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Abstract

The inverse base rate effect (IBRE) is a nonrational behavioral phenomenon in predic-

tive learning. Canonically, participants learn that the AB stimulus compound leads to

one outcome and that AC leads to another outcome, with AB being presented three

times as often as AC. When subsequently presented with BC, the outcome associ-

ated with AC is preferentially selected, in opposition to the underlying base rates of

the outcomes. The current leading explanation is based on error-driven learning. A

key component of this account is prediction error, a concept previously linked to a

number of brain areas including the anterior cingulate, the striatum, and the dorsolat-

eral prefrontal cortex. The present work is the first fMRI study to directly examine

the IBRE. Activations were noted in brain areas linked to prediction error, including

the caudate body, the anterior cingulate, the ventromedial prefrontal cortex, and the

right dorsolateral prefrontal cortex. Analyzing the difference in activations for singu-

lar key stimuli (B and C), as well as frequency matched controls, supports the predic-

tions made by the error-driven learning account.
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1 | INTRODUCTION

Learning is a process that enables the use of past and present infor-

mation to adapt to and overcome present and future challenges. The

amount of environmental information present on a moment-to-

moment basis is large, and so humans have evolved to prioritize the

most relevant information. However, the same processes of prioritiza-

tion can sometimes lead to irrational decisions. The inverse base rate

effect (IBRE; Kruschke, 1996, 2001a; Medin & Edelson, 1988;

Shanks, 1992) is one example of an irrational decision-making behav-

ior that seems to occur in this way.

In its canonical form, shown in Table 1, the IBRE involves partici-

pants being trained under a simulated medical diagnosis procedure.

They are presented with a patient with one of two different pairs of

symptoms, and asked to make a judgment, diagnosing the patient with

one of two fictitious diseases. For the purposes of this example, we

refer to them as “Jominy Fever” and “Phipps Syndrome.” Participants
see patients for whom the correct diagnosis is “Jominy Fever” three

times as often as those for whom the correct diagnosis is “Phipps Syn-
drome.” “Jominy Fever” is therefore referred to as the common dis-

ease, because its base rate is higher. “Phipps Syndrome” is referred to

as the rare disease, due to its lower base rate. The symptom pairs can

be considered abstractly as AB and AC. So, a participant might be

presented with a patient suffering from “ear aches” and “skin rash”
(AB) where the correct diagnosis is “Jominy Fever” (common). They

then might see a patient suffering from “ear aches” and “back pain”
(AC), with the correct diagnosis being “Phipps Syndrome” (rare). In

this example “skin rash” (B) is perfectly predictive of “Jominy Fever”
(common), while “back pain” (C) is perfectly predictive of “Phipps Syn-
drome” (rare). The symptom “ear aches” (A) is uninformative. After
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being trained in this manner, participants are then presented with

both perfectly predictive symptoms, “skin rash” (B) and “back pain”
(C). If participants make use of the base rate of the two diseases, they

should make the rational diagnosis of the more common disease,

“Jominy Fever.” However, the majority of participants preferentially

diagnose the patient with the rarer disease, “Phipps Syndrome.” This

pattern of responding is called the IBRE.

Currently, the best explanation of the IBRE is the error-driven

learning account implemented within the EXemplar-based attention

to distinctive InpuT (EXIT) formal model (Kruschke, 2001b).

Kruschke's error-driven learning account suggests that, during learn-

ing, participants endeavor to reduce the number of errors they make

through the shifting of attention. This account predicts that, due to

the more frequent occurrence of AB compared to AC, participants

learn more about A and B than about C. When they encounter AC,

participants initially respond with the common disease due to the

presence of A, leading to a prediction error. Attention then shifts

away from A and toward C when presented with A and C together, in

order to promote new learning and reduce the further occurrence of

prediction errors.

EXIT assumes that this attentional reallocation, driven by predic-

tion error, is persistent. As a result, when presented with B and C

together during test, the attention to C is greater than the attention

to B, resulting in the IBRE. The EXIT model's assumption of the persis-

tence of attentional reallocation is supported by greater eye-tracking

dwell time for C compared to B when presented with BC at test

(Kruschke, Kappenman, & Hetrick, 2005). Attention also persists to

singly presented cues at test, as demonstrated electrophysiologically

by a selection negativity/positivity for C over B when each cue is

presented alone on separate test trials (Wills, Lavric, Hemmings, &

Surrey, 2014). This attentional persistence to singly presented cues at

test is also predicted by EXIT, and is the central prediction investi-

gated in the current study.

One strength of EXIT's error-driven learning account is that it

explains not only the IBRE but also other concurrent response pat-

terns that often occur. When presented with the A cue alone,

responding is preferentially common, following the base rate of the

two diseases. This is explained by assuming that participants learn to

associate A with the common disease more than the rare disease.

Another phenomenon occurs when participants are also trained with

control cues for B and C, labeled as D and E. These cues are matched

for frequency but lack a shared cue (A) during training. This shared-

cue effect is characterized by the IBRE disappearing for the control

stimuli, that is, participants do not respond preferentially rare when

presented with DE. This has been found in a number of studies

(e.g., Kruschke, 2001a; Medin & Edelson, 1988). The error-driven

learning account predicts this effect because, in the absence of a

shared cue, there is nothing to cause attentional reallocation on the

rare-outcome trials. While alternative accounts of the IBRE, such as

the relative novelty account (Binder & Estes, 1966), and the elimina-

tive inference account (Juslin, Wennerholm, & Winman, 2001) can

accommodate the basic IBRE, they fail to account for the shared-cue

effect (Kruschke, 2001a; Wills et al., 2014).

The only previous published fMRI study of the IBRE was con-

ducted by O'Bryan, Worthy, Livesey, and Davis (2018). They made

use of an atypical IBRE procedure involving real-world visual catego-

ries (scenes, faces and objects) as stimulus features to allow their use

of multivoxel pattern analysis (MVPA). While this approach was well

motivated, one consequence of this atypical procedure was the lack

of a compelling behavioral IBRE in their study. Specifically, the defin-

ing feature of the IBRE is the presence of greater rare than common

responses to BC. O'Bryan et al. report the presence of a numerical

effect in that direction, without reporting inferential statistics for this

contrast; our analysis of their raw data indicates Bayesian evidence

for the absence of the IBRE in their study, BF10 ¼ :27. The inferential

tests reported by O'Bryan et al. provide evidence for base-rate

neglect rather than the IBRE.1

In the current study, we employed a more standard procedure

from our previous work, known to robustly demonstrate the IBRE

(Inkster, 2019; Wills et al., 2014). We had two predictions, based on

EXIT, the leading account of the IBRE, and on our previous electro-

physiological work (Wills et al., 2014). Our first prediction, well

supported in general terms by previous neuroimaging work on the

correlates of prediction error, was that the striatum (comprising the

caudate nucleus, the putamen, and the nucleus accumbens), the

medial anterior prefrontal cortex, and the anterior cingulate would

show more activation for AC than for AB during training. This is

because AC results in more prediction errors than AB behaviorally,

and because previous work, including two major meta-analyses

(Fouragnan, Retzler, & Philiastides, 2018; Garrison, Erdeniz, &

Done, 2013), implicate these areas in the processing of prediction

errors. There is also good evidence that the right dorsolateral prefron-

tal cortex is involved in the processing of prediction errors (Fletcher

et al., 2001; Fouragnan et al., 2018; Turner et al., 2004). We thus

defined a region of interest (ROI) for all of our analyses that comprised

these four areas.

As discussed by Fouragnan et al. (2018), the activity in brain areas

associated with prediction error is likely due to a number of different

processes, including outcome valence processing, attentional

processing—sometimes described as “surprise” processing or the

modulation of associability (Mackintosh, 1975; Pearce & Hall, 1980)—

as well as the calculation of signed prediction error that is most com-

monly associated with the term prediction error (and as instantiated

by, e.g., the Rescorla–Wagner (Rescorla & Wagner, 1972) and tempo-

ral difference models (Sutton & Barto, 1987).

Our second prediction for the current study concerns the possible

attentional-processing role of prediction-error-associated brain areas,

and comes from the EXIT model's explanation of the IBRE. A key part

TABLE 1 Canonical IBRE experimental design

Training trials (relative frequency) Test trials

AB! common (�3) BC! rare

AC! rare (�1)

Abbreviation: IBRE, inverse base rate effect.
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of EXIT's architecture is a back-propagation process, driven by predic-

tion error, which adjusts future attention to stimuli in order to mini-

mize errors. In the case of the IBRE procedure, when participants

encounter AB, attentional changes are less frequent due to both A

and B being associated with the common outcome and so there is less

chance of an error being made (B because of it being a perfect predic-

tor of the common outcome, A because it occurs more frequently

with the common outcome than the rare). When they encounter AC,

errors are dependent on the cue preferentially attended to and are

more frequent, due to the disjoint of C being a perfect predictor of

the rare outcome and A being associated more heavily with the com-

mon outcome. On these trials, EXIT predicts that when a prediction

error occurs, cue attention for future AC trials is shifted such that

more attention is paid to the C cue. The model assumes that these

attentional changes are persistent, and that in order for the IBRE to

occur this attentional reallocation persists into the test phase, produc-

ing the preferential rare outcome responding to BC at test

(i.e., because C is attended more than B). Previous eye-tracking and

neuroscience work (Kruschke et al., 2005; Wills et al., 2014; Wills,

Lavric, Croft, & Hodgson, 2007) observed these persistent attentional

changes, and other work (Fouragnan et al., 2018) acknowledge the

possibility that other neuroscience studies of prediction error could

be observing persistent attentional changes caused by prediction

error; rather than (or as well as) the initial computation of prediction

error.

In the context of the current study, our prediction is that this per-

sistence of attentional reallocation would manifest as greater activa-

tion for cue C, presented alone at test, than for cue B, presented

alone at test. Our assumption that attentional reallocation persists not

only into the test phase, but also to singly presented cues is supported

by our previous neurophysiological work (Wills et al., 2014). Thus, our

a priori prediction was that we would see greater activation for C than

for B during test in our prediction-error ROI. If confirmed, this predic-

tion would further support the EXIT account of the IBRE, and would

suggest that the brain areas in which this difference was observed

may be involved in the persistent attentional reallocation that can

occur in response to prediction errors.

2 | METHODS

2.1 | Participants

Thirty-four people were recruited from the University of Exeter par-

ticipant pool. Participants received either course credit or £10. Partici-

pants gave informed consent according to procedures approved by

the Psychology Ethics Committee, University of Exeter. Five partici-

pants' data were removed due to excessive head movements during

the experiment, rendering their fMRI data unusable. Participants'

accuracy in the final block of training was then assessed using a learn-

ing criterion. This criterion was identical to the one used in Wills

et al. (2014), where participants scoring less than 72% in the final

block of training were excluded from further analysis. This criterion

represents the level of accuracy that cannot be attributed to random

responding based on the block length of 18 trials. Applying this crite-

rion necessitated the removal of four participants, resulting in a final

data set of 25 participants. Participants for this study were recruited

with no specific exclusion on the basis of age, sex, or race.

2.2 | Procedure

The abstract design and stimuli are identical to that of Wills

et al.'s (2014) electrophysiological study, and can be seen in Table 2

and Figure 1 respectively. The stimuli are abstract shapes, referred to

as “cells” due to the context of the experiment; a medical diagnosis

task. The ratio of common to rare in this design (2:1) differs from the

ratio in the canonical IBRE design (3:1). The reason for this is the same

as in Wills et al.; it shortens study duration in order to avoid partici-

pant fatigue, given the necessarily long test phase required for a neu-

roscience study. Previous work (Inkster, 2019; Wills et al., 2014) has

shown that a robust IBRE can be achieved with a 2:1 ratio of common

to rare.

In each phase of the experiment, trial order was randomized. Par-

ticipants were asked to take on the role of a doctor, diagnosing

patients with either “Jominy Fever” or “Phipps Syndrome” on the

basis of the “cells” they were presented with. These instructions were

given prior to them entering the scanner. The response key that rep-

resented each disease was also explained to the participant before the

task began, and was counterbalanced between participants. The dis-

ease that was abstractly common or rare was also counterbalanced.

The mapping between cues and outcomes was deterministic, for

example, A1B1 was always followed by the common disease, and

A1C1 was always followed by the rare disease.

TABLE 2 Experimental design

Training trials (relative frequency) Test trials

A1B1 ! common (�2) A1B1, A2B2, A3B3 �4

A2B2 ! common (�2) F1D1, F2D2, F3D3

A3B3 ! common (�2) A1C1, A2C2, A3C3 �2

A1C1 ! rare (�1) G1E1, G2E2, G3E3

A2C2 ! rare (�1) B1, B2, B3 �5

A3C3 ! rare (�1) C1, C2, C3

F1D1 ! common (�2) D1, D2, D3

F2D2 ! common (�2) E1, E2, E3

F3D3 ! common (�2) A1, A2, A3

G1E1 ! rare (�1) B1C1, C2C2

G2E2 ! rare (�1) B3C3, D1E1

G3E3 ! rare (�1) D2E2, D3E3

Note: Each abstract stimulus is represented by three “cells” randomized

between participants. The subscripted numbers represent the specific

“cell” tied to the abstract stimulus present on a trial. Example “cells” can
be seen in Figure 1.
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The experiment was displayed on a back-projection screen posi-

tioned at the foot end of the MRI scanner and viewed via a mirror

mounted on a head coil. Button-press responses and reaction times

(RTs) were measured using a fiber-optic button box. The training

phase consisted of 10 blocks of 36 trials, making 360 trials in total.

Each trial began with a variable duration fixation cross presented in

the center of the screen. The durations were generated using an

exponential distribution, following the method described in Haberg,

Zito, Patria, and Sanes (2001). The range of the durations was 250–

3,500 ms, with a mean duration of 1,284 ms.

After the fixation cross, a gray view box was displayed on its own

for 500 ms to indicate where the stimuli would appear. The “cell”
stimuli appeared toward the top and bottom of the view box, with

location randomized on each trial. The cells remained on screen for

2,000 ms, during which time participants made their diagnosis using

either the left or right button on the button box. After this, partici-

pants received corrective feedback for 500 ms which included naming

the correct diagnosis. If a response was not made within 2,000 ms,

participants instead received a time-out message.

Further instructions were given at the start of the test phase. Par-

ticipants were informed that they would still diagnose patients and

would see some cells that they had seen before, continuing to receive

feedback for these cells. These were the same cue compounds pres-

ented during training, and were presented in the same ratio as in train-

ing. The first four rows of the test trials column in Table 2 represent

these trials. Training trials for which participants received corrective

feedback in the test phase are not always included in IBRE proce-

dures, but this approach addresses the potential concern that perfor-

mance will deteriorate over the course of the necessarily lengthy test

phase, by providing additional learning in order to stabilize perfor-

mance. This technique was employed successfully in both Wills

et al. (2007) and Wills et al. (2014).

Participants were further told that they would see some cell com-

binations that they would not receive feedback for. These trials were

novel to the test phase, and can be seen in the test trials column in

Table 2 (row five onward). The test phase consisted of 282 trials in

total. The number of test trials was constrained such that the key test

stimuli (B, C, D, E) were presented enough to adequately power the

fMRI analyses, but that the test phase was not excessively long, so as

to avoid participant fatigue.

The trial structure in the test phase was the same as in the train-

ing phase, but with the addition of single cells being presented in the

center of the view box. The variable duration of the fixation cross had

the same range of times as in the training phase, and a similar mean

duration of 1,226 ms.2 On trials for which participants did not receive

feedback, they instead received the message “DATA MISSING” and a

series of question marks.

2.3 | Analysis of behavioral data

Trials where participants timed out were removed from further analy-

sis and constituted less than 1% of the total number of trials across all

participants. In addition to conventional null-hypothesis tests, we also

calculated Bayes factors (BF) for theoretically central analyses. These

were calculated using the procedure recommended by Dienes (2011),

implemented within an R script by Baguley and Kaye (2010).

Predicted differences were estimated from a behavioral-only version

of the same experiment previously run in our lab (Experiment 3;

Inkster, 2019). As recommended by Dienes, we assumed a half-normal

distribution for the prior with a mean of zero and a SD equal to the

predicted difference. By convention, where BF > 3, the experiment

has found evidence for the alternative hypothesis, whereas if

BF < 1/3, the experiment finds evidence for the null hypothesis

(Jeffreys, 1961). Values between a third and three are generally con-

sidered inconclusive, although they still carry information. For exam-

ple, where BF = 2, this tells us that the experimental hypothesis is

now about twice as likely as it was before we conducted the

experiment.

2.4 | fMRI data acquisition

Images were collected using a 1.5-T Gyroscan magnet equipped with

a Sense coil (Philips, Amsterdam, The Netherlands). A T2*-weighted

echo-planar sequence was used (repetition time = 3,000 ms, echo

time = 45 ms, flip angle = 90�, 32 transverse slices, field of

view = 240 mm, 3.5 � 2.5 � 2.5 mm). The training phase comprised

two runs of 242 scans, and the test phase two runs of 187 scans.

Standard volumetric anatomical MRI was performed after functional

scanning by using a 3D T1-weighted pulse sequence (repetition

time = 25 ms, echo time = 4.1 ms, flip angle = 30�, 160 axial slices,

1.6 � 0.9 � 0.9 mm).

2.5 | Analysis of fMRI data

Analyses were carried out using SPM12 software (FIL Methods

Group, 2014). Functional images were corrected for acquisition order,

realigned to the mean image, and resliced to correct for motion arti-

facts. The realigned images were coregistered with the structural T1

F IGURE 1 An example trial
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volume, and the structural volumes were spatially normalized. The

spatial transformation was applied to the realigned T2* volumes,

which were spatially smoothed using a Gaussian kernel of 8 mm

FWHM. Data were high-pass filtered (1/128 Hz) to account for low-

frequency drifts. The BOLD response was modeled by a canonical

hemodynamic response function with temporal and dispersion

derivatives.

In the individual participant models, the critical trials for compari-

sons (AB and AC for the training phase; B, C, D, E, BC, and DE for the

test phase) were included as individual regressors, with the other,

noncritical, trial types and time-outs included as two further separate

regressors of no interest. The duration of each event was modeled as

the participant's RT for that trial, an approach advocated in Grinbrand,

Erdeniz, Lindquist, Ferrera, and Hirsch (2008).

Our three principal analyses were conducted on comparisons of

singly presented cues in the test phase; these principal analyses were:

comparing C-B, comparing E-D and the critical analysis, comparing the

levels of activation in the previous two comparisons; (C-B)–(E-D). The

C-B comparison is a direct examination of our central prediction that

activations in brain regions linked to prediction error would be greater

for C presented alone, relative to B presented alone. The E-D compar-

ison is similar to the C-B comparison but has a different purpose. E

and D serve as frequency matched controls to C and B, so any differ-

ence in the comparisons must be due to the presence or absence of

the shared cue during training. The (C-B)–(E-D) comparison provides a

direct test of these differences.

In addition to our principal analyses, we also conducted two fur-

ther analyses. The first of these compared activation linked to AC

and AB in brain areas previously linked to prediction error (and thus

included in our ROI) in our training phase fMRI data. From both the

behavioral data, and from the EXIT model, it is possible to predict

that there will be more prediction errors on AC trials than AB trials,

and hence areas associated with prediction error should be more

active on AC trials than AB trials. The second of our additional ana-

lyses compared activation linked to BC and DE in our ROI during the

test phase. EXIT does not predict a difference between these two

compound cues; it instead predicts that the way attention is distrib-

uted between the cues within the compounds is the key difference.

Nonetheless, as BC is the key behavioral cue, an obvious comparison

to make is between BC and its frequency-matched control com-

pound, DE. A further justification for this contrast is that theories

other than EXIT might predict a neural difference between these

two compounds.

The mask used for the ROI analysis was constructed using the

WFU Pickatlas (Maldjian, Laurienti, Burdette, & Kraft, 2003), and was

comprised of the brain regions we predicted to be linked to prediction

error in our Introduction. Specifically, these regions were the striatum

(bilateral caudate, putamen and nucleus accumbens), the right dorso-

lateral prefrontal cortex (BA 9 and BA 46), the medial anterior pre-

frontal cortex (BA 9 and BA 10) and the anterior cingulate (BA 24, BA

32, and BA 33). The number of voxels within this mask was 11,952.

Alongside ROI analysis, we also conducted exploratory whole brain

analysis for each of the above comparisons.

The fMRI analyses were completed using a hierarchical general

linear model, with first-level analyses conducted at the individual sub-

ject level and second-level analyses at the group level using a random

effects model. The ROI analyses were conducted with a combined

statistical threshold of p< :005 and the following thresholds of contig-

uous voxels: 30 for the training phase analyses and 26 for the test

phase analyses. These thresholds together produce an overall

corrected threshold of p< :05; based on cluster-level inference

corrected for familywise error rate according to cluster size. These

values were estimated using AlphaSim as implemented in the REST

toolbox (Version 1.8, Song et al., 2011). For these calculations,

smoothness was estimated within SPM12 using the group residuals

from the general linear model and were 9.0 �9.0 �8.8mm for the

training phase and 9.7 �9.7 �9.4mm for the test phase.

The test phase whole brain analyses were conducted with a com-

bined statistical threshold of p< :001 and 110 contiguous voxels.

These thresholds together produce an overall corrected threshold of

p< :05; again based on cluster-level inference corrected for familywise

error rate according to cluster size. These values were again estimated

using Alphasim (REST, Version 1.8, Song et al., 2011). For all analyses,

normalized MNI space coordinates were transformed to Talairach

space using GingerALE (Eickhoff et al., 2011) and assigned anatomical

labels using the Talairach Client (http://talairach.org/client.html) as

per the atlas of Talairach and Tournoux (1988).

3 | RESULTS

3.1 | Behavioral analyses

The accuracy of participants across the training phase is shown in

Figure 2. A three-way analysis of variance (ANOVA) was conducted

on the training phase data, looking at the effects of training block

(first/last), stimulus frequency (common/rare), and shared cue (pre-

sent/not present) on accuracy. Accuracy in the final block was

F IGURE 2 Training accuracy. The error bars are within-subject
Cousineau–Morey 95% confidence intervals
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significantly higher than the first block, F 1,24ð Þ¼324:63,p< :001. No

other significant main effects or interactions were found.

A further two-way ANOVA was conducted on the data in the

final block of training, looking at the effects of stimulus frequency and

shared cue on accuracy. Accuracy was significantly higher for the

common stimulus compounds (AB and FD) than for the rare stimulus

compounds (AC and GE), F 1,24ð Þ¼5:23, p¼ :03. No other significant

main effects or interactions were found.

Table 3 shows the response proportions for each of the stimuli

presented in the test phase. The IBRE test stimulus BC was found to

have a significantly greater proportion of rare responses than .5,

BF10 ¼31,t 24ð Þ¼2:93,p¼ :003. Given there are only two response

options in the current experiment, this demonstrates the presence of

an IBRE. The proportion of common responses to the A stimulus was

significantly greater than .5, as expected, t 24ð Þ¼6:14,p< :001. Also

as expected, there were fewer rare responses to DE than to BC,

although the evidence for this difference was inconclu-

sive, BF10 ¼1:8,t 24ð Þ¼1:57,p¼ :07.

Table 3 further shows the response proportions produced by the

EXIT formal model (Kruschke, 2001b), within brackets next to the

behavioral data. As can be seen from the table, EXIT provides an

extremely close fit to the behavioral data, capturing the response pat-

terns for each stimulus, RMSD¼ :01,r2 > :99. For technical details of

our simulation methodology, see Appendix.

3.2 | Imaging analyses

3.2.1 | Training phase

We first compared AC with AB in our ROI, during the training phase.

This analysis revealed a number of brain regions that exhibited greater

activations for AC compared to AB (see Figure 3). These regions were

the bilateral caudate body (peak cluster size: 214, peak voxel x = �14,

y = 7, z = 15) and the right dorsolateral prefrontal cortex (BA 9; peak

cluster size: 41, peak voxel x = 43, y = 5, z = 32).

3.2.2 | Test phase

BC-DE comparison

The EXIT model does not predict a difference between these two

compound cues, because it is the distribution of attention within the

compound that is predicted to vary between the two compounds, not

the total amount of attention to BC versus DE. Specifically, C is

predicted to be more attended than B, while attention should be more

evenly distributed between D and E. As expected, no significant dif-

ferences were found, either in ROI or whole-brain analyses.

C-B comparison

The ROI analysis revealed a number of brain regions that exhibited

greater activations for C (stimulus associated with the rare outcome)

than for B (stimulus associated with the common outcome), see

Figure 4 and Table 4. These regions included the ventromedial pre-

frontal cortex (BA 10), medial prefrontal cortex (BA 9), right dorsolat-

eral prefrontal cortex (BA 9), bilateral caudate body, and left anterior

cingulate (BA 32).

A number of brain areas included in the ROI analysis were also

activated under whole brain analysis including a cluster comprising

the right medial frontal cortex and the anterior cingulate (cluster size:

228, peak voxel x = 3, y = 55, z = 17). Outside of brain areas already

identified in the ROI analysis the right thalamus was activated (cluster

size = 257, peak voxel x¼12,y¼�11,z¼18), as well as a separate

cluster in the left cerebellum (cluster size = 111, peak

voxel x¼�25,y¼�70,z¼�28).

E-D comparison

The E-D comparison differs from the previous comparison in one key

respect; the absence of a shared cue presented alongside E and D in

training. Given the predictions of the error-driven learning account,

and previous work (Kruschke, 2001a; Wills et al., 2014), we would

expect to see no difference in activations here.

An ROI analysis examined activations for the E stimulus compared

to the D stimulus and failed to find any areas that showed a significant

TABLE 3 Proportion of responses to each of the stimulus types
presented in the test phase

Stimulus type Common Rare

A .76 (.76) .24 (.24)

AB .92 (.93) .08 (.07)

AC .19 (.17) .81 (.83)

B .92 (.90) .08 (.10)

BC .35 (.36) .65 (.64)

C .15 (.15) .85 (.85)

D .85 (.86) .15 (.14)

DE .44 (.43) .56 (.57)

E .24 (.24) .76 (.76)

FD .96 (.94) .04 (.06)

GE .11 (.13) .89 (.87)

Note: Bold indicates the behavioral results analyzed. Values within

brackets (italics) are simulated response proportions from the EXIT model.

Abbreviation: EXIT, EXemplar-based attention to distinctive InpuT.

x = –9,y = 10,z = 14

F IGURE 3 Areas that show greater activation for the AC cue
compound compared to the AB cue compound under a region of
interest (ROI) analysis, during the training phase. The thresholds used
were p< :005 and 30 contiguous voxels
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difference in activation. Although this is unsurprising theoretically,

these analyses were conducted to both stay consistent with the previ-

ous comparison and to characterize this comparison given its use in

the final, critical, comparison. Whole brain analysis also failed to show

any areas with a significant difference in activation.

(C-B)–(E-D) comparison

This comparison is the critical analysis for the current experiment. The

previous test phase comparisons differ in one key way; the presence

or absence of a shared cue when training with those stimuli. While

any difference in the areas of the brain activated between these com-

parisons can be attributed to this factor, the (C-B)–(E-D) comparison

provides a direct test of this difference; and so rule out any novelty-

based explanation of the activations noted in the C-B comparison.

An ROI analysis revealed a number of brain regions exhibiting

greater activation for the C-B comparison compared to the E-D com-

parison (Figure 5 and Table 5). Greater activation was noted in the

bilateral caudate, the bilateral anterior cingulate, the right superior

prefrontal cortex, and right ventromedial prefrontal cortex.

The whole brain analysis also identified two clusters outside the

areas identified in the ROI analysis, in the right thalamus (cluster

size = 125, peak voxel x¼4,y¼�19,z¼12) and the left cerebellum

(cluster size = 155, peak voxel x¼�29,y¼�68,z¼�30).

4 | DISCUSSION

The IBRE is a nonrational phenomenon in which people, having

learned that cue compound AB predicts a common disease and cue

x = 4,y = 13,z = 15 x = –13,y = 14,z = 5

F IGURE 4 Areas that show greater activation for the C stimulus compared to the B stimulus during the test phase, under a region of interest
(ROI) analysis. The thresholds used were p< :005 and 26 contiguous voxels

TABLE 4 Brain regions activated
during the test phase for an ROI analysis
of C-B. The thresholds used were
p< :005 and 26 contiguous voxels

Region Cluster size

Talairach coordinates

z-ScoreBA x y z

Right ventromedial prefrontal cortex 219 10 3 55 17 4.46

Right anterior cingulate 32 3 39 15 3.88

Right medial prefrontal cortex 9 3 48 18 3.58

Right caudate body 226 8 1 14 3.97

Right caudate body 12 �17 21 3.51

Right caudate body 14 2 23 3.12

Right dorsolateral prefrontal cortex 32 6 34 6 41 3.43

Right dorsolateral prefrontal cortex 9 39 10 38 2.82

Left caudate body 135 �8 1 10 3.26

Left caudate body �16 8 17 3.24

Left caudate body �12 14 13 3.08

Left anterior cingulate 58 32 �8 41 10 3.09

Left ventromedial prefrontal cortex 10 �3 52 13 2.69

Abbreviation: ROI, region of interest.

x = 15,y = 7,z = 22

F IGURE 5 Areas that show greater activation for the C-B
comparison compared to the E-D comparison under a region of
interest (ROI) analysis, during the test phase. The thresholds used
were p< :005 and 26 contiguous voxels
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compound AC predicts a rare disease, go on to predict that BC pre-

dicts the rare disease, in opposition to the underlying base rates

(Kruschke, 1996; Medin & Edelson, 1988; Shanks, 1992). The current

study was the first investigation of a successfully-observed IBRE

with fMRI.

We made a number of predictions about brain activity and inves-

tigated them using ROI analysis. The predictions were made on the

basis of: (one) an error-driven learning account of the IBRE, expressed

as a formal model (Kruschke, 2001b), (two) a previous electrophysio-

logical study of the IBRE (Wills et al., 2014), and (three) a substantial

body of previous work on the neural correlates of prediction error

(e.g., Fouragnan et al., 2018).

As predicted, a number of brain regions previously associated

with prediction error during training showed greater activation during

the test phase for the C cue relative to the B cue. These regions

included the ventromedial prefrontal cortex, medial prefrontal cortex,

right dorsolateral prefrontal cortex, bilateral caudate body and left

anterior cingulate. A number of previous studies have linked these

areas to the occurrence of prediction error (e.g., Fletcher et al., 2001;

Fouragnan et al., 2018; Garrison et al., 2013; Turner et al., 2004).

These differences were not detectable for the frequency-matched

control cues D and E, which were presented in training without the

shared cue A. Greater activations were also noted in the right dorso-

lateral prefrontal cortex and bilateral caudate body during the training

phase for the AC cue relative to the AB cue; a result consistent with

both previous work and our test phase analysis.

Taken together, these results provide strong evidence in support

of the prediction-error-based account of the IBRE (Kruschke, 2001b).

Specifically, the current results, alongside those of Kruschke

et al. (2005) and Wills et al. (2014), support the idea that the effects of

prediction error during training persist into the test phase, and can be

observed in singly presented cues. These differences are characterized

in EXIT as persistent changes in attentional allocation, and this

characterization in turn supports the idea that activity in brain areas

associated with prediction error is sometimes associated with differ-

ences in attentional processing. Further support for Kruschke's account

of the IBRE comes from the excellent level of quantitative fit of his

EXIT model to the behavioral data of the present study (see Table 3).

Exploratory whole-brain analysis of the test phase identified sev-

eral additional brain areas that might be involved in the IBRE. These

areas were not predicted in advance so any inferences must be

treated with some caution. One area in the thalamus showed a differ-

ence in activation for the C cue relative to the B cue. Given its role in

relaying and processing sensory information (Schiff, 2008), its activa-

tion in this task is not unexpected. Another area in the left cerebellum

also showed a difference in activation for the C cue relative to the B

cue. This is perhaps unsurprising given that this area has been impli-

cated in a wide range of cognitive tasks including learning

(Desmond & Fiez, 1998); such as a previous category learning experi-

ment (Carpenter, Wills, Benattayallah, & Milton, 2016).

There was some overlap between the areas of activation

observed in the present work, and those observed in the only previ-

ous attempt to study the IBRE with fMRI (O'Bryan et al., 2018).

O'Bryan et al. reported activations in the PFC, thalamus and cerebel-

lum; areas also identified in our key contrast. Direct comparison of

the two studies is difficult, however, due to differences in analysis

methodology. The analyses conducted in the current study are direct

stimulus contrasts, while O'Bryan et al. correlated brain activity with

internal values of the dissimilarity-based extension of the generalized

context model (Stewart & Morin, 2007). Nevertheless, the overlap in

some of the regions identified across the studies is intriguing, even

with this caveat in mind.

Inferring from this overlap should be approached with some cau-

tion though, as O'Bryan et al.'s (2018) conclusions appear somewhat

different to those of the current study, and to those of a number of

previous experiments on the IBRE. A key conclusion from O'Bryan

TABLE 5 Brain regions activated
during the test phase for the ROI analysis
of the comparison of the C-B comparison
and the E-D comparison. The thresholds
used were p< :005 and 26 contiguous
voxels

Talairach coordinates

Region Cluster size BA x y z z-Score

Right caudate body 395 8 1 14 3.86

Right caudate body 10 9 11 3.75

Right caudate body 6 6 5 3.55

Left caudate body 36 �8 1 10 3.45

Right anterior cingulate 32 24 4 21 24 3.39

Right anterior cingulate 24 4 29 18 3.06

Right superior prefrontal cortex 45 9 8 56 24 3.35

Right ventromedial prefrontal cortex 10 5 56 13 2.94

Left anterior cingulate 47 32 �8 39 11 3.17

Left anterior cingulate 32 �6 45 7 2.98

Left caudate body 32 �14 �11 19 3.13

Left caudate body 48 �16 8 17 3.05

Left caudate body �16 16 15 2.75

Abbreviation: ROI, region of interest.
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et al.'s MVPA is that, on trials where participants respond rare to BC,

they process B more intensively than C. O'Bryan et al. note that eye-

tracking would be a good way to corroborate this finding; a methodol-

ogy previously employed in the study of a variant of the IBRE by

Kruschke et al. (2005). Kruschke et al. reported less attention to B

than C on BC trials when an IBRE was observed, a finding further

supported by the ERP results of Wills et al. (2014). Nonetheless,

future work on the IBRE should further consider the theoretical impli-

cations of both sets of results.

In the current work, we have focused on the predictions of the

EXIT model, as these were the a priori basis of our experiment. Other

formal models of category learning are available. One particularly per-

tinent alternative in the current case, given its predictions about the

relationship between cognitive and neural processes, is the COmpeti-

tion between Verbal and Implicit Systems (COVIS) model (Ashby,

Alfonso-Reese, Turken, & Waldron, 1998). We note that one of the

areas identified in our key contrast was the caudate body, to which

COVIS attributes stimulus representation in the procedural learning

system. Nomura et al. (2007) suggest that feedback-driven learning

strengthens synapses in the caudate through a reward signal, and the

idea that the caudate is involved in some kind of associative learning

process is consistent with a number of other related results

(e.g., Carpenter et al., 2016; Seger & Cincotta, 2005). The COVIS pro-

cedural system, in its current form, does not provide an explanation

for the IBRE, but it could potentially be modified to do so by the inclu-

sion of the sort of error-driven attentional-allocation process

employed in EXIT and investigated in the current work.

While we argue for the role of prediction error in the brain

regions identified in our analysis, it is worth acknowledging that some

of these areas, in particular the DLPFC, have been linked to other cog-

nitive processes. Schlösser et al. (2009) evidenced a link between

DLPFC and the processing of uncertainty; clearly, this could play a

role in the handling of the BC test cue, due to uncertainty generated

as a result of the conflicting information provided by the B and C cues

individually. Similarly, Badre and D'Esposito (2007, 2009) link the lat-

eral PFC to hierarchical cognitive control processes, including atten-

tional control. This is interesting, as EXIT arguably instantiates a

controlled process of attentional reallocation; for example, it has pre-

viously been proposed that concurrent load disables attentional

reallocation in this kind of model (Nosofsky & Kruschke, 2002).

4.1 | Conclusion

The current study provides the first evidence linking the bilateral cau-

date body, left anterior cingulate, right dorsolateral prefrontal cortex,

ventromedial prefrontal cortex, and medial prefrontal cortex to the

IBRE. These neural correlates are strongly linked to the occurrence of

prediction error; a concept implemented within the error-driven learn-

ing account of Kruschke (2001b). Therefore, this study both furthers

the neuroscientific literature investigating prediction error and

strongly supports the account implemented within Kruschke's EXIT

formal model.
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ENDNOTES
1 O'Bryan et al. report that the proportion of rare responding to BC (.5) is

significantly greater than the base-rate of .25. This supports the pres-

ence of base-rate neglect, but lacks the greater rare compared to com-

mon responding indicative of an IBRE. Similarly, their demonstration of

significantly greater rare responding to BC compared to rare responding

to A suggests base-rate neglect is smaller for A than BC, but does not

show the presence of an IBRE.
2 The slight difference in mean duration relative to the training phase

results from discretizing the exponential distribution of times over a dif-

ferent, finite, number of trials.
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APPENDIX

Modeling

The simulation was conducted using slpEXIT, part of the catlearn R

package (Wills et al., 2019). This implementation of EXIT is based on

the model as described in Kruschke (2001b), with the inclusion of a

bias cue that was later implemented in Kruschke (2003). The salience

of the bias cue is represented by the σ parameter.

The EXIT model was applied to simulated training and test

trials that replicated the details of the experimental procedure,

generating response patterns for each simulated trial. The values

of the free parameters given to the model were optimized using

the optim function in R (R Core Team, 2018); specifically the

limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

(Byrd, Lu, Nocedal, & Zhu, 1995). The sum of squared errors

(SSE) between the model predictions and behavioral data was

used as the objective function. As optim requires an initial set of

starting parameters to vary, each free parameter within the EXIT

model was initially set to one of two values. As there are seven

free parameters, this resulted in a total of 27 or 128 sets of param-

eter values. This produced 128 sets of optimized parameter values;

the set with the lowest SSE was chosen. The parameter values within

this final optimized set were: c¼ :746,P¼2:383,ϕ¼2:963, λg ¼
:257,λw ¼ :047, λx ¼2:069,σ¼ :031.
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