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Over the past few years, surgical data science has attracted substantial interest from the machine 
learning (ML) community. Various studies have demonstrated the efficacy of emerging ML techniques 
in analysing surgical data, particularly recordings of procedures, for digitising clinical and non-clinical 
functions like preoperative planning, context-aware decision-making, and operating skill assessment. 
However, this field is still in its infancy and lacks representative, well-annotated datasets for training 
robust models in intermediate ML tasks. Also, existing datasets suffer from inaccurate labels, 
hindering the development of reliable models. In this paper, we propose a systematic methodology 
for developing robust models for surgical tool classification using noisy endoscopic videos. Our 
methodology introduces two key innovations: (1) an intelligent active learning strategy for minimal 
dataset identification and label correction by human experts through collective intelligence; and (2) an 
assembling strategy for a student-teacher model-based self-training framework to achieve the robust 
classification of 14 surgical tools in a semi-supervised fashion. Furthermore, we employ strategies 
such as weighted data loaders and label smoothing to enable the models to learn difficult samples and 
address class imbalance issues. The proposed methodology achieves an average F1-score of 85.88% 
for the ensemble model-based self-training with class weights, and 80.88% without class weights for 
noisy tool labels. Also, our proposed method significantly outperforms existing approaches, which 
effectively demonstrates its effectiveness.

In recent years, surgical data science has emerged as a promising discipline within the field of surgical science, 
promoting the adoption of data-driven methods such as machine learning (ML) and deep learning (DL) 
techniques. These advanced approaches have been instrumental in enhancing surgical scene understanding and 
tackling a wide range of intermediate tasks in surgery, including object detection (tools, tasks, hands), surgical 
workflow analysis, and tissue segmentation for visual risk tracking1. Surgical tool classification plays a crucial 
role, enabling downstream applications such as preoperative planning, interoperative situational awareness and 
service audit2. Moreover, it can be used to develop an automated surgical skills assessment system that can provide 
objective feedback on the dexterity of the practitioner’s surgical procedures, which is crucial for continuous 
professional development3. However, despite the significant attention given to surgical tool classification, only 
a few studies have thoroughly analysed the robustness of DL approaches in the presence of issues such as class 
imbalance, and label noise.

However, unlike other well-established disciplines, surgical data science is still in the developmental stage 
and lacks high-quality representative datasets necessary for developing robust applications to digitise clinical 
and non-clinical tasks4. Surgical datasets, such as endoscopic videos, commonly suffer from various data quality 
issues, including device-related noise, improper lighting, label leakage, class imbalance, and label noise (as 
shown in Fig. 1). Currently, most available datasets are insufficient for efficient and large-scale model training 
and contain imperfections. The creation of curated and well-annotated benchmark datasets for surgical tool 
classification poses significant challenges. Manually annotating surgical videos is exceptionally demanding due 
to factors such as limited expert availability, time/effort requirements, and wide diversity of surgical interventions 
and numerous tools across different procedures.

The development of robust models is imperative for successful translation of ML/DL-empowered products in 
clinical care5. To achieve state-of-the-art (SOTA) performance, DL models rely on large-scale clean data having 
high-quality annotations. However, annotating medical data poses significant challenges due to its costly and 
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time-consuming nature6. Moreover, as previously discussed, surgical datasets frequently suffer from various 
data quality issues. These datasets often contain inaccurate labels with different types of noise, resulting in 
inaccurate depictions of surgical scenes. This issue is particularly prevalent in datasets acquired from emerging 
surgical robotic systems, where the camera feed is synchronised with the device log to generate labelled datasets. 
As surgeons manipulate the camera, tools may inadvertently fall out of focus while still attached to the robot, 
resulting in noisy labels in the log. To train robust models, a systematic approach is essential, incorporating 
diverse strategies for data preparation, model training, error analysis, and deployment on such noisy datasets.

In this paper, we aim to tackle the challenge of creating robust surgical tool classification models on 
challenging data characterised by high-class imbalance and significant label noise. We define robustness as the 
ability of the model to effectively learn relevant features from noisy data without significantly compromising 
its learning capabilities and predictive performance. Our dataset comprises approximately 24,694 30-second 
recordings of surgical robotic procedures, with one label per video indicating the presence of surgical tools. 
However, the surgical scene can undergo significant changes within a 30-second interval, resulting in substantial 
erroneous labels, particularly when video labels are extrapolated to frames extracted from these videos. Manual 
label correction for such a dataset, consisting of approximately 44.27 million frames, is impractical. To address 
these issues, we propose a novel active learning (AL) technique for efficiently labelling a minimal dataset. 
We then introduce an ensembling strategy for developing student-teacher models, enabling the learning of 
the underlying mapping function (f : x → y) from the noisy data, where x and y denote input and output, 
respectively. To the best of our knowledge, this is the first study to comprehensively tackle these challenges by 
employing AL together with integrating ensembling in self-training to train a robust model using noisy data for 
surgical tool classification. This paper makes the following salient contributions. 

 1.  We present a curated, well-annotated dataset comprising over 24k frames for 14 different surgical tools.
 2.  We propose an AL-based strategy to efficiently label surgical frames with minimal human effort.
 3.  We develop a student-teacher framework utilising an ensemble model, consisting of four DL models, for 

surgical tool classification using noisy data.
 4.  We employ weighted data loaders (WDLs) to train student models in a self-training framework, effectively 

addressing the high-class imbalance issue.
 5.  We perform a comprehensive analysis to validate the effectiveness of our framework, benchmarking both 

individual models and the ensemble model.

Related work
Various approaches have been proposed for surgical tool classification, ranging from classical ML to DL-based 
solutions. Bouget et al.7 proposed a two-stage method that leverages the local appearance of surgical tools at 
the pixel level and enforces global shape using tool-specific shape templates. They emphasised importance of 
intermediate semantic labelling for achieving robust detection performance. Kumar et al.8 explored the use of 
classical image processing techniques, including point-based, region-based, and optical flow, for surgical tool 
detection and tracking. Richa et al.9 proposed a weighted mutual information-based image similarity function 
for visual tracking of surgical tools, specifically for proximity detection in retinal surgeries.

A number of existing research studies have used CNN for surgical tool detection. Jin et al.3 proposed a 
region-guided CNN model for surgical tool detection and tracking that was used for surgical skills assessment 
by evaluating tools’ movement, usage, range, and motion. Their method was the first attempt toward spatial 
localisation of surgical tools in laparoscopic surgical videos. Similarly, Liu et al.2 proposed a depth-wise separable 
convolution operation that was used to develop a convolutional LSTM model for surgical tool detection. The 
use of reinforcement learning to control positive and negative sample adaptation during the training model for 

Figure 1. An illustration of surgical data quality issues in our dataset including incorrect labels, irrelevant 
frames, image quality issues, images leaking label information, and high class imabalance. Our proposed 
methodology is capable of training a robust model in the presence of these issues.

 

Scientific Reports |         (2025) 15:5520 2| https://doi.org/10.1038/s41598-024-82351-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


surgical tool detection is presented in10. García-Peraza-Herrera et al.11 formulated the surgical tool detection 
problem as a segmentation problem and tracked it using optical flow. In their work, a fully convolutional network 
was used as the segmentation network; however, their method can distinguish between different tools.

In another work, Ciaparrone et al.12 employed the mask R-CNN model for the segmentation of surgical tools 
and evaluated 12 different backbone CNN architectures. In a similar study, Ceron et al.13 approached the surgical 
tool detection task as a segmentation problem and proposed a single-stage instance segmentation framework. 
Furthermore, they complemented the proposed segmentation model with a convolutional block-based attention 
mechanism, data augmentation, feature fusion, and anchor localization to enhance its performance. The 
proposed method was evaluated using the Robust Medical Instrument Segmentation 2019 challenge (ROBUST-
MIS), where it achieved promising results even in the presence of various challenges such as smoke, occlusions, 
transparent tools, instrument flare, motion blur, etc. Twinanda et al.14 proposed a CNN model for surgical tool 
presence detection. The authors extracted features from a fully connected layer of the trained CNN model and 
then used the support vector machine model and the Hierarchical hidden Markov model for surgical phase 
detection. The proposed method was validated using two endoscopic surgical databases, i.e., Cholec80 and 
EndoVis. Hasan et al.15 proposed a novel framework named augmented reality tool network (ART-Net) for the 
detection, segmentation, and 3D rendering of surgical tools in endoscopic videos. The proposed framework is 
an integration of CNN architecture (with one encoder and multiple decoders) and algebraic geometry, which 
are collectively used to perform the aforementioned tasks. Shi et al.16 proposed a CNN-based framework that 
incorporates coarse and refined detection modules. Furthermore, they integrated an attention module into the 
refined detection module that enforces the network to learn important features for surgical tool detection. Yang 
et al.17 proposed a CNN-based model for surgical tool detection that works by generating ghost feature maps by 
exploiting intrinsic feature maps.

To address the problem of data imbalance, Jaafari et al.18 employed different data augmentation techniques 
(such as rotation of different angles, mirroring, shearing, and padding) while preserving the tool’s presence. 
The authors then fine-tuned a CNN (i.e., inception ResNet V2 pre-trained on ImageNet dataset) model using 
augmented data for the surgical tool classification task. To address the challenge of the availability of annotated 
data for surgical tool detection, Ali et al.19 presented a student-teacher-based self-supervised learning framework 
that works by only utilising a small fraction of labelled data. Labelled data is used for training the teacher model, 
which is then inferred using unlabeled images to get pseudo labels for student model training. In addition, 
the authors integrated a region proposal network for the extraction of the region of interest in input images. A 
weakly supervised framework named pseudo-supervised surgical tool detection (PSTD) that incorporates three 
phases for pseudo-label generation is presented in20. Specifically, to model the contextual information, PSTD 
employs a bi-directional adaptation weighting mechanism in the surgical tool detection classifier.

A novel modulated anchor network that works in conjunction with the Faster R-CNN model for surgical tool 
detection is presented in21. The key purpose of the anchor network is to predict the spatial location of anchor 
shapes used in tools for training the backbone network. Furthermore, they proposed to incorporate a relation 
module in the network (one module after each fully connected layer) to model the relationship of a tool in a 
given image with other tools. To address the limitations of anchor-based methods (i.e., handling variations in 
tool appearance), Loza et al.22 presented the use of a transformer network for surgical tool detection using multi-
scale features. The employed transformer architecture uses positional encoding that helps capture the context 
and structural information of surgical tools of different sizes. Choi et al.23 present the utilisation of a SOTA 
object detection model, specifically You Only Look Once (YOLO), for surgical tool detection. However, only 
three surgical videos acquired at 25 fps were used for the evaluation of the model. We refer interested readers to 
comprehensive surveys that are focused on surgical tool detection for getting more detailed information about 
different DL-based methods24–26.

Ensembling has been found to be significant for surgical tool detection, as highlighted in various studies. 
For example, Alshirbaji et al.27 proposed an ensemble model that uses VGG16 and ResNet50 models for spatial 
feature learning and two LSTM units on top of CNN models for temporal feature learning. Similarly, Mishra et 
al.28 suggested a combination of CNN and stacked LSTM for spatial feature extraction and temporal information 
encoding. Jaafari et al.29, formulated surgical tool classification as a multi-label classification problem. To 
address this, they utilised an ensemble model comprising three CNN architectures: Inception v-4, VGG-19, 
and NASNet-A. They used various data augmentation techniques to address the data imbalance problem and 
improve model training. The dataset in this study comprises only 80 videos acquired at a frame rate of 25 and 
has seven labels. Wang et al.30 also formulated surgical tool classification as a multi-label classification problem 
and proposed an ensemble model that uses model averaging to ensemble predictions of trained GoogleNet 
and VGGNet. Our approach is similar to Jaafari et al.29 and Wang et al.30, as they have also used ensembling. 
However, our study differs in the following ways: (1) our dataset comprises more samples; (2) the number of 
classes (i.e., tools) in our data is 14; (3) we consider learning from noisy data; and (4) we incorporated ensembling 
in self-training. Aforementioned techniques could potentially be used for surgical tool classification task using 
the dataset employed in our study. However, it is imperative to note that these approaches may not be well-
suited to address the distinctive challenges inherent in this dataset such as the presence of significant noisy 
labels, high class imbalance, and label leakage. This necessitate the development of a systematic approach for 
efficient model training even in the presence of such data imperfections. In the next section, we will present a 
systematic approach that includes active learning for creating clean labelled data with minimal manual efforts, 
segmentation-based dynamic cropping to avoid label leakage, student-teacher-based self-training to leverage 
unlabeled data while mitigating label noise, and weighted data loaders to address class imbalance issue.
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Methodology
In this section, we present our proposed methodology for surgical tool classification using noisy data. Specifically, 
we start by first defining the problem and describing the dataset.

Problem formulation
Our objective is to develop a robust model for surgical tool classification using endoscopic surgical video (ESV) 
images, despite the presence of data imperfections and noisy labels. ESV data obtained from robotic systems 
often exhibit varying tool visibility within the field of view (FoV) throughout the duration of surgery. The 
process of annotating frames extracted from the ESV required extrapolating video labels, which introduced 
inconsistencies between ground truth labels and actual tools present in the view, leading to significant label 
noise. This noise presents a unique challenge for deep neural networks (DNNs) in accurately classifying tools 
in the image. Our objective is to address this challenge by predicting the presence of tools in each frame xi. 
We formulate the surgical tool presence detection task as a multi-label image classification problem, aiming to 
classify surgical tools present in each frame.

We extract our dataset D from a collection of ESV clips comprising different minimally invasive surgeries 
performed by surgeons using da Vinci surgical robot. Each clip cj  in the ESV collection consists of multiple frames 
cj =

∪fj −1
i=0 {x

(i)
j } acquired at a frame rate of 60 frames per second (fps), where fj  denotes the total number 

of frames in cj . Furthermore, each ESV clip has been assigned a set of three unique labels yj = {yj1 , yj2 , yj3 } 
by the dataset providers. Each of the three labels is an instance of the label set L =

∪T −1
i=0 {ti}, where T = 14 

denotes the total number of tools (i.e., classes) present in the dataset. Therefore, our dataset can be represented 
as D =

∪n−1
j=0 {(cj , yj)} =

∪n−1
j=0

∪fj −1
i=0 {(x(i)

j , yj)}, where n = 24, 694 is the total number of ESV clips. 

For simplicity, we denote our dataset as D =
∪N−1

i=0 {(xi, yi)}, where is xi ∈ R1280×720×3 represents a single 
frame and li ∈ L represents the set of labels assigned to the ESV clip from which xi is sampled. Here, N denotes 
the dataset size.

Data description and preprocessing
Data description
The dataset used in this study is sourced from the “Surgical Tool Localisation in Endoscopic Videos” challenge 
held at the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022 conference31. It 
consists of 24,694 ESV clips captured during surgical training exercises using the da Vinci robot. These videos are 
recorded at a 60 frames per second (fps) rate with a resolution of 720p (1280 × 720). This dataset requires  15.4 
terabyte of disc space if we completely extract its frames. Each ESV clip is accompanied by corresponding tool 
presence labels. However, it’s worth noting that instances exist within the dataset where the ESV label indicates 
the presence of tools not visible in the video due to surgeons moving tools out of the field of view (FoV), despite 
their installation on the robotic system. Consequently, noise is introduced when generating ESV clip labels by 
extracting tool information directly from the robotic system. Furthermore, the dataset presents various data 
quality issues (see Fig. 1), including weak labels, blank frames, and label leakages. Label leakage occurs when the 
user interface of the robotic system, visible at the bottom of ESV images, reveals the names of deployed tools, 
further complicating the modelling task. The challenge of inaccurate labels is compounded when weak ESV 
labels are extrapolated across frames, resulting in substantial label noise in the dataset. This presents a significant 
hurdle for models in learning robust features for surgical tool classification. Figure 1e illustrates the distribution 
of the fourteen surgical tools within the dataset, highlighting its highly imbalanced nature, which poses an 
additional challenge in training a robust model for surgical tool classification.

Data preprocessing
In our proposed method, we conducted thorough data preprocessing to tackle various data quality-related 
issues. We present a systematic methodology for training robust models from datasets containing significant 
label noise. Next, we delve into the techniques employed for preprocessing videos and labels, which form the 
core of our proposed methodology.

(a) Videos Preprocessing: The following are the key steps involved in preprocessing of ESV clips.
Frame Sampling: Our initial challenge involved sampling a minimal number of frames from the ESV clips 

to conduct experiments efficiently within a reasonable timeframe. With an average of 1800 frames per ESV 
clip, the total exceeds 44.27 million images, with each frame xi ∈ R1280×720×3 occupying over 15.42 TB of 
storage space on the hard drive if extracted as JPEG files due to compression. Utilising all frames from such an 
extensive imaging dataset for training models is computationally infeasible. Furthermore, the surgical scene 
undergoes minimal changes between consecutive frames, rendering many frames useless for learning additional 
meaningful features by the models. To address this issue, we first compressed the ESV clips to a frame rate of 
10Hz. Subsequently, we employed OpenCV to extract approximately twenty keyframes from each ESV video, 
ensuring each keyframe captured a significant scene difference compared to its preceding frames. This approach 
provided an adequate number of samples for model training and enabled the execution of our experiments 
within a reasonable timeframe.

Dynamic Region Cropping using Segmentation Model: Our preliminary analysis revealed that models struggle 
to learn robust features for classifying surgical tools due to label leakage, where tool information from the robotic 
system’s UI banner is inadvertently included in the frames. This issue led the model to take shortcuts instead 
of focusing on learning meaningful classification features32. To address this, we trained our own segmentation 
models to dynamically crop out pixels containing leaked tool information. We randomly sampled one frame per 
ESV clip and used the Prodigy annotation tool to create a small segmentation dataset of masks to differentiate 

Scientific Reports |         (2025) 15:5520 4| https://doi.org/10.1038/s41598-024-82351-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


between foreground and background image regions. The foreground region contains useful surgical scene 
information, while the background region comprises irrelevant pixels, revealing tool information. We trained 
a U-Net-based segmentation model to segment the foreground region in the frames. Subsequently, we used 
OpenCV to crop the entire dataset, effectively discarding the leaky regions. Our segmentation model efficiently 
eliminates the UI control panel at the bottom of all frames, the disclaimer notice at the top, and the black borders 
on the left and right sides of the videos (see Fig. 1d). These additional pixels not only contribute to prolonged 
network training and wasted computation but also significantly impact the learning algorithm’s ability to learn 
robust classification features33. For more details about our dynamic segmentation model and results, please refer 
to our published work on addressing label leakage in ESV34.

Black Frames Removal: Some ESV clips consist entirely of black frames devoid of any visual information, 
while others contain partially black frames. Despite the lack of visual content, these frames still received tool 
labels due to label extrapolation from the corresponding ESV clip. Such occurrences typically coincide with the 
installation or removal of the camera lens for cleansing or redeployment on another arm. Initially, we opted to 
remove these frames entirely from the dataset. However, we later decided to address this issue by introducing 
a ‘blank‘ class and augmenting the dataset with several black images. This allowed the models to accurately 
recognise and classify black frames in ESV clips, leading to improved predictive performance on the validation 
set.

(b) Labels Preprocessing: We performed exploratory data analysis to find some prominent labelling noise in 
the dataset and fixed the identified issues using the following methods.

Labels Standardisation: We used regular expressions to standardise tool labels. This involved removing 
various symbols such as brackets ([]), quotes (”), hyphens (-), slashes (\ \). Also, the underscore (_) symbol was 
removed with a white space character.

Labels Extrapolation: In the dataset, each ESV clip is provided with a single label string describing tools 
presence. As described earlier, we extract keyframes from these ESV clips and then extrapolate the corresponding 
ESV label to these keyframes. However, this extrapolation introduces further noise into the dataset. Many frames 
are created where the label indicates the presence of three instruments, yet only two or fewer tools are visible in 
the given frame. This scenario often occurs when the surgeon moves a tool out of view, despite its installation 
on the robotic system. Learning from noisy labels is recognised as one of the unique challenges presented in this 
competition.

Training baseline model(s)
To facilitate AL in our proposed methodology, we trained a baseline model for surgical tool classification using 
noisy dataset. The primary objective of the baseline model is to identify samples in the dataset for manual 
labelling based on model loss/uncertainty on surgical tool classification task. It also laid the groundwork for 
extensive experimentation to devise a robust ML training pipeline to ensure the development of improved 
models in subsequent phases. In machine learning practice, the importance of employing data augmentations 
for training superior deep learning models is widely acknowledged. With this principle in mind, we explored 
various data augmentation approaches to preprocess batches while training our models. Specifically, we tested 
three techniques: squishing, cropping, and padding. Our findings revealed that squishing images yielded 
superior results compared to cropping and padding. Furthermore, we investigated the impact of rectangular 
versus squared resising. We found that baseline models achieved better performance when the dataset was scaled 
to maintain a similar aspect ratio as the original dataset, which had an original rectangular dimension of 1280×
720. This insight guided our modeling choice to preserve the aspect ratio during the process, aiming for optimal 
model performance.

Ensemble model E(·): We employed ensembling to train baseline, teacher, and student models. Our ensemble 
model E(·) comprises four component models from the following model families: Mc(·), representing 
ConvNext35; Mv(·), corresponding to ViT36; Ms(·), representing Swin V237; and Mr(·), based on RegNextX38. We 
carefully selected variants from these families after thorough experimentation using grid search optimisation for 
architectural search to design ensemble learners. Specifically, we explored different neural network architectures, 
including both smaller and larger networks. The smaller variants include convnext_small_in22k, regnetx_016, 
vit_small_patch16_224, and swinv2_base_window12_192_22k, while the larger variants are convnext_large_
in22k, regnetx_320, vit_large_patch16_224, and swinv2_large_window12_192_22k. We conducted exhaustive 
experimentation to determine which model families and architectural combinations could learn the given task 
with greater accuracy. Additionally, ViTs and RegNetX showed promising performance. Upon evaluation, we 
observed that the larger architectural variants did not yield noticeable performance improvements; instead, 
they exhibited significant overfitting. Consequently, we opted to utilise the smaller architecture variants for our 
ensemble.

Ensemble loss Lz(·): We then use D to train E(·) using an ensemble loss function Lz(·), defined below:

 Lz(E(x), y) = αL(Mc(x), y) + βL(Mv(x), y) + γL(Ms(x), y) + δL(Mr(x), y) (1)

where x, y denote the input and the corresponding ground truth, respectively and L(·) denotes the standard multi-
class classification loss of the DNN over D, respectively, and α, β, γ and δ are the regularization hyperparameters 
tuned based on the predictive confidence (loss) of each model.
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Proposed ensemble based self-training method
In this section, we will discuss our proposed self-training (student-teacher model learning)-based strategy for 
the robust detection of surgical tools using noisy labels. Our proposed ensemble learning approach for surgical 
tool classification using self-training is presented in Fig. 2. The following three key steps are involved in the 
proposed self-training framework: (1) creating clean (human-)labeled data using active learning; (2) training 
student-teacher ensemble models using a self-supervised learning strategy; and (3) using WDLs to ensure fair 
learning and address high-class imbalance issues, described next.

Label cleaning using active learning
To quantify the extent of label noise in our ESV data D, we first perform an extensive exploratory data analysis. 
Our analysis revealed that the original video-level labels also contained significant label noise, which was further 
amplified after the extrapolation of video-level labels to frame-level. To address this issue, we propose to leverage 
AL to create clean data Dc with minimal manual effort, where |Dc| ≪ |D|. Note that Dc is sampled from noisy 
data D for fixing incorrect labels through an iterative AL process that encompasses three major steps. In the 
first step, we train a baseline ensemble AL model E(·) using D and then used the trained E(·) to automatically 
identify and manually fix potentially mislabeled input samples to create Dc. In the second step, we identify a 
set of k = 24997 samples from D on which the ensemble model E(·) exhibits the highest classification error 
(signifying that E(·) finds it hard to accurately predict these frames due to the presence of label noise), where 
k ≪ N . Formally, the process of identifying these samples can be expressed as:

 
Repeat k times : Dc = Dc ∪ argmax

xi∈D,xi /∈Dc

Lz(E(xi), yi). (2)

For each AL iteration, we compute the output of E(·), which is a set of the maximum probability assigned to 
each class ti ∈ L by any model M ∈ E(·),

 
E(x) =

∪
ti∈L

max
M∈E

{M(ti|x)}, (3)

where L denotes the label set (as defined previously). In the third step, we then ask two human experts to verify 
the model predictions in each iteration of AL, which uses a batch size of 50 frames (for manually label fixing 
and fine-tuning E(·) for each AL iteration). In case the experts identify model predictions as incorrect, they 
manually suggest correct labels for that particular frame and the corrected frame-labels pair is then used to 
update Dc. To minimise human interventions in fixing incorrect labels, we fine-tune the underlying E(·) 
when a complete batch has been verified manually. This strategy resulted in the reduction of manual efforts as 

Figure 2. Proposed methodology for robust surgical tool detection. First, we address data imperfections 
through preprocessing. Next, we train a baseline ensemble model, followed by loss-based epistemic scoring for 
minimal dataset selection to fix labels. Then, we employ active learning for manual label correction. Afterwards, 
we train a teacher ensemble model Et(·) to generate pseudo labels. Subsequently, these pseudo labels are 
utilised to train the student ensemble model Es(·). Finally, we assess the performance of the proposed student 
ensemble model.
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the AL process progressed (empirical results will be presented in the next section). Note that initially, manual 
annotations were done by our clinical partners and then a team of two annotators was trained by clinical experts 
to perform remaining annotations. Finally, to ensure the correctness of clean data Dc and to eliminate or fix 
any discrepancies, all annotations were validated by clinical experts. The aforementioned AL process is repeated 
several times to let our active learning (E(·)) continue to improve its performance on hard samples as the 
noisy labels get fixed, until the size of Dc becomes k. Finally, the compiled clean data Dc is divided into two 
distinct non-overlapping sets: the clean training data Dtr

c  (comprising 80% of Dc) and the clean test data Dts
c  

(comprising the remaining 20% of Dc).

Student-teacher formulation for ensemble learning
We proposed to leverage student-teacher formulation (i.e., self-supervised learning also known as self-training) 
to automatically mitigate the effect of noisy labels in the surgical tool classification task. Our proposed ensemble 
learning approach for surgical tool classification using self-training (i.e., student-teacher model) works in two 
steps, as presented in Fig. 2.

In the first step, we train teacher ensemble model Et(·) having same architecture as E(·) defined previously. 
We train Et(·) over Dtr

c  using Lz(·), and evaluate Et(·) over Dv
c . Given an input x, the output of Et(·) is 

calculated as sigmoid of mean non-probabilistic outputs (logits) of all models M ∈ Et(·).

 

Et(x) = σ


1

4
∑

M∈Et(·)

M(x)


 (4)

In the second step, we re-label the unclean data (D − Dc) by first querying Et(·) with (D − Dc) to get 
the pseudo labels Et(x), ∀x ∈ (D − Dc), and use these pseudo labels to create a pseudo labelled dataset 
Ds = {(xi, Et(xi))}, ∀x ∈ (D − Dc). Finally, we define a student ensemble model Es(·) (having same 
architecture as E(·)), and train Es(·) over the augmented dataset Ds ∪ Dtr

c . As before, the output of Es(·) 
at the inference time is computed by passing the average non-probabilistic outputs of all models M ∈ Es(·) 
through the sigmoid function and using the top-3 labels as the final classification decision.

Augmenting self-training-based ensemble learning
In addition to the noisy labels, our dataset also suffers from significant class imbalance issues (as evident from 
Fig. 1e). To overcome this issue we proposed to use WDLs to train the ML models while reducing the data 
bias due to class imbalance. We fine-tuned the ensemble models for several epochs using WDLs to improve 
performance. Also, to further augment the capacity of our self-training-based ensemble model in learning 
hard labels, we employed label smoothing, which is a widely used regularisation technique to improve model 
generalisability and prevent overfitting. Label smoothing defines a soft distribution over classes instead of using 
hard targets, i.e., it allows models to relax label boundaries slightly. Therefore, instead of 1 s and 0 s, the loss 
function is engineered to use a number less than 1 for 1s and a number a bit more than 0 for all 0 s in the 
encoding vector. In this way, label smoothing assigns probability p to a correct class and uniformly distributes 
the remaining (1 − p) to the rest of the classes. This enables the model to be more robust to the perturbations in 
the input while sacrificing a bit of predictive confidence. In the literature, label smoothing has been shown quite 
successful in improving the performance and generalisability of DL models using noisy datasets39. The algorithm 
for our proposed methodology is described in Algorithm 1.

 

Es(x) = top-3


σ


1

4
∑

M∈Es(·)

M(x)





 (5)
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Algorithm 1. Methodology

Results and discussions
Experimental setup
Stratified Data Splitting: We encountered challenges with random allocation of images into training and test 
sets, which could lead to label leakage and imbalanced tool labels. To address these issues, we implemented a 
novel stratified sampling approach. Initially, we clustered ESV clips based on unique label combinations and 
then evenly distributed these images across the two sets based on the split ratio. This method ensures that each 
tool combination is represented in both training and testing sets, facilitating fair model validation. Notably, 
our dataset includes eight tool combinations, each with only one video, exempting this policy. Employing this 
strategy, we divided our dataset into training and testing sets with an 80% and 20% split, respectively.

Hyperparameters Selection: An exhaustive hyperparameter tuning process was conducted in training models 
using the W &B library, taking into account data augmentations, batch sizes, learning rates, and architecture 
choices. Through experimentation, it was determined that image squishing provided better results compared 
to cropping. Furthermore, the cyclic learning rate approach, as introduced by Smith et al.40, was adopted for 
selecting the best learning rate schedule, combining stochastic gradient descent with warm restarts, allowing 
for an annealing schedule with periodic restarts. Among the different learning rates tested, a value of 1e-2 
consistently yielded the best performance across the ensemble models. To facilitate efficient batch processing, 
a batch size of 64 was utilised, with n_workers set to 8 for parallel processing. Additionally, mixed precision 
training (FP16) was employed, resulting in a 20% improvement in computation time. The training process 
involved initially training the models’ heads using the fit-one-cycle for 12 epochs. Subsequently, the entire model 
was unfrosen, and training was continued for an additional 12 epochs using smaller learning rates, such as slice 
(1e-2/400, 1e-2/4). This progressive training strategy allowed the models to refine their performance by focusing 
on fine-tuning the lower layers while maintaining the learned features in the higher layers. To ensure a fair 
comparison, all models were trained using the same choice of hyperparameters.

Performance Metrics: Our surgical tool classification task involves multi-label classification, aiming to 
accurately identify the presence of surgical tools among fourteen options in each ESV frame. To evaluate the 
models’ performance effectively, we employed established metrics for multi-class classification, including 
accuracy, precision, recall, and f1-score. Additionally, we introduced aggregated performance measures to ensure 
a comprehensive evaluation across diverse samples and tool categories. These include mean average accuracy 
(mAA), mean average recall (mAR), mean average precision (mAP), and mean average f1-score (mAF1). It’s 
important to clarify that these metrics are tailored specifically for classification tasks. The inclusion of ’mAP’ in 
our terminology aims to maintain consistency in reporting results across different metrics, although it differs 
from the mAP metric commonly used in object detection models.
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Baseline results
To establish a baseline for our experiments, we initially divided our original noisy dataset, D, into training set 
Dtr  and testing set Dts, using an 80% - 20% split, respectively. We then conducted fully supervised training 
of our baseline models, which included convnext_small_in22k, regnetx_016, vit_small_patch16_224, and 
swinv2_base_window12_192_22k, along with an ensemble model, for the task of surgical tool classification 
using Dtr . Following training, we evaluated the models on the test data, Dts. Table 1 presents an overview of 
the baseline results, detailing various performance metrics such as accuracy, precision, recall, and F1-score. 
Notably, our proposed ensemble model outperformed the individual models in terms of accuracy (99.9%) and 
precision (98.4%). However, it’s important to mention that the convnext_small_in22k model exhibited relatively 
lower performance compared to the other models (regnetx_016, vit_small_patch16_224, and swinv2_base_
window12_192_22k), while these three models demonstrated similar performance across most metrics. It is 
worth noting that the results reported in Table 1 indicate high performance for the baseline models across 
different metrics (this is for the case when model are trained and evaluated using noisy data). However, further 
investigation reveals a different reality when these models are tested on cleaned data, where the results of this 
analysis are also reported in Table 1. It is evident that the performance of the baseline models significantly 
deteriorated, with mean F1 score of the proposed ensemble model dropping to 18.9%. The inability of baseline 
models to accurately capture robust features to maintain performance on cleaned data underscores the challenges 
posed by noisy labels.

Results for label cleaning using AL
To address the challenge of significant label noise, we employed a label-cleansing strategy. Given the impracticality 
of manually reviewing and rectifying labels for the entire dataset due to its large size, we employed a loss-based 
epistemic scoring method to identify a minimal subset (5%) of the dataset for manual labelling. Our manual 
labelling process was facilitated by an AL-based semi-automated annotation strategy. We leveraged the Prodigy 
tool to implement our AL strategy. In the AL framework, human experts initially manually corrected the tool 
labels for the first batch of samples. This triggered the retraining of the baseline ensemble learner using the 
corrected samples, resulting in relatively accurate default labels for subsequent batches. Each time a batch was 
processed, the retraining process was automatically initiated, progressively improving the model’s performance. 
Figure 3a provides insights into the proportion of noise present for each surgical tool that required correction 
during the labelling process. Tool-wise label noise is calculated using a comparative analysis of labels from AL-
assisted cleaned data to that with the labels of original (noisy) data. Furthermore, it is worth noting that the label 
noise shown in Fig. 3a serves as an estimate rather than an exact representation of the true label noise, which 
in reality will be significant. As the estimated label noise presented in Fig. 3a only accounts for the significantly 
reduced size of the clean labelled dataset, which comprises only 10% of the original noisy data. Additionally, we 
present an analysis based on the number of label corrections required through manual intervention in Fig. 3b. 
It is evident that as our label cleansing strategy advanced and we continued fine-tuning our ensemble model, 
the number of manual corrections required significantly decreased, reducing the workload for human experts 
through AL.

To demonstrate the impact of noisy labels on the model’s learning capabilities, we extracted embeddings from 
models trained under two conditions: one using noisy data and the other using clean data. These embeddings 
were then visualised in a two-dimensional space using t-distributed Stochastic Neighbour Embedding (t-SNE), 
which is a widely used technique that effectively captures latent patterns from high-dimensional data. The results 
of this analysis are presented in Fig. 4, which demonstrates significant differences among t-SNE visualisation of 
embeddings extracted from the model trained on noisy data (Fig. 4a) and learned embeddings from a model 
trained using clean data (Fig. 4b). For instance, it is evident from Fig. 4a that data samples are dispersed, 
indicating poor class separability and substantial overlap among different categories. This dispersion suggests 
that the model struggles to discern distinct classes, likely due to the confounding influence of label noise during 
training. Conversely, embeddings from the model trained on clean data are seen to create well-defined and 
segregated clusters for different classes with minimal overlap between them. Such distinct clustering indicates 
that the model has successfully learned to differentiate between classes, reflecting the efficacy of training with 
high-quality noise-free data. This comparative analysis underscores the detrimental effects of noisy data on 
the learning process and the model’s capability to develop robust and discriminative representations. It further 
reinforces the necessity for accurately labelled data to train reliable and effective models in practical applications. 

Model #Parameters #Trainable params.

Training and testing using noisy data
Noisy training and testing using 
clean data

mAP mAR mAA mAF1 mAP mAR mAA mAF1

ConvNext 197.81M 1.67M 0.96628 0.93587 0.99526 0.94968 0.1141 0.1072 0.7232 0.0775

RegnetX 107.75M 2.62M 0.97359 0.92547 0.99425 0.94676 0.1138 0.1048 0.7232 0.0773

VIT 303.66M 0.66M 0.97978 0.95983 0.99610 0.96920 0.1139 0.1048 0.7232 0.0773

Swin V2 66.47M 0.59M 0.97649 0.96780 0.99651 0.97196 0.1138 0.1047 0.7231 0.0772

Ensemble 675.69M 5.54M 0.98404 0.95724 0.99853 0.969401 0.2539 0.1871 0.8775 0.189

Table 1. Baseline results for surgical tool classification using original (noisy) data. In our multi-class 
classification task, mean average precision (mAP) represents the average precision across various tool labels 
and frames used for evaluation.
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Furthermore, to provide insights into the class-wise performance of surgical tool classification, we measure 
different performances for each tool. The results for this analysis are presented in Table 2, which suggests that our 
proposed technique was able to effectively classify different tools irrespective of high-class imbalance.

Self-training-based ensemble model results
In this section, we present the results of our proposed ensemble model-based self-training approach, which 
involves training two sets of models: a teacher model and a student model. The teacher model Mt was trained 
using clean data obtained using the AL strategy. The purpose of the Mt was to infer new (pseudo) labels from the 
model and discard original noisy tool labels. This pseudo-labelled dataset is used to train Ms and validate using 
the clean AL labels data. Mt builds upon the models trained in the AL, while the student model Ms further 
extends Mt through transfer learning. The results of the student-teacher model-based surgical tool classification 
in terms of various performance metrics, are summarised in Table 3. The table presents the performance of the 

Figure 4. Illustrating the effect of noisy labels on the learned embeddings using t-SNE. (a) Demonstrates the 
embeddings extracted from the ConvNext model trained using noisy data, while (b) depicts the embeddings 
extracted from the ConvNext model trained using clean data.

 

Figure 3. Demonstrating the efficacy of AL-based manual data annotation with minimal human effort. Figure 
3a illustrates the percentage of required label corrections for each tool category due to inaccurate labels, 
while Fig. 3b highlights the effectiveness of our weakly-supervised AL-based annotation strategy in reducing 
manual label corrections over iterations. For instance, initially, 70% of frames in a batch required manual label 
corrections, but as the AL process progressed, this manual effort was reduced to only a few samples.
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proposed ensemble model as well as the individual models trained at this stage. It is evident that the ensemble 
strategy outperforms all individual models in both teacher and student settings. Notably, the results in Table 3 
indicate a decline in performance metrics other than accuracy compared to our baseline results (reported in 
Table 1). This highlights the importance of considering metrics beyond accuracy alone in evaluating surgical 
tool classification models. Additionally, the table demonstrates that the proposed student ensemble model, in 
the self-training setting, performs comparatively better than the teacher model. This improvement is due to the 
generation of high-quality pseudo labels by Mt (while eliminating label noise), despite the significant difference 
in the number of samples used for training teacher and student models.

Augmenting self-training using label smoothing
We trained models using hard labels, assigning a value of 0 to all surgical tools except those present in the image. 
This approach encouraged the models to predict activations with higher confidence levels, potentially leading to 
overfitting despite the lack of meaningful probabilities. Even when uncertain, the models would often assign a 
value of 1 to the predicted tool due to the influence of noisy data used as pseudo labels. While these pseudo labels 
were an improvement over the original data, they still contained imperfections. Compounding this challenge, 
certain tools in our dataset closely resembled each other when viewed from specific angles, such as monopolar_
curved_scissor versus permanent_cautery_hook_spatula, clip_applier versus stapler, or bipolar_forceps versus 
bipolar_dissector. To address these issues, we explored the effectiveness of various regularisation techniques, 
including label smoothing, to improve the generalisability of our proposed ensemble model. Specifically, we 
implemented label smoothing using Fastai’s LabelSmoothingCrossEntropy loss function during training. 
The results of applying label smoothing to both standalone models and the ensemble model, trained using a 
student-teacher-based self-training approach, are summarised in Table 4. Notably, label smoothing was only 
applied during the training of the student models. Overall, label smoothing demonstrated promising results 
in mitigating the impact of noisy labels, albeit with a slight decrease in performance metrics. This decline in 
performance can be attributed to the relaxation of decision boundaries when transitioning from hard labels 
to soft labels, as discussed in the literature (Szegedy et al., 2016). From the results presented in Table 4, we 
observed that, on average, the ensemble model with label smoothing performed slightly worse compared to the 
other models. However, it’s important to highlight that the ensemble model consistently outperformed all other 

Model type Labelling strategy Tr. size Model Inference time/sample mAP mAR mAA mAF1

Teacher Clean
labels 19,997

ConvNext 5.04 ms 0.76554 0.74104 0.99174 0.75198

RegnetX 5.08 ms 0.75315 0.72520 0.98984 0.73597

VIT 3.6 ms 0.77396 0.75509 0.99244 0.76366

Swin V2 5.52 ms 0.76759 0.75541 0.99294 0.75917

Ensemble 20.04 ms 0.80506 0.78418 0.99174 0.79269

Student Pseudo labels 221,629

ConvNext 5.04 ms 0.79554 0.76104 0.99174 0.76198

RegnetX 5.08 ms 0.77315 0.74520 0.98984 0.74597

VIT 3.6 ms 0.79396 0.77509 0.99244 0.77366

Swin V2 5.52 ms 0.79759 0.78541 0.99294 0.76917

Ensemble 20.04 ms 0.83457 0.82899 0.99174 0.80880

Table 3. Performance evaluation of four baseline models and ensemble models using a self-supervised 
learning approach (i.e., student-teacher model formulation), measured across various performance metrics. 
Significant values are given in bold.

 

Tool name Samples Precision Recall F1-Score

Needle_driver 1280 0.95 1 0.97

Monopolar_curved_scissor 949 0.98 0.99 0.98

Force_bipolar 320 0.91 0.83 0.87

Clip_applier 36 0.55 0.62 0.58

Tip_up_fenestrated_grasper 9 0.26 1 0.42

Cadiere_forceps 585 0.88 0.86 0.87

Bipolar_forceps 786 0.97 0.94 0.95

Vessel_sealer 281 0.84 0.89 0.86

Prograsp_forceps 398 0.81 0.79 0.8

Stapler 38 0.69 0.5 0.58

Permanent_cautery_hook_spatula 276 0.96 0.99 0.97

Grasping_retractor 42 0.53 0.76 0.63

Table 2. Statistical results in terms of different performance metrics for each surgical tool.
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models in terms of the crucial F1-score metric. Additionally, Swin V2 exhibited superior performance in terms 
of accuracy, precision, and recall.

Augmenting self-training using weighted data loaders
As discussed in the dataset description section, our dataset not only suffers from noisy labels but also faces 
a significant class imbalance, posing the risk of biasing model development towards dominant classes while 
neglecting minority labels. To address this challenge, we implemented a Weighted Data Loader strategy (WDLs) 
that assigns weights to input samples based on the distribution of unique class label combinations in the dataset. 
This approach prioritises minority classes during batch selection by the data loaders in the training process. Our 
strategy computes the reciprocal of the logarithm of the frequency of class label combinations to inform WDLs 
ranking, instructing the batch processor to retrieve more samples from minority classes more frequently. It’s 
important to note that the WDLs strategy is not employed for training models from scratch but rather for fine-
tuning existing models to specifically learn the minority classes over a few additional epochs. We integrated this 
strategy into both individual models and ensemble models within our self-training framework. Additionally, we 
froze the models’ bodies except the head to avoid catastrophic forgetting. The results of our analysis, summarised 
in Table 4, demonstrate the performance improvement achieved by this method. On average, the ensemble 
model showed a 5% enhancement in F1-score, a 3% increase in precision, and a 2% increase in recall when 
incorporating WDLs. Similarly, all individual models experienced performance improvements of 4-5% across 
various metrics. These findings underscore the effectiveness of incorporating weights during student model 
training within our self-training framework, leading to enhanced model robustness and performance. It is worth 
noting that the WDLs method is exclusively applied during the training of the student models.

Statistical analysis
To assess the statistical significance of the differences in performance across the various methods in our proposed 
solution, we performed a one-way ANOVA test for each evaluation metric namely, mAP, mAR, mAA, and 
mAF1. The ANOVA results are presented in Table 5, which show that for mAP, mAR, and mAA, the ANOVA 
indicates statistically significant differences between the methods (p-value < 0.05). This implies that the different 
methods perform differently on these metrics, suggesting that the choice of method has a meaningful impact 
on performance. In contrast, the mAF1 metric showed a p-value slightly above the typical 0.05 threshold, this 
indicates that the observed differences between the methods for this metric are not statistically significant. To 
further investigate these differences, we applied the Kruskal-Wallis test (Table 5). The Kruskal-Wallis results 
confirmed the ANOVA findings for mAP and mAR, with p-values of 0.0068 and 0.0090, respectively, this 
highlights the presence of significant statistical differences. However, in the case of mAA, the Kruskal-Wallis test 
yielded a p-value of 0.1286, which suggests that the differences detected by ANOVA might not be statistically 

Metric ANOVA Kruskal-Wallis

F-statistic p-value Chi-square p-value

mAP 14.87 6.90×10-5 12.18 0.0068

mAR 12.18 0.000211 11.58 0.0090

mAA 5.53 0.00844 5.67 0.1286

mAF1 2.71 0.07996 6.57 0.0868

Table 5. ANOVA and Kruskal-Wallis results for different evaluation metrics across the compared methods, 
i.e., models trained using the following settings: teacher, student, label smoothing, and weighted data loaders. 
The bold values in the table indicate statistically significant results (p-value < 0.05).

 

Experiment Labelling strategy Tr. size Model Inference time/sample mAP mAR mAA mAF1

Label smoothing Pseudo labels 221,629

ConvNext 5.04 ms 0.79554 0.76104 0.99174 0.76198

RegnetX 5.08 ms 0.77315 0.74520 0.98984 0.74597

VIT 3.6 ms 0.79396 0.77509 0.99244 0.77366

Swin V2 5.52 ms 0.79759 0.78541 0.99294 0.76917

Ensemble 20.4 ms 0.78920 0.77857 0.98565 0.78741

Weighted data loaders Pseudo labels 221,629

ConvNext 5.04 ms 0.84578 0.83104 0.99568 0.79835

RegnetX 5.08 ms 0.82290 0.81520 0.99112 0.76922

VIT 3.6 ms 0.83645 0.82509 0.99823 0.78124

Swin V2 5.52 ms 0.84595 0.83541 0.99676 0.79978

Ensemble 20.04 ms 0.86569 0.84457 0.99725 0.85880

Table 4. Comparison of strategies to enhance model performance in self-training. The reported results are 
based on the performance of the student model trained using pseudo labels. Significant values are given in 
bold.
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significant at the conventional level. Similarly, for mAF1, the Kruskal-Wallis test also indicated marginal 
significance with a p-value of 0.0868. Moreover, to identify which specific pairs of methods differed significantly, 
we performed Tukey’s Honestly Significant Difference (HSD) test. The results for this analysis are presented in 
Table 6, which demonstrates that significant pairwise differences can be observed between Label Smoothing and 
WDLs for mAP, mAR, and mAA, with p-values indicating clear differences. In contrast, the pairs of methods 
such as Label Smoothing and Student and Teacher and Student, did not show statistically significant differences. 
In summary, the statistical tests reveal that different methods exhibit significant variations in performance for 
most metrics, providing insights into their relative effectiveness.

Conclusions
In this paper, we tackled the challenge of training robust models for surgical tool classification in endoscopic 
surgical videos, particularly when dealing with imbalanced datasets containing significant label noise. Our 
approach involved developing a systematic methodology to train robust machine learning (ML) models for 
diverse computer vision tasks. Our proposed systematic methodology initiates with training baseline models 
to identify the hardest or noisiest examples in the dataset for manual labelling. Subsequently, we introduced 
an efficient methodology for creating a clean dataset from a minimal sample size through active learning 
(AL), enabling us to train teacher models for pseudo-labelling the dataset. This pseudo-labelled dataset is then 
utilised to train student models for surgical tool classification, working in conjunction with the teacher models 
in a self-supervised learning manner. Throughout this methodology, we employed ensembling techniques for 
training the baseline, AL, teacher, and student models. The teacher model was trained using a manually labelled 
subset of cleaned data, while the student model leveraged a pseudo-labelled dataset generated by the teacher 
model, considering unclean (noisy) data as unlabelled examples. This ensembling approach proved effective 
in training robust models despite the presence of noisy labels in the dataset. To address the challenge of high-
class imbalance, we introduced class weights during the self-supervised learning training process, resulting in 
a notable performance improvement of approximately 3–5% across different performance metrics. Looking 
ahead, our future work involves the development of an unsupervised learning-based methodology to address the 
challenge of training robust object detection and localisation models from such noisy data. We aim to explore 
explainable AI methods to generate heatmaps when the model classifies a tool, facilitating the identification and 
localisation of tools in the surgical scene without the need for bounding box annotated tools datasets, which are 
challenging to generate for computer vision applications in this domain. By delving into unsupervised learning 
techniques, we anticipate further enhancing the robustness and performance of our models in the face of diverse 
data quality issues.

Metric Group 1 Group 2 Mean diff. p-value Lower CI Upper CI

mAP Label smoothing Student 0.0091 0.8421 − 0.0224 0.0406

Label smoothing Teacher − 0.0168 0.4444 − 0.0483 0.0147

Label smoothing WDLs 0.0535 0.0009 0.0220 0.0850

Student Teacher − 0.0259 0.1273 − 0.0574 0.0056

Student WDLs 0.0444 0.0048 0.0129 0.0759

Teacher WDLs 0.0703 0.0000 0.0388 0.1018

mAR Label smoothing Student 0.0101 0.8795 − 0.0289 0.0491

Label smoothing Teacher − 0.0169 0.6126 − 0.0559 0.0221

Label smoothing WDLs 0.0612 0.0019 0.0222 0.1002

Student Teacher − 0.0270 0.2367 − 0.0660 0.0120

Student WDLs 0.0511 0.0085 0.0121 0.0901

Teacher WDLs 0.0781 0.0002 0.0391 0.1171

mAA Label smoothing Student 0.0012 0.8166 − 0.0028 0.0052

Label smoothing Teacher 0.0012 0.8166 − 0.0028 0.0052

Label smoothing WDLs 0.0053 0.0076 0.0013 0.0093

Student Teacher 0.0000 1.0000 − 0.0040 0.0040

Student WDLs 0.0041 0.0438 0.0001 0.0080

Teacher WDLs 0.0041 0.0438 0.0001 0.0080

mAF1 Label smoothing Student 0.0043 0.9923 − 0.0399 0.0485

Label smoothing Teacher − 0.0069 0.9688 − 0.0511 0.0373

Label smoothing WDLs 0.0338 0.1680 − 0.0104 0.0780

Student Teacher − 0.0112 0.8851 − 0.0554 0.0330

Student WDLs 0.0296 0.2614 − 0.0146 0.0738

Teacher WDLs 0.0408 0.0758 − 0.0034 0.0850

Table 6. Tukey’s honestly significant difference (HSD) results for pairwise comparisons of methods across 
different metrics. The bold values in the table indicate statistically significant results (p-value < 0.05).
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Data availibility
The data used for experiments in this article is acquired from the SurgToolLoc challenge  (   h t t p s : / / s u r g t o o l l o c 2 3 . 
g r a n d - c h a l l e n g e . o r g /     ) . Data annotated in this paper will be made available from the corresponding author upon 
reasonable request.
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