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Abstract
This research presents a novel algorithm designed to reduce computational time in the meso-scale analysis of masonry

buildings. The algorithm employs nonlinear topology optimization in conjunction with the Drucker-Prager yield criterion

to identify critical zones within a structure. These critical zones are modeled at the meso-scale, while less critical regions

are represented at the macro-scale. To evaluate the efficacy and accuracy of the proposed method, three masonry wall

samples were analyzed, comparing computational time and accuracy across three modeling strategies: full meso-scale, full

macro-scale, and optimized meso-macro scale. The results indicate that while macro-scale models provided faster analyses,

they exhibited lower accuracy compared to meso-scale models and demonstrated greater initial stiffness and maximum

force due to their elastic-perfectly plastic behavior. In contrast, the optimized meso-scale models reduced the computa-

tional time by 32.5%, 46%, and 30% compared to full meso-scale models, while maintaining high accuracy in replicating

crack patterns and force–displacement responses observed in experimental data. These findings suggest that the developed

algorithm offers an efficient and accurate computational approach for analyzing the complex behavior of masonry

buildings under various loading conditions.
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Abbreviations
CAEI Combined accuracy-efficiency index

CPU Central processing unit

CZM Cohesive zone model

DEM Discrete element method

Dof Degrees of freedom

DP Drucker-prager (Yield surface)

DW Door wall

FEM Finite element method

FM Full meso-scale model

MC Macro-scale model

MFT Mesh fragmentation technique

MLAI Maximum load accuracy index

NCT Normalized CPU time

OM Optimized meso-scale model

SW Shear wall

TO Topology optimization

WW Window wall

XFEM Extended finite element method

SIMP Solid isotropic material with penalization

List of Symbols
C0 Prescribed energy

J1ðrÞ First deviatoric invariants of the stress tensor

J2ðrÞ Second deviatoric invariants of the stress

tensor

J1ðeÞ First invariant of the strain tensor
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J2ðedÞ Second invariant of the deviatoric strain

tensor

a; H Constants of the DP yield surface

/ Friction Angle

C Cohesion

f 0m Compressive strength

ft Tensile strength

E Elastic modulus

Em Elastic modulus of masonry

w Dilatancy angle

JUðqÞ Objective function

uðqÞ Displacement variable

q Density variable

V Volume of the finite element model

Vmax Maximum allowed volume

V0 Initial volume

V� Material volume that needs to be removed

K Stiffness value

qe Density variable for each element

qmin Minimum allowed density

vðq; uðqÞÞ Adjoint variables

f0 Given load vector

Tðq; uðqÞÞ Internal force vector

ed Deviatoric strain tensor

/1;/2 Functions representing the hardening behav-

ior of the material

r Stress tensor

rL Linear elastic limit of the stress tensor

rN Nonlinear elastic limit of the stress tensor

e Strain tensor

eL Linear elastic limit of the strain tensor

eN Nonlinear elastic limit of the strain tensor

u Strain energy density

uL Linear elastic strain energy density

v Reaction load factor

r Shear strengths of the contact element

s Tensile strengths of the contact element

dn Separation values of the contact element in

the normal direction

dt Separation values of the contact element in

the shear direction

d0n Normal values of the initial permanent

separation

d0t Shear values of the initial permanent

separation

d1n Normal values of the displacement at the

point of fracture

d1t Shear values of the displacement at the point

of fracture

GI Energy absorbed in the normal direction

GII Energy absorbed in the shear direction

GIC Critical energy release rates in tension

GIIC Critical energy release rates in shear

D Damage index

Uc Structural strain energy

g Optimization coefficient

W Weighting coefficient

1 Introduction

Structural optimization is generally categorized into three

primary categories: size, shape, and topology optimization

(TO). The main difference between these categories is the

definition of design variables [1]. TO is a key area of

structural optimization aimed at determining the optimal

material arrangement for a structure within specified con-

straints [2]. Since the 1980s, rapid advancements in com-

puter technology have significantly enhanced TO methods

based on finite element analysis, thereby introducing

innovative approaches for identifying optimal structural

configurations [3].

Various TO methods have been developed, including

Solid Isotropic Material with Penalization (SIMP) [4], level

set methods [5], and Evolutionary Structural Optimization

(ESO) [6, 7]. The ESO method and its enhanced version,

Bidirectional Evolutionary Structural Optimization

(BESO), are popular for their simplicity and commercial

software availability [8]. ESO removes excess material to

achieve an optimal configuration, while BESO allows for

the simultaneous removal of inefficient materials and the

addition of efficient ones [9]. The BESO enhances the

solution process compared to the conventional ESO and is

widely used in architecture, aerospace, medicine, and

biomechanics [10].

Using classical TO along with suitable design objectives

and constraints yields more accurate and efficient solutions,

promotes material conservation, and reduces the overall

structural weight [11, 12]. TO is crucial for determining the

optimal fiber arrangement in composite structures, partic-

ularly in materials such as Carbon Fiber-Reinforced Plas-

tics (CFRP) and laminate composites [13]. For masonry

structures, assuming structural homogeneity, TO can

identify the most effective placement and arrangement of

reinforcing fibers [14], and in concrete structures, helps

pinpoint the force transmission zones and improve the

computational efficiency [15].

Masonry structures, which constitute most historical

buildings and remain widely used across various countries

because of their numerous advantages, require a thorough

investigation of their behavior under stability-threatening

conditions. [16, 17]. In contrast to steel and concrete

structures, whose behavior can be evaluated using
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established guidelines and analytical techniques, the

mechanical response of masonry structures is complex,

diverse, and nonlinear [18, 19]. Historically, the investi-

gation of masonry structures has relied on costly and time-

consuming experiments. However, numerical techniques

have emerged as practical alternatives for accurately

characterizing their behavior.

Common numerical methods include the Finite Element

Method (FEM) [20–22], Extended Finite Element Method

(XFEM) [23], fracture mechanics-based methods [24] and

Discrete Element Methods (DEM) [25]. Among these, the

FEM is particularly effective for analyzing masonry

structures under various boundary conditions [21, 22]. The

analysis of masonry structures is typically categorized into

macro-scale, micro-scale, and meso-scale modeling

approaches [18, 26]. Macro-scale modeling assumes

structural homogeneity and focuses on the overall behav-

ior, making it cost-effective for large-scale structures, but

lacking detailed precision [27].

In micro-scale analysis, each component of a masonry

structure is modeled individually to accurately capture the

detailed behavior of the entire structure [28, 29]. Micro-

scale analysis, while precise, demands significant compu-

tational resources owing to the detailed modeling of each

component. Consequently, it is often impractical for real-

scale masonry structures because of its high computational

cost and extended processing time [30]. Meso-scale mod-

eling, a simplified version of micro-scale analysis, is

widely used in numerical research [31, 32]. However, it

requires significantly more computational time than macro-

scale models [27].

Akhaveissy [33] employed a meso-scale numerical

model to simulate the dynamic behavior of unreinforced

masonry walls under blast loading conditions. Lourenco.

[34] developed advanced models for the mechanical anal-

ysis of masonry structures, employing micro-scale, macro-

scale, and multi-scale techniques to simulate various levels

of masonry behavior, from component-level analyses to

entire monumental buildings. Maccarini [35] used macro-

scale finite element models to investigate the out-of-plane

behavior of stone masonry structures, identifying the key

material and geometric parameters that affect their per-

formance. Gregori [36] proposed a micro-modeling

approach to evaluate the effects of defects such as inef-

fective vertical mortar joints and variability in joint

thickness.

The adoption of multi-scale models has become

increasingly prominent since the late twentieth century,

reflecting the need to balance computational cost and

precision. These models have proven particularly beneficial

for heterogeneous structures such as masonry. Addessi

et al. [37, 38] introduced a multi-scale approach for ana-

lyzing masonry structures with curved elements and

periodic textures. They also utilized multi-scale models to

examine the behavior of masonry structures under out-of-

plane instability [39]. Petracca [40] developed a multi-

scale computational homogenization method focusing on

periodic brick-masonry walls. Mercatoris and colleagues

presented a multi-scale framework for analyzing the failure

of periodic quasi-brittle thin planar shells [41]. Integrating

multi-scale models with TO enhances computational effi-

ciency, as demonstrated by Sivapuram’s [42] novel multi-

scale optimization strategy, which optimizes the design at

both macro- and micro-scales.

This paper presents an algorithm developed to reduce

the computational cost associated with the analysis of

meso-scale masonry buildings. The algorithm is based on

nonlinear TO and employs the Drucker-Prager (DP) yield

surface. During the TO analysis, strain energy is maxi-

mized through a nested optimization approach while

adhering to specified volume constraints. Subsequently,

three masonry wall samples, previously examined by

researchers through laboratory experiments, are analyzed

on a macro-scale using the nonlinear TO algorithm.

Effective regions for force transmission are identified as

critical regions. In a two-scale model, these critical regions

are represented at the meso-scale, while the remaining

regions are modeled at the macro-scale. The results of the

analysis, along with the associated computational costs, are

compared to those of the initial models that are entirely

modeled at the meso-scale, and these findings are further

contrasted with experimental results.

2 Development of Computational Time
Reduction in Meso-Scale Masonry
Structure Analysis

In the macro-scale modeling of masonry structures, the

mechanical behavior of the entire assembly is represented

as a homogenized composite material, without explicitly

modeling the individual masonry units and mortar layers.

While this approach can approximate the overall crack

distribution through methods such as the smeared crack

approach, it fails to capture detailed interactions, including

localized sliding and deformation between masonry units.

Although it offers a computationally efficient solution, this

method sacrifices detail, resulting in reduced accuracy

when compared to micro and meso-scale models. Con-

versely, micro-scale models provide a highly detailed

representation by modeling each masonry unit, mortar

layer, and their interactions individually. This level of

detail facilitates a comprehensive understanding of the

mechanical behavior at the material level; however, it

necessitates substantial computational resources due to the

high number of degrees of freedom involved, rendering it
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impractical for large-scale applications. Meso-scale mod-

els, on the other hand, strike a balance between detail and

computational efficiency by simplifying the micro-scale

approach. In meso-scale modeling, the masonry units are

modeled individually, while the mortar is not explicitly

represented; instead, its effects are simulated using contact

elements between the units. This methodology allows for

the observation of key local behaviors, such as sliding and

deformation between masonry units. Although meso-scale

modeling incurs a higher computational cost than macro-

scale methods, it achieves significantly greater accuracy in

representing failure mechanisms and local interactions,

thereby providing a more realistic prediction of the struc-

tural response under various loading conditions [43, 44].

Figure 1 illustrates the representation of masonry modeling

at the macro, meso, and micro-scales.

To clarify the foundational concept of this research, as

illustrated in Fig. 2, the primary objective is to reduce the

computational time required for analyzing a masonry wall

at the meso-scale under specified boundary conditions. The

initial analysis is conducted using the TO approach at the

macro-scale, which is based on a nonlinear elastic model

incorporating the Drucker-Prager yield criterion. This cri-

terion allows for more accurate identification of critical

regions by tracing the paths of internal forces, including

tensile and compressive forces. The optimization frame-

work maximizes strain energy within specified volume

constraints through a nested iterative process, identifying

regions with the highest strain energy as critical load paths.

These critical regions, highlighted in green in Fig. 2b, are

essential for effective force transmission.

Unlike classical TO methods that typically utilize yield

surfaces such as the von Mises criterion—which assumes

uniform material behavior in both tension and compres-

sion—this approach tackles the challenges posed by

materials like masonry, which exhibit distinct behaviors

under tension and compression. By incorporating the

Drucker-Prager criterion, the developed algorithm more

accurately identifies the load transfer path by pinpointing

regions with high plastic stress and strain as critical.

Following this, the initial model is reanalyzed using a

two-scale approach, informed by the results of the TO

analysis. Notably, only the green regions are modeled at

the meso-scale, while the remaining areas are represented

at the macro-scale, acknowledging that not all components

of a structure contribute equally to force transfer. This

methodology is designed to reduce the degrees of freedom

in the structural analysis process. Following this, the initial

model is reanalyzed at a two-scale approach, informed by

the results of the TO analysis. Notably, only the green

regions are modeled at the meso-scale, while the remaining

areas are represented at the macro-scale, acknowledging

that not all components of a structure contribute equally to

force transfer. This methodology is designed to reduce the

degrees of freedom in the structural analysis process

[45, 46].

2.1 Flowchart of Meso-scale Model Using
Topology Optimization

The following steps are pursued to reduce the computa-

tional times of analysis masonry buildings at the meso-

scale given as follows:

1. Modeling the numerical model at the macro-scale,

incorporating the assignment of material properties and

the determination of the value of prescribed energy

(C0). It is important to note that if the calculation of C0

from experimental results is not feasible, an initial

nonlinear analysis is conducted at the macro-scale,

from which C0 is subsequently derived based on the

outcomes of the numerical analysis.

2. The nonlinear analysis of the numerical model at the

macro-scale is conducted, employing the TO algorithm

to identify regions that are effective in force transmis-

sion, referred to as critical regions.

(a) Micro-scale (b) Meso-scale (c) Macro-scale

Fig. 1 A representation of masonry numerical models in various scales
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3. Two-scale numerical modeling based on the analysis

results from the previous stage. In this phase, the

critical regions identified by TO are modeled at the

meso-scale, while the remaining regions are modeled

at the macro-scale.

4. Assigning material properties specific to each region

and conducting a nonlinear analysis of the intended

model.

The optimization algorithm operates based on the values

of strain energy and volume constraints. The strain energy

value is significantly affected by the material’s behavior.

Assuming linear elastic behavior for masonry materials

yields inaccurate results, as these materials demonstrate

different responses to tension and compression due to their

brittle nature. Therefore, to calculate the strain energy for

each element, the DP yield surface is utilized to account for

the brittle behavior of masonry materials.

The procedure illustrated in the flowchart in Fig. 3 has

been detailed. In this investigation, the FEM provided by

ANSYS software is utilized. The optimization segment,

implemented in Fortran, is integrated into ANSYS as a

macro phase.

3 Governing Equations

In this section, we examine the characteristics of semi-

brittle materials at the macro-scale and delineate the non-

linear TO approach employed to identify critical regions.

As outlined in Sect. 2, the nonlinear TO formulation was

developed to maximize strain energy. The DP yield surface

was selected for optimization at the macro-scale. In this

study, a nested optimization framework was utilized to

maximize strain energy while adhering to specified volume

constraints. The TO formulation is based on nonlinear

behavior and seeks to optimize strain energy through the

application of the DP yield surface. To manage computa-

tional complexity and reduce the volume of calculations

while maintaining an acceptable level of accuracy, we

adopted the DP criterion. This selection effectively bal-

ances accuracy and computational efficiency, aligning to

achieve an optimized design within feasible computational

limits.

3.1 Behavior of Semi-brittle Materials
at the Drucker-Prager Yield Surface

Given that masonry structures exhibit semi-brittle behav-

ior, predicting their response requires the DP yield surface.

This surface was formulated in 1952 [47] according to

Eq. (1) and is used to predict the behavior of these mate-

rials as follows:

FðrÞ ¼ aJ1ðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffi

J2ðrÞ
p

� H ð1Þ

where J1 (r) and J2 (r) are the first and second deviatoric

invariants of the stress tensor, respectively, and a and H are

constants of the DP yield surface, which vary based on the

material’s strength properties. These can be expressed by

the internal friction angle / and cohesion C, as shown in

Eq. (2) [48, 49] as given by the following equation:

a ¼ 2 sinð/Þ
ffiffiffi

3
p

ð3� sinð/Þ
; H ¼ 6C cosð/Þ

ffiffiffi

3
p

ð3� sinð/Þ
ð2Þ

Some materials, such as concrete and masonry, can be

characterized by particular compressive strength (f 0m) and

(a) The masonry wall selected for 

analysis at the meso-scale under the 

specified boundary conditions

(b) Determining the critical regions 

using nonlinear TO"(Green regions)
(c) Modeling of the regions 

obtained from the TO at the meso-

scale and the remaining regions at 

the macro-scale

Fig. 2 A demonstration of the developed method in this research study for reducing computational time in the analysis of masonry buildings at

the meso-scale
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tensile strength (ft). In this contexts, one can substitute two

specific principal stress states, ðr1 ¼ r2 ¼ 0; r3 ¼ �f 0mÞ
and ðr1 ¼ ft; r2 ¼ r3 ¼ 0Þ into the yield condition of

Eq. (1) [49] as follows:

�af 0m þ 1
ffiffiffi

3
p f 0m � H ¼ 0

aft þ
1
ffiffiffi

3
p ft � H ¼ 0

8

>

>

<

>

>

:

ð3Þ

Solving Eq. (3) for a and H easily leads to the following

equations:

a ¼ f 0m � ft
ffiffiffi

3
p

ðf 0m þ f Þ
; H ¼ 2f 0mft

ffiffiffi

3
p

ðf 0m þ f Þ
ð4Þ

Therefore, by equating Eq. (2) and Eq. (4), the / and C

can be expressed based on f 0m and ft provided as in Eq. (5):

/ ¼ Sin�1 3ðf 0m � ftÞ
3f 0m þ ft

� �

; C =
f 0mftð3� sinð/ÞÞ
3 cosð/Þðf 0m þ ftÞ

ð5Þ

In Eq. (5), the values of f 0m and ft is obtained from

experimental results. Moreover, if tensile strength is not

available, Eq. (6) can be used [50].

0:03f 0m\ft\0:09f 0m ð6Þ

If the value of the elastic modulus of masonry is not

available, one can use the proposed FEMA formula (see

Eq. (7)) [51]:

Em ¼ 550f 0m ð7Þ

Other relationships between compression-tensile

strength and the values of cohesion and the friction angle

have also been proposed in the literature, as presented in

Eq. (8) [52] and Eq. (9) [53] as shown in the following

equations:

C ¼ f 0m: ft

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0m : ðf 0m�
p

2ftÞ
; / ¼ sin�1 f 0m � 4ft

f 0m � 2ft

� �

ð8Þ

C ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffi

f 0m � ft
p

; / ¼ Sin�1 f 0m � ft
f 0m þ ft

� �

ð9Þ

The dilatancy angle (w) is another parameter of the DP

plasticity model, typically derived from experimental

results. However, if experimental determination is not

feasible, the relationship provided in Eq. (10) associated

with DP plasticity models can be utilized. This is particu-

larly relevant in the field of soil mechanics and other

applications involving frictional materials, such as concrete

or masonry.

ft
ffiffiffi

2
p

f 0m
\ tanw\

1
ffiffiffi

2
p ð10Þ

3.2 Formulation of Nonlinear Topology
Optimization

The formulation of TO in this section is based on nonlinear

behavior, aiming to maximize the strain energy of the

structure using the DP yield surface. This approach is based

on the formulation represented by Eq. (11):

max
q

JUðqÞ ¼ Uðq; uðqÞÞs:t:

X

n

e¼1

qeme �Vmax

0\qmin � qe � 1

8

>

>

<

>

>

:

with
Tðq; uðqÞÞ ¼ vðq; uðqÞÞf0

f T0 uðqÞ ¼ 2C0

(

ð11Þ

The objective function to be maximized is denoted as

JUðqÞ, which is a function of the density variable ðqÞ and
the displacement variable ðuðqÞÞ. The constraint set is

Fig. 3 Flowchart of Meso-scale modeling using the TO approach
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defined by two constraints. The first constraint limits the

total volume of the structure, which
Pn

e¼1 qete represents

the total volume of the structure and Vmax is the maximum

allowed volume.

The second constraint imposes bounds on the density

variable for each element (qe), where qmin is the minimum

allowed density and 1 is the maximum allowed density [1].

The variables uðqÞ and vðq; uðqÞÞ are displacement and

adjoint variables, respectively, and f0 is a given load vector

and C0 is prescribed energy. The equa-

tion Tðq; uðqÞÞ ¼ vðq; uðqÞÞf0 represents the equilibrium

equation, where Tðq; uðqÞÞ is the internal force vector

and vðq; uðqÞÞ is the adjoint variable. The equation

f T0 uðqÞ ¼ 2C0 represents a constraint on the displacement

variable uðqÞ.
The optimization problem seeks to identify the density

variable that maximizes the objective function while

adhering to the specified constraints [54]. The nonlinear

yield surface within the DP framework in the strain energy

space is represented as a function of uðJ1ðeÞ; J2ðedÞÞ, as
shown in Eq. (12). The primary goal of the optimization

problem is to maximize the function Uðq; uðqÞÞ over the

specified domain. This is achieved by integrating the /
function. The functions /1 ¼ ðJ1ðeÞ; J2ðedÞÞ and /2 ¼
ðJ1ðeÞ; J2ðedÞÞ represent the hardening behavior of materi-

als. Further details are provided in [47, 55, 56]. This

function exhibits three distinct regions at the yield surface,

as illustrated in Fig. 4.

r ¼ ouðJ1ðeÞ; J2ðedÞÞ
oe

ð12Þ

Region 1: Linear Zone if f ðrtrÞ� 0ði:e:;/1 ¼ /2 ¼ 0Þ

u ¼ 1

2
rtr : e0 ð13Þ

Region 2: Nonlinear Zone if f ðrtrÞ[ 0 and /2 [ 0

u ¼ uL þ
Z

1

0

r0ðe0ðtÞÞdt : ðe� eLÞ ð14Þ

In Eq. (15), uL indicates the value of linear elastic strain

energy given as follows:

uL ¼ 1

2
rL : eL ð15Þ

where rL and eL denote the linear elastic limits of stress and

strain tensors, respectively. eL signifies an interpolation,

and eL represents the strain tensor, as outlined follows:

e0 ¼ ð1� tÞeL þ te ð16Þ

The increment in stress remains constant concerning the

strain at the DP yield surface:

r0 ¼ ð1� tÞrL þ tr ð17Þ

where rL is the interpolated value of rL in the stress tensor.

By substituting Eq. (17) into Eq. (14), the explicit

expression for the strain energy density is derived as

follows:

u ¼ 1

2
ðrL : eþ r : e� r : eLÞ ð18Þ

As commonly understood, rL and eL in scalar form can

be represented as follows:

rL ¼ tLrtr; eL ¼ tLe ð19Þ

By substituting Eq. (19) into Eq. (18), we can express:

u ¼ 1

2
½tLðrtr � rÞ þ r� : e0 ð20Þ

Region 3: If f ðrtrÞ[ 0 and /2\0

Fig. 4 Visual representation of the stress state according to the DP nonlinear elastic yield criterion
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u ¼ 1

2
rL : eL þ

Z

eN

eL

r0 : de0 þ rN : ðe� eNÞ ð21Þ

As understood, rN and eN represent the nonlinear elastic

limits of stress and strain tensors.

e0 ¼ te; r0 ¼ rN � rL

tN � tL
ðt � tLÞ þ rL ð22Þ

By substituting Eq. (22) into Eq. (21), we have:

u ¼ 1

2
rL

: eL þ
Z

tN

tL

½r
N � rL

tN � tL
ðt � tLÞ þ rL� : edt þ rN : ðe� eNÞ

ð23Þ

Through analytical solving and integrating Eq. (23), and

substituting the scalar forms of stress and strain, we obtain:

u ¼ 1

2
rL : eL þ 1

2
ðtN � tLÞðrN þ rLÞ : eþ rN : ðe� eNÞ

ð24Þ

By substituting rL ¼ tLrtr; eL ¼ tLetr and eN ¼ tNe into

Eq. (24), the strain energy density is succinctly trans-

formed to Eq. (25):

u ¼ 1

2
½ð2� tL � tNÞrN þ tLtNrtr� : e0 ð25Þ

Identifying a solution for Eq. (11), it is equivalent to

solving the problem of minimizing with equality, which

can be formulated as follows [57, 58]:

minUðq; uðqÞÞ
s:t:f T0 ¼ 2C0

(

ð26Þ

Equation (26) can be solved using a search strategy,

such as the Newton–Raphson method with a line search

strategy. The set A is defined as Eq. (27). Therefore,

Eq. (26) can be resolved using methods of constraint

optimization provided in Eq. (28):

A ¼ u f T0 u ¼ 2C0

�

�

� �

ð27Þ

min
u2A

Uðq; uðqÞÞ ð28Þ

The objective function can be rewritten as Eq. (29),

which means finding the maximum value of the minimum

objective function JUðqÞ over all feasible solutions U [59]:

max
q

JUðqÞ ¼ max
q

min
u2A

Uðq; uðqÞÞ ð29Þ

The sensitivity analysis of this expression is given

by Eq. (30) where qe is a design variable.

dJUðqÞ
dqe

¼ oUðq; uðqÞÞ
oqe

ð30Þ

Introducing an additional adjunct problem in Eq. (30) is

unnecessary due to the continuous nature of the relation-

ship. The structure of the strain energy function is as given

in Eq. (31) [60]. Therefore, the sensitivity function is

derived as Eq. (32):

Uðq; uðqÞÞ ¼
X

n

e¼1

Z

Veueðq; uðqÞÞdV ð31Þ

dJUðqÞ
dqe

¼
X

n

e¼1

Z

Ve
oueðq; uðqÞÞ

oqe
dV ð32Þ

3.3 Prescribed Energy

The topological analysis performed in this study employed

a nested optimization formula to maximize strain energy

while adhering to a volume constraint. The developed

method involves iterative optimization cycles to achieve

the most optimal design. Central to this process is the

prescribed energy value C0, which plays a crucial role.

Figure 5 visually represents this energy control strategy

within the context of systems with two degrees of freedom.

The TO analysis conducted in this study utilized a

nested optimization formula to maximize strain energy

while adhering to a volume constraint. The developed

method involves iterative optimization cycles to achieve

the optimal design. Central to this process is the prescribed

energy value, which plays a crucial role. Figure 5 visually

illustrates this energy control strategy within the context of

systems with two degrees of freedom.

The selection of the appropriate C0 value holds signifi-

cant importance and can be determined by considering the

expected nonlinear behavior as guided by the energy con-

trol approach [15, 54, 57]. C0 expressed as the sum of C01

and C02, representing the area of shaded triangles, which

remains constant across all design cycles to attain the

optimal design solution. In the context of this illustrative

case study, which can be extended to both bi-axial and

multi-degrees of freedom scenarios, it is assumed that two

reference forces (f01\f02) are applied to two distinct

degrees of freedom. Moreover, the parameter vk [ 1 rep-

resents the load factor during the k � th design cycle.

Looking at Figs. 5a and 4b, provide insight into the rela-

tionship between reaction force and displacement for each

degree of freedom. Figure 5 highlights the energy pre-

scribed during various stages of the process, including the

initial optimization iteration (red region in Fig. 5), the first

iteration (blue region in Fig. 5), the general k � th iteration

(yellow regions in Fig. 5), and the ultimate optimal design

(green regions in Fig. 5). By summing the shaded areas of
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the same color, a constant value is derived, referred to as

the prescribed energy C0. This comprehensive approach

aims to establish a clear link between energy control and

the achievement of optimal design outcomes.

3.4 Masonry Structures Modeling

To model the intended masonry walls at the meso-scale,

the Mesh Fragmentation Technique (MFT) is utilized. This

approach involves the representation of both horizontal and

vertical joints, as well as the incorporation of contact ele-

ments at the interfaces between blocks, specifically at the

meso-scale level (see Fig. 6(.

The nonlinear behavior of brick elements was accounted

for by employing the Menetrey-Willam [61, 62] yield

surface (see Fig. 7). This yield surface considers the

material’s behavior under tension and compression.

At the meso-scale, both horizontal and vertical mortar

interfaces need to possess the capability for separation and

sliding. To accurately model the behavior of mortar, the

cohesive crack model was employed between elements.

The Cohesive Zone Model (CZM), as formulated by

Alfano and Crisfield [63], addresses mechanical

limitations, such as the linear elastic singular stress at crack

tips, and ensures a reduction of these constraints during the

process of crack propagation. This methodology models

crack propagation by the stress-separation law [64, 65]. As

illustrated in Fig. 8, the CZM employs exponential models

to calculate normal and shear stresses between elements

(refer to Eqs. (33) to (36)):

r ¼

r

d0n
dn; if dn\d0n

d1n � dn
d1n � d0n

r; if d0n\dn\d1n

0; if dn � d1n

8

>

>

>

>

>

<

>

>

>

>

>

:

ð33Þ

sj j ¼

dt
d0t

ðsþ sf Þ; if dtj j\d0t

d1t � dt
d1t � d0t

ðsþ sf Þ; if d0t\ dtj j\d1t

sf ; if dtj j � d1t

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð34Þ

sf ¼
�lr if r\0

0 if r[ 0

(

ð35Þ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð GI

GIC
Þ2 þ ð GII

GIIC
Þ2

r

ð36Þ

In this context r and s represent the shear and tensile

strengths of the contact element, respectively. The vari-

ables dn, dt indicate the separation values of the contact

element in the normal and shear directions, respectively.

Additionally, d0n, d
0
t denote the normal and shear values of

the initial permanent separation, while d1n, d
1
t represent the

normal and shear values of the displacement at the point of

fracture. The Level 2 fracture energy criterion integrates

various fracture modes [66]. Furthermore, GIC, GIIC signify

(a) Dof #1 (b) Dof #2

Fig. 5 Visually representation of energy control strategy in the context of systems with 2 degrees of freedom

Fig. 6 General view of modeling masonry structures at the meso-

scale using the MFT
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the critical energy release rates in tension and shear

(fracture toughness), respectively, and GI , GII indicate the

energy absorbed in the normal and shear directions. Lastly,

D represents the damage index, which ranges from 0 to 1.

4 Numerical Results and Discussions

In this section, three samples of masonry walls previously

studied [67–70] at the laboratory scale were modeled in

three states: Macro-Scale (MC), Optimized Meso-scale

(OM), and Full Meso-scale (FM) to validate the algorithm.

The optimization results were compared with the experi-

mental findings.

The numerical models were developed and analyzed

using ANSYS APDL software, with the TO process for-

mulated as a nested algorithm coded in Fortran and inte-

grated into ANSYS. To simulate material behavior, the DP

failure criterion was implemented.

Nonlinear equations were solved using the modified

Newton–Raphson method to handle convergence, with

criteria set at u = 0.001 and f = 0.001, ensuring both

accuracy and stability during the analysis.

The optimization process was performed over 11 steps.

In the first step, a vertical load was applied using 5 sub-

steps according to the boundary conditions. The remaining

10 steps comprised the TO process, each consisting of 100

sub-steps.

For the FM, OM, and MC models, the analyses were

conducted in two steps. In the first step, a vertical load was

applied over 5 sub-steps, following the boundary condi-

tions of the problem. The second step involved the main

analysis, with the number of sub-steps adjusted based on

the model scale. MC models were analyzed with 100 sub-

steps, while FM and OM models used 1000 sub-steps.

PLANE182 elements with DP behavior were employed

for the MC models and the macro-scale regions of the OM

models. For representing bricks, PLANE182 elements with

Menetrey-Willam behavior were used in the FM models

and the meso-scale regions of the OM models. Addition-

ally, CONTA172 and TARGE169 elements were inte-

grated into both the FM models and the meso-scale regions

of the OM models, using the CZM to simulate the inter-

actions between masonry units and connection between the

meso-scale and macro-scale parts within the OM models.

To minimize the computational cost of the analyses

conducted in this study, 2D models were employed. The

proposed methodology is also applicable to 3D multi-lay-

ered masonry walls featuring various brick-bond patterns.

This adaptability stems from the nearly independent in-

plane behavior of masonry walls, regardless of the layer

and bond configuration.

4.1 Numerical Models

The first and second samples represent two distinct sides of

a two-story masonry structure that was experimentally

studied by Magenes at Pavia University [67]. The structure

features a regular plan with 6.4 m by 4.4 m and a height of

Fig. 7 Three-dimensional Menetrey-Willam yield surface in the principal stress space

Fig. 8 The utilized CZM model in this research
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4.6 m, with wall thickness measuring 0.25 m. On one side

of the structure, there are two doors on the first floor, each

measuring 0.94 m in width and 2.52 m in height. Addi-

tionally, there are two windows on the second floor, posi-

tioned parallel to the doors below, each also measuring

0.94 m in width and 2.31 m in height.

On the opposite side of this structure, there are three

windows on the first floor and three corresponding win-

dows on the second floor, each measuring 0.93 m in width

and 1.235 m in height. The floors of both levels have been

designed to be rigid, with vertical loads of 248.4 kN and

236.8 kN applied to the first and second floors, respec-

tively. Additionally, a lateral force has been applied

cyclically to the floors of this structure (see Fig. 9).

In the modeling process, walls with doors are designated

as ‘‘DW’’ (Door-Wall), while walls containing only win-

dows are labeled as ‘‘WW’’ (Window-Wall). For compre-

hensive details regarding this structure, additional

information can be found in the literature [68]. In the third

sample, the shear wall proposed by Vermeltfoort and col-

leagues [69, 70] was subjected to modeling. In the mod-

eling process this wall labeled as’’SW’’ (Shear-Wall) This

wall has a width of 0.99 m and a height of 1.0 m. Two

rigid steel beams were utilized at the top and bottom of the

wall to facilitate experimental control. An average uniform

vertical load of 0.3 MPa was applied to the top of the wall.

Furthermore, a controlled horizontal displacement was

applied to the top of the wall while the upper portion was

held in a fixed vertical position (see Fig. 10).

As stated in the flowchart shown in Fig. 3, the first step

in utilizing the developed method involves numerical

modeling of the masonry structure at the macro-scale and

assigning the material properties and boundary conditions.

In this research, the mechanical properties of the models at

macro-scale have been determined using Eq. (5) based on

the f 0m parameter obtained from the experimental results.

Additionally, the E and ft were determined by using

Eqs. (6) and (7). It is worth noting that these same

mechanical properties were utilized in the TO analysis. The

values of C and / for the SW, WW, and DW walls in

nonlinear analysis at the macro-scale are calculated as

provided in Tables 1 and 2. Also, in Tables 1 and 2, the

results of Eqs. (5), (8), and (9) using the Mohr–Coulomb

equation under vertical load are presented.

In Table 3, the mechanical properties of the numerical

models at the meso-scale are presented. For the modeling

of masonry units, solid elements with three degrees of

freedom were utilized for each node. Additionally, the

interface between the bricks and mortar was modeled using

contact elements. In continuation, based on the

flowchart shown in Fig. 3, the models were analyzed

nonlinearly to identify critical regions. All numerical

models were analyzed in a two-step process. First, vertical

loads were applied, followed by lateral loads according to

the experimental samples. Considering the cyclic loading

of the ‘‘DW’’ and ‘‘WW’’ models in the laboratory

experiment, quasi-static displacement was employed to

Fig. 9 Structural geometry and applying lateral load of the tested

masonry building at the University of Pavia

Fig. 10 Geometry and boundary conditions of the shear wall

proposed by Vermeltfort and his colleagues
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simulate this wall. The results of the optimization analysis

and the critical regions obtained for the three target walls

are illustrated in Fig. 11, with yellow highlighting.

By examining Fig. 8, the initial value of C0 is estab-

lished based on either nonlinear analysis or experimental

results. The initial values of C0 for each sample, as deter-

mined from the experimental results, are presented in

Fig. 12. If it is not feasible to calculate the value of C0

directly from the experimental results, an initial nonlinear

analysis at the macro-scale is performed, and C0 is derived

from the results of the nonlinear numerical analysis inte-

grated into the algorithm. Additionally, Table 4 displays

the values of C0 for the numerical models. The optimiza-

tion algorithm identifies critical regions based on strain

energy and incorporates internal forces into each element.

Consequently, the identified regions consist of areas

exhibiting both stress and plastic strain.

Subsequently, as illustrated in the final steps of the

flowchart presented in Fig. 3, within a two-scale numerical

framework, critical regions were modeled at the meso-

scale. In contrast, the remaining areas were modeled at the

macro-scale. After assigning material properties, the two-

scale models were analyzed using nonlinear methods. The

meshing strategy for the walls is shown in Fig. 13. Addi-

tionally, the optimization parameters are outlined in

Table 4.

Table 1 Mechanical properties of the SW numerical model at the macro-scale using various relationships reported in Sect. 3.1

Masonry Prism Em MPað Þ t ft ðMPaÞ f 0m MPað Þ C MPað Þ / o r

ðNormal
SressÞ

s ¼ C þ r tanð/Þ

Equation (5) 5775 0.15 0.36 10.5 0.8 72.7 0.3 1.76

Equation (8) 5775 0.15 0.36 10.5 1 67.87 0.3 1.73

Equation (9) 5775 0.15 0.36 10.5 0.98 69 0.3 1.76

Table 2 Mechanical properties of the DW and WW numerical models at the macro-scale using various relations reported in Sect. 3.1

Masonry Prism Em MPað Þ t ft ðMPaÞ f 0m MPað Þ C MPað Þ / o r

ðNormal
SressÞ

s ¼ C þ r tanð/Þ

Equation (5) 3410 0.2 0.18 6.2 0.43 74 0.1 0.78

Equation (8) 3410 0.2 0.18 6.2 0.54 69.7 0.1 0.8

Equation (9) 3410 0.2 0.18 6.2 0.53 70 0.1 0.8

Table 3 Mechanical properties of numerical models at meso-scale

DW – WW materials E

ðGPaÞ
m C

ðMPaÞ
/ o

GI

N=mmð Þ
GII

N=mmð Þ
f 0m ft w�

kn

N=mmð Þ
ks

N=mmð Þ

Masonry Prisms 3.41 0.2 0.43 74 – – 6.2 0.18 1.18 – –

Brick 6 0.15 2.1 31 – – – 1.22 – –

Brick–Mortar joint – – 0.02 30 0.02 0.05 – 0.01 48 21

SW Materials

Masonry Prisms 5.77 0.15 0.8 72.7 – – 10.5 0.36 1.39 – –

Brick 16.7 0.15 2.29 42.8 – – – 2 – –

Brick–Mortar joint – – 0.35 37 0.016 0.125 – 0.25 82 36
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4.2 Optimization Results of DW Sample

The results of the negative envelop (i.e., negative envelop

refers to left to right) of the DW sample are specified in

Fig. 14. It can be observed that the crack patterns in the

OM model correspond to the experimental sample. This

includes the initiation and propagation of cracks at the base

of the wall, near the roof, between the two doors on the first

floor, and under the windows on the second floor, all can be

seen by the experimental results. Furthermore, by com-

paring the Von Mises stress contour in the OM model with

the FM model, the stress distribution is accurately deter-

mined. Specifically, regions of the structure that have

experienced cracking do not exhibit a stress distribution,

whereas regions that remain intact, such as the corners and

around the windows, display a higher Von Mises stress

intensity.

By comparing the results of MC and FM analyses, it is

evident that the macro-scale models provide a reasonable

approximation, accurately distributing stress. However, in

the macro-scale analysis, displacements, sliding, and

openings between brick elements are not observed, and a

region undergoes plastic deformation. In contrast, at the

meso-scale, the initiation and progression of cracking can

be fully observed.

Figure 15 illustrates the lateral force–displacement dia-

gram for the numerical models alongside the laboratory

sample for both envelopes. As shown in Fig. 15, the MC

model exhibits greater stiffness due to the presence of a

yield surface in the DP elements, which demonstrates

elastic-perfectly plastic behavior. This model does not

account for the effects of sliding between elements or

material softening. Consequently, the MC model displays

higher stiffness values and maximum forces. In Fig. 15, the

OM model shows good agreement with the experimental

results; however, it exhibits higher force and initial stiff-

ness compared to the FM model. This increase is attributed

to the presence of macro-scale elements in the OM model.

For the analysis of the wall in the FM, 38,794 equations

(a) DW model (b) WW model (c) SW mode

Fig. 11 Critical regions identified in the TO analysis

(a) SW sample (b) DW sample (c) WW sample

Fig. 12 Calculation of C0 based on the force–displacement diagram of experimental results

Table 4 The optimization parameters used in this problem

Numerical

model

Prescribed

energy C0

(KJ)

Volume

fraction

Linear

density

filter radius

Penalization

parameter of

SIMP

SW 0.058 40% 70 mm 3

DW 1.4

WW 1.1
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were solved, while 22,958 equations were solved in the

OM model, and 975 calculations were performed in the

MC model.

4.3 Optimization Results of WW Sample

The results of the positive envelope (i.e., the positive

envelope refers to the right to left) of the WW sample are

presented in Fig. 16. The crack pattern in the OM model

closely resembles that of the experimental sample, partic-

ularly in the initiation and propagation of cracks near the

roof, between the first-floor windows, and below the sec-

ond-floor windows. A comparison of the Von Mises con-

tour of the OM model with that of the FM model reveals a

strong alignment in regions of high-stress intensity. Nota-

bly, the locations and stress intensities at the corners of the

windows and the connection points of the roofs are con-

sistent between the OM and FM models.

In the MC model, the stress distribution closely aligns

with the results of the FM model, demonstrating appro-

priate accuracy. The plastic strain contour indicates that the

corners of the windows are identified solely as locations of

crack initiation. However, when compared to the crack

pattern observed in the experimental specimen, this rep-

resentation lacks sufficient accuracy. Figure 17 illustrates

the force–displacement diagram for both the numerical

models and the laboratory sample for each envelope.

Upon examining Fig. 17, the force–displacement dia-

gram of the OM model demonstrates a strong correlation

with both the FM model and the experimental results. In

contrast, the MC model, characterized by its elastic-per-

fectly plastic behavior, exhibits higher values for both

stiffness and maximum force. The data presented in Fig. 17

indicate that the presence of macro-scale elements in the

OM model results in greater initial stiffness and force

compared to the FM model. For the analysis of wall

46,512, Equations 21,904 and 924 were solved for the FM,

OM, and MC models, respectively. It is important to note

that, since the WW and DW walls were subjected to cyclic

testing in the laboratory, there is a slight variation in crack

patterns when compared to monotonic crack patterns.

4.4 Optimization Results of SW Sample

The results of the SW sample analysis under controlled

displacement are illustrated in Fig. 18. It is evident that in

the OM model, there is a significant alignment between the

crack pattern and the laboratory sample, demonstrating the

accuracy of the optimization algorithm. The separation of

bricks is visible in the diagonal crack. Additionally, sepa-

rations can be observed at the top left and bottom right

corners of the wall. When comparing the Von Mises con-

tour between the OM and FM models, the stress distribu-

tion is accurately represented. Specifically, in the diagonal

region where cracking occurs, stress is not observed;

however, it is well-distributed in the vicinity of the crack

region. Stress concentration is notably present in the upper

right and lower left corners, as shown in Fig. 18b.

In the MC model, the stress distribution shows reason-

able conformity when compared to the FM model. Addi-

tionally, the plastic strain contours closely approximate the

regions of crack initiation. However, in comparison to the

zones identified by the optimization algorithm, the accu-

racy is lower. It is important to note that the optimization

analysis is conducted in a nonlinear manner. For infor-

mation regarding the linear behavior of masonry, please

refer to the Appendix.

(a) DW model (b) WW model (c) SW mode

Fig. 13 The meshing strategy of OM numerical models

International Journal of Civil Engineering

123



(a) Experimental sample crack pattern (b) OM Von Mises contour plot and crack pattern

(c) FM Von Mises contour plot and crack pattern (d) MC Von Mises contour plot

(e) MC plastic strain contour

Fig. 14 Comparison of numerical model analysis results with experimental findings in the DW specimen
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In Fig. 19, the force–displacement curves of the

numerical models are compared with two experimental

specimens, demonstrating the effectiveness of the opti-

mization algorithm and its accuracy in the analysis con-

ducted. As observed in the DW and SW specimens, the MC

model exhibits higher initial stiffness and maximum force

compared to the other models and the experimental sam-

ples. For the analysis of this wall, 3522, 2193, and 94

equations were solved for the FM, OM, and MC models,

respectively.

It is important to note that the developed method aims to

reduce computational times in meso-scale analysis, and

results from meso-scale and macro-scale analyses cannot

be directly compared. While macro-scale analysis provides

a reasonable approximation, it does not account for dis-

placements, sliding, or opening between brick elements;

instead, the entire region is treated as undergoing plastic

deformation. Furthermore, many researchers have

employed meso and micro-scale analyses for a detailed

examination of the behavior of masonry structures [33, 71].

In summary, as illustrated in Figs. 15, 17, and 19, the

numerical models at the macro-scale demonstrate increased

stiffness. This is attributed to the incorporation of the yield

surface in the DP criterion, which causes the elements to

behave in an elastic-perfectly plastic manner. Conse-

quently, these models are unable to account for the effects

of sliding between elements and material softening. As a

result, the reported models exhibit higher stiffness and

maximum force values. Furthermore, at the macro-scale,

the initiation and propagation of cracks within and between

bricks remain unobservable.

4.5 Computational Efficiency

The computational time, or CPU time, plays a pivotal role

in the efficiency of structural analyses, particularly when

addressing complex models and extensive simulations. In

the context of this research study, which involved detailed

analyses of masonry buildings, CPU time emerges as a

critical factor. The specifications of the computer utilized

for these analyses are noteworthy. The computations were

performed using an Intel i5-13600 K processor operating at

3.5 GHz, equipped with 32 GB DDR5 RAM and an SSD

hard drive featuring a data reading speed of 560 MB/s and

a data writing speed of 530 MB/s. These robust hardware

specifications facilitated the efficient execution of the

structural analyses.

Table 5 presents the computational costs associated with

the analyzed numerical models, offering a comparative

analysis of the number of elements, nodes, equations, and

CPU time across three distinct models (DW, WW, SW)

using various methods (FM, OM, TO, MC). Additionally,

this table incorporates several quantitative indices that have

been calculated to evaluate model performance, including

the Normalized CPU Time (NCT), Maximum Load

Accuracy Index (MLAI), and Combined Accuracy-Effi-

ciency Index (CAEI). Collectively, these indices provide a

comprehensive assessment of both computational effi-

ciency and accuracy.

As shown in Table 5, the OM models exhibit a signifi-

cant reduction in the number of nodes and elements com-

pared to the FM models, with reductions of 40.8% for the

DW model, 52.9% for the WW model, and 37.7% for the

Fig. 15 Comparison of lateral force–displacement of numerical models with laboratory results in both envelopes for the DW sample
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(a) Experimental sample crack pattern (b) OM Von Mises contour plot and crack pattern

(c) FM Von Mises contour plot and crack pattern (d) MC Von Mises contour plot

(e) MC plastic strain contour

Fig. 16 Comparison of numerical model analysis results with experimental findings in the WW specimen
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SW model. However, due to the iterative nature of the TO

process at the macro scale, evaluating computational costs

based solely on the number of nodes is less appropriate. A

more accurate assessment should involve analyzing the

number of equations solved, CPU time, and the various

quantitative indices.

For the DW sample, the MC model was computed in

176 s, as specified by the hardware specifications. In con-

trast, the computations for the FM model took 7001.9 s,

which is approximately 50 times longer, demonstrating a

significant difference in CPU time between these two

scales. The numerical modeling of samples using the

methodology developed in this research resulted in fewer

equations being computed. Specifically, the TO process

computations for the DW sample required 576 s, while the

OM model took 4143.67 s.

In the WW sample, the MC model was analyzed in

168 s, while the FM model computations required 8395 s,

also about 50 times longer. The TO process for this sample

was completed in 579 s, whereas the OM model took

3953 s.

Similarly, in the SW sample, the MC model was ana-

lyzed in just 17.2 s, while the FM model computations

required 635.68 s—approximately 37 times longer. The

TO process for this sample took 55 s, and the OM model

was computed in 395.81 s.

The NCT was assessed for each sample to quantify the

computational efficiency of the OM models relative to the

FM model, as shown in Eq. (37). To effectively compare

the computational efficiency of the method, it is crucial to

consider the total CPU time for both phases (TO ? OM)

and compare it with the FM model. A lower NCT signifies

higher computational efficiency.

NCT ¼ CPU TimeOMþTO

CPU TimeFM
ð37Þ

For the DW sample, the NCT was approximately 0.67.

In the WW sample, the NCT value was around 0.54, and

for the SW sample, the NCT was approximately 0.71.

These values underscore the significant computational

efficiency achieved through the proposed method in com-

parison to the FM model.

The CPU time reduction can be determined using

Eq. (38). Applying this, the CPU time reduction for the

DW sample is approximately 33%, for the WW sample

about 46%, and for the SW sample around 29%. These

values illustrate the substantial computational cost savings

realized by the OM models compared to the FM models,

showcasing the efficiency of the process while maintaining

high accuracy.

CPUTimeReduction (% )¼ð1� NCTÞ 	 100 ð38Þ

To further enhance the understanding of the accuracy

and efficiency of the models, the MLAI was defined to

measure the closeness of the maximum load from OM to

the experimental results, calculated as shown in Eq. (39).

Here, a value of MLAI close to 1 indicates high accuracy in

replicating the experimental maximum load. For the DW

sample, the MLAI was approximately 0.86, indicating an

accuracy of 86%. In the WW sample, the MLAI reached

0.93, demonstrating 93% accuracy, while the SW sample

exhibited the highest accuracy, with an MLAI of 0.98.

Fig. 17 Comparison of lateral force–displacement of numerical models with laboratory results in both envelopes for the WW sample
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(a) Experimental sample crack pattern (b) OM Von Mises contour plot and crack pattern

(c) FM Von Mises contour plot and crack pattern (d) MC Von Mises contour plot

(e) MC plastic strain contour

Fig. 18 Comparison of numerical model analysis results with experimental findings in the SW specimen
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MLAI ¼ 1�
Max LoadOM �Max LoadExp
�

�

�

�

Max LoadExp
ð39Þ

Additionally, the CAEI was calculated for each sample

to balance accuracy and computational efficiency, defined

as shown in Eq. (40). A CAEI value close to 1 indicates

both high accuracy and computational efficiency. For the

DW sample, the CAEI was approximately 0.28; for the SW

sample, it was also 0.28; and for the WW sample, it

reached 0.43. This higher CAEI value for the WW sample

demonstrates a better overall balance of accuracy and

efficiency. These results underscore the effectiveness of the

OM models in replicating experimental maximum loads

while maintaining lower computational costs compared to

the FM models.

CAEI ¼ MLAI 	 ð1� NCTÞ ð40Þ

5 Conclusions

This research study presents an algorithm developed to

reduce the computational time associated with the analysis

of meso-scale masonry buildings. The algorithm, which is

based on nonlinear topology optimization and utilizes the

DP yield surface, aims to balance computational efficiency

and accuracy in the numerical modeling of masonry

structures at the meso-scale. The key innovation lies in the

optimization process, where critical regions responsible for

effective force transmission are identified during the

Fig. 19 Comparison of lateral force–displacement of numerical models with laboratory results for the SW sample

Table 5 Computational costs and quantitative indices of the analyzed numerical models

Model DW model WW model SW model

Method FM OM TO MC FM OM TO MC FM OM TO MC

Number of elements 43,643 5101 216 216 52,326 4867 205 205 3962 2598 21 21

Number of nodes 19,397 11,479 487 487 23,256 10,952 462 462 1761 1096 47 47

Number of Eq.s 38,794 22,958 3191 975 46,512 21,904 3041 924 3522 2193 304 94

CPU time

(sec)

7001.9 4143.67 576 176 8395 3953 549 168 635.68 396 55 17

NCT 0.67 0.54 0.71

CPU time Reduction 33% 46% 29%

MLAI 0.86 0.93 0.98

CAEI 0.28 0.43 0.28
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nonlinear macro-scale analysis. Subsequently, a two-scale

model is generated, with these critical regions modeled at

the meso-scale while the remaining sections are retained at

the macro-scale. To evaluate the efficiency of the devel-

oped algorithm, three samples of masonry walls were

analyzed, and the results were compared in terms of

computational time and accuracy across the meso-scale,

macro-scale, and optimized meso-scale. The following

results were obtained.

• The developed method significantly reduced computa-

tional time (i.e., CPU time) without compromising the

accuracy of the analysis results. Furthermore, the

optimized meso-scale models demonstrated a high

level of accuracy in representing crack patterns, closely

aligning with the experimental samples. In summary,

the developed algorithm not only enhances cost-

efficiency but also ensures precision in capturing the

complex behavior of masonry structures under various

loading conditions.

• Macro-scale models exhibited lower accuracy com-

pared to meso-scale models and demonstrated greater

initial stiffness and maximum force due to their elastic-

perfectly plastic behavior. This highlights the signifi-

cance of modeling these structures at the meso-scale.

• In the DW sample, the macro-scale model required

176 s for computation, while the full meso-scale model

computations took 7001.9 s. The optimization process

for this sample lasted 576 s, and the optimized meso-

scale model computations took 4143.67 s, indicating a

32.5% reduction in computational time compared to the

full meso-scale model. CAEI was approximately 0.28,

highlighting a balance between accuracy and computa-

tional efficiency.

• In the WW sample, the macro-scale model analysis

lasted 168 s, while the full meso-scale model compu-

tations took 8,395 s. The optimization process for this

sample required 579 s, compared to 3,953 s for the

optimized meso-scale model, demonstrating a 46%

reduction in computational time relative to the full

meso-scale model. the CAEI was 0.43, indicating a

better overall balance of accuracy and efficiency.

• In the SW sample, the macro-scale model analysis

lasted 17.2 s, while the full meso-scale model compu-

tations took 635.68 s. The optimization process for this

sample required 55 s, and the optimized meso-scale

model computations lasted 395.81 s, indicating a 30%

reduction in computational cost compared to the full

meso-scale model. CAEI was approximately 0.28,

highlighting a balance between accuracy and computa-

tional efficiency.

Appendix

Linear Topology Optimization

The developed algorithm takes into account the nonlinear

behavior of materials. In the linear TO scenario, the

objective is to minimize strain energy in order to reduce

material volume. Since minimizing energy is equivalent to

maximizing structural stiffness in regions experiencing the

highest stress, the general relationship is defined as follows

[72, 73]:

Uc ¼ aminimum gi
subject to 0\gi � 1 ði ¼ 1; 2; 3; :::;NÞ
V �V0 � V�

ð41Þ

In Eq. (41), gi represents the optimization coefficient for

each element, V is the volume of the finite element model,

V0 is the initial volume, and V� is the material volume that

needs to be removed. TO may be based on one or several

loading combinations. Accordingly, the stiffness value K in

each loading combination is calculated by applying

weighting coefficients as per the following relationship:

FðU1
c ;U

2
c ; :::;U

k
c Þ ¼

Xk

i¼1
WiU

i
c; Wi � 0 ð42Þ

In Eq. (42), Wi is the weighting coefficient for each

loading combination based on Uc. Subsequently, the total

volume of the elements is calculated according to the fol-

lowing relationship:

V ¼
X

i
giVi

E½ � ¼ EðgiÞ½ � rif g ¼ E½ � eif g
ð43Þ

In Eq. (43), Vi represents the volume of the i-th element.

Considering that the value of the elastic modulus tensor is

dependent on the tensor of each element, it follows that the

elastic modulus tensor is influenced by the stress and strain

tensors. Consequently, it can be concluded that the ele-

ments most critical to a problem will experience the

highest levels of stress and strain, thereby increasing the

likelihood of crack propagation in these regions.

If the behavior of the masonry is assumed to be linear,

the regions resulting from the TO analysis for the SW

sample are illustrated in Fig. 20. Based on the stress con-

tours and the optimized analysis regions, it is evident that

when the behavior of the brittle material is considered

linearly, the areas where the material fails in tension are not

accounted for in the algorithm.
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