy formulation under uncertainty, given that stock markets have 
a tendency to overreact to bad news in good times (Veronesi, 1999). 
Here, we exploit the availability of a new index put forward in Abiad 
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and Qureshi (2023) to measure oil price uncertainty based on newspa-
per coverage of the topic. As asset prices are highly sensitive to news, 
especially bad news, it is unsurprising that other news-based indices 
also adopting the text analysing methodologies of Baker et al. (2016) 
are shown to have meaningful implications for both the crude oil and 
US stock markets. For example, Smales (2021) use the geopolitical risk 
index of Caldara and Iacoviello (2022) and illustrate that an increase 
in geopolitical risk is associated with positive (negative) oil (US stock) 
returns.

Within the above context, it is also vital to consider the source of 
shocks in the international crude oil market. In a prominent paper on 
the impact of oil price shocks on the US stock market, Kilian and Park 
(2009) adopt the recursively identified vector autoregressive (VAR) 
model of Kilian (2009) to disentangle the supply- and demand-side 
shocks in the crude oil market by including US stock returns in the 
system. Importantly, they ascertain that the influence of an oil price 
shock on the US stock market largely depends on whether the shock is 
attributed to supply or demand forces in the oil market. Departing from 
their four variable structural VAR that includes data on oil production, 
global economic activity, oil prices, and stock returns, we incorporate 
oil price uncertainty as a regime switching variable in the system. 
To this end, we also make use of recent econometric developments 
in smooth transition VAR models introduced in Virolainen (2024a), 
allowing for statistical identification without imposing restrictions if 
shocks are mutually independent and at most one is Gaussian.
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2. Methodology

We estimate a smooth transition vector autoregressive model
(STVAR) with two regimes based on monthly data, from 1983:5 to 
2024:6, for the global oil market and the US stock market: 

𝑦𝑡 =
2
∑

𝑚=1
𝛼𝑚,𝑡𝜇𝑚,𝑡 + 𝑢𝑡, 𝑢𝑡 ∼ 𝑀𝐷(0, 𝛺𝑦,𝑡, 𝜈), (1)

𝜇𝑚,𝑡 = 𝜙𝑚 +
𝑝
∑

𝑖=1
𝐴𝑚,𝑖𝑦𝑡−𝑖, 𝑚 = 1, 2, (2)

where 𝑢𝑡 is a martingale difference sequence and 𝛺𝑦,𝑡 is a positive 
definite covariance matrix which depends on the weights 𝛼𝑖,𝑡 and 𝑦𝑡−1, 
and 𝜈 are further parameters of the distribution. The transition weights 
follow a logistic function: 
𝛼1,𝑡 = 1 − 𝛼2,𝑡 𝑎𝑛𝑑 𝛼2,𝑡 = [1 + 𝑒𝑥𝑝{−𝛾(𝑦1,𝑡−1 − 𝑐)}]−1, (3)

where the switching variable, 𝑦1,𝑡−1, is the first lag of the oil price 
uncertainty index, and 𝑐 and 𝛾 are location and scale parameters.

We use independent Student’s t distributions for the structural 
errors, 𝑒𝑡, which allows for different degrees of freedom parameters for 
each component and is essential in the identification strategy as we sub-
sequently describe. The serially and mutually uncorrelated structural 
shocks, 𝑒𝑡, are identified from the reduced form innovations, 𝑢𝑡, such 
that: 
𝑒𝑡 = 𝐵−1

𝑦,𝑡 𝑢𝑡, (4)

where 𝐵𝑦,𝑡 is a weighted average of impact matrices of the regimes, 
covering the contemporaneous relationships of the variables. Under 
the assumption that the structural shocks are mutually independent 
and that at most one of them is Gaussian, Virolainen (2024a) shows, 
following on Lanne et al. (2017) for linear SVAR models, that the 
impact matrices 𝐵1 and 𝐵2 and the structural shocks are identified up 
to ordering and signs.

To provide economic meaning to the statistically identified shocks, 
we need to label the columns of the impact matrix 𝐵𝑦,𝑡. For this, we 
follow a three-step procedure: (1) We permutate and sign change the 
columns of the matrix 𝐵1 to achieve positive diagonal entries and the 
largest diagonal sum (see this strategy in Bernoth and Herwartz, 2021, 
for a linear VAR model). The columns of 𝐵2 are reordered and sign 
changed accordingly, and also the degree-of-freedom parameters are 
reordered accordingly, so that the underlying model does not change.1 
(2) We verify that the chosen ordering also maximises the diagonal 
sum of the impact matrix 𝐵2 compared to other orderings.2 (3) To 
support the intended labels of the shocks, we check whether shocks 
and responses conform with expectations based on economic theory 
and previous empirical studies.

Due to the non-linear structure of the model and the dependence 
of responses on initial values, we use generalised impulse response 
functions (GIRF) to study the dynamics of the model following (Koop 
et al., 1996). The GIRFs and their confidence bands are constructed 
using a Monte Carlo algorithm (see Lanne and Virolainen, 2024, for 
details).

3. Data

To estimate the oil market shocks we analyse the following 5-
dimensional system: 𝑦𝑡 = (𝑢𝑡, 𝛥𝑞𝑡, 𝑥𝑡, 𝛥𝑝𝑡, 𝑟𝑡).3 We use a new oil price 

1 Variables varying in larger scale, can have larger weight in the max-
imisation of the diagonal sum. We thank the reviewer for pointing this 
out.

2 In case this would not be satisfied, we could choose the ordering which 
maximises the total sum of both diagonals.

3 As we do not use a recursive identification strategy, the ordering of the 
variables do not influence the results.
2 
uncertainty index, 𝑢𝑡, of Abiad and Qureshi (2023)4, a log difference 
in global crude oil production5, 𝛥𝑞𝑡, a detrended6 world industrial 
production index, 𝑥𝑡, suggested in Baumeister and Hamilton (2019)7, 
the log difference of the real price of oil, 𝛥𝑝𝑡, for which we use the 
US crude oil price WTI as our focus is on the US market, and the 
returns of the S&P 500 stock market index, 𝑟𝑡. The oil price and stock 
market data are downloaded from Bloomberg in daily frequency and 
are transformed into monthly averages, and expressed in constant 2015 
prices using the US CPI obtained from Fred.8

We note from the regime series of Fig.  1 that the oil price uncer-
tainty index rises around key historical events in the international crude 
oil market, related to conflicts in the Middle East in the early part of 
our sample, the booming 2000s, the 2008 Global Financial Crisis (GFC), 
the Arab Spring conflict (early 2010s), and the oil price crash of the 
mid-2010s. During these periods of heightened oil price uncertainty, 
variables in the crude oil and US stock markets tend to be appropriately 
punctuated. For instance, all four series (𝛥𝑞𝑡, 𝑥𝑡, 𝛥𝑝𝑡, and 𝑟𝑡) sharply dip 
in the COVID-19 pandemic, while all except oil supply (𝛥𝑞𝑡) tumble in 
the 2008 GFC, and only oil price changes (𝛥𝑝𝑡) reflect the disturbances 
related to the oil price crash of the mid-2010s.

4. Results and discussion

We estimate a two-regime smooth transition model with four lags, 
based on Akaike information criterion. The model is estimated with 
maximum likelihood estimation.9 The degree of freedom parameters 
for the structural shocks are estimated to be 2.02, 2.88, 2.06, 3.62, and 
4.27. The low values show that all variables are non-normal, which 
confirms the appropriateness of the statistical identification strategy 
we adopt. The estimated regime means for the respective ordering of 
the variables - 𝑢𝑡, 𝛥𝑞𝑡, 𝑥𝑡, 𝛥𝑝𝑡, and 𝑟𝑡 - are 2.57 (7.68), 0.07 (0.20), 4.05 
(6.49), −0.23 (0.89), and 1.06 (0.84) for the first (second) regime. 
Regime 1 has lower oil price uncertainty, lower average oil price 
inflation, and higher average stock returns. The estimated location 
parameter, 𝑐, is 4.36 and the scale parameter, 𝛾, is 89.20. The regime 
graph shown in Fig.  1 reflects the relatively large 𝛾, indicating the 
model is mostly in one or the other regime, switching fast between 
regimes. The lower uncertainty regime is mostly present in the 1990s 
but also intermittently characterises periods over the full sample. The 
estimated impact matrices of the two regimes, 𝐵1 (low oil price uncer-
tainty) and 𝐵2 (high oil price uncertainty), where the column ordering 
and signs are selected following the labelling strategy suggested in 
Section 2, read as:

�̂�1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

11.63 0.30 0.31 0.59 −0.06
−0.32 0.93 −0.07 −0.16 0.43
0.17 0.01 1.65 −0.10 0.05
0.13 −1.03 1.72 4.93 3.48
0.44 −1.56 −0.58 −1.39 1.56

⎤

⎥

⎥

⎥

⎥

⎥

⎦

4 Available from policyuncertainty.com. We scale the uncertainty index by 
dividing the values by 10, to achieve a comparable range with the other 
variables in the system.

5 World crude oil production in thousands of barrels per day is obtained 
from the US Energy Information Administration (EIA), available from eia.gov/
opendata.

6 Hamilton detrending is employed, which applies a two-year (24 month) 
seasonal difference to the series (see Hamilton, 2018, 2021).

7 The world industrial production index is obtained from Christiane 
Baumeister’s website, available at sites.google.com/site/cjsbaumeister/
research.

8 Seefred.stlouisfed.org/series/CPIAUCSL.
9 We use the two-phase estimation procedure implemented in the R package 

‘sstvars’, see Virolainen (2024b). Large number of runs with different initial 
values are necessary in these estimations due to the multimodal surfaces of 
the likelihood functions. We ran optimisations with 3000 different seeds.

https://www.policyuncertainty.com/oil_uncertainty.html
https://www.eia.gov/opendata/qb.php?sdid=INTL.57-1-WORL-TBPD.M
https://www.eia.gov/opendata/qb.php?sdid=INTL.57-1-WORL-TBPD.M
https://sites.google.com/site/cjsbaumeister/research
https://sites.google.com/site/cjsbaumeister/research
https://fred.stlouisfed.org/series/CPIAUCSL


R. Heinlein and S.M.R. Mahadeo Economics Letters 251 (2025) 112291 
Fig. 1. Time series plots and the two estimated regimes from the smooth transition VAR. For explanations of the variables 𝑢𝑡 , 𝛥𝑞𝑡 , 𝑥𝑡 , 𝛥𝑝𝑡, and 𝑟𝑡, refer to Section 3. In the second 
graph depicting transition weights of the two regimes, Regime 1 in blue (Regime 2 in red) is the low (high) oil price uncertainty environment.
�̂�2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

32.58 0.27 0.50 −1.64 0.23
−1.04 1.24 −0.03 −0.07 −0.06
−0.37 −0.02 3.14 0.02 0.02
11.60 0.82 1.09 8.53 2.26
−4.53 −0.13 −0.10 −0.68 3.40

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where the ordering of the variables is 𝑦𝑡 = 𝑢𝑡, 𝛥𝑞𝑡, 𝑥𝑡, 𝛥𝑝𝑡, 𝑟𝑡. The 
labelling of the oil price uncertainty shock, determined by the impact 
responses of variables in the estimates of 𝐵1 and 𝐵2, are in line with 
expectations based on external information from economic theory and 
previous empirical studies. For instance, the impact effect of the oil 
price uncertainty shock on the oil price uncertainty index is expected 
to be positive and large under both regimes. Additionally, the impact 
effect of the oil price uncertainty shock on the supply of oil is ex-
pected to be negative in both regimes and more substantial in the 
higher uncertainty environment, as investment is more cautious at 
3 
higher levels of uncertainty (see, e.g., Bloom et al., 2007). Indeed, if 
rising uncertainty reduces investment, it follows that rising oil price 
uncertainty reduces oil investments. Furthermore, the impact effect of 
the oil price uncertainty shock on global economic activity should be 
adverse (negative) in the higher uncertainty regime. This is consistent 
with the findings of Jo (2014), who show that a doubling of oil price 
uncertainty leads to a cumulative decline in world industrial production 
of 0.3%. While oil price uncertainty constrains oil production, as seen 
from its impact effect on oil supply, economic theory implies that the 
fall in supply should increase the price of oil, which is expected to 
be more pronounced in the high oil price uncertainty regime. More-
over, average oil price returns are higher (lower) in the high (low) 
oil price uncertainty regime. In addition, the impact effect of the oil 
price uncertainty shock on the US stock market returns is negative in 
the high uncertainty regime, relative to the muted effect in the low 
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Fig. 2. Regime comparison of generalised impulse response functions (GIRFs) using scaled shocks. The high (low) oil price uncertainty Regime 2 (Regime 1) is displayed in red 
(blue) colour. Shaded areas represent the 95% confidence bands accompanying the responses to reflect uncertainty about the initial values within the regime, which are computed 
using Monte Carlo simulations with 1000 repetitions. Impulse responses to the five statistically identified shocks in the two regimes are projected over a 4-year forecast horizon 
(h = 0, 1, . . . ., 48 months ahead), using one-standard-error shocks based on 1000 draws of initial values. Every row can be read as the GIRFs for a given variable (𝑢𝑡 , 𝛥𝑞𝑡 , 𝑥𝑡, 𝛥𝑝𝑡, 
and 𝑟𝑡) to each of the five identified shocks. Alternatively, every column can be read as the impact of a given shock on each of the five variables in the system. For all other 
details, refer to the main text.
uncertainty regime, in line with related literature (see, e.g., Bams et al., 
2017). Thus, consolidating external information with the estimates of 
the impact matrices, we appropriately label the first shock as the oil 
price uncertainty shock.

The labelling of other shocks in the system also appear broadly rea-
sonable based on external information. For example, the impact effect 
of the oil production shock on oil prices in the relatively certain regime 
is consistent with the ceteris paribus assumption of an oil supply shock 
reducing prices in the crude oil market. Following on this, the impact 
effect of world industrial production positively stimulates oil prices in 
both regimes, permitting us to view this as an aggregate demand shock. 
Also, the impact effect of the oil price shock on stock market returns 
is negative, in line with evidence from the theoretically identified VAR 
model (Kilian and Park, 2009) based on delay restrictions, allowing us 
to interpret this shock as an oil demand shock. Finally, as the impact 
effect of the stock returns shock is stimulating to both world industrial 
production and oil prices, we are able to label this as a stock market 
shock.

We compare the interaction between the crude oil and US stock 
markets between regimes in Fig.  2, which illustrates the generalised 
impulse response functions of oil price uncertainty, oil production, 
global industrial production, oil price returns, and stock returns for 
Regime 1 (low price uncertainty environment — blue lines) and Regime 
2 (high price uncertainty environment — red lines). We study one-
standard error shocks which we scale to a magnitude of instantaneous 
response of 1 for the variables on the diagonal, whereby all other 
responses are scaled accordingly. The responses for oil production (𝛥𝑞𝑡), 
oil price returns (𝛥𝑝𝑡), and stock returns (𝑟𝑡) are displayed as cumulative 
responses. Based on the first column, the effects of oil price uncertainty 
shocks are broadly similar on the rest of the system under both oil price 
uncertainty regimes. However, in the relatively higher (lower) oil price 
uncertainty environment, oil price uncertainty reduces (raises) global 
output. The result in Regime 2 is consistent with the findings of Abiad 
and Qureshi (2023), who show that US industrial production falls in the 
aftermath of an oil price uncertainty shock, with the largest decline also 
occurring at around ten months. In the high uncertainty environment, 
this shock also has an initial stronger negative impact on stock market 
returns than in Regime 1.
4 
From the oil market supply and demand shocks, we observe that oil 
supply shocks have a negative effect on both the oil price and stock 
returns in Regime 1, while the effects in Regime 2 are more muted 
in comparison, over the forecast horizon. Additionally, global demand 
shocks have a stronger stimulating (positive) effect on both oil supply 
and oil price returns in an environment of lower (rather than higher) oil 
price uncertainty. Interestingly, oil demand shocks increase (decrease) 
oil price uncertainty in Regime 1 (Regime 2). Moreover, the positive 
effects of oil demand shocks on oil price returns are larger in Regime 
1 than in Regime 2. Furthermore, the negative effects of oil demand 
shocks on stock returns are also larger in Regime 1 than Regime 2.

Considering US stock market shocks, these have a positive effect 
on oil supply in Regime 1, while stock market effects on oil supply 
in Regime 2 appear subtle. In addition, the positive effects of a stock 
market shock on oil price returns are larger in Regime 1 than in Regime 
2. Finally, a stock market shock has a similar effect in magnitude and 
sign (positive) on the US stock market in both regimes.

Overall, with the exception of oil price uncertainty shocks them-
selves, our impulse responses provide supporting evidence to imply 
that supply- and demand-side shocks from the oil market, as well as 
stock market shocks, tend to have greater effect sizes in the lower 
oil price uncertainty regime. These findings are consistent with the 
premise of Lee et al. (1995) that shocks occurring in a relatively stable 
environment are inclined to surprise market participants more, thereby 
eliciting amplified responses, than during an environment where oil 
price uncertainty is anticipated to be higher. Our results, therefore, 
demonstrate that states of relatively high and low oil price uncertainty 
can account for the asymmetric effects of shocks in the crude oil and 
US stock markets, consistent with the work of Rahman (2022) and 
contradictory to the symmetric effects that Alsalman (2016) reports.

5. Conclusion and future research

Using recent econometric developments in smooth transition VAR 
models to capture regime-dependent dynamics, we examine the inter-
action between the crude oil and US stock markets under high and low 
oil price uncertainty environments. We show that in the lower oil price 
uncertainty regime, supply- and demand-side oil market shocks, as well 
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as stock market shocks, tend to surprise markets more, as evidenced 
by larger responses to such shocks in relatively stable conditions. 
Conversely, in the high oil price uncertainty regime, the effects of these 
shocks are more muted, suggesting a degree of anticipation by the mar-
kets. The asymmetric responses of the crude oil and US stock markets 
to shocks between high and low oil price uncertainty regimes pro-
vide valuable insights into the energy-finance nexus for policymakers 
and market participants, emphasising the importance of incorporat-
ing regime-dependent dynamics in risk management strategies and 
financial decision-making.

A natural direction for further work is an extension of our applica-
tion to other asset classes. For instance, the US government bond prices 
and crude oil prices are typically inversely related, due to changing 
interest rates, with bonds attracting risk-averse investors as a less risky 
and less volatile alternative to stocks and commodities in turbulent 
economic conditions. Kang et al. (2014) replaces the real US stock 
market returns in the structural VAR model of Kilian and Park (2009) 
with real US bond market returns to assess the impact of crude oil 
market shocks on the bond market, finding that demand side shocks 
reduce bond returns. Their analyses can be revisited under high and 
low oil price uncertainty regimes within a smooth transition VAR 
framework, to ascertain the implications of regime-dependence in the 
crude oil-US bond market relationship.
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