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Abstract 

Background  Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected 
CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uni-
formly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to vari-
ous traits and future disease risk. Limited by available data, most studies investigating these relationships have been 
cross-sectional, using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led 
to analyses of associations with EA over time. These studies differ in (1) their choice of model; (2) the primary outcome 
(EA vs. EAA); and (3) in their use of chronological age or age-independent time variables to account for the temporal 
dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world 
examples, using biological sex and birthweight as predictors of longitudinal EA.

Results  Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equa-
tion, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact 
estimates. Applying the optimal model in real-world data uncovered advanced GrimAge in individuals assigned male 
at birth that decelerates over time.

Conclusion  Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological deci-
sions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
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Background
Chronological age, the passage of time since birth, does 
not fully capture an individual’s state or pace of biologi-
cal aging [1]. Genetics, along with various environments, 
behaviors, and diseases faced throughout the life course 
appear to be potent causes of these disparities. While the 
exact biochemical mechanisms mediating these effects 
remain largely unknown, there is emerging evidence of a 
role for epigenetics, a biological process that can induce 
changes in gene expression without changing the under-
lying DNA sequence [2]. The adaptable nature of epige-
netic modifications is therefore of utmost interest when 
evaluating the effects that exposures have on health and 
lifespan.

DNA methylation (DNAm) is the most studied and 
easiest-to-measure epigenetic modification. DNAm most 
commonly occurs at cytosine nucleotides that are fol-
lowed by guanine, known as CpG sites. A decade ago, 
Horvath [3] as well as Hannum and colleagues [4] intro-
duced algorithms, also known as epigenetic clocks, that 
identified a set of CpG sites whose methylation state can 
be used to accurately estimate chronological age. The 
resulting measure is called epigenetic age (EA). Addi-
tional epigenetic clocks have since been published; some 
aim to best estimate chronological age [5], while oth-
ers focus on health and mortality [6–10]. Over the past 
decade, the scientific community has thoroughly inves-
tigated EA-related associations, largely indicating rela-
tions between advanced EA and adverse health outcomes 
[11–14].

In most of those studies, EA was investigated in a 
cross-sectional setting. However, the increasing accessi-
bility of longitudinal epigenetic cohort data [15] has cre-
ated growing interest in studying EA over time [16–44]. 
Unfortunately, there are many disparities in modeling 
strategies across these studies. Our study investigated 
whether these disparities impacted findings to an extent 
that might lead to false conclusions, through significantly 
inflating effects or leaving true associations unnoticed. 
We evaluated the robustness of methods using simula-
tions. To test our results in real-world data, we applied 
the same methods in two examples from the Avon Lon-
gitudinal Study of Parents and Children (ALSPAC) [45, 
46] involving biological sex and birthweight as predictors 
of longitudinal EA. Our aim was to provide readers with 
practical guidance in modeling choices that fit their data 
and maximize insights in epidemiological relations.

Methods
Modeling longitudinal epigenetic age
Numerous approaches exist to model effects that expo-
sures have on longitudinal outcomes like EA. Approaches 

differ in (1) the choice of model, (2) outcome, and (3) 
time variables, as well as (4) the number of repeated 
measures included in those methods.

The three most frequently applied models are linear 
mixed effect models (LME) [16–20, 23, 25, 30, 31, 33–36, 
38, 41], generalized estimating equations (GEE) [21, 26, 
29, 43], and Δ aging [22, 27, 37, 39, 40, 42, 47, 48]. LME 
models and GEE both analyze repeated measures, like 
tracking changes in EA over time in an individual’s life, 
and model differences in mean trends between groups, 
such as those exposed to a factor compared to those who 
were not. In both methods, the fixed effect ( β2 ), which 
stays consistent throughout all measures, as well as the 
interaction effect ( β4 ), which accumulates over time, are 
typically modeled as:

where Outcomeij is either EA or epigenetic age accelera-
tion (EAA, the residual resulting from regressing EA on 
chronological age) measured in individual i, at timepoint 
j. To accommodate longitudinal changes, both models 
account for time. Time variables commonly used, sum-
marized in Fig.  1, range from chronological age at the 
time of measurement to age-independent variables, 
including the duration in days or years between measure-
ments, numerical ranks (e.g., 1, 2, 3) or factorized values 
(e.g., F07, F09, F15).

Another method to analyze variations in tempo-
ral changes is a two-step approach involving “Δ aging” 
(“delta aging”). The Δ aging method is limited to studies 
with two repeated measures, as it quantifies the differ-
ence between measurements, often referred to as the “Δ 
aging” score, and then compares these scores between 
groups, for example using linear regression. Firstly, Δ 
aging is typically calculated as the difference between a 
follow-up and a baseline measure of either EA or EAA, 
with or without adjustment for the duration of time 
between measurements:

where Outcome1 and Age1 represent EAA or EA and age 
at the initial measure, while Outcome2 and Age2 corre-
spond to the follow-up measure. Secondly, models such 
as linear regression can be used to compare trends in Δ 
aging between the different groups:

(1)

Outcomeij = β0i + β1TimeVariableij + β2Exposurei + β3Sexi

+ β4
(
TimeVariableij × Exposurei

)
+ εij

(2)

�Aging = Outcome2 − Outcome1

�Aging
(
age adjusted

)
=

Outcome2 − Outcome1

Age2 − Age1

(3)�Agingi = β0 + β1Exposurei + β2Sexi + ǫi
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where �Agingi is the above-described difference score 
between two measures for individual i.

Study population
This study used longitudinal DNAm data generated as 
part of the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) [45, 46]. Initially, ALSPAC recruited 
14,541 pregnant women, resident in Avon, UK, with 
expected dates of delivery between April 1991 and 
December 1992. Of the initial 14,541 pregnancies, 14,062 
resulted in live births and 13,988 children were alive at 
1  year of age. To bolster the initial sample, 1000 addi-
tional children were included after the initial participants 
were approximately 7 years old, increasing the total sam-
ple of data collected after age 7–14,901. As part of the 
Accessible Resource for Integrated Epigenomic Studies 
(ARIES) [15], a sub-sample of ALSPAC mother–child 
pairs have undergone genome-wide DNAm analysis. 
DNAm wet-lab and pre-processing analyses were per-
formed at the University of Bristol as part of the ARIES 
project [15, 49]. Here, we included up to three within-
person DNAm measures, drawn from blood, at age 7, 
9, and 15 or 17. A summary of all variables used in our 
analyses is presented in Table 1. Out of 1,162 individuals, 
942 have DNAm measured for at least two of these time 
points, and 178 individuals have DNAm measured at all 
three.

Simulation study
To better understand the extent to which methodological 
choices influence the robustness of results, we compared 
commonly used methods (introduced under Modeling 
Longitudinal Epigenetic Age). We conducted a series of 
simulations (n = 1000), in which we manipulated lon-
gitudinal EA data from the ALSPAC cohort, applied all 

models introduced above, and compared the accuracy of 
effect estimates across methods (Fig. 2).

Simulations were based on longitudinal DNAm data 
from ARIES [15], condensed into EA measures. To com-
pare EA derived from conceptually different epigenetic 
clocks, we investigated EA calculations from the Hor-
vath clock [3], GrimAge [9], and their principal compo-
nent (PC) versions [50] in separate simulation cycles. In 
our binary exposure simulations, 100 participants were 
randomly selected as “exposed” (n = 918 “unexposed”). 

Fig. 1  Overview of common time variables included in longitudinal epigenetic age studies and their application in ARIES cohort data. Age variables 
in our example should be interpreted as a single study participant’s age at measurement, since chronological age differs between individuals

Table 1  Characteristics of the ARIES sample across all 
measurement waves.

Measurement 
wave

Mean / n SD Min Max

Sample size F07 969

F09 361

F15 958

Female Birth 49%

Age F07 7.45 0.15 7.08 9.08

F09 9.84 0.27 9.33 11.17

F15 17.1 1.05 14.58 19.33

Birthweight [kg] Birth 3.49 0.49 1.49 5.14

Epigenetic age
Horvath F07 8.92 2.92 2.45 29.84

F09 9.53 3.41 − 0.01 29.56

F15 17.71 4.53 4.28 35.29

PC Horvath F07 13.00 2.63 7.30 25.1

F15 24.5 4.15 11.2 40.7

GrimAge F07 12.44 3.04 3.21 23.77

F09 12.55 3.48 2.48 30.12

F15 20.72 3.28 8.28 34.84

PC GrimAge F07 26.5 2.37 18.4 33.3

F15 34.9 2.66 26.9 43.2
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Fig. 2  Overview of simulation study. Simulations were based on longitudinal ARIES cohort data [15] available at ages 7, 9, and 15–17. Epigenetic 
age (EA) was calculated using the Horvath clock [3] or GrimAge [9] in separate simulations. The original EA measure was then altered based 
on a simulated exposure. In each binary exposure simulation, a random n = 100 individuals had their original EA increased by 2 years (fixed effect), 
which accumulated by 0.1 year of EA per year of life (interaction effect). In each continuous exposure, all individuals were assigned a value (N(3.5, 
0.52)) which impacted their original EA by 0.1 years, times the level of exposure (fixed effect), and caused an interaction between the exposure 
and age by 0.02 (interaction effect). In the next step of our simulation, a series of methods was applied to model the simulated effects. Models are 
linear mixed effect models (LME), generalized estimating equations (GEE), and regression on difference between two epigenetic age (EA) measures 
(Δ aging). Outcome variables included are epigenetic age acceleration (EAA, residual from regressing EA on age), or EA itself. We ran n = 1000 
simulations for each exposure type (binary vs. continuous), epigenetic clock (Horvath vs. GrimAge2), and different scopes of data (two measures: 
Age 7 and 15–17 vs. three measures: Age 7, 9, and 15–17)
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To create an association between the exposure and the 
average outcome, EA was increased by a fixed effect of 
2 years in those 100 “exposed” individuals ( β2 ). Addition-
ally, to create an association between the exposure and 
change in the average outcome over time, an interaction 
with chronological age by 0.1  years EA per year of age 
was included ( β4 ). In our continuous exposure simula-
tions, all participants were randomly assigned a value 
( N

(
3.5, 0.52

)
 ), which affected EA with a fixed effect coef-

ficient of 0.1 ( β2 ) and an interaction coefficient of 0.02 ( β4
).

We then iterated (n = 1000) through all (i) models, 
(ii) outcomes and (iii) time variables discussed above, 
including (iv) different numbers of repeated measures 
(two timepoints vs. three timepoints). First, we evalu-
ated three models (i): LME models (with and without 
random slope term), GEE, and regression on Δ aging. 
Second, we assessed two outcomes within these mod-
els (ii): EA an EAA. Third, we investigated four time 
variables (iii): age, years between measures, numerical 
ranks {1, 2, 3}, and factorized values {F07, F09, F15}. Δ 
aging was calculated with and without adjusting for the 
time between initial and follow-up measure. Fourth, 
we evaluated the impact of repeated measures (iv) on 
model accuracy by fitting LME models and GEE with 
two or three timepoints. Δ aging was limited to only 
two timepoints.

To compare robustness across methods and variables, 
we extracted fixed ( β2 ) and interaction ( β4 ) effect esti-
mates from all models and evaluated how accurate they 
met the simulated exposure effect. We measured each 
model’s performance by comparing whether the 95% 
confidence interval (CI) contained the simulated effect 
size. Models resulting in CI that were fully above or 
below the simulated effect were labeled as “inflated” or 
“deflated,” while models resulting in CI that contained 
the simulated effect were defined as performed best.

Real‑world example
To apply our simulation results in a real-world example, 
we used sex and birthweight as accessible biological 
parameters and examples of binary and continuous pre-
dictors of longitudinal EA. Longitudinal EAA or EA at 
ages 7 and 15–17, derived from the Horvath clock [3], 
GrimAge [9], and their PC versions [50], were modeled 
as the outcome. We applied all models and time vari-
ables discussed above and included sex and cell type 
proportions as covariates. Cell counts were estimated 
using the Houseman algorithm [51] applied to ALSPAC 
DNAm data with a peripheral blood reference [52].

In LME models and GEE, the fixed ( β2 ) and interac-
tive (Formula 4: β9 , Formula 5: β10 ) effects were esti-
mated as:

Binary exposure (Biological Sex):

Continuous exposure (Birthweight):

where Outcomeij is EA or EAA, measured in individual i, 
at timepoint j.

Different trends ( β1 ) in Δ aging (with and without 
adjusting for time between measures) across groups were 
modeled using linear regression:

Binary exposure (Biological Sex):

Continuous exposure (Birthweight):

where �Agingi is the difference score between two meas-
ures for individual i.

Results
Simulation study
Figure 3 and Table 2 summarize the effect estimates for a 
binary exposure for all models and time variables consid-
ered, using a subset of two within-person EA measures 
derived from the Horvath clock. Additional tables, sum-
marizing the complete range of effect estimates, includ-
ing the continuous exposure and models involving three 
within-person measures of EA derived from the Horvath 
clock as well as GrimAge, can be found in the supple-
mental material (Supplement Figs.1–24 and Tables 1–6). 
Across all approaches, the choice of time variable had 
the most substantial impact on the effect estimate bias, 
which stayed consistent across models (LME models, 
GEE and Δ aging) and outcome variables (EA, EAA). 
Including chronological age in the model gave most accu-
rate estimates, while other age-independent time vari-
ables led to inflated results.

For both fixed and interaction effects alike, we 
obtained similar estimates across LME models and 
GEE, holding the time variable constant. Models that 
included timepoint as their time variable resulted in a 

(4)

Outcomeij = β0i + β1TimeVariableij + β2Sexi + β3NKij

+ β4Granuij + β5Monoij + β6CD4Tij + β7CD8Tij

+ β8Bcellij + β9
(
TimeVariableij × Sexi

)
+ εij

(5)

Outcomeij = β0i + β1TimeVariableij + β2Birthweighti

+ β3Sexi + β4NKij + β5Granuij + β6Monoij

+ β7CD4Tij + β8CD8Tij + β9Bcellij

+ β10
(
TimeVariableij × Birthweighti

)
+ εij

(6)�Agingi = β0 + β1Sexi + ǫi

(7)�Agingi = β0 + β1Birthweighti + β2Sexi + ǫi
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slightly higher proportion of deflated fixed effect esti-
mates than models including age, when using two 
within-person measures (LME model with random 
slope, binary simulation: timepoint 5% deflated, age 3% 
deflated; Supplement Fig. 9). The majority of estimates 
from models accounting for years between measures 
or categorical time overestimated the simulated fixed 
effect (LME model with random slope, binary simula-
tion: > 60% inflated; Supplemental Fig. 9). All estimates 
from models incorporating time as a categorical vari-
able were inflated.

Regression on Δ aging showed high precision and 
accuracy for estimating the interaction coefficients, 
when adjusted for years between measures. Similar 

performance in approximating the age-exposure inter-
action was achieved using LME models and GEE 
accounting for time through either chronological age 
or years between measures. Including either categori-
cal time or numerical timepoint led to overestimated 
effects across all models, resulting in up to 52% inflated 
interaction estimates (LME model with random slope, 
binary exposure: timepoint, Supplemental Fig. 9). Mod-
els based on three repeated within-person measures 
resulted in exclusively deflated interaction estimates, 
when including categorical time as the time variable.

Fig. 3  Summary of n = 1,000 simulations from ARIES data (two measurements, age 7 and 15 or 17) [15]. Rows show the distribution (median, 25th 
and 75th percentile, outliers) of effect size estimates derived from different models and time variables included in those models, respectively. 
The two columns differentiate between estimates of the interaction term as well as the fixed effect. Simulated effect sizes are marked in red 
(interaction = 0.1; fixed effect = 2.0). Time variables are chronological age (Age), years between measures (Years), number of measure (Timepoint, 
i.e., 1, 2), factorized measure (Timefactor, i.e., F07, F15). Models are linear mixed effect models (LME), generalized estimating equations (GEE), 
and regression on difference between two epigenetic age (EA) measures (Δ aging). All models contained Horvath clock derived EA as outcome [3]
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Real‑world examples
Supplemental Tables  7–10 as well as Supplemental 
Figs.  25–28 show the complete range of effect size esti-
mates for both exposures on longitudinal EA, across 
models, clocks, and time variables. Again, the choice of 
time variable had the most substantial impact on effect 
estimates, which stayed consistent across models.

Figure  4A and Supplemental Table  7 show the fixed 
effect estimates of biological sex on longitudinal EA 
between the ages 7 and 15–17  years across methods. 
Different model choices led to very similar estimates of 
fixed effects, so we compared the choice of time variable 
within the LME model (random slope) using Horvath 
EA as the outcome. Individuals assigned male at birth 
had 0.12 years lower average EA compared to individu-
als assigned female at birth (95% CI − 0.72, 0.47) using 
chronological age as the time variable, which based 
on our simulation study is an unbiased estimate. With 
the age-derived result as a reference, using either years 
between measures or categorical time resulted in esti-
mates three times larger and in the opposite direction 
(males were on average 0.36 [95% CI 0.05, 0.66] years 

older). The use of timepoint led to estimates almost three 
times larger in the same direction (males were on average 
0.36 [95% CI − 1.07, 0.36] years younger). While point 
estimates differed using GrimAge (likely due to the dif-
ferent training outcome measures of these clocks), the 
choice of time variable had a similar effect as seen when 
using the Horvath clock. In both Horvath and GrimAge 
EA measure-based models, including age or timepoint 
as a time variable led to much wider confidence inter-
vals compared to using categorical time or time between 
measures.

Interaction effects between sex and age, leading to an 
accumulating positive or negative effect on EA over time, 
are shown in the left column of Fig.  4A and in Supple-
mental Table  8. The choice of model or outcome led to 
approximately equal estimates holding the time vari-
able constant. Once again, while effect sizes differed 
profoundly between clocks, the effect of different time 
variables was similar using Horvath or GrimAge. Using 
LME models with age as the time variable, EA in indi-
viduals assigned male at birth increased by an extra 
0.07 years per year of age, compared to those of individ-
uals assigned female at birth (95% CI 0.02, 0.12). Using 
either years as the time variable, or Δ aging, led to the 
same point estimate. However, using either timepoint or 
categorical time inflated the interaction effect drastically 
(0.72, 95% CI 0.23, 1.21).

The fixed effect estimates of birthweight on longitu-
dinal EA between the age 7 and 15–17  years of age are 
shown in the right column of Fig. 4B and in Supplemen-
tal Table  9. Due to similar estimates across models and 
outcome choices, we again compared results for differ-
ent time variables within LME models (random slope) 
using Horvath EA as the outcome. Using chronologi-
cal age as the time variable showed that an increase in 
birthweight of 1  kg is associated on average with an 
additional 1.08  years of EA (95% CI: 0.48, 1.69). With 
the age-derived estimate as a reference (assuming it is 
unbiased as per our simulation results), using either 
years between measures or categorical time as the time 
variable led to an estimate 2.5 times smaller (0.43 [95% 
CI 0.11, 0.74] years average increase per 1  kg). The use 
of timepoint increased estimates by 25% (1.3 [95% CI 
0.56, 2.03] years average increase per kg). Models using 
GrimAge measures led to opposite effect estimates, none 
of which showed statistical significance. Trends across 
time variables were similar between Horvath and Grim-
Age EA measure-based models, leading to much wider 
confidence intervals when including age or timepoint as 
time variable compared to using categorical time or time 
between measures.

Estimates of interaction effects between birthweight 
and age are shown in the left column of Fig.  4B and in 

Table 2  Summary of n = 1000 simulations from ARIES data (two 
measurements, age 7 and 15 or 17) [15]

The effect size of the simulated binary exposure was 2.0, with an interaction 
effect of 0.1. Average fixed effect and interaction estimates and 95% confidence 
intervals (CI) from all models are displayed as columns. Rows represent time 
variables included in the respective model. Models are linear mixed effect 
models (LME), generalized estimating equations (GEE), and regression on 
difference between two epigenetic age (EA) measures (Δ aging). Time variables 
are chronological age (Age), years between measures (Years), number of 
measure (Timepoint, i.e., 1, 2), and factorized measure (Timefactor, i.e., F07, F15). 
All models contained Horvath clock derived EA as outcome [3]

Simulated effect size: 0.1 2.0

Model Time variable Interaction 
effect
Estimate (95% 
CI)

Fixed effect
Estimate (95% 
CI)

LME Age 0.1 (0, 0.19) 2.02 (0.73, 3.31)

Years 0.1 (0, 0.2) 2.65 (1.86, 3.44)

Timepoint 0.94 (0, 1.89) 1.81 (0.28, 3.34)

Timefactor 0.67 (0, 1.34) 3.22 (2.65, 3.79)

LME (random 
slope)

Age 0.1 (0.01, 0.18) 2.02 (1, 3.04)

Years 0.1 (0, 0.2) 2.65 (2.09, 3.22)

Timepoint 0.94 (0.1, 1.78) 1.81 (0.58, 3.04)

Timefactor 0.67 (0, 1.34) 3.22 (2.65, 3.79)

GEE Age 0.1 (− 0.01, 0.2) 2.02 (0.87, 3.17)

Years 0.1 (− 0.01, 0.21) 2.65 (2.07, 3.24)

Timepoint 0.94 (− 0.1, 1.99) 1.81 (0.42, 3.19)

Timefactor 0.67 (− 0.07, 1.41) 3.22 (2.7, 3.75)

Δ aging Age 0.1 (0, 0.2)

None 0.94 (− 0.02, 1.9)
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Supplementary Table  10. Again, the selection of either 
the model or the outcome led to similar estimates when 
keeping the time variable constant. Using LME mod-
els with age as the time variable, EA decreased on aver-
age by 0.09 years per year of age for each kg increase in 
birthweight (95% CI − 0.14, − 0.04). Using years between 
measures, or age-adjusted Δ aging, as the time variable 
led to a similar point estimate. Regressing on non-age-
adjusted Δ aging or including timepoint or categorical 
time in the model inflated the interaction effect by a fac-
tor of 10 (− 0.87, 95% CI − 1.37, − 0.37).

Discussion
The findings of this study present valuable insight into 
the intricacies of modeling associations with longitudinal 
epigenetic age, emphasizing the critical influence of dif-
ferent exposure and time variables on the robustness of 
effect estimates and conclusions.

Simulation and real‑world examples
All simulation and real-word analyses showed consist-
ent estimates across models and outcome variables, 
while the choice of time variable significantly impacted 

Fig. 4  Age interaction and fixed effect estimates of the effect of biological sex (A) and birthweight (B) on EA over time. Included were two 
within-person measures (age 7 and 15 or 17) from the ARIES cohort [15]. Rows contain effect size point estimates as well as 95% confidence 
intervals derived from different models and time variables included in those models, respectively. Effect estimates are based on individuals assigned 
female at birth as reference. Significant estimates are marked in red (p < 0.05). Models are linear mixed effect models (LME), generalized estimating 
equations (GEE), and regression on difference between two epigenetic age (EA) measures (Δ aging). Time variables are chronological age (Age), 
years between measures (Years), number of measure (Timepoint, i.e., 1, 2), and factorized measure (Timefactor, i.e., F07, F15). Models contained EA 
measures derived from the Horvath clock [3]. All models were corrected for cell-type proportion, while models estimating the effect of birthweight 
additionally account for biological sex
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the accuracy and precision of effect estimates. In simu-
lations, including chronological age as the time variable 
in an LME model or GEE led to the highest number of 
correct fixed effect and interaction effect estimates. 
Hence, models accounting for chronological age also pro-
duced the most robust results in our real-world analy-
sis of biological sex and birthweight. When estimating 
interaction effects, i.e., the accumulating effect that an 
exposure has on the pace of longitudinal EA, models 
including timepoint or categorical time had the high-
est number of incorrect effect size estimates (inflated 
or deflated) in simulations. We observed a difference of 
similar magnitude in interaction effect estimates in both 
real-world analyses compared to estimates from models 
using chronological age. Including years between meas-
ures or categorical time led to > 60% inflated fixed effect 
estimates and narrow confidence intervals in our binary 
exposure simulation. The resulting bias led to what 
appears like a false positive finding in the real-world anal-
ysis of sex.

Application examples: epidemiological conclusion
The two application examples not only lend support to 
our simulation findings, but also yield several novel epi-
demiological findings. First, our study suggests that on 
average, individuals assigned male at birth have higher 
GrimAge than individuals assigned female at birth (2.83 
additional years of EA, 95% CI 2.41, 3.26). However, indi-
viduals assigned male at birth showed a decelerated rate 
of GrimAge over the time observed. More specifically, 
individuals assigned male at birth showed 0.08 years EA 
decrease per year of life on average (95% CI 0.05–0.11 
decrease per year), compared to individuals assigned 
female at birth. Both effects remained consistent and 
comparable in magnitude when using EA estimates from 
the PC GrimAge clock. Biological aging studies focusing 
on other molecular biomarkers to investigate sex-specific 
differences support the lower baseline aging in women 
[53, 54]. Although cross-sectional studies across different 
age groups, ancestries, and epigenetic clocks have iden-
tified an association between biological sex and EA [34, 
55, 56], no prior study, to our knowledge, has shown that 
the effect changes longitudinally. While an age interac-
tion effect was detected with Horvath’s clock, it did not 
remain consistent when using its PC version. The dif-
ferences in results between these clocks are likely due 
to their conceptual distinctions: the Horvath clock is 
designed to best predict chronological age, whereas the 
GrimAge clock is trained to predict health outcomes and 
lifespan. The variations in effect direction and magnitude 
observed across different clocks in our analysis high-
light the importance of carefully selecting a clock that is 

appropriate for the specific study design and population 
before conducting the analysis [57].

Second, our results suggest a positive association 
between birthweight and longitudinal EA based on 
Horvath EA measures (1.08 additional years of EA per 
increase in kg birthweight, 95% CI 0.48, 1.69), as well as 
a negative birthweight/age interaction effect over time 
(− 0.09 years decrease in EA per year per increase in kg 
birthweight, 95% CI − 0.14, − 0.04). These results indi-
cate that children born with higher birthweight have 
higher EA on average, while their pace of EA appears to 
slow down over the period measured, compared to chil-
dren born with lower birthweight. However, the pattern 
does not remain consistent when using EA estimates 
from the PC Horvath clock. Results from models using 
EA estimates from PC GrimAge indicate lower baseline 
EA for individuals with higher birthweight, which aligns 
with other studies that have examined the relationship 
between birthweight and EA, and generally report that 
lower birthweight is associated with higher EA [58–61]. 
However, Simpkin et al. [34] found that birthweight was 
positively associated with EA at age 7, but negatively 
associated at age 17. Most studies analyzed data cross-
sectionally, included dichotomized birthweight rather 
than continuous, and were based on EA measures in 
adult cohorts. Furthermore, associations were predomi-
nantly identified in individuals assigned male at birth [59, 
60] or in male-dominated cohorts [58]. Future large-scale 
studies are needed to clarify longitudinal relationships 
and explore the effect birthweight has on EA throughout 
the life course.

Recommendations for future studies
As we recognize the importance of methodological 
choices, this section offers recommendations and guid-
ance for researchers embarking on similar investigative 
paths. We highly recommend the use of LME models or 
GEE, including chronological age as the time variable, 
for studies working with repeated EA measures. These 
approaches improve precision and accuracy of fixed 
and interaction effect estimates. Alternatively, research 
evaluating interaction effects based on only two within-
person measures can yield similar validity by using linear 
regression on age-adjusted Δ aging. We acknowledge that 
due to limited data collection or access, it is not always 
possible to implement the best-possible model. In cases 
where chronological age is not accessible and the cohort 
under study was measured in synchronized waves, we 
recommend the use of numerical timepoint to get more 
accurate fixed effect estimates. The effect size might 
appear slightly attenuated compared to models includ-
ing age but is less susceptible to false positives. In stud-
ies aimed at exploring interaction effects, it is advisable 
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to opt for years between measures instead of timepoint 
in the absence of chronological age. Factorized categori-
cal time should be avoided due to its potential to intro-
duce bias in fixed effect and interaction effect estimates, 
especially in studies incorporating more than two within-
person measurements. When EA itself is not the pre-
ferred outcome, we strongly recommend using EAA, the 
residual from regressing epigenetic age on chronological 
age, instead of difference scores (EA minus chronologi-
cal age). Residualizing outcome variables is a well-estab-
lished practice in epigenetics epidemiology [62–64] 
to capture part of the EA estimate that is not associ-
ated with age, making it more informative about factors 
beyond age that may impact biological aging. Although 
the underlying interpretation of results remains consist-
ent, the presentation differs. An effect on longitudinal 
EA indicates how a factor influences the overall biologi-
cal age estimate over time, while an effect on longitudi-
nal EAA reflects how this factor impacts the deviation 
between age and EA over time.

Strengths and limitations
The main strength of our study lies in its comprehensive 
evaluation of longitudinal EA models, thereby offering 
valuable insight to direct future research toward more 
reliable results. The increasing accessibility of repeated 
DNAm measures and growing interest in comprehending 
the effects of exposures on EA and its subsequent influ-
ence on health have shown the necessity for guidelines to 
address the issue robustly. A further strength of our work 
is the incorporation of both simulation and application 
in two real-world examples, which support the credibil-
ity and applicability of our results. One limitation worth 
noting is that the real-world examples were modeled 
using EA measured at only two time points, which might 
have impacted the comprehensiveness of our epidemio-
logical findings. However, our simulation based on three 
repeated EA measures suggests results from models 
including age as time variable are consistent across dif-
ferent scopes of data. It also reflects the reality faced by 
many researchers, as most studies typically have access 
to only two measures. Second, we limited our methodo-
logical evaluation to common models and time variables 
found in recent literature [16–44] and excluded rare and 
simplistic approaches. While there are certainly various 
other methods available, we assume that our study has 
addressed the applications most pertinent to most epide-
miological studies. We furthermore limited our study to 
four epigenetic clocks, instead of evaluating all available 
options. The primary goal of this work is to explore the 
discrepancies that arise from using different methods to 
analyze associations with epigenetic age, independent of 

the specific clock employed. Our selection includes both 
first- and second-generation clocks, ranging from those 
designed to predict chronological age to those predict-
ing mortality risk, as well as their principal component 
versions, which are increasingly favored in longitudinal 
studies. The choice of an epigenetic clock is generally 
context-dependent, influenced by study design and avail-
able data [57]. Our work aims to provide methodologi-
cal guidance for researchers after they have selected the 
appropriate clock for their study.

Conclusions
In conclusion, our study presents a comprehensive evalu-
ation of various methods utilized in modeling exposure 
effects on EA over time. Through a combination of sim-
ulation and real-world analyses, we have demonstrated 
that the methodological decisions made in longitudinal 
EA modeling significantly impact the reliability of effect 
estimates. Findings highlight that LME models or GEE, 
using chronological age as the time variable, are the opti-
mal approach. Moreover, recognizing the constraints 
faced by some studies regarding data availability, we have 
provided practical recommendations to accommodate 
such limitations. Our thorough assessment serves as a 
valuable resource for guiding future epidemiological epi-
genetic aging research endeavors. By optimizing method-
ological approaches based on the insights from our study, 
researchers can enhance the depth and accuracy of their 
investigations, ultimately advancing our understanding of 
the complex interplay between exposures and epigenetic 
aging processes.
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