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 A B S T R A C T

Airborne microplastics (AMPs) are prevalent in both indoor and outdoor environments, posing potential health 
risks to humans. Automating the process of identifying potential particles in micrographs can significantly 
enhance the research and monitoring of AMPs. Although deep learning has shown substantial promise in 
microplastics analysis, existing studies have primarily focused on high-resolution images of samples collected 
from marine and freshwater environments. In contrast, this work introduces a novel approach by employing 
enhanced U-Net models (Attention U-Net and Dynamic RU-NEXT) along with the Mask Region Convolutional 
Neural Network (Mask R-CNN) to identify and classify outdoor AMPs in low-resolution micrographs (256 × 256 
pixels). A key innovation involves integrating classification directly within the U-Net-based segmentation 
frameworks, thereby streamlining the workflow and improving computational efficiency. This marks an 
advancement over previous work where segmentation and classification were performed separately. The 
enhanced U-Net models attained average classification F1-scores exceeding 85% and segmentation accuracy 
above 77% on test images. Additionally, the Mask R-CNN model achieved an average bounding box precision 
of 73.32%, a classification F1-score of 84.29%, and a mask precision of 71.31%. The proposed method provides 
a faster and more accurate means of identifying AMPs compared to thresholding techniques. It also functions 
effectively as a pre-screening tool, substantially reducing the number of particles requiring labour-intensive 
chemical analysis. By integrating advanced deep learning strategies into AMPs research, this study paves the 
way for more efficient monitoring and characterisation of microplastics.
1. Introduction

Microplastics (MPs), plastic particles of less than 5 mm in diameter, 
have gained global attention due to their widespread presence across 
marine, terrestrial, and atmospheric environments (Chen et al., 2020; 
Kim et al., 2020; Hale et al., 2020). MPs have been detected in 
various human clinical samples, including the lungs, blood, colon, 
and liver (Jenner et al., 2022; Leslie et al., 2022; Horvatits et al., 
2022; Ibrahim et al., 2021). Airborne microplastics (AMPs) is an 
increasing environmental concern due to their abundance indoors and 
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Pyrolysis Gas Chromatography-Mass Spectrometry; ReLU, Rectified Linear Unit; RPN, Region Proposal Network; SAM, Segment Anything Model; SEM, Scanning 
Electron Microscopy; SGD, Stochastic Gradient Descent
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outdoors (Zhao et al., 2023; Netema et al., 2024). With people spending 
90% of their time indoors, AMPs can enter the human body via 
inhalation and ingestion (Dewika et al., 2023; Vattanasit et al., 2023; 
Netema et al., 2024), and migrate to soil and marine environments 
via precipitation and natural deposition (Su et al., 2023). Since MPs 
are known to carry harmful pollutants in marine environments (Zarfl 
and Matthies, 2010), they likely transport pollutants through the air 
as well (Wright and Kelly, 2017). Consequently, some researchers even 
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argue that MPs in the air may pose greater health risks than those found 
in water, food, or soil (Pauly et al., 1998; Vattanasit et al., 2023).

Currently, no comprehensive protocol exists for monitoring and 
detecting AMPs. Various methods are employed for MPs collection 
(e.g., passive or active sampling), extraction (e.g., density separation), 
and identification (e.g., visual or instrumental analysis) (Shao et al., 
2022). However, the results are often reported in incompatible units, 
complicating comparisons with breathable volume units used in statu-
tory air quality monitoring (Jenner et al., 2022; Jahandari, 2023). As 
suggested by Hartmann et al. (2019), a standardised database categoris-
ing MPs based on size, shape, colour, and origin is needed to better 
understand their global impact.

An ideal pipeline for monitoring AMPs would include both chemical 
and physical identification techniques. Chemical characterisation meth-
ods such as Fourier-transform Infrared (FTIR) spectroscopy, Raman 
spectroscopy, energy-dispersive X-ray Spectrometry (EDS), and pyroly-
sis gas chromatography-mass spectrometry (Py-GC-MS) are commonly 
used (Su et al., 2023). On the other hand, physical characterisation 
methods such as stereoscopic and scanning electron microscopy (SEM) 
help capture images and analyse particle attributes (Shao et al., 2022). 
Characteristics such as size, levels, and shape can indicate the origin 
of MPs and potential toxicity outcomes in human cell/tissue experi-
ments (Danopoulos et al., 2022). However, these methods are time-
consuming and costly, limiting their potential for high throughput 
analyses of samples (Shao et al., 2022; Cui et al., 2023). Emerging 
automated techniques can help detect MPs in images, serving as an 
initial screening method that reduces the need for extensive chemical 
analysis (Primpke et al., 2020).

The identification of potential MPs in images involves segmenta-
tion (isolation of particles from the background), and classification 
(categorisation of objects by shape). Traditional methods include vi-
sual identification, boundary-based image processing (Mukhanov et al., 
2019; Gauci et al., 2019), and thresholding techniques (Otsu, 1979; 
Sauvola and Pietikäinen, 2000). While visual inspection is simple and 
low-cost, it is prone to errors for particles smaller than 2 mm and 
cannot be easily automated (Kroon et al., 2018). Boundary-detection 
methods can be automated but depend heavily on image quality, and 
poor resolution or noise can reduce their accuracy (Bovik, 2009). 
Thresholding techniques are quicker to implement but are sensitive 
to image noise and rely on fixed thresholds, making them less adapt-
able to varying image conditions (Gonzales-Barron and Butler, 2006). 
Variations in particle characteristics such as diameter, circularity, and 
roughness across images from different devices further complicate the 
standardisation of MPs databases (Shi et al., 2022).

Deep learning techniques based on Convolutional Neural Networks 
(CNN) have been increasingly adopted to identify MPs in images in 
recent years (Lin et al., 2022; Su et al., 2023; Zhu et al., 2023). One 
prevalent approach employs U-Net and VGG16 neural networks for 
image segmentation and classification. For instance, U-Net has been 
utilised to segment images of MPs from beach samples captured by dig-
ital cameras (Lorenzo-Navarro et al., 2021) and SEMs (Shi et al., 2022), 
while VGG16 has been applied to classify the shapes of detected MPs. 
Although these studies have achieved impressive results, segmentation 
and classification tasks are performed separately. Another approach 
involves the use of the Mask Region CNN (Mask R-CNN) model which 
allows simultaneous segmentation and classification of particles (He 
et al., 2016). For instance, Mask R-CNN has been employed to segment 
and classify MP fibres in images (Wegmayr et al., 2020) and to analyse 
beach sediments captured by digital cameras (Han et al., 2023) and 
Zeiss stereo microscopes (Huang et al., 2023).

Current research on deep learning for MPs identification predom-
inantly focuses on samples from marine, freshwater, or ocean envi-
ronments, where particles often originate from runoff, wastewater, or 
direct disposal. These environments present unique challenges, such as 
interference from organic matter, salts, variable flow rates, and tidal 
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movements, necessitating tailored approaches for accurate MPs identifi-
cation. Additionally, previous studies have used high-resolution images 
(at least 512 × 512 pixels) with varying particle sizes, background 
ratios, and intensities to train deep learning models. Dealing with 
AMPs presents significant challenges as they are sparsely distributed, 
unlike MPs in water or sediment environments (Adhikari et al., 2022). 
This limited sample availability results in fewer images for analysis, 
providing fewer reference features for deep learning models to ex-
tract. Additionally, AMPs in micrographs may appear transparent or 
semi-transparent following treatments designed to remove background 
particles by digesting organic material (Chapman et al., 2024). Conse-
quently, segmentation and classification become more challenging and 
prone to errors. Hence, this work broadens the application range of 
deep learning by proposing the use of state-of-the-art configurations 
of the U-Net model, such as the Attention U-Net (Oktay et al., 2018) 
and Dynamic RU-NEXT (Jasmine and Marichamy, 2024) models, to 
identify AMPs from low-resolution micrographs. The Dynamic RU-
NEXT model, introduced as an advanced framework for highly accurate 
tumor segmentation in CT scans, employs a refined architectural design 
to improve segmentation precision. This work also differs from previous 
studies as classification is directly integrated within the U-Net-based 
segmentation frameworks to streamline the workflow. The models are 
compared with the Mask R-CNN model alongside the Otsu thresholding 
method. The main contributions of this research include: (1) using 
micrographs of AMPs collected from outdoor environments as part of 
a pilot study using existing pollen monitoring devices, (2) creating 
the first labelled dataset of outdoor AMPs for image segmentation, to 
the best of the authors’ knowledge; and (3) presenting the first use 
of deep learning for automated pre-screening of outdoor AMPs from 
low-resolution micrographs and comparing the results with traditional 
methods.

2. Materials and methods

2.1. Study locations

This study utilised images of AMPs collected outdoors using exist-
ing monitoring techniques. Data collection was part of a pilot study 
by Chapman et al. (2024) that used existing pollen monitoring equip-
ment to monitor AMPs, making this one of the first studies to do so. 
Sampling was conducted using a Burkard pollen trap, which contin-
uously collected air samples over two 7-day periods from the roof of 
the Hardy Building, University of Hull, U.K. (53◦ 46′ 16.87′′ N; 0◦
22′ 2.64′′ W) (Google Maps, 2025). Sampling began at 10:00 AM on 
10/03/2023 and 11:00 AM on 18/07/2023. Additionally, a second 
Burkard trap was deployed for 7 days at Nelson Mandela University’s 
South Campus, Summerstrand, Gqeberha, S.A. (34◦ 0′ 4.66′′ S; 25◦ 40′

2.40′′ E), commencing at 1:00 PM on 03/08/2023. Both traps were 
positioned on flat rooftops, with the sampling orifice at least 1 m above 
the roof surface and at least 2 m from the building edge (Fig. S1). Both 
locations were chosen as those already had a functional Burkard trap 
set up for sample collection.

2.2. Data preparation

The collected particles were imaged using a Nicolet iN10 𝜇FTIR 
microscope which has a 15 × 0.7 numerical aperture high efficiency 
and condenser, and independent reflection and transmission illumina-
tions. The photos were taken of samples on anodiscs so that it is clear 
what the background material in the photo is made of. Only images 
of particles whose spectra showed a ≥ 70% match with those in the 
Omnic Picta and Omnic Polymer libraries were selected for this study. 
The sampled particles found in the images were predominantly poly-
tetrafluoroethylene (PTFE), nylon, low-density polyethylene (LDPE), 
polystyrene (PS), poly(ethylene-propylene-diene) (EPDM), and nylon 
6 (PA) (Table S1). More details on the collection, preparation, and 
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Fig. 1. Sample images of two shapes of AMPs: (i) fibre, and (ii) fragment.
chemical identification of the particles are provided in Chapman et al. 
(2024). The particles were categorised as either ‘fragment’ (irregularly 
shaped resulting from the breakdown of larger plastic debris (Free 
et al., 2014)), or as ‘fibre’ (with a length-to-width ratio > 3 (Vianello 
et al., 2019)). Fig.  1 presents sample images of the two AMP shapes 
utilised in this study. Fibres and fragments are the most common shapes 
of AMPs, varying based on the specific study examined (Table S2). 
Although prevalent in other studies, foam and spheres/microbeads 
were not observed in any samples.

The dataset reveals distinct patterns in the distribution of size, 
colour, and shape of the AMPs found in the micrographs. The size 
distribution of the particles exhibits high variability, with an average 
particle length of 85.17 ± 88.43 μm (range 18–750 μm), and an average 
particle width of 44.04 ± 33.60 μm (range 10–361 μm) (Fig. S2). The 
images also comprise 8 distinct colours, with ‘clear’  being the most 
dominant (approx. 69.85% of the total). Other colours, such as ‘grey’, 
‘white’, and ‘black’, appear significantly less frequently (Fig. S3).

2.3. Data augmentation and splitting

Due to the limited collected samples, data augmentation techniques 
were applied to the images containing the sampled outdoor AMPs to 
address data imbalance and model overfitting. Vertical and horizontal 
flipping were applied to the samples, resulting in a balanced dataset 
containing 300 images per shape class. Each image was then manually 
annotated using an online tool (Makesense.ai, 2024) to create ground-
truth masks for model training. The annotations were exported in 
COCO JSON format. A total of 10% of the dataset was used as testing 
data to allocate samples that were completely unknown to the models 
during training. A 5-fold cross-validation setup was then employed 
which involves splitting the training dataset into five equal batches. 
Each batch served as the validation set while the rest were allocated 
for model training. The process was repeated five times, and the overall 
performance was averaged across the models. The choices for selecting 
the testing set ratio and the number of cross-validations align with 
those of previous works (Lorenzo-Navarro et al., 2020; Shi et al., 2022; 
Huang et al., 2023). Data splitting was conducted with a fixed random 
seed to ensure reproducibility. Table  1 provides a distribution of the 
images before and after data augmentation.

2.4. Model development

2.4.1. U-Net model and its enhanced configurations
The U-Net architecture is a standard encoder–decoder framework 

for image segmentation, comprising a contracting path and an expan-
sive path, as illustrated in Fig.  2(a). The contracting path serves as 
3

Table 1
Composition of the dataset containing sampled outdoor AMPs.
 Total Training Validation Testing 
 Collected images 272 196 49 27  
 Images with corresponding Fibre 69 50 12 7  
 AMPs shapes Fragment 203 146 37 20  
 Augmented images Fibre 231 166 42 23  
 Fragment 97 70 17 10  
 Total images 600 432 108 60  

an encoder, extracting hierarchical features from input images through 
stacks of convolutional layers activated by Rectified Linear Unit (ReLU) 
functions, followed by max-pooling layers to reduce spatial dimen-
sions. The expansive path acts as a decoder, reconstructing pixel-level 
segmentations via upsampling layers implemented with transposed con-
volutions and ReLU activation. Features extracted by the contracting 
path are concatenated with those in the expansive path using skip 
connections, preserving spatial information and enabling fast, precise 
segmentation (Ronneberger et al., 2015). A softmax function at the 
output assigns probability values to each pixel, determining whether 
it belongs to a specific class or the background.

Building upon the standard U-Net framework, the Attention U-Net 
and Dynamic RU-NEXT models introduce advanced modifications that 
further refine and enhance the segmentation process. The Attention U-
Net also uses a contracting path to capture hierarchical features and 
an expansive path to reconstruct the segmentation map. However, it 
incorporates attention gates within the skip connections to highlight 
the most salient features. Instead of passing all encoder features in-
discriminately to the decoder, these attention mechanisms selectively 
weight critical regions, suppressing irrelevant background information. 
The Dynamic RU-NEXT model builds upon these advancements with 
a residual U-shaped architecture and dynamic convolutional kernels 
that adapt to input data during runtime. In its decoder component, 
the model employs a dynamic U-Net structure with pixel shuffle up-
sampling, allowing for the generation of high-resolution segmentation 
maps from the extracted features (Jasmine and Marichamy, 2024). 
By doing so, the model can handle greater variability in input ap-
pearances, refining its feature extraction and segmentation strategies 
simultaneously. The Attention U-Net and Dynamic RU-NEXT models 
are thoroughly described in Oktay et al. (2018) and Jasmine and 
Marichamy (2024), respectively.

In this study, the architectures of the U-Net-based models were 
further extended to include a secondary output branch dedicated to 
classifying the entire image based on the segmented shapes. This was 
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Fig. 2. (a) The U-Net model architecture (adapted from Ronneberger et al. (2015)); and (b) the proposed AMPs identification approach based on an enhanced U-Net architecture.
achieved by introducing a classification head that operates in parallel 
with the segmentation output, enabling simultaneous segmentation and 
classification (see Fig.  2(b)). This approach distinguishes this work 
from other related studies where classification was performed indepen-
dently of segmentation. For instance, Lorenzo-Navarro et al. (2021) 
conducted classification separately from the segmentation of images 
containing MPs collected from marine environments, utilising U-Net 
and VGG16 models in a two-stage process. Similarly, Shi et al. (2022) 
adopted a parallel strategy by employing U-Net and MultiResUnet 
models for segmentation alongside a pre-trained VGG16 model for clas-
sification. By integrating classification directly within the segmentation 
framework, this study’s approach streamlines the workflow, reduces 
computational overhead, and enhances the ability of the enhanced 
U-Net models to utilise shared feature representations for improved 
overall performance.

2.4.2. Mask R-CNN model
The Mask R-CNN model incorporates a ResNet-101 backbone which 

is a deep residual neural network that extracts detailed features from 
input images and produces rich feature maps (He et al., 2016). These 
feature maps are passed through region proposal networks (RPNs), 
which generate potential object regions by identifying regions of in-
terest (ROIs) within bounding boxes, refined using anchor scaling 
and non-maximum suppression. ROI Align is applied to ensure the 
ROIs have uniform dimensions, enabling efficient processing. A three-
branch prediction network handles classification, object localisation, 
and instance segmentation, with the classification and bounding box 
4

refinement performed through fully connected layers and softmax func-
tions. Instance segmentation is achieved using a fully convolutional 
network (FCN) that generates binary masks, accurately delineating de-
tected objects at the pixel level. The Mask R-CNN model is thoroughly 
described in He et al. (2016).

2.5. Model training

The three U-Net-based models were trained using the Adam op-
timiser for 50 epochs, with a learning rate of 10−3, momentum of 
0.90, and a batch size of 8. Additionally, the models employed transfer 
learning by utilising encoders based on neural networks pre-trained on 
the ImageNet dataset, which comprises 14 million images spanning a 
wide array of object categories. Transfer learning is a widely adopted 
technique in deep learning as it reduces training time and is particularly 
effective when working with limited training data. In contrast, the 
Mask R-CNN model was trained using the stochastic gradient (SGD) 
algorithm for the same number of epochs, with a learning rate of 10−3, 
momentum of 0.90, and a batch size of 2. Like the U-Net models, 
Mask R-CNN also benefited from transfer learning utilising weights 
from a model pre-trained on the COCO dataset, which includes over 
300,000 images across 80 object categories (Lin et al., 2015). The 
hyperparameter choices are consistent with those in previous related 
works (Table S3).

Prior to model training, all models underwent grid optimisation 
to fine-tune their hyperparameter values which took around 8 h to 
complete per model. The training process was implemented using 
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Fig. 3. Performance evaluation of the deep learning models: (a) classification, and (b) segmentation.
TensorFlow (version 2.9.3) in Python, supported by the Nvidia CUDA 
and cuDNN open-source toolkits, and managed via Anaconda (version 
3.24.0). Model training was carried out on a personal computer running 
Windows 10, equipped with an AMD Ryzen 9 6900HX processor, 64 GB 
of DDR3 RAM, and an NVIDIA GeForce RTX 3080 Ti graphics card.

2.6. Model evaluation

2.6.1. Loss function
The loss function serves as a metric for evaluating the difference 

between predicted outputs and the ground truth. The selection of 
suitable loss functions is crucial during the training process to ensure 
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effective model calibration. For the enhanced U-Net-based models with 
classification, the loss function comprises two components: 
𝐿 = 𝐿class + 𝐿seg. (1)

The two terms in Eq. (1) are calculated as follows:
𝐿class

(

𝑝𝑖, 𝑝
∗
𝑖
)

= −𝑝∗𝑖 log 𝑝𝑖 −
(

1 − 𝑝∗𝑖
)

log
(

1 − 𝑝𝑖
)

(2)

𝐿seg = = 1 −
2 × |prediction result ∩ ground truth| + 𝜆
|prediction result ∪ ground truth| + 𝜆

, (3)

where 𝑝𝑖 and 𝑝∗𝑖  represent the predicted and ground truth class prob-
abilities, respectively, and 𝜆 is a term introduced to prevent the nu-
merical issue of division by zero. 𝐿  is represented by the Dice loss 
seg
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which was derived from the Dice coefficient to evaluate segmentation 
performance.

For the Mask R-CNN model, the loss function comprises three com-
ponents since it simultaneously performs localisation, classification, 
and segmentation: 
𝐿 = 𝐿box + 𝐿class + 𝐿seg, (4)

where 𝐿box, 𝐿class and 𝐿seg represent the localisation error of the 
bounding box, classification loss, and segmentation loss of mask based 
on pixel accuracy, respectively. The three terms in Eq. (4) are calculated 
as follows:

𝐿box
(

𝑡𝑖, 𝑡
∗
𝑖
)

= 𝐿1𝑠𝑚𝑜𝑜𝑡ℎ
(

𝑡𝑖 − 𝑡∗𝑖
)

(5)

𝐿1𝑠𝑚𝑜𝑜𝑡ℎ(𝑥) =

{

0.5𝑥2, if|𝑥| < 1
|𝑥| − 0.5, otherwise

(6)

𝐿mask
(

𝑠𝑖𝑗 , 𝑠
∗
𝑖𝑗

)

= − 1
𝑚2

∑

𝑖𝑗

[

𝑠∗𝑖𝑗 log 𝑠
𝑘
𝑖𝑗 +

(

1 − 𝑠∗𝑖𝑗
)

log
(

1 − 𝑠𝑘𝑖𝑗
)]

(7)

where 𝑡𝑖 is the predicted vector representing the bounding box’s lo-
cation and size, while 𝑡∗𝑖  is the ground truth vector, 𝑚2 refers to the 
mask resolution, typically 28 × 28 pixels, 𝑠𝑖𝑗 and 𝑠∗𝑖𝑗 denote the binary 
values (0 or 1) in the predicted and ground-truth masks, respectively, 
and 𝑘 represents the 𝑘th class object in the dataset. In the segmen-
tation task, the dataset is assumed to include two object categories 
(𝑘 = 2), fibre and fragment. These formulas ensure that the model 
effectively balances its performance across localisation, classification, 
and segmentation objectives.

2.6.2. Segmentation and classification metrics
To evaluate the performance of the deep learning models, several 

segmentation and classification metrics were utilised. The precision, 
recall, and F1-score metrics assess classification performance, and are 
defined as follows:
Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (8)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (9)

F1-score = 2 × Precision × Recall
Precision + Recall , (10)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 denote true positives, false positives, and 
false negatives, respectively. In the context of fibre AMPs classification, 
𝑇𝑃  is the number of pixels correctly classified as fibre, 𝐹𝑃  is the 
number of pixels incorrectly classified as fibre when they belong to 
the fragment class, and 𝐹𝑁 is the number of pixels belonging to fibres 
that were incorrectly classified as fragments. These metrics ensure a 
comprehensive evaluation of the models’ ability to correctly identify 
fibre and fragment classes, capturing both its accuracy (precision) and 
completeness (recall).

The Intersection over Union (IoU) metric was employed to evaluate 
the accuracy of segmentation and localisation performance. IoU is 
defined as: 

IoU =
area of overlap
area of union , (11)

where the area of overlap is the intersection between the predicted and 
the ground-truth masks or bounding boxes, and the area of union is the 
total area covered by both the predicted and ground-truth annotations.

2.6.3. Localisation metrics
For Mask R-CNN, the algorithm generates bounding boxes to in-

dicate the locations of target objects for detection. The accuracy of 
these bounding boxes serves as a measure of localisation performance. 
However, before evaluating the proposed algorithm, it is essential to 
establish the criteria for correct localisation. In this study, the area 
of overlap, quantified by IoU between the ground truth and predicted 
bounding boxes, was used as the criterion for quantifying correct local-
isation. Following the approach adopted in related works, the average 
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precision of the bounding box (AP𝑏𝑏) and its two variants, AP𝑏𝑏50 and 
AP𝑏𝑏75 (Han et al., 2023; Nie et al., 2020), were employed for evaluation. 
AP𝑏𝑏50 and AP𝑏𝑏75 represent the average precision when the IoU is 50% 
and 75%, respectively, while AP𝑏𝑏 denotes the mean value of average 
precision scores calculated for IoU thresholds ranging from 50% to 
95% in increments of 5%. This is consistent with the findings of Han 
et al. (2023). The values for all metrics range between 0 and 1, with 
0 indicating no agreement between the models’ predictions and the 
ground truth and 1 representing perfect agreement. Metrics values were 
reported with four significant digits to account for differences smaller 
than 0.1%.

3. Results

3.1. Localisation performance

The Mask R-CNN model achieved an average values of AP𝑏𝑏50, AP𝑏𝑏75, 
and AP𝑏𝑏, ranging from 73.92% to 91.09% on the test images via 5-
fold cross-validation (Table S4). These results demonstrate the model’s 
strong localisation performance, particularly under the less stringent 
IoU threshold of 50% (AP𝑏𝑏50). However, the performance decreases 
as the IoU threshold increases, with AP𝑏𝑏75 and AP𝑏𝑏 capturing stricter 
localisation requirements. The drop in AP𝑏𝑏75 to 78.92% and the even 
lower overall average of 73.32% for AP𝑏𝑏 is expected, as higher IoU 
thresholds demand more precise alignment between the predicted and 
ground truth bounding boxes.

3.2. Classification performance

As illustrated in Fig.  3(a), the U-Net model attained average preci-
sion, recall, and F1-scores of 80.53%, 95.71%, and 85.52%, respectively 
(Table S3). The integration of attention mechanisms into Attention U-
Net resulted in a slight improvement in precision and F1-score values 
by approx. 3%, while sustaining a high recall. The Dynamic RU-NEXT 
model further enhanced performance by achieving the highest recall of 
97.14% and an F1-score of 88.98%, alongside a precision of 82.27%. 
This superior performance of Dynamic RU-NEXT can be attributed to its 
advanced architecture, which effectively combines residual connections 
and attention mechanisms to enhance feature extraction. Consequently, 
Dynamic RU-NEXT exhibits an enhanced ability to accurately identify 
positive instances without compromising overall performance.

The Mask R-CNN model achieved average precision, recall, and 
F1-score of 83.30%, 93.49%, and 84.29%, respectively (Table S5). 
These results exhibit the model’s robust capability for accurate object 
detection, with a high recall highlighting its effectiveness in identifying 
the majority of target objects present in the images. The Mask R-
CNN model also achieved more accurate classification results than 
those reported in Huang et al. (2023), where substantial differences 
in model performances across shape classes were observed. This can 
be attributed to the highly variable dataset the study utilised, which 
included over 4000 images from their samples and over 200 articles 
retrieved from Google Scholar. Furthermore, the classification perfor-
mance in this study is comparable to that of Han et al. (2023) for images 
with a clean background, and outperforms their results on images 
with natural backgrounds. Other prior studies, such as Lorenzo-Navarro 
et al. (2021) and Shi et al. (2022), employed the VGG16 model with 
transfer learning, outperforming the classification results of this work 
(average precision and recall values of approx. 98%). However, a direct 
comparison cannot be made as these studies conducted segmentation 
and classification in two independent phases.

Fig.  4(a) presents representative prediction outputs generated by the 
Mask R-CNN model, where (i) and (ii) display sample predictions on 
micrographs containing fibre- and fragment-shaped AMPs, respectively. 
From visual inspection, the Mask R-CNN model achieved good perfor-
mance in detecting AMPs with high classification scores across different 
scenarios. In contrast, Fig.  4(b) highlights a selection of particle shapes 
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that the Dynamic RU-NEXT model misclassified. Certain fibre-shaped 
AMPs were classified as fragments due to their irregular edges, while 
some fragment-shaped AMPs with comparatively smoother edges were 
mistaken for fibres.

3.3. Segmentation performance

The segmentation results of the U-Net-based models on the test im-
ages are shown in Fig.  3(b). The U-Net, Attention U-Net, and Dynamic 
RU-NEXT models achieved IoU scores of 77.84%, 79.05%, and 81.11%, 
respectively (Table S6). These results suggest that incorporating at-
tention mechanisms and dynamic convolutions, as well as lightweight 
transformer-inspired modules, into the U-Net architecture significantly 
improved its segmentation performance.

The results of this study are lower than those reported in Han et al. 
(2023), where an average IoU score of 87.30% was achieved after U-Net 
models were trained on high-resolution images of MPs against a white 
background. However, their model performed poorly when trained on 
images with sand, natural soil, and water backgrounds, yielding an IoU 
score of 10.80%. Similarly, Shi et al. (2022) obtained slightly higher 
cross-validated IoU scores (approx. 89%) than this study, likely due 
to their use of SEM imaging, which produced uniform black or grey 
backgrounds. Lorenzo-Navarro et al. (2021) also reported a higher U-
Net score (80%) by capturing high-resolution images of MPs on DIN-A4 
paper, ensuring a clean white background. However, the Dynamic U-
Next model in this study outperformed their results by approx. 1.39%. 
In contrast, this study reports superior segmentation performance com-
pared to the U-Net models trained in Huang et al. (2023), which 
achieved lower F1-scores (approx. 41%). This suboptimal performance 
may be due to the highly diverse image dataset used for training, which 
exhibited a significant class imbalance.

The metrics AP𝑚50, AP𝑚75, and AP𝑚 were also utilised to evaluate the 
segmentation results of the Mask R-CNN model on the test images. 
Table S4 demonstrates the model’s capability to perform segmentation 
tasks effectively, with AP𝑚50 value of 86.37% indicating a high success 
rate when a less stringent IoU threshold of 50% is applied. However, the 
performance decreases when stricter criteria are applied. For instance, 
the AP𝑚75 value of 75.81% reflects the model’s segmentation accuracy 
under a more demanding IoU threshold of 75%, while the overall 
AP𝑚, averaging across multiple IoU thresholds from 50% to 95%, drops 
further to 65.11%. This decline underscores the challenge of achieving 
precise pixel-level segmentation, especially in images with objects in 
low-contrast and uneven backgrounds. The results of this study are 
consistent with those of Han et al. (2023), although their Mask R-
CNN model achieved a significantly higher AP(𝑚) score of 82.60% when 
trained on a clear background and a lower score of 59.50% when 
trained on natural backgrounds.

3.4. Comparison of the deep learning models vs. Otsu thresholding method

The models were also evaluated against a traditional thresholding-
based approach known as the Otsu method. This method automatically 
determines a global threshold value based on the intensity distribution 
of the image. Before applying Otsu’s thresholding, the images were 
converted to grayscale and subjected to Gaussian blurring using a 
kernel size of 11 × 11 to reduce noise and enhance segmentation 
accuracy. The binarised segmentation outputs were then inverted to 
account for the higher intensity of the background relative to the target 
objects.

Fig.  5(a) presents sample predictions generated by the Mask R-CNN, 
Dynamic RU-NEXT models, and Otsu thresholding method. The visual 
results align with the calculated IoU values and AP𝑚75 scores exceeding 
75%. The models effectively identified fibre and fragment particles 
even in low-contrast and uneven image backgrounds. However, both 
models struggled to capture fine details at the edges of fragment 
particles, as illustrated in Fig.  5(a)(ii).
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Fig. 4. (a) Sample localisation and classification results of the Mask R-CNN model 
on micrographs containing: (i) fibre; (ii) two fragments, where (1) and (2) indicate 
the ground-truth and predicted bounding box and shape class, respectively, and 
(b) Examples of misclassified AMPs by the Dynamic RU-NEXT model.

The Otsu method performs well on images exhibiting strong contrast 
between the target object and the background, but it is unsuitable 
for images where the object is nearly transparent or the background 
contains numerous artefacts. This limitation leads to a low IoU score 
of 32.14% on the test images, highlighting its inadequacy for complex 
segmentation tasks. Shi et al. (2022) also reported similar challenges 
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Fig. 5. (a) Sample segmentation results: micrographs with (i) fibre, (ii) fragment, (iii) a fibre and a fragment, and (iv) three fragments and a fibre; and (b) Sample results 
illustrating false and missed detections: micrographs with (i, iii) fibre and (ii, iv) fragment. (1) original images, (2) ground-truth masks, images produced by (3) Mask R-CNN, 
(4) Dynamic RU-NEXT, and (5) Otsu thresholding.
when applying the Otsu method to identify MPs on SEM images. 
Although fine-tuning can improve the Otsu method’s performance for 
specific images, its sensitivity and reliance on contrast make it less 
effective for large and diverse datasets.

Fig.  5(b) presents sample predictions from the Dynamic RU-NEXT 
and Mask R-CNN models, highlighting instances of both false positives 
and missed AMPs. The yellow and red arrows indicate false positives 
and false negatives, respectively. The false detections could result from 
the transparency of the target particles, which makes them difficult to 
distinguish from the background, as well as the subtle contrast between 
the particles and their surroundings. Additionally, the presence of 
background noise, such as dirt and artefacts in the sample images, 
introduces further challenges for accurate identification.

3.5. Computational efficiency of the deep learning models

To assess the computational efficiency of the models, the total 
training times were summarised in Table  2. These values reflect the 
8

average training duration per fold during cross-validation. The U-Net-
based models have significantly fewer trainable parameters compared 
to the Mask R-CNN model, with parameter counts ranging from 11 to 
18 million. This reduced parameter count results in shorter training 
durations and faster per-image processing times compared to the Mask 
R-CNN model. For instance, the U-Net model demonstrates superior 
efficiency with significantly fewer parameters, a shorter training time, 
and the fastest image processing speed. In contrast, the Mask R-CNN 
model has significantly more trainable parameters (approx. 64.6 mil-
lion) despite utilising transfer learning. This can be attributed to the 
complexity of tasks it performs, such as localisation, classification, 
and segmentation. Consequently, it requires an average of 4715.14 s 
to complete its training process. This is also reflected in the model’s 
average image processing time which is 0.36 s per image. Additionally, 
Table  2 presents the average of the number of epochs it took for 
each model to achieve the best performance. Although training was 
conducted for a maximum of 50 epochs, the epoch associated with the 
model weights exhibiting the best performance was saved during the 
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Table 2
Computational efficiency of the deep learning models. 
 Model Parameter Maximum Best Training Processing time per 
 count epochs epochs time (sec.) image (sec./image)  
 Mask R-CNN 64,674,852 50 45.4 4715.14 0.3593  
 U-Net 11,305,348 50 39 625.48 0.0465  
 Attention U-Net 11,654,952 50 41.6 760.07 0.0484  
 Dynamic RU-NEXT 18,630,632 50 43.6 1560.91 0.0489  
training process. The results indicate that the models achieved optimal 
performance even before reaching the maximum number of epochs.

A direct comparison of segmentation and classification times across 
studies reveals that the proposed approach of this work is among the 
most computationally efficient. For segmentation, the Mask R-CNN 
model reported by Huang et al. (2023) achieved an average processing 
time of 0.20 s per micrograph, whereas the U-Net-based models in this 
work further reduced this to 0.05 s. Similarly, Shi et al. (2022) reported 
that their trained U-Net models required only a few seconds to segment 
a micrograph, aligning with the findings of this work. However, in prior 
studies, segmentation and classification were conducted separately, 
requiring additional computational steps for shape identification. For 
classification, Lorenzo-Navarro et al. (2021) employed a VGG16-based 
model, which took an average of 7 s to classify a micrograph which is 
significantly longer than this work’s integrated approach.

4. Discussion

This study employed a range of deep learning models, including U-
Net, Attention U-Net, Dynamic RU-NEXT, and Mask R-CNN, to segment 
and classify AMPs in micrographs. These models were trained on 
images containing AMPs with varying shapes, sizes, and colours to 
evaluate their adaptability to diverse particle morphologies.

The Mask R-CNN model demonstrated strong segmentation perfor-
mance, particularly under less stringent conditions, with a notable AP𝑚50
of 86.37%. However, its low AP𝑚 score of 65.11% highlights the inher-
ent difficulty of achieving precise pixel-level segmentation in images 
with uneven backgrounds and those containing small-sized AMPs. All 
three U-Net configurations achieved IoU scores which met the widely 
recognised segmentation benchmark of IoU > 70% (Lin et al., 2015). 
The Dynamic RU-NEXT model provided the most accurate results which 
can be attributed to its incorporation of dynamic convolutions and 
attention mechanisms. These enhancements underscore its ability to 
focus on relevant features and maintain high segmentation accuracy 
across diverse scenarios.

Since the images in this study predominantly contained a single 
AMPs shape category, the integrated classification feature within the 
enhanced U-Net-based models provided a more efficient and accu-
rate solution than the bounding-box-based Mask R-CNN. In environ-
ments where multiple particle shapes coexist in a single image, a more 
comprehensive model such as Mask R-CNN might be preferred.

Crucially, by integrating classification directly within the U-Net-
based models, Attention U-Net and Dynamic RU-NEXT not only ex-
celled in segmentation but also achieved high classification results, 
with F1-scores over 85%. This integration streamlines the workflow, 
eliminating the need for separate classification stages and enhancing 
computational efficiency. Consequently, these enhanced U-Net models 
offer a more efficient and effective approach to AMPs identification and 
classification compared to traditional methods.

Otsu thresholding method served as a baseline for comparison. 
While effective in high-contrast scenarios, the Otsu method struggled 
with the variability present in this study’s images (IoU < 70%), such as 
low-contrast or transparent particles and uneven background colours. 
In contrast, the deep learning models proved robust, requiring only 
ground-truth masks for effective training and demonstrating consistent 
segmentation performance across diverse imaging conditions.
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This work also evaluated the Segment Anything Model (SAM), 
which has rapidly emerged as a leading framework for zero-shot learn-
ing on new datasets (Kirillov et al., 2023). Zero-shot learning refers 
to the ability of a model to undertake new tasks without having 
been trained on labelled examples specifically for those tasks. Unlike 
traditional segmentation approaches that require large amounts of 
domain-specific data for fine-tuning, SAM can directly segment unseen 
images through prompt-based instructions. SAM was applied to the 
test images of this study without any prior training and still achieved 
impressive IoU and F1-score values (73.80% and 82.11%, respectively). 
This performance underscores SAM’s adaptability and highlights its 
potential to drastically reduce the need for extensive labelled datasets. 
Sample segmentation results of SAM can be found in Fig. S4. The 
continued exploration of SAM’s flexible segmentation capabilities could 
pave the way for innovative applications, such as combining SAM with 
other advanced deep learning frameworks or refining prompt-based 
interactions to tackle increasingly complex segmentation scenarios.

The models performed impressively on low-resolution images
(256 × 256 pixels), contrasting with previous studies requiring higher 
resolutions for acceptable performance (Han et al., 2023; Lorenzo-
Navarro et al., 2021; Shi et al., 2022). This suggests that deep learning 
methods can be optimised for use on less powerful computing plat-
forms, broadening their applicability for resource-constrained settings.

The proposed approach offers significant potential as a
pre-screening tool for detecting MPs in diverse environmental sam-
ples. The models in this study demonstrated adaptability to varying 
background colours, particle shapes, and particle-to-background size 
ratios, making them suitable for application across different imaging 
conditions. However, practical considerations must be addressed to 
ensure effective deployment in real-world scenarios. Pre-processing 
steps, such as the removal of unwanted particles (e.g., dirt and sand), 
and manual annotation for generating ground-truth masks remain 
necessary. For instance, annotation can be time-intensive, requiring 
approx. 5 min per micrograph. Additionally, model training requires 
computers equipped with GPUs to reduce training time, which can 
range from 13 to 80 min depending on hyperparameter configurations. 
Despite these requirements, fully-trained models can process an image 
in less than a second. This enables their deployment across local 
workstations or cloud platforms, even those without GPU support.

Integrating the proposed deep learning approach with complemen-
tary chemical analysis techniques, such as FTIR or Raman spectroscopy, 
presents a holistic solution for AMPs identification. While spectroscopic 
methods are highly accurate for confirming chemical composition, they 
are labour-intensive and unsuitable for high-throughput screening. By 
using deep learning models to pre-screen micrographs, researchers can 
prioritise particles likely to be MPs for further chemical characterisa-
tion, significantly reducing the time required for large-scale analyses. 
The findings of this study further underscore the potential of machine 
learning to systematically monitor emerging environmental pollutants, 
especially outdoor MPs, as recommended by other recent studies (Cui 
et al., 2023; Zhen et al., 2023; Zhu et al., 2023; Withana et al., 2024; 
Gaur et al., 2024; Zhao et al., 2024; Fazil et al., 2024).

Despite the significant results of this work, several limitations and 
challenges were encountered that future efforts could address:

1. Chemical analysis of MPs remains crucial for understanding their 
environmental and health effects. Features such as aerodynamic 
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diameter distribution, particle size (e.g., Feret diameter), and 
degree of degradation are also vital for precise MPs charac-
terisation. Future research could explore incorporating these 
parameters into existing deep learning frameworks to enhance 
their comprehensiveness.

2. This study focused solely on fibres and fragments, as these are 
the only shapes of AMPs that were collected during sampling. 
However, other shapes such as films, spheres, and granules 
are also significant pollutants. Incorporating these additional 
shapes into future analyses would broaden the applicability of 
the proposed deep learning models.

3. The magnification used to capture MPs images likely played a 
significant role in the performance of the models in this study. 
The particles were imaged at a magnification of 100 μm, produc-
ing images with sufficient depth and detail for effective feature 
extraction. However, variations in imaging equipment or con-
ditions may require different magnification ranges, potentially 
impacting model performance. Future studies should explore the 
effects of magnification on image quality and model outcomes, 
while also adapting particle pre-screening methods and deep 
learning architectures to account for these variations.

4. Smaller AMPs may present greater challenges in segmentation 
and classification due to their lower pixel resolution, increased 
edge ambiguity, and greater susceptibility to background noise. 
Future studies could further investigate the impact of particle 
size on model performance to refine classification accuracy and 
robustness.

5. Future studies might encounter challenges with increased irregu-
lar-edged particles and background noise, complicating image 
segmentation. This can lead to masks with extraneous back-
ground pixels and surrounding segmented particles. To address 
this, morphological operations like erosion and dilation can be 
employed to refine segmentation masks.

5. Conclusions

This study highlighted the capability of deep learning models to au-
tomate the pre-screening of AMPs in micrographs with high accuracy. 
The Mask R-CNN model offers comprehensive functionality for detailed 
instance-level analysis, while U-Net variants, including Attention U-
Net and Dynamic RU-NEXT, provide efficient segmentation results 
enhanced with integrated classification capabilities. The creation of 
an open-source dataset, comprising images of AMPs with manually 
annotated masks, further contributes valuable resources to the field. 
By developing robust, pre-trained deep learning models capable of 
rapid deployment on local computers, the feasibility of real-time and 
large-scale monitoring of AMPs is significantly enhanced.

Integrating deep learning with established chemical characterisa-
tion techniques offers a comprehensive approach to AMPs identifi-
cation. This further facilitates the development of a unified global 
method for characterising MPs and advancing our understanding of 
their environmental and health impacts.
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