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Abstract: Various machine learning algorithms exist to predict air quality, but they can only
analyse structured data gathered from monitoring stations. However, the concentration
of certain pollutants, such as PM2.5 and PM10, can be visually significant when there is a
marked difference in their levels. Consequently, air quality from meteorological cameras can
be estimated and integrated with data from monitoring stations to generate an air quality
forecast. This research delves into the prospect of creating a methodology capable of rapidly
processing this information and producing precise air quality predictions using time series
analytics. This paper presents a study of developing a new model, the “Convolutional
Neural Network, Recurrent Neural Network Dual Input Model” (CORD). This model
combines the convolutional neural network (CNN) and recurrent neural network (RNN)
models that are applied to prediction to create an air pollution-related forecasting function
to overcome the monitoring stations’ physical limitations. CORD is a model that allows
for dual input types: structured data from air quality data collected with meteorological
cameras and images (unstructured data) from monitoring stations. This prototype could be
applied to all air quality indices worldwide, and CORD is tested based on the Air Quality
Health Index provided by the Hong Kong Observatory, a unique data-analytic framework
based on air quality measurement. CORD has a similar result to GRU and slightly smaller
mean absolute and root mean square errors than LSTM. Compared with an ANN algorithm,
CORD has better accuracy.

Keywords: air pollution; machine learning-based prediction; image analysis; air quality;
convolutional neural network (CNN); recurrent neural network (RNN); long short-term
memory (LSTM)

1. Introduction
Air pollution is a significant global concern, with adverse impacts on public health,

the environment, and overall quality of life. Accurate and timely air quality prediction is
essential for mitigating these effects, yet it remains a challenging task due to the complexity
of atmospheric dynamics and the spatial limitations of traditional monitoring systems.
Data analytics methodologies were employed to forecast air pollutant density. The air
quality of a specific area can be predicted by utilising regression [1], machine learning
algorithms [2], ANN [3], LSTM [4], a combination of various deep learning algorithms [5],
and even merging with the Internet of Things (IoT) [6]. These approaches currently rely on
structured data, which are well-structured numerical readings from air monitoring stations.
These data, typically stored in predefined tabular formats, are limited by the physical
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locations and coverage of the monitoring stations. As a result, air quality information is
often sparse, leaving areas beyond the stations unmonitored and predictions less reliable.

Recent advancements have explored the integration of unstructured data, such as
images from meteorological cameras, to complement structured data from monitoring
stations. These images can capture visible indicators of pollutants, such as PM2.5 and PM10,
and expand the spatial coverage of air quality predictions. While promising, existing frame-
works for integrating structured and unstructured data, such as the “Colour of the Wind”
(COLD) framework introduced in 2023 [7], have demonstrated limited predictive accuracy.

The research developed a deep learning model called the “Convolutional Neural
Network, Recurrent Neural Network Dual Input Model” (CORD). This advanced model
was based on a previously published COLD framework (2023) [7] and further enhanced
by implementing time series analytics to realise predictions through deep learning. This
study combines the convolutional neural network (CNN) and recurrent neural network
(in this study, the long short-term memory model). It is applied to predict air pollution
levels using related data. The CORD model is unique because it is designed to accept and
predict air quality using images from meteorological cameras, a type of unstructured data,
as outlined in the COLD framework proposed in 2023 [7] and well-structured data from
monitoring stations. This allows for an alternative data collection source and overcomes
the limitation of input data format for data prediction algorithms. The model enables the
use of images as an alternative data source for air quality prediction.

Due to physical restrictions of the monitoring station, the concentration of air pol-
lutants can only be measured at a certain distance from the station, and their locations
limit the number of monitoring stations. In 2023, a framework called COLD, to address
the challenges of air quality prediction, was introduced [7]. While COLD enabled dual
data input, it could not accurately predict air quality. This paper builds upon that work
by introducing the necessary prediction capability. This model uses images from cameras
and monitoring stations to provide a short-term air quality forecast over a wider area by
applying a time series forecast using LSTM.

The proposed model enables short-term air quality prediction over a wider area
by leveraging diverse data sources and advanced analytics. This paper presents the
development and validation of CORD, demonstrating its potential to improve air quality
forecasting and address the limitations of existing methodologies.

2. Theoretical Background
Artificial Neural Networks
Artificial neural networks (ANNs) have been extensively studied for air pollution

forecasting. A notable advantage of ANNs is that they do not require prior assumptions
about the data or explicit weighting of initial inputs [8]. Training ANNs on temporally
ordered data allows the model to incorporate historical patterns into the weights during
updates [9]. More complex neural network architectures, such as recurrent neural networks
(RNNs) and convolutional neural networks (CNNs), have shown significant promise.
For instance, Biancofiore et al. utilised partially recurrent network models to forecast
ground-level ozone O3 [10] and PM2.5 concentrations [11].

2.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) are designed to process sequential data by in-
corporating memory into their architecture. Unlike traditional ANNs, RNNs introduce
feedback loops that allow outputs from previous time steps to influence future inputs.
This feedback mechanism enables RNNs to capture data’s temporal dependencies and
long-term associations [12,13].
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RNNs are particularly effective for capturing temporal dependencies in sequential
data. Unlike traditional ANNs, RNNs incorporate feedback loops that allow outputs
from one time step to influence future inputs. This feedback mechanism provides memory,
enabling RNNs to identify short-term and long-term dependencies in data sequences [14,15].
Research has shown RNNs to be successful in predicting air quality even with single time-
step delays, as demonstrated by Biancofiore et al. in their studies on PM2.5 forecasting [11].

In an RNN, each neuron processes the current input and output from the previous
time step, creating a dynamic sequence memory. However, standard RNNs may struggle
with long-term dependencies due to the vanishing gradient problem. To address this, Long
Short-Term Memory (LSTM) networks were developed. LSTMs use three gates—forget,
input, and output—to manage the flow of information. These gates enable the model to
selectively retain relevant information and discard irrelevant data, improving performance
on sequential tasks [16,17].

2.2. Gated Recurrent Unit

A Gated Recurrent Unit (GRU) is a specialised recurrent neural network (RNN) type
that excels at capturing long-term dependencies within sequential data. GRUs consist of
two primary components: the update and reset gates. These gates regulate the flow of
information, enabling the model to maintain and update its hidden state effectively. The
update gate determines the extent to which past information should be preserved, while
the reset gate governs the amount of past information that should be discarded.

Zhou et al. explored a deep learning model for predicting air quality utilising GRUs.
They applied a time series prediction model based on deep learning through the GRU
model method to study Beijing’s hourly PM2.5 concentration information, using weather
information as input. The update gate and reset gate enable the model to update its hidden
state effectively [18].

2.3. Long Short-Term Memory

Long-short-term memory (LSTM) networks, a specialised form of RNNs, further
enhance the ability to model long-term dependencies. LSTMs utilise gates (forget, input,
and output gates) and a cell state to selectively retain or discard information, preventing
the vanishing gradient problem in long sequences [19–21].

Each LSTM node processes a composite input that includes the current observation
(X), recurrent input (XR), and recurrent output (YR). The weights associated with these
inputs are trained during learning [22]. This architecture has been successfully applied
to air quality forecasting, as demonstrated by Gomez et al. and Biancofiore et al. in their
studies on ozone and PM2.5 predictions, respectively [11,23].

2.4. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of artificial neural network designed
for processing grid-like data, such as images. CNNs extract spatial features from input
images by applying filters and pooling techniques, making them particularly effective for
image-based air quality analysis [24]. The COLD model we previously published suggested
constructing the CNN section of air pollution input by three layers: convolutional, pooling,
and fully connected layers [7].

Convolutional layer: The convolutional layer extracts featured from input images
by applying filters (n × n matrices) to smaller image sections. This is performed by
computing the dot product between the filter and the image section, generating feature
maps highlighting specific patterns [25,26]. Each convolutional layer uses multiple filters
to extract distinct features, resulting in feature maps.
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Pooling layer: The pooling layer reduces the dimensionality of feature maps by down-
sampling, typically using max pooling. Max pooling selects the maximum value within
a defined region, retaining the most prominent features while reducing computational
complexity. This abstraction provides basic translation invariance to the model and prevents
overfitting [27,28].

Fully connected layer: The fully connected layer connects every neuron in one layer to
every neuron in the subsequent layer. It combines the features extracted by the convolu-
tional and pooling layers to generate class scores or regression outputs. While effective,
these layers are computationally intensive and prone to overfitting due to their large num-
ber of parameters. Dropout techniques are often employed to mitigate this issue [24,27].
The fully connected layer contains neurons directly linked to the neurons in the two ad-
jacent layers [24]. The final fully connected layer in the architecture contains the same
number of output neurons as the number of output classes [25].

By stacking convolutional, pooling, and fully connected layers, CNNs transform raw
input images into structured data suitable for the classification [29].

3. The Proposed CORD Model
Based on a previously studied study [7], a framework was developed to insert images

from monitoring stations into the model and convert them into well-structured data. This
allows for an alternative data collection source and overcomes the input data format barrier
for data prediction algorithms. Using a convolutional network, CORD enables the use of
images as an alternative data source for air quality prediction. In COLD, along with time
and location, three types of layers are suggested to convert the unstructured data into a
matrix of structured data.

The first layer is a convolutional layer [7]. The convolutional layer recognises patterns
from the input images and is further down-sampled by the max-pooling layers. Pooling
layers consolidate the features learned by the convolutional layer and reduce the number
of parameters by selecting the maximum value from each pool to keep the most prominent
features. This would result in further reductions in computations. In general, max pooling
is one of the most common types of pooling used. Max pooling is performed by applying
a max filter to non-overlapping subregions of the initial representation. Max pooling
prevents over-fitting by providing an abstracted form of the representation. It also reduces
computational costs by decreasing the number of parameters that need to be learned and
provides basic translation invariance to the internal representation. The sigmoid fully
connected layer produces an array of possibilities for each outcome.

These possibilities are then transformed into a two-dimensional matrix with three
features. As the outcome of this 2D matrix represents a time difference of 5 min and the
data from the air pollution source have a time difference of 1 h, the resulting CNN data
have to be converted into a 13-feature 2D matrix before merging with the meteorological
and air pollution data by time and location. As all the data are expected to be positive
integers, the merged data would be normalised on a scale of 0 to 1.

This study further enhances a previous framework, enabling input data to merge into
an RNN for further prediction. They are converted into a three-dimensional matrix based
on the window size of the time series within the RNN, as compared to an observation
representing one row of the original data set, X. The transformation of the original two-
dimensional data set is labelled X. Assuming X is an input data set (for training or testing
the RNN) with n observations and p variables, the total number of elements is the product
of n times p. A matrix (X) is created with dimensions (s, l, p) where s is the number
of samples, given as n. The total number of elements within is s-l-p; in this case, the



Atmosphere 2025, 16, 320 5 of 17

dimensions of X = number of samples in the training set, which is 2000, l would be the
window size, which is 10, and p is the number of features, which is 30 in this case.

The architecture used a single LSTM input, two hidden LSTM layers and a single
output node. The input layer is established according to the length of the window period.
The number of neurons in the hidden layers is the same as the number of the input neurons.
The output layer contains a single neuron to store the algorithm’s output, the predicted
AQHI at a particular time. The output activation function for the input and hidden layers
and the output layers is the Relu function. A dropout layer was included between the
LSTM and output layers, with a dropout rate of 0.2.

During each training epoch, the algorithm calculates the mean squared errors by
comparing the output of forward propagation with the test Y value. The output is then
backpropagated to adjust the weighting of each neuron. Adaptive Moment Estimation
(Adam) is the process’s optimisation tool. It helps to change the attributes, such as weights
and learning rate, to minimise losses. Figure 1 illustrates the workings of CORD.
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Figure 1. A flow chart illustrating the working of CORD.

4. Methodology
4.1. Area of Study

Hong Kong is a city on the southeast coast of China at the Pearl River Delta (PRD),
which has a subtropical climate. Meteorologically, Hong Kong experiences cooler and drier
weather with prevailing winds from the northeast (northeast monsoon) during winter,
which brings pollutants from mainland China. These conditions often trap pollutants at
lower altitudes, leading to higher levels of PM2.5 and nitrogen dioxide (NO2) in urban
and suburban areas [30]. In contrast, summer is characterised by high temperatures, high
humidity, and strong winds from the southwest (southwest monsoon), bringing cleaner
ocean air and improving pollutant dispersion.

Coastal areas, such as those near Victoria Harbour, benefit from strong sea breezes
that dilute pollutants. Conversely, inland valleys, such as Sha Tin, experience weaker
ventilation, leading to pollutant stagnation. High rainfall during the wet season (April to
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September) improves air quality by washing out particulate pollutants [31]. However, high
humidity can enhance the formation of secondary pollutants, such as sulphate and nitrate
aerosols, worsening air quality.

Air pollution in Hong Kong arises from local emissions and regional transport of
pollutants from the Pearl River Delta. Nitrogen dioxide (NO2): NO2 levels are highest
in urban areas due to vehicular emissions and traffic congestion. Roadside monitoring
stations consistently report NO2 as one of the dominant pollutants in these areas [30].
Particulate matter originates from local sources, such as construction and vehicle exhaust,
and regional sources, such as biomass burning and industrial emissions from the PRD.

Urban sites are dominated by local vehicle emissions and high population density,
resulting in elevated NO2, PM2.5, and CO. Suburban areas experience moderate pollution
levels influenced by a mix of local sources and regional contributions. Rural sites provide a
baseline for background air quality. Direct emissions less influence them but exhibit higher
ozone levels due to regional photochemical reactions. The PRD heavily influences Hong
Kong’s air quality. During winter, northeast monsoon winds transport pollutants from
industrial and urban areas in mainland China to Hong Kong, leading to elevated PM2.5

levels across the city [30].

4.2. Data Collection

The research utilised weather images from publicly accessible cameras featured on the
Hong Kong Observatory website, which were then paired with corresponding AQHI values.
Air quality data were obtained from the Environment Protection Department’s 12 air quality
monitor stations, accessible through the Air Quality Health Index website. The location of
the monitoring stations is illustrated in Figure 2a. The Environment Protection Department
(EPD) collects air quality data from monitoring stations in Hong Kong. These stations track
and release information including ozone (O3), nitrogen dioxide (NO2), sulphur dioxide
(SO2), and particulate matter (PM2.5/PM10). To help keep the public informed about the
short-term health hazards of air pollution, the EPD introduced the Air Quality Health Index
(AQHI) in December 2013. AQHI ratings range from 1 to 10+, with 1 indicating a low risk
and 10+ indicating a severe risk. The AQHI is calculated based on the 3 h moving average
concentrations of the four pollutants mentioned earlier. Hourly updates of this information
can be found on the Air Quality Health Index website.

The Hong Kong Observatory’s surveillance cameras capture images every five minutes
for weather monitoring purposes, providing a comprehensive data source for this algorithm.
Over 300,000 images were collected through image scraping between November 2018 and
early March 2019 from 14 cameras. The cameras’ locations are 1–5, 8–12, 14, 15, 17, and
19–22 in Figure 2b, which illustrates the weather cameras in Hong Kong. All cameras
used for capturing these images were placed in open areas with a resolution of 1280 × 720.
Samples of four of the stations utilised in the study are shown below (Figure 2c). The
distance of information captured by these cameras depended on the day’s visibility. The
primary purpose of these cameras was to capture weather-related information for the
general public. Hong Kong data were chosen for this study because the stations and the
cameras are scattered evenly, with a similar number of stations and cameras around. Also,
the camera’s resolution is relatively high, which provides a good source of data for training
and testing, with a setting that allows all cameras to have a long focal point, i.e., designed
to the image from a far distance, which is a very good setup for the CORD model.

Meteorological data are sourced from the Climatological Information Services section
of the Hong Kong Observatory’s website. This information encompasses a range of daily
metrics, including mean pressure, maximum and minimum air temperatures, dew point,
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relative humidity, cloud cover, and total rainfall. The observatory’s webpage updates these
data points daily.
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Figure 2a,b illustrate that the monitoring and weather stations are well distributed
across various suburbs in Hong Kong. This extensive coverage ensures a comprehen-
sive and even distribution throughout the city, facilitating accurate estimations with the
COLD framework. While COLD can be applied in any urban environment, obtaining
reliable results requires data sources, such as monitoring stations and cameras, strategically
placed across multiple locations to encompass the entire area. Hong Kong possesses these
characteristics, making it an ideal representation for this study.

4.3. Data Preparation

The Environment Protection Department’s (EPD) air quality monitor station collects
air quality data for Hong Kong. However, some data may not have been properly collected
or missing. The EPD will estimate and mark the missing data with an asterisk in such
cases. The collected data are also cleaned, and outliers are removed. If the data cannot be
estimated, it will be marked as Not Available (N/A). Any N/A data will be replaced with
zero during the data cleaning, and the asterisk will be removed for further data processing.
Similarly, data collected from the Hong Kong Observatory (HKO) undergoes a similar
cleaning process, including removing outliers.

4.4. Output Data Preparation

CORD was trained to predict a 24 h AQHI value using a time series with various
window widths (i.e., the number of previous time steps) to predict future AQHI values.
The following equation would forecast the output for the predicted value of Y at t0.

Yt0 = F(Xt−1, Xt−2 . . . Xt−n+1, Xt−n)

Y (t = 0) was the estimated value of time = 0, and the algorithm was trained on X
(t = n) to X t = 0 if the window width was n hr. For example, if the window width is 10, the
predicted value is based on the value of training data from Xt−1 to Xt−n. The first n hours
of the input and output training data set were discarded.

4.5. Performance Measures

The parameter selection and performance evaluation were based on mean absolute er-
ror (MAE) and root mean square error (RMSE) measurements. These metrics are commonly
employed to account for significant errors. The accuracy of the algorithms is compared
based on the metrics calculated and compared for each one. RMSE is derived from the
average squared difference between forecast and actual values, while MAE represents the
mean difference between predicted and actual values. These metrics are calculated using
the following formulas [32]:

MAE =
1
n

n

∑
i=1

|xi − x̂i|

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2

This study employs mean absolute error (MAE), which calculates the average of the
absolute differences between predicted and actual values. By assigning equal weight to
all errors, regardless of their size, MAE offers valuable insights into the significance of
larger errors.

Root mean square error (RMSE) is utilised in this study as well. RMSE assesses the
square root of the average of the squared differences between predicted and actual values.
By squaring the errors before summing, larger errors are given more weight, making RMSE
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particularly advantageous when large deviations are especially undesirable. Furthermore,
RMSE retains the same units as the input data, enhancing its interpretability.

These matrices are commonly employed to account for significant errors. The lower
the MAE and RMSE, the better a model’s predictive accuracy. Conversely, higher values of
both metrics indicate a greater discrepancy between predicted and actual outcomes.

4.6. Training

CORD is built on Keras (version 2.11.0), a high-level neural network Application
Programming Interface (API) written in Python 3. This open-source neural network library
is designed to provide fast experimentation with deep neural networks. The data were
ordered in chronological order when uploaded. The total number of records would then be
counted. The scaled data were then split into a training set and a testing set; the training
set contains the first 80% of the data, and the testing set contains the remaining 20% of the
data, which are reserved for testing purposes and are not included in the training.

5. Evaluation and Discussion
5.1. Analysis of Results

CORD performance was tested by comparing 24 h predictions with the corresponding
actual value. Three stations (Central, Eastern and Kwun Tong) were selected for the test,
and the training with images and structured data was successful. The data set discussed
inserted into the algorithm mentioned above also generated the outcome successfully.

A confusion matrix collects and summarises a 24 h prediction of each station. Figure 3
shows the confusion matrix for the prediction accuracy for the three stations. Figure 3a
displays the confusion matrix of the predicted and actual values, while Figure 3b, shows
the standardised confusion matrix for the same data set. Horizontal values represent the
predicted values generated from CORD, whereas the verticals illustrate the actual values of
the samples. When the predicted value matches the actual value in a confusion matrix, it
falls on the diagonal. This means that the predictions are accurate and match the actual
values. The values on the diagonal represent the number of correct predictions. There
are 4 outcomes at AQHI level 3, 41 outcomes at AQHI level 4 and 16 outcomes at AQHI
level 5 correctly predicted, while the off-diagonal values indicate the number of incorrect
predictions. For example, five predictions of actual AQHI level 5 are incorrectly predicted
as level 4. On-diagonal values in Figure 3b suggest the proportion of accurate predictions.
AQHI level 3 has an accuracy of 100%, AQHI level 4 has an accuracy of 87% and AQHI
level 5 has an accuracy of 76%. Figure 4 Compares of the actual value and the prediction by
stations and Figure 5 illustrates the error vs. time by station.

Figure 3. (a) Confusion matrix for prediction accuracy. (b) Normalised confusion matrix for
prediction accuracy.
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Figure 4. Comparison of the actual value and the prediction by stations.

Figure 5. Error vs. time by station.
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5.2. Comparison of Different Models

CORD (algorithm a) performance was compared to other forecasting models using
the same data set by comparing 24 h predictions against an LSTM with two hidden layers
(algorithm b), a GRU with two hidden layers (algorithm c) and an ANN with two hidden
layers (algorithm d). All these algorithms were built with the Keras library using Relu
activation functions. All algorithms have the same number of neurons in the hidden and
output layers. The inputs included all the parameters from the metrological data and
the air pollution, and all models were allowed to train for the same epochs, 20 in this
case. The outcome was generated successfully with the same data set inserted into the
abovementioned algorithms. The 24 h prediction of each algorithm is plotted against
time, as illustrated in Figures 6–8. The MAE and RMSE for a 24 h prediction of the above
experiment have been calculated. For a 24 h prediction, the CORD system’s mean absolute
error (MAE) ranges from 0.0417 to 0.2917, and the root mean square error (RMSE) ranges
from 0.0417 to 0.5401. With the same meteorological and air pollution data set, LSTM
with two hidden layers has MAE ranges from 0.0833 to 0.3750 and an RMSE of 0.2287 to
0.6120 for a 24 h prediction. For GRU with two hidden layers, the MAE and RMSE range
from 0.0417 to 0.25 and 0.2041 to 0.5 for a 24 h prediction. An ANN with two hidden
layers has an MAE range from 0.2083 to 0.6250 and an RMSE of 0.4564 to 0.7906 for a
24 h prediction. A summary of the above outcome for each algorithm is listed in the table
(Table 1) above. CORD has a similar outcome as GRU, and it has a slightly smaller error
than LSTM, suggesting that CORD has a slightly better prediction capability in this test.
Compared to ANN, CORD has a much smaller error, which suggests that CORD has a
better prediction than ANN in this study.

Figure 6. Comparison of different algorithms for station 1.

The coefficient of determination, denoted as R2, is conventionally utilised to evaluate
the proportion of variance explained by a model in the context of continuous outcomes. A
comprehensive summary of the R² values associated with each algorithm has been meticu-
lously compiled and is presented in the table (Table 2) above. At Station 1, the R² values for
all models are markedly inferior in comparison to those at other stations. For example, the
CORD model demonstrates an R2 of 0.15, the LSTM model displays an R² of 0.04, and the
GRU model indicates an R2 of 0.37. These low R2 values suggest that the models account
for only a minor fraction of the data variance at Station 1. However, this observation does
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not necessarily imply inadequate model performance, as the rounding of data results in
discrete values that attenuate the variability of the target variable, thereby rendering R2

less relevant as a performance metric. In contrast, at Stations 2 and 3, significantly higher
R2 values are apparent for the majority of models, particularly for CORD, which records
R2 values of 0.77 and 0.79, respectively. Considering that the target data are rounded, the
relationship between predicted and actual values is overly simplistic, potentially inflating
the R2 values and engendering a misleading interpretation of model efficacy. Furthermore,
the ANN model produces “Infinity” values for R2 at Stations 2 and 3. This phenomenon
occurs when the total variance of the rounded target data (the denominator in the R2 calcu-
lation) is either zero or exceedingly minimal, resulting in division by zero. This observation
highlights the shortcomings of R2 for datasets characterised by rounding, as it fails to
provide a meaningful evaluation of model performance.

Figure 7. Comparison of different algorithms for station 2.

Figure 8. Comparison of different algorithms for station 3.
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Table 1. Comparison of MAC and RMSE between different algorithms for all stations.

Stations 1 Station 2 Station 3

MAE RMSE MAE RMSE MAE RMSE
CORD 0.2917 0.5401 0.1250 0.3536 0.0417 0.2041
LSTM 0.3750 0.6124 0.1667 0.4082 0.0833 0.2887
GRU 0.2083 0.4564 0.2500 0.5000 0.0417 0.2041
ANN 0.6250 0.7906 0.4167 0.6455 0.2083 0.4564

Table 2. Comparison of R2 between different algorithms for all stations.

Station 1 Station 2 Station 3

R2 R2 R2

CORD 0.15 0.77 0.79
LSTM 0.04 0.69 0.73
GRU 0.37 0.59 0.76
ANN 0.19 Infinity Infinity

R2 is intended to gauge how effectively a regression model elucidates the variance in a
continuous target variable. When the target variable undergoes rounding or discretisation,
the resultant rounding diminishes its variability as numerous continuous values converge
into a singular rounded value. Rounding introduces discontinuities within the data, foster-
ing a step-like relationship between predicted and actual values. This, in turn, contravenes
the assumptions underpinning R2, which presumes a linear relationship between variables.
As evidenced by the ANN model at Stations 2 and 3, R2 may yield “Infinity” values when
the total variance associated with the rounded target data is zero or nearly negligible. This
circumstance arises because R2 depends on the variance of the observed values to compute
the proportion of variance explicated by the model. When the variance is minimal, the
denominator of the R2 formula approaches zero, resulting in invalid outcomes.

To summarise, when predicting time series data, CORD performs slightly better than
LSTM and GRU in terms of mean absolute error and root mean square error. CORD
has a lower MAE and RMSE than a simple ANN algorithm, achieving greater prediction
accuracy. The architecture of CORD is unique in that it combines elements of both CNN
and LSTM models. Specifically, the CNN layers in CORD are used to categorise images
into data that LSTM can analyse. These CNN layers can also serve as an additional data
source when there are gaps in the monitoring data. By incorporating image data, CORD
can achieve a slight improvement in accuracy. In this study, the LSTM layers in CORD
provided good predictions. Combined with CNN, these layers could incorporate additional
data from other sources, leading to an even better prediction due to the extra information.
However, even without CNN, the LSTM predicted the AQHI better than ANN. This could
be the reason why CORD outperformed ANN. This study is one of the first to integrate
two deep learning techniques in predicting air quality using time series analytics. The
scale-dependent properties of MAE and RMSE indicate that the results from this study can
only be compared using metrics that are on the same scale. Furthermore, the distinctive
nature of AQHI complicates comparisons with experiments conducted at different scales.
A meaningful comparison can be achieved when CORD is utilised in other locations that
share a common scale. This study showed that using extra images improved accuracy
compared to other deep learning algorithms. CORD could be applied to other regions, but
the model must be retrained. If comparison is needed, the scale of the Air Quality Index
has to be aligned to perform the comparison if MAE and RMSE are used. This promising
output could be applied to other air pollution measuring approaches, such as AQI.

There are a few improvements that can be made to the algorithms.
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Since CORD is an LSTM-based model, it occasionally faces challenges in capturing
hidden input features within long-range data sequences. This limitation arises mainly
because it processes information in a single forward direction, relying solely on past data.
To enhance CORD, incorporating a Bi-LSTM architecture could prove advantageous. The
Bi-LSTM structure features two layers of LSTM: one that processes data in the forward
direction and another that functions in reverse. This dual-layer approach enables the model
to leverage both preceding and succeeding information. As a result, the Bi-LSTM model
is better positioned to capture a wider array of input features, utilising data from future
time steps through the backward layer. The bidirectional nature of Bi-LSTM fosters a more
comprehensive and accurate representation of the input data. By considering both past
and future information, the model can more effectively identify patterns, context, and
dependencies within the sequence, ultimately leading to more precise predictions [19].

Although CORD works well in prediction, there is a good chance that the latest ad-
vancements, such as attention mechanisms and transformers, outperform CORD due to
their ability to model intricate relationships and long-range dependencies in data. Com-
pared to transformers, CORD is less computationally demanding. However, CORD would
have the same limitations as LSTM. The first limitation is struggling to retain informa-
tion over long sequences, as their memory cells can lose context. This limitation makes
them less effective than transformers, which leverage self-attention to model long-term
dependencies [33]. CORD also process input data sequentially, like LSTM, which is compu-
tationally inefficient for long sequences. Transformers, in contrast, use parallel processing,
which improves training speed [34].

The current practice of addressing missing values in a data set typically involves
replacing them with zeros. However, this approach can considerably alter the data distribu-
tion and adversely impact the training process of neural network models. Filling missing
values with zeros may introduce noise, bias, and distortions within the data. Techniques
like feature scaling have already been applied to reduce these effects. Nonetheless, future
research on this topic should consider exploring alternative imputation methods, such as
mean or median imputation, k-nearest neighbours (KNNs), or model-based techniques [35].

Addressing the time lag between actual and predicted values can enhance the perfor-
mance of a recurrent neural network (RNN) model. One effective approach is to utilise the
Autocorrelation Function (ACF) (https://www.geeksforgeeks.org/what-is-lag-in-time-
series-forecasting/, accessed on 8 March 2025), which measures the correlation between
an observation and its lagged values. The ACF plot illustrates the strength of correlation
across various lags. If the time series exhibits strong correlations at specific lags, those lags
can be incorporated into the model. This approach enables the model to concentrate on
discerning the true underlying patterns in the data rather than merely compensating for
the lag.

6. Conclusions and Recommendations
This paper presents a novel approach to predicting air quality by integrating well-

structured meteorological and unstructured air pollution data with camera images. An
algorithm that can perform time series-related predictions using two deep learning tech-
niques and time series analytics has been discussed. The novelty of this study lies in its
innovative integration of unstructured visual data from meteorological cameras with struc-
tured air pollution and weather data for air quality prediction. Unlike traditional models
that rely solely on numerical or structured inputs, the CORD model combines image-based
data with time series analytics, providing a unique approach to air quality forecasting. This
dual-input framework expands the potential of deep learning applications by enabling the
use of alternative data sources, such as images, to enhance prediction accuracy.

https://www.geeksforgeeks.org/what-is-lag-in-time-series-forecasting/
https://www.geeksforgeeks.org/what-is-lag-in-time-series-forecasting/
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The approach utilised two types of neural networks—a convolutional neural network
and a recurrent neural network with LSTM—which were trained on time series air pollu-
tants and weather data from an air monitoring station along with over 18,000 images from
the observatory weather cameras in Hong Kong. The algorithm predicts a 24 h Air Quality
Health Index, a unique set of air pollution measuring systems used only in Hong Kong.
The CORD algorithm has a mean absolute error of 0.2917 and a root mean square error of
0.5401, with a similar result as GRU and a slightly smaller error than LSTM. Additionally,
CORD has shown better accuracy than the ANN algorithm.

While the model shows promise in predicting air quality, its limitations must be
critically assessed. One of the most significant limitations of the CORD model is its
dependence on the quality and availability of data. The model utilises structured data
from air quality monitoring stations and unstructured data from meteorological cameras.
However, the quality of these data can be inconsistent. For instance, images captured
by the cameras may be affected by environmental factors such as fog, rain or snow. This
can obscure visibility and result in inaccurate interpretations of air quality. Additionally,
monitoring stations may experience technical malfunctions or maintenance issues, leading
to missing or erroneous data. The presence of such inconsistencies can significantly impact
the model’s predictive performance.

The handling of missing values is another critical issue for the CORD model. The
current practice of replacing missing data with zeros can distort the underlying data
distribution, introducing noise and bias into the training process. This approach may
lead to misleading predictions, particularly in scenarios where the missing data point is
critical for understanding air quality dynamics. Alternative imputation techniques could
be explored to improve data integrity, such as mean or median imputation, k-nearest
neighbours (KNNs), or model-based methods. However, the challenge remains in selecting
the most appropriate imputation method that accurately reflects the underlying data
characteristics. However, selecting the most appropriate imputation method remains a
challenge, particularly when dealing with diverse data sources.

In terms of algorithms, the CORD model currently does not incorporate attention
mechanisms, which have been shown to enhance the performance of deep learning models
in various applications. Attention mechanisms allow the model to focus on specific parts
of the input data that are more relevant for making predictions. By integrating attention
mechanisms, the CORD model could improve its ability to identify critical features within
the data, leading to more accurate air quality predictions. This integration could also help
mitigate the impact of noisy or irrelevant data points on overall prediction accuracy.

It is advised that the techniques for image collection and null data handling be im-
proved to enhance the CORD model and overcome its limitations. As the data are sourced
by scraping from the Hong Kong Observatory Website, there may be occasions when the
web crawler fails to gather information. Machine learning can estimate the missing data
in such instances, potentially enhancing the CORD algorithm. Incorporating attention
mechanisms to improve the model’s ability to capture long-term dependencies and focus
on critical features within the data could further refine the model architecture. This can
result in incomplete or missing data, further affecting the model’s performance. Machine
learning-based techniques to estimate missing data in such scenarios could potentially
mitigate this issue and improve the robustness of the model

In summary, the CORD model’s novelty lies in its ability to combine structured and
unstructured data for air quality prediction, providing a unique and scalable approach to
address the limitations of traditional prediction models. By implementing the proposed
improvements—enhanced data handling techniques, advanced imputation methods, and
attention mechanisms—the CORD model can evolve into a more robust and versatile tool
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for air quality prediction, ultimately contributing to better public health and environmental
sustainability. Improvements in data handling techniques, such as advanced imputation
methods, and the incorporation of attention mechanisms, could significantly enhance
the model’s accuracy and reliability. Addressing the challenges related to data quality,
availability, and collection processes will further help to develop the CORD model into a
robust and versatile tool for air quality prediction. These enhancements will ensure that
the model can contribute meaningfully to public health and environmental sustainability
in diverse and real-world settings.
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