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ABSTRACT As the Internet of Things (IoT) landscape rapidly evolves, robust network security measures
are imperative. In particular, Intrusion Detection Systems play a very important role in the preservation of an
IoT environment frommalicious activities. This paper provides a comprehensive performance comparison of
various machine learning classifiers, including K-Nearest Neighbors, Gradient Boosting, XGBoost, Support
VectorMachines, RandomForests, Decision Trees, and Extremely Randomized Trees, for intrusion detection
in IoT networks. Comparative analysis shows that although all models did verywell, the ensemblemethods—
GB, XGBoost, RF, and ERT—constantly performed better than others in F1-Score, recall, accuracy, and
precision. Among them, ERT is turned out to be the most effective model for real-time attack detection on
IoT devices, with an accuracy of 99.7% besides excellent precision and recall. XGBoost and RF also turn out
to have high reliability and accuracy with F1-Scores of 0.95. These findings further underscore that ensemble
methods outperform in intrusion detection for IoT networks and, thus, offer important insights to improve
security within networks and protect critical IoT-based infrastructures from a variety of threats.

INDEX TERMS Accuracy, Internet of Things (IoT), intrusion detection systems (IDS), machine learning
classifiers.

I. INTRODUCTION
The IoT is believed to be an advanced evolution and a nat-
ural extension of the internet through the use of sensors
and machine-to-machine connections. Applications for it can
varyingly be found in such fields as smart cities, home energy
management, medical care, fitness, and classroom automated
processes [1]. There are three intertwined layers of the IoT
architecture: the perception layer, which includes devices and
sensors capturing data from the environment—for instance,
security cameras detecting motion; the network/transport
layer, which acts between devices and the cloud as an inter-
face, communicating with protocols such as Wi-Fi, Zigbee,
and MQTT to enable devices to send information back to
servers; and the application layer, using the data provided
from devices to give services and operations to users—for
instance, motion detection notifications from cameras to a
user’s mobile application via cloud services [2], [3].
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A study has said that the security risks in IoT are at risk
at each architectural layer: the perception layer—sensors and
devices may be infected with malicious code, eavesdropping,
and interference; network layer—attacks like spoofing, denial
of service, man-in-the-middle attacks, and routing infor-
mation manipulation; and at the application layer—viruses,
worms, and phishing attacks [4]. Privacy is also a major con-
cern, as many IoT devices lack robust authentication systems
due to resource constraints. Researchers have classified IoT
attacks into four categories: physical (when an attacker gains
physical proximity), software (exploiting vulnerabilities or
bugs), network (manipulating IoT networks to compromise
devices), and encryption (targeting weaknesses in crypto-
graphic protocols) [5].

The global prevalence of IoT cyber-attacks has escalated
alarmingly, with 77.9 million IoT malware attacks recorded
globally in just the first half of 2023, a 37% increase
compared to the same period in 2022. On average, 54%
of organizations worldwide faced nearly 60 attempted IoT
cyber-attacks per week in early 2023, translating to over
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3,000 attacks per organization in just two months, with the
education and research sector being themost targeted. Europe
experienced the highest number of weekly IoT attacks per
organization, followed by APAC and Latin America, while
80% of organizations reported at least one successful IoT
attack in the past year, with an average financial impact of
$330,602 per attack [6], [7]. The security risks at each layer
should be taken care of to make the IoT system operations
safe, reliable, maintaining user privacy, and preserving data
with service integrity. Security in IoT devices will need to
be based on a multi-faceted approach that develops strong
authentication mechanisms, encrypts the transferred data,
sets up advanced intrusion detection and prevention systems,
and increases awareness among users and organizations about
securing IoT devices and networks [8]. The security risks
associated with the IoT can be mitigated through proactive
security measures during the very beginning of the design of
products, establishment of a root of trust, and collaboration
across the ecosystem on secure software updates and total
cost of ownership considerations [9].
The IDS has become a crucial factor in computer security,

safeguarding systems against numerous attacks and vulnera-
bilities. The goal of IDS is to devise self-learning systems that
can generate and update signatures without prior knowledge.
In order for such deployed systems to be capable of finding
applications in real networking environments and executing
operations to enhance the security of a network, they should
ensure that the rate of false positives is low [10]. Intrusion
detection principally refers to the process of monitoring and
identifying the illegal use, exploitation, or even misuse of
a network by internal and external intruders; this should be
done in real-time. Intrusion detection is getting harder and
harder due to increased network connectivity, rapid techno-
logical advancement, and the availability of paid hackers.
IDSs are therefore crucial security systems that are made to
keep an eye out for, identify, and report any illegal activity
or policy infractions occurring within computer systems and
networks. However, because of the inaccurate identification
of IDS alarms, network managers encounter difficulties when
processing intrusion notifications. The issue of conventional
IDS relying on recognized patterns of attack has led to the
development of machine learning-based IDS. These systems
train on datasets to predict assaults via categorization, and
they learn from both normal and abnormal traffic. Although
several machine learning approaches have been effectively
employed as classifiers in IDS, they continue to encounter
obstacles like high false positive rates [11], [12].
In this study, we conduct a comprehensive evaluation of

machine learning classifiers for IDS, focusing specifically on
their applicability to IoT environments. We assess the perfor-
mance of various classifiers including K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), Decision Trees
(DT), Random Forests (RF), XGBoost (XGB), Gradient
Boosting (GB), and Extremely Randomized Trees (ERT).
Performance evaluation is conducted using key metrics such
as accuracy, precision, F1 score, and recall. This analysis

provides insights into the effectiveness of these classifiers in
detecting intrusions in IoT networks, aiding in the selection
of suitable algorithms for enhancing network security in IoT
environments.

We can summarize our main accomplishments as below.

• The proposed work deals with the challenge of attack
traffic classification in IoT environments, where the
unparalleled heterogeneity and dynamicity of IoT net-
works increase variety and quantity of associated
vulnerabilities.

• We utilize sophisticated machine learning models to
extract features from network input that has been shown
to be informative for classifying attack traffic.

• In this line, we adopt RT-IOT2022, which is a publicly
available dataset of attacks against IoT devices [13].
This will also help in making our experimental studies
repeatable.

• We present comprehensive empirical findings on
attack-traffic classification using DL techniques. The
classification performance is evaluated experimentally
by comparing them with existing classifiers.

• Our objective is to maximize the performance of
attack-traffic classification by assessing various design
options.

The proposed work can be structured as: Section II deals
with the latest findings in the respective field. Section III
provides a brief overview of classification algorithms.
Section IV elaborates more on the proposed experimental
layout. In Section V, the efficacy of the classifiers and related
statistical studies are dealt with. Finally, Section VI summa-
rizes the conclusions of the study.

II. MACHINE LEARNING BASED IDS
Research into machine learning during the last few decades
has equipped IDS with some very powerful tools. The current
research into the efficacy of ML strategies for IoT intrusion
identification is reviewed in this section, covering different
classifiers and their performance metrics.

The most recent article in the set presents a compara-
tive analysis of different machine learning techniques: SVM,
Artificial Neural Network, DT, Logistic Regression, and
KNN. For example, researchers used ToN-IoT and Bot-IoT
to test these methods [14]. Results presented by the authors
indicate that the neural network performed better than the
other models. The author applies the kernel extreme learning
machine not only in binary classification problems but also in
multiclass classification problems, such as classifying either
benign or malicious traffic flow, or specific types of attacks.
Two state-of-the-art datasets, N-BaIoT and UNSW-NB15,
are utilized during the process for the evaluation of effec-
tiveness in the proposed anomaly detection method. Results
show that the proposed approach improves the detection
performance to 99.4% in N-BaIoT and 98.64% in UNSW-
NB15, ensuring improvement in efficiency and accuracy of
detection [15].
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The authors used the famous NSL-KDD dataset in order
to reduce the computational overhead [16]. They adopted
the metaheuristic algorithms Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Differential Evolution
(DE) to find the optimal feature selection. For accurate clas-
sification of normal and attack classes based on selected
features, some supervised learning algorithms such as KNN
and DT were used.

Ahmad et al. propose a feature cluster based on the features
extracted from the UNSWNB15 dataset, like flow, Trans-
mission Control Protocol, and Message Queuing Telemetry
Transport [17]. The issues of overfitting, the constraint of
dimensions, and an imbalanced data set have been resolved.
The proposedmethod used supervisedmachine learning tech-
niques like SVM, RF, and ANN on the clusters. Employing
RF, the algorithm obtains 98.67% and 97.37% accuracy in
binary and multiclass classification, respectively. Classifier
accuracy of 96.96%, 91.4%, and 97.54% was obtained using
cluster-based methods using RF on flow and MQTT features,
TCP properties, and the best characteristics across the two
clusters. The Synthetic Minority Oversampling Technique
Tomek Link (SMOTE-TomekLink) algorithm combines ML
techniques in the authors’ intrusion detection approach [18].
An evaluation of 374,661 records from the Wireless Sen-
sor Network dataset (WSN-DS) was conducted to identify
the optimal model for intrusion detection in WSNs. The
proposed model achieved 99.78% accuracy in binary classifi-
cation scenarios, while in multiclass classification scenarios,
it achieved 99.92% accuracy. An IDS utilizing multiple
machine learning classifier techniques was evaluated in [19]
using the Message Queuing Telemetry Transport - Internet
of Things - Intrusion Detection System dataset (MQTT-
IoT-IDS2020) to identify multi-class intrusion attacks in
IoT environments. Results obtained from the base models
are 97.76% using KNN, 97.80% from SVM, 97.58% from
NB, 99.98% using RF, 99.98% from DT, and 97.58% from
Stochastic Gradient Descent (SGD).

The author proposes an Intrusion Detection System using
Deep Learning for IoT devices [20]. Four-layer totally con-
nected network architecture will help this intelligent system
to find malicious traffic that might attack connected IoT
devices. Since the proposed system is independent of the
communication protocols, the deployment complexities are
minimized. The intrusion detection had been reliably done in
the proposed system for both simulated and real intrusions,
and during the experimental performance analysis, it could
achieve an average accuracy of 93.74% in identifying various
attack types such as Blackhole, Distributed Denial of Ser-
vice, Opportunistic Service, Sinkhole, andWormhole attacks.
In [21] an IoT-based IDS using several machine learning
models and different feature extraction strategies has been
introduced. Specifically, it considers various feature extrac-
tors such as image filters and transfer learning algorithms
including DenseNet and VGG-16. The feature extraction
methods investigated were also used in combination with

several machine learning algorithms, including RF, KNN,
SVM, and others with stacked models. These results turned
out that the maximum accuracy of 98.3% was achieved by a
combination of VGG-16 and stacking.

The authors have proposed an IDS with the support of a
deep learning model called Pearson-Correlation Coefficient-
Convolutional Neural Networks for network anomaly detec-
tion [22]. The model conducted binary classification for
anomaly detection and multiclass classification for various
types of attacks. It was tested on three publicly available
datasets: NSL-KDD, CICIDS-2017, and IOTID20. First,
for performance evaluation, five different machine learning
models—Linear Discriminant Analysis, Logistic Regres-
sion, KNN, Classification & Regression Tree (CART), and
SVM—based on PCC were trained and tested. Among these,
the models produced from KNN and CART have given the
highest accuracies of 98%, 99%, and 98% on the three
datasets, respectively. Sharmila and Nagapadma [23]; pro-
vide a Quantized Autoencoder-based approach specifically
oriented to low-resource IoT devices for anomaly detection.
The paper describes the challenges posed to IoT by resource
limitations, with a focus on the RT-IoT2022 dataset. In this
regard, the QAEmethodology is feasibly applied with quanti-
zation techniques that reduce model complexity and resource
consumption without affecting detection accuracy [24]. They
used the SMOTE algorithm to check how different data pre-
treatment methods may influence the accuracy rate, handling
imbalanced data, data encoding, and data purification. The
results of the study prove how good the intelligent IDS is in
terms of attack identification.

Yaras et al used the datasets CICIoT2023 and TON_IoT
to train and test the model. One dimension CNN and another
dimension LSTM are applied to build a hybrid deep learn-
ing system [25]. Following the analysis, the ‘‘CICIoT2023’’
dataset displays an accuracy evaluation of 99.995% for
classification by binary and 99.96% for multiclassification.
A binary classification success rate of 98.75% is attained
in the ‘TON_IoT’ dataset. Based on an adaptive CNN-GRU
model, the researchers suggest a powerful deep learning
model called AttackNet for the identification and categoriza-
tion of various botnet attacks in the IIoT [26]. The model
performs exceptionally well, especially when applied to the
N_BaIoT dataset. Table 1 illustrates the summery of machine
learning based IoT intrusion detection from literature.

Various machine learning techniques are proposed over
different IoT and intrusion detection datasets. The per-
formance was varied with regard to the classification
types-binary and multi-class-as well as with respect to
datasets. Previous studies have employed various machine
learning techniques such as DT, RF, and SVM, and deep
learning approaches like LSTMs and CNNs on NSL-
KDD, IoTDevNet, and CICIDS-2017 datasets, among others.
Although the performance of different machine learning clas-
sifiers has been reported in the literature with respect to
IDS in IoT environments, it tends to reveal their potential
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TABLE 1. Overview of current ML based IDS for IoT.

performance in detecting malicious activity in IoT net-
works. Even though these methods look promising for binary
and multi-class classification, there is a gap in the liter-
ature regarding the thorough investigation of more recent
models-like ERT and state-of-the-art hybrid approaches-in
real-world IoT scenarios. Besides, the scalability of those
models and their performance on large and diverse IoT
datasets is yet to be well-explored. An imminent requirement
is for highly efficient and very accurate intrusion detection
techniques that could adapt to the dynamic nature of IoT
networks. The goal of this paper is to try to fill these gaps by
comparing the performance of several machine learning clas-
sifiers like KNN, XGBoost, and ERT, while simultaneously
recommending some ways in which IDS can be enhanced for
practical applications in the IoT context.

The motivation lies in identifying the best models for
security in IoT applications, taking into account the factors
of accuracy, precision, recall, and F1 score. This paper should
contribute to giving insights about the performance of classi-
fiers, which should give direction for the future development
of intrusion detection systems for IoT systems in offering
better protection against cyber-attacks.

III. THE PROPOSED IDS FRAMEWORK
The following section discusses our proposed solution, data-
set used, and ML algorithms employed to detect malicious
network traffic. The Fig. 1 below illustrates the steps involved
in this work. Our first step was to select a data-set called
RT-IOT2022, whose files are in ’.csv’ format. The ‘‘.csv’’
files had numerous problems, including an unbalanced data
collection, datatypes that weren’t compatible with the clas-
sification technique and a large number of missing or null
values. All of the above-mentioned issues were sorted out
at the data pre-processing step. After the cleansing of the
dataset, the next task was to develop separate clusters on the
network layers. These developed clusters have classification
algorithms applied to predict the network traffic to be mali-
cious or benign.

A. RT-IOT2022 DATASET
The RT-IoT2022 dataset was chosen for this study due to
its relevance and comprehensive representation of real-world
IoT environments. The RT-IoT2022 dataset is an exclusive
collection from a real-time IoT infrastructure [13]. It has
a rich source that contains most types of IoT devices and
cutting-edge network attack measures.

Unlike most other publicly available datasets, RT-IoT2022
includes IoT-scenario-specific attacks like DDoS, Blackhole,
and Sinkhole, which are very common in IoT networks [28].
This dataset, with simulated and real traffic data, is more
realistic and applicable compared to some of the earlier
datasets like NSL-KDD, which are highly generalized and
may not describe the distinct security challenges of IoT
devices. Consequently, this RT-IoT2022 dataset represents
more modern IoT protocols and architectures and thus
becomes a better choice for evaluating intrusion detection
systems in contemporary IoT environments. The high quality
and well-annotated dataset enabled us to be effective in our
analysis, while the IoT security features included therein
enabled us to test our security models effectively. With the
many forms of attack types and real-looking traffic pat-
terns, it considerably generalizes the model performance to
be much more accurate and practical to deploy in realistic
settings. This dataset further gives an exact characterization
of the real-world setting by holding both abnormal and nor-
mal network activities. It contains emulated attack vectors
of Brute-Force SSH attacks, DDoS attacks with Hping and
Slowloris, and patterns of Nmap, along with IoT devices data
like ThingSpeak-LED, Wipro-Bulb, and MQTT-Temp. RT-
IoT 2022 makes use of a Flowmeter plugin and the network
monitoring tool Zeek for capturing accurate bidirectional
attributes of network flows. The dataset is divided into two
parts, separated by a router: IoT offender endpoints and target
endpoints. The network traffic is collected using Wireshark
via a router and then converted into a PCAP file. The target
organization consists of 5 departments with 420 machines
and 30 servers. The attacker’s infrastructure was composed of
50 machines. Besides 80 features extracted from the captured
traffic, the dataset includes system logs and network traffic
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FIGURE 1. Proposed framework for detection of cyber-attacks from IoT networks.

FIGURE 2. RT-IOT2022 dataset classes.

samples of each machine. This dataset enables the better
performance of IDS and promotes the development of robust,
flexible security solutions for real-time Internet of Things
networks. In total, there are nine different attack scenarios,
as shown in Fig. 2. The number of instances in each class is
shown in Table 2.

B. DATA PREPROCESSING FOR THE RT-IOT2022 DATASET
C. Data preprocessing is an important phase of preparation of
the RT-IOT2020 dataset for IDS based on machine learning.
This section represents procedures under which the dataset
is supposed to be cleaned, optimized, and made ready for
use with several machine learning methodologies. During the
preprocessing of RT-IOT2022, comprehensive analysis led
to removing non-contributive features in order to make the

TABLE 2. Number of instances of each class.

dataset lean, which would help improve the performance of
intrusion detection models and avoid over fitting. The dataset
was checked for missing values and, depending on the degree
of absence, rows or columns with the data were removed
or imputed with techniques such as mean, median, mode,
or KNN imputation. The imputation methods are selected
according to the nature of missing data and the characteristics
of the IoT dataset. More precisely, for continuous features,
mean imputation was chosen to preserve the distribution
of the data since this helps retain the central tendency and
diminishes the impact of missing values on overall model
performance. In the case of skewed data, median imputation
was done to reduce the effect of outliers by not allowing
extreme values to bias the results. For categorical variables,
mode imputation was selected in order to retain most of
the frequency; hence, the retention of patterns would be
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ensured. Such feature compatibility checks ensured that all
variables were suitable for the machine learning algorithm.
This involved transformations like one-hot encoding for cat-
egorical data. These imputation techniques have been tested
during the preliminary experiments concerning their impact
on the performance of classifiers. Our analysis indicated
that these methods consistently yield better model accuracy
and stability compared with other more sophisticated impu-
tation techniques like K-Nearest Neighbors imputation or
iterative imputation. Moreover, these techniques had lower
computational overhead and were very well-suited for real-
time IoT applications. In addition, normalization and scaling
methods were applied to get all features into a similar range,
which is very important for distance-sensitive algorithms.
The whole preprocessing regime will ensure consistency in
data formatting, enabling seamless integration with the mod-
els without further modifications. Therefore, it provides such
comprehensive preparation of the dataset that it minimizes the
computational complexity and improves the efficiency and
accuracy of models developed for intrusion detection.

C. CLASSIFICATION MODELS
Machine learning techniques are generally used as classifiers
for IDS and are prone to many challenges like high false
positive rates. In this paper, keeping the suitability of these
machine learning classifiers for IoT environments in view,
we evaluate the machine learning classifiers designed for
IDS. This paper evaluates several types of classifiers: KNN,
GB, EGB, DT, RF, and ERT. In the case of this heteroge-
neous set of models, we present how effective these models
could turn out to be for categorizing an IoT-based attack.
We investigate the different strengths and limitations of each
model against various real-time IoT datasets, which help us
emphasize exactly which one can be the most appropriate
approach for categorizing IoT attacks. Our research puts
forward insight into how to select the most appropriate model
to detect and classify diverse IoT threats effectively, hence
significantly advancing the security of IoT.

1) K-NEAREST NEIGHBORS (KNN)
KNN represents one of the most efficient and popular deep
learning methods for classification problems, including intru-
sion detection in IoT networks. The KNN algorithm works
well with high-dimensional data, mostly seen in IoT envi-
ronments where multiple features such as packet size, traffic
type, or behavior of devices are analyzed. It requires mini-
mum assumptions regarding the distribution of data, hence
making it flexible in dynamic IoT systems [29]. Besides,
since it is non-parametric, KNNwould be able to pick up new
attack patterns or rare attack patterns relying on proximity
instead of training or predefined rules, hence highly suitable
for real-time IoT attack detection. This makes it a very good
choice for IoT attack detection due to its simplicity, inter-
pretability, and the ability to handle multi-class classification
problems [30].

KNN can be applied in the domain of IoT intrusion detec-
tion to classify the pattern of network traffic as either normal
or malicious. In essence, the algorithm calculates the dis-
tances between a new instance—in this case, a network traffic
sample—and all instances in the training dataset using met-
rics such as Euclidean or Manhattan distance [11], [31]. The
title for the class of the newly created instance is then chosen
with the k nearest neighbors of the feature space casting
their maximum opinion. KNN has the capability to detect
different forms of IoT attacks and attempts of data leakage by
efficiently differentiating attack and normal traffic patterns
through the accurate selection of the number of k and the
optimization of the distance parameter. Further, KNN can
handle multi-class classification, thus identifying the exact
attack types and giving very good insights to the security
analyst for mitigation strategies.

2) SUPPORT VECTOR MACHINE (SVM)
SVM aims at building a model that can predict the target
values of test datasets according to its property using a
training dataset. In its entirety, SVM uses a subset of the
training points, making it unique in memory economy. But
its performance could be affected if used on noisy datasets
with overlapping classes. Applications of SVM can be found
in banks, IDSs, image processing, and text classification.
Employing an SVM is easier compared to a neural net-
work. SVM also performs very well in high-dimensional
spaces [32]. The SVM is suitable for detecting complex attack
patterns in IoT networks, since it can handle both linear and
nonlinear relationships using kernel functions.

Due to the ability to handle high-dimensional data and
also to manage nonlinear relationships, SVM is suitable
for IoT networks in identifying abnormal activities with a
security threat. The features extracted from IoT data using
SVM-based IDS will find the suspicious activity with high
accuracy, thereby improving the security of the IoT ecosys-
tem against cyberattacks [33].

3) DECISION TREE (DT)
A DT is a tree with leaf nodes that represent categories and
inside nodes that can be interpreted as tests (of the patterns in
the data). These tests have been refined via the tree to obtain
the appropriate output for the input pattern. Decision tree
algorithms apply and are useful in a broad spectrum of indus-
tries. One of the main advantages of DT algorithms is their
interpretability and simplicity, turning them into an attractive
solution for intrusion detection in IoT environments [34],
[35]. Since the algorithm is capable of handling categorical
and numerical data with relatively low computational cost,
it will be an appropriate fit for IoT real-time environments
where attacks have to be detected with speed. Since themodel
is more transparent, feature analysis can be more easily done
in order to provide an insight into what contributes to an
attack, which could be of good value when trying to deduce
the nature of the threats.
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The DT model employs unusual traffic volume, failed
authentication attempts, and unexpected data transmission
to identify a family of IoT attacks: DDoS, brute force, and
malware-based attacks. This model delivers an interpretable
and systematic solution for real-time attack detection in IoT,
with high accuracy in distinguishing normal activities from
malicious ones; thus, it is practically serviceable for the
improvement of security in IoT environments.

4) GRADIENT BOOSTING(GB)
GB works in a systematic way, combining weak learners to
increase the accuracy of prediction. It functions quite well
on tasks like classification and regression, big data sets man-
agement, prevention of overfitting, or complex connections
identification in data [36]. Due to this, an ensemble machine
learning technique like GB has become a potential option for
detecting IoT attacks in real-time. The paper investigates the
applicability of GB in the identification of malicious activ-
ities over IoT networks, utilizing its capability in building
robust predictive models from weak learners. GB improves
the performance through iterative refinement and therefore
offers great advantages in terms of accuracy and speed, both
of which are important in maintaining integrity related to
security in IoT systems [37].

IoT generates a vast amount of data with diverse fea-
tures; hence, Gradient Boosting would seem to be the better
technique for detecting patterns in malicious behavior. Fur-
thermore, the algorithm considered has been flexible and
efficient in tasks like classification and regression. This
makes it suitable for real-time attack detection. Results indi-
cated that GB increased the accuracy of detection while
reducing the false positive rates, hence providing a reliable
and responsive security framework.

5) EXTREME GRADIENT BOOSTING (XGB)
XGBoost is a very efficient and scalable implementation of
the gradient boosting algorithm, which has recently received
considerable popularity in a variety of machine learning
tasks; for example, intrusion detection in IoT networks [38].
On the other hand, XGBoost represents another ensemble
learning technique that combines multiple weak learners into
a strong predictive model. This framework relies on gradient
boosting, whereby subsequent trees correct mistakes of the
former to iteratively come up with better model performance.
In the detection of IoT attacks in real-time, XGBoost has a
number of advantages. First, the high-dimensional and sparse
data represent the varied features found in IoT network traf-
fic, which the algorithm can very well process. Paralleling
capabilities and more efficient algorithms within XGBoost
allow for efficient training and prediction, thereby empow-
ering real-time analysis of network flows and enabling early
detection of a potential attack [39].

It can be trained on labeled datasets of IoT network traffic,
where each instance will represent a network flow or packet,
including the features such as Ports, Source & Destination

IP Addresses, Protocols, Payload Characteristics, and Time-
based Features. XGBoost builds up an ensemble of decision
trees, wherein each decision tree has focused parts of the
data, thus contributing to the final classification decision.
By summing up these tree outputs, XGBoost can effectively
tell about normal and attack communication structures, there-
fore enabling the instances to be identified immediately for
several IoT attacks. XGBoost has emerged as one of the
popular choices for IoT attack detection because it is capable
of handling big datasets and complex relationships, which are
part of the IoT environment. This algorithm, with its extraor-
dinary ability to reduce overfitting and handle noisy data with
ease, will serve perfectly for detecting unseen patterns in
attack behaviors while maintaining reliability and accuracy
in spotting cyber threats to IoT systems. Feature importance
ranking further helps in prioritizing factors of relevance to
attack detection, enhancing interpretability in security-related
applications.

Our findings provide a view on the real applicability of
XGB in real-time attack detection in IoT devices and are
of significant importance to practitioners in the industry and
cybersecurity professionals seeking proactive measures to
predict cyber risks in an era of interconnected IoT devices.

6) RANDOM FOREST (RF)
RF is an ensemble learning method in which many differ-
ent decision tree structures are made during training and
the average of their prediction is returned for regression
problems or mode of classes in classification. It has low
tuning requirements on hyperparameters, resilience, and is
high in performance under high-dimensional data [40]. RF is
a powerful, multi-utility, and ensemble learning method that
got considerable attention for real-time attack detection. The
method creates several decision trees during training and
returns the preferred method of the classes for problems in
categorization. RF reduces overfitting through an aggregation
of predictions from various trees, ensuring generalization
with improved accuracy. In this regard, the current study has
exploited the ensemble learning capability of RF to classify
and detect different types of attacks efficiently and at a very
fast speed that can maintain the integrity and security of IoT
networks [41].

The RF is capable of handling large and high-dimensional
datasets with much accuracy. It makes multiple decision trees
out of random subsets of the data and makes its predictions
by combining those trees for improved overall accuracy,
reducing overfitting [42]. It provides an excellent result in
complex patterns of IoT attack detection. It also included
feature importance with RF on the key predictors of attacks
and it is scalable to handle massive data from IoT devices.
Results show its robustness and efficiency: it can work in
real time to give immediate alerts and mitigation strategies.
Implementation of RF in IoT security frameworks in RT-
IoT2022 underlines the potential for improving resilience and
reliability against evolving cyber threats in IoT systems.

VOLUME 13, 2025 8381



N. U. Sama et al.: Cutting-Edge Intrusion Detection in IoT Networks: A Focus on Ensemble Models

7) EXTREMELY RANDOMIZED TREES (ETC)
ERT is another ensemble method of learning, much like
Random Forest. In contrast with Random Forest, which picks
the best split based on a subset of features, ERT randomly
selects splits from the complete feature space. This increased
randomness can lead to faster training times and perhaps
improved generalization effectiveness, especially for noisy
datasets. ERT can handle high-dimensional data quite well
and are resistant to overfitting [43]. ERT, being a cutting-
edge ensemble learning technique, has already revealed great
potential in the detection of RT-IoT attacks as of RT-IoT2022.
Rather than being much like the traditional decision tree
algorithms, ERT adds more randomness into this by ran-
domly selecting the cut points for each feature while splitting
the nodes. This makes it so that the model can generate a
variety of trees independently, ensuring its robustness and
generalizing ability. In the domain of IoT attack detection,
ERT efficiently deals with high dimensionality and hetero-
geneity enabling it to identify complex patterns and subtle
anomalies, thus giving cues to potential security threats. Its
ability to process large volumes of data quickly makes it quite
suitable for real-time applications where timely detection is
important [44].

In the case of RT-IoT2022, it showed effectiveness with
real-time IoT attack detection by providing higher accuracy
and speed in malicious activity identification. The model,
trained on different varieties of normal and attack traffic
datasets. As there are multiple random splits per feature, this
will significantly reduce variance without increasing bias,
which is critical to improve detection rates in noisy and
dynamic IoT environments. Moreover, handling missing data
and resistance to overfitting make it quite reliable in real-
world scenarios. In IoT attack detection, ERT is preferred due
to its efficiency in handling large-sized datasets, computa-
tional speed, and good generalization across various attack
types for real-time security applications. ERT deployment
inside IoT security frameworks increases the intrinsic defense
mechanism within them and provides a scalable and effec-
tive solution to counteract the rapidly changing landscape of
IoT-based cyber threats.

IV. RESULTS AND DISCUSSION
In this section, we give the details of our experimental set-
ting, including the models and their parameters, followed by
datasets. We will specify what settings and configurations
have been used in our experiments to be clear and reliable
about the presentation. Afterward, we are going to present
the results for each model, accompanied by a comparative
analysis between them and pointing out some key findings
and insight takeaways from the experimental data.

A. EXPERIMENTAL SETUP
As shown in table 3 for each model, we tried to get an optimal
performance for accuracy, F1-score, precision, and recall.
Regarding KNN, the best performance was obtained by set-
ting the number of neighbors to 5, the Euclidean distance, and

TABLE 3. Experimental parameters for machine learning models.

uniform weighting. SVM used the RBF kernel with a regular-
ization parameter C of 1.0 and a gamma coefficient ‘scale’.
The ‘gini’ criterion was used in node splitting for DT. Also,
in GB, 100 estimators were set, the learning rate was 0.1, and
the subsample fraction taken was 1.0. In XGBoost, similarly,
100 boosting rounds, a 0.1 learning rate, and a binary logistic
objective function were performed for classification.

The RF used 100 trees with the ‘gini’ criterion, enabling
bootstrap sampling. Finally, the best-performingmodel, ERT,
used 100 trees with the ‘gini’ criterion but without bootstrap
sampling.

These settings helped to ensure that ensemble methods,
such as GB, XGBoost, RF, and ERT, always outperform
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the individual models, and the ERT attains the maximum
accuracy and reliability in attack detection over IoT networks.

B. EVALUATION METRICS
In this section, we evaluate the proposed models and their
outcomes. First, accuracy (Ac) measures the proportion
of correctly classified network traffic. It is computed by
Eq.1, which represents the total number of correctly labeled
instances divided by that of the entire dataset. However, high
accuracy can sometimes be deceiving, since most datasets are
imbalanced, with one class holding a majority, such as benign
traffic, dominating the minority classes, making malicious
activity obscure to detect. Precision (Pr) Eq.2, measures how
many of the true positive instances are among all positive
predictions, hence how accurate the model really is at making
positive predictions. Recall (Rec) is a measure of the propor-
tion of actual positives that were correctly identified by the
model; it is calculated by Eq. (3) and describes how good the
model is at capturing all relevant instances.

The F1-score, given by Eq. (4), is the harmonic mean of
precision and recall. It provides a balanced measure of both
and is therefore more useful in the case of class imbalance.
A high F1 score means that a model has high precision and
high recall, meaning classifying malicious activity correctly
while minimizing false alarms. These metrics will help us
get full knowledge of the models’ performance to ensure that
the results are reliable and informative. We can then com-
prehensively check the effectiveness of the proposed models
for real-time IoT attack detection using this multifaceted
approach in evaluation.

Ac = (PT + NT )/(PT + NT + PF + NF ) (1)

Pr = PT /(PT + PF ) (2)

Rec = PT /(PT + NF ) (3)

F1S = 2 ∗ (Pr ∗ Rec)/(Pr + Rec) (4)

The performance of a model can be assessed using the
values provided by the confusion matrix. This matrix reports
the number of True Positives (PT ), False Positives (PF ), True
Negatives (NT ), and False Negatives (NF ) for the predicted
classes.

• PT are cases correctly predicted as positives
• PF are cases incorrectly predicted as positives
• NT are cases correctly predicted as negatives
• NF are cases incorrectly predicted as negatives
All of these four domains compute performance met-

rics, including accuracy, recall, precision, and the F1-score.
With these measures in place, researchers can now draw
well-informed conclusions about models’ applicability and
dependability for the intended purposes, hence improving the
results.

C. EFFECTIVENESS OF CLASSIFICATION MODELS
Several models for classification were trained and validated
using the RT-IOT2022 dataset. The RT-IOT2022 dataset
contains a wide variety of IoT network traffic data that

involves benign and malicious activities. To make the anal-
ysis strong and reliable, this dataset has been divided into
two sub-datasets: 80% for the training of the models and
20% for testing and validation purposes. Important features
required for intrusion detection were extracted from packet
flow characteristics, connection behaviors, and attack pat-
terns by preprocessing the training data. For a fair comparison
among different models, all the techniques were applied using
constant-sized training data.

This division allowed us to optimize the hyperparameters
of each classifier while ensuring that the models could gener-
alize to unseen data. In particular, the larger training set really
benefited the ensemblemethods, GB,XGBoost, RF, and ERT,
since these algorithms had more data to learn from, yielding
quite accurate and reliable performances. This helped these
models capture the complex attack signatures and network
behaviors, hence their superior F1-Scores, recall, accuracy,
and precision when compared to other techniques. The results
also reaffirm the need to use a sufficiently large and rep-
resentative training set in an effort toward improvement of
detection capability ofmachine learningmodels for IoT intru-
sion detection. Table 4 compares machine learning models
using F1-Score, accuracy, recall, and precision for the detec-
tion and classification of data. The KNN model achieves
an accuracy of 99.4% with balanced precision and recall,
indicating that it works fine in general but misses a few pos-
itive cases. The SVM shows very good precision, 0.97, with
lower recall at 0.88. Its overall F1-Score is therefore 0.92,
showing it misses more positive instances. The DT model
has accuracy a little higher, 99.5%, and hence delivers a very
good performance with balanced metrics. While both GB
and XGBoost end with an accuracy of 99.6%, this time, too,
XGBoost outperforms GB in terms of precision and recall,
which give an F1-Score of 0.95. RF did very near toXGBoost,
underpinning the reliability of the results. The ERT model
was ranked highest with the best accuracy at 99.7% and very
good precision and recall for a lead F1-Score of 0.95, making
this model most effective among the comparative models.

Overall, while all models perform well, ERT, XGBoost,
and RF exhibit the highest reliability and accuracy. These
results suggest that ensemble methods (GB, XGB, RF, ERT)
generally perform better in terms of F1 score, precision, and
recall, making them highly reliable for real-time IoT attack

TABLE 4. Extensive effectiveness analysis of proposed ID models.
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detection. The confusionmatrices generated by the IDmodels
are illustrated in Figures 3 to 9.

FIGURE 3. Multi-class evaluation confusion matrix of KNN.

FIGURE 4. Multi-class evaluation confusion matrix of SVM.

The confusion matrix for the KNN classifier, which can
be seen in Fig. 3, indicates a strong predictive performance
for specific classes. Notably, it correctly predicted 18,897
instances of class 2 and 1,566 instances of class 10. Nonethe-
less, the matrix also points out particular misclassification
areas; for example, 29 instances of class 0 were inaccu-
rately classified as class 10. Moreover, the matrix identifies
a clear disparity in class distribution, with classes 5 and 11
having significantly fewer instances. As depicted in Fig. 4,
the SVM demonstrates high accuracy for specific classes,
notably class 2 with 18,897 accurate predictions and class 10
with 1,559 accurate predictions. Nevertheless, the matrix also
highlights significant misclassifications, such as 46 cases
where class 0 was incorrectly identified as class 10 and 26

FIGURE 5. Multi-class evaluation confusion matrix of DT.

FIGURE 6. Multi-class evaluation confusion matrix of GB.

cases where class 1 was misclassified as class 10. Further-
more, the matrix indicates some class imbalance, particularly
evident in classes 1 and 11, which have fewer instances
compared to others.

The DT classifier demonstrates strong performance in par-
ticular classes as depicted in Fig. 5, especially in class 2 with
18,897 accurate predictions and class 10 with 1,587 accurate
predictions. However, there are clear instances of misclas-
sifications, such as 13 cases of class 0 being incorrectly
predicted as class 10 and 15 cases of class 1 being predicted
as class 10. The GB classifier, as shown in Fig. 6, shows
high accuracy for specific classes, particularly class 2 with
18,897 correct predictions and class 10 with 1,590 correct
predictions. Despite these achievements, some misclassifi-
cations are evident, including 12 instances of class 0 being
misclassified as class 10 and 10 instances of class 1 being
misclassified as class 10.
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FIGURE 7. Multi-class evaluation confusion matrix of XGB.

FIGURE 8. Multi-class evaluation confusion matrix of RF.

In the analysis, the XGB classifier, as shown in Fig.7,
demonstrates high accuracy for specific classes, particularly
class 2 with 18,897 correct predictions and class 10 with
1,598 correct predictions. However, it also exhibits notable
misclassifications, such as 9 instances of class 0 being incor-
rectly predicted as class 10 and 13 instances of class 1 mis-
classified as class 10. The analysis also highlights class
imbalance, with certain classes like 1 and 11 having signif-
icantly fewer samples. On the other hand, the RF classifier,
depicted in Fig. 8, indicates strong performance in predicting
various classes, particularly class 2 with 18,897 correct pre-
dictions and class 10with 1,591 correct predictions. However,
the matrix also highlights certain misclassifications, such as
6 instances of class 0 being misclassified as class 10 and
12 instances of class 1 also being misclassified as class 10.
ERT classifier, depicted in Fig. 9, demonstrates high accu-
racy in predicting specific classes, particularly class 2 with

FIGURE 9. Multi-class evaluation confusion matrix of ERT.

18,897 correct predictions and class 10 with 1,597 correct
predictions. Nevertheless, there are numerous instances of
misidentification. For example, 6 occurrences of category 0
were mistakenly identified as category 10, and 11 instances
of category 1 were incorrectly categorized as category 10.

These findings indicate areas for enhancing the classifier,
such as improving the model’s ability to handle less common
categories and refining the algorithm to minimize specific
types of prediction mistakes, ultimately leading to an overall
improvement in classification performance.

The figure 10 to 16 shows the Pr-Rec curves for DT, ERT,
GB, KNN, SVM, RF, and XGB, which provides insight into
the model capability of class discrimination. Namely, ERT,
RF, and XGB have AP scores of almost 1.00 or 1.00 on most
classes. However, class 5 emerged as a difficult class from
all models, because their AP scores, especially in DT, GB,
and KNN, record significantly lower AP scores, which shows
difficulties in maintaining high precision and recall for this
particular class. Contrarily, the classes 2, 3, 6, 7 are always
performing fine, nearly with an AP score close to perfection
in all models.

That among the different models compared here, the
ensemble models (ERT, RF, XGB) tend to perform better
compared to simple models, DT and KNN, on overall class-
wise precision and recall because these techniques can handle
class imbalance and complex decision boundaries well. Sim-
ilarly, SVMs are also quite very well performed for most
classes, excluding a small performance decrease for class 5.
The Pr-Rec curves point to the fact that while the models
do well on certain classes, their precision and recall for
under-performing classes (like class 5) may require addi-
tional techniques such as more advanced feature engineering
or finer class-balancing strategies. Altogether, these figures
underpin the power of ensemble methods to achieve high
performance across classes.

The ROC curves for all the different models-DT, ERT, GB,
KNN, RF, SVM, and XGB indicate high model performance,
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FIGURE 10. Precision-Recall curve for KNN.

FIGURE 11. Precision-Recall curve for SVM.

FIGURE 12. Precision-Recall curve for DT.

shown in figures 17 to 23. This is since most of these have a
high value for AUC. Across all classifiers, there are classes

FIGURE 13. Precision-Recall curve for RF.

FIGURE 14. Precision-Recall curve for GB.

whose AUC is around 1.00, indicating a very good separation
of instances between positive and negative. Class 5 is an
outlier, with its AUC being as poor as 0.50 in ERT and
0.66 in the GB classifier, which indicates poor recognition.
Also, the performance among ERT, RF, and XGB is almost
perfect in most classes, with several cases of AUC values
equal to 1.00, showing their power in handling both complex
decision boundaries and class imbalances. Among these non-
ensemble-based systems, the best performances of DT and
KNN are related to relatively lower AUC values on some
particular classes, such as class 5 and class 11. These allow
one to make a conclusion that most of the classifiers tend to
demonstrate outstanding results, but additional efforts should
be performed either on the feature engineering or on the class
rebalancing in segmentation of the worst performing classes.

Table 5 provides individual class performance metrics,
as evaluated by the ID models: precision, recall, and F1
score, showing the efficiency of the model in recognizing
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FIGURE 15. Precision-Recall curve for XGB.

FIGURE 16. Precision-Recall curve for ERT.

and differentiating with a high degree of accuracy against
different classes of intrusions.

KNN provides an accuracy of 99.4% with relatively lower
recall and F1-Score compared to other models like XGBoost
and ERT. KNN is sensitive to noisy data and computation-
ally expensive during the prediction phase, hence it cannot
perform well in real-time IoT networks for which rapid
detection is one of the most important factors. KNN also
relies highly on distance metrics, which do not work well in
high-dimensional space inherent in IoT intrusion data [45].
On the other hand, SVM runs well in precision with an
accuracy of 99.2%, though its recall value is lesser compared
to the ensemble methods. This is perhaps because SVM are
not good at handling large datasets with a lot of overlapping
classes and hence might miss the detection of some type
of intrusion, which in turn affects the recall. DT, though
simple, achieve an accuracy of 99.5%while keeping the other
metrics very high too. However, DT models tend to overfit

FIGURE 17. ROC curve for KNN.

FIGURE 18. ROC curve for SVM.

to complex data, and that could be a reason for the slight
underperformance in recall and F1-Score compared to the
ensemble models such as RF and ERT. Generally, all the
ensemble methods reduce overfitting by combining several
trees in order to give a better generalization. The perfor-
mances of GB, XGBoost, and RF are thus higher since they
are able to combine several weak learners to form a strong
classifier. The ERT model performed best, reaching accuracy
as high as 99.7%, with an F1-Score of 0.95. The strength of
ERT features in IoT network intrusion detection is due to
the random feature selection during tree splits, which helps
to avoid overfitting and strengthen its performance across
diverse attacks. The ensemble methods-GB, XGBoost, RF,
and ERT-outperform the rest because these models are more
robust and handle high dimensional, imbalanced data found
in intrusion detection tasks. Much of the improved perfor-
mance of these models is due to a good balance between bias
and variance; hence, they will be more deployable in real time
for IoT environments.
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FIGURE 19. ROC curve for DT.

FIGURE 20. ROC curve for RF.

D. COMPARATIVE ANALYSIS AND INSIGHTS
Table 6 contains the analysis carried out in relevance to
the effectiveness of various machine learning techniques for
intrusion detection in IoT environments. Baich et al. for-
malized an analysis of the performance of machine learning
models against the NSL-KDD dataset. In their study, the
NB and RF models showed high accuracy rates of 99.26%
and 99.13%, respectively, and can thus be considered as
effective models for this dataset. Saba et al. proposed a con-
volutional CNNmodel against the datasets NID and BoT-IoT
and obtained accuracy results of 9.51% on the NID dataset
and 92.85% on the BoT-IoT dataset. These findings may
support the importance of optimization in respect to each
dataset [46], [47]. Sharma et al. applied aDNNon theUNSW-
NB15 dataset and got an accuracy up to 91%, which proved
the efficiency of the model in complex network traffic envi-
ronments Keshk et al. applied LSTM models to different
datasets, achieving accuracies that ranged between 78.7% and

FIGURE 21. ROC curve for GB.

FIGURE 22. ROC curve for XGB.

87.3%. This work therefore underlined how a dataset should
be chosen appropriately for any recurrent neural network
evaluation. Chaganti et al. applied LSTM models on datasets
SDNIoT-focused (DS1, DS2) and obtained accuracy up to
97.1%, thereby showing its effectiveness in software-defined
network IoT contexts [48], [49], [50].

Bajpai et al. proposed an Intrusion Detection Framework
using Machine Learning, called IDFML, which recorded an
accuracy of 98.68% when tested against the IoTID20 dataset,
thus proving that a complete machine learning system is reli-
able for IoT intrusion detection. Arthi et al. combined DNN
with SVM on an SDN dataset and got an accuracy of 96.7%.
This showed the positive side of hybrid approaches that
include deep and traditional machine learning methods. They
further introduced quantum-inspired autoencoder models for
Sharmila and Nagapadma against the RT-IOT2022 dataset
with accuracy of 97.25% and 96.35%, respectively, proving
that quantum-inspired approaches are able to improve IDS
performance in IoT network security [23], [51], [52].
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TABLE 5. Detailed findings produced for every class by ID model.

FIGURE 23. ROC curve for ERT.

The evaluation of proposed study using the RT-IOT2022
dataset revealed that the models were very accurate, in par-
ticular, the KNN, SVM, DT, GB, and RF. Among them,
ERT topped 99.7% in accuracy, while ensemble techniques

like RF, GB, and XGB underline their strength and relia-
bility for detecting IoT attacks in real time. Our findings
suggested that among the various attack types, such as DoS,
DDoS, and malware-based attacks, ensemble methods-GB,
XGBoost, RF, and ERT-showed consistent superiority over
others. Of these, the ERT proved very effective in detecting
high-frequency attacks, such as DoS and DDoS, with an
accuracy of 99.7%, precision, and recall, thereby emerging
as the most effective model for real-time intrusion detection
in IoT environments. However, XGBoost and RF are also
very competitive among all types of attacks, standing out for
low-frequency attacks such as probing and reconnaissance,
with F1-scores up to 0.95.

The models were very robust in distinguishing between
normal and malicious traffic independently of attack com-
plexity or frequency. On the other side, simpler models
such as KNN and SVM, though performing decently well
for high-frequency attacks, showed somewhat lower recall
and precision for rare sophisticated attacks. This, therefore,
underlines the flexibility of ensemble methods particularly in
handling the diverse and evolving nature of attacks on IoT
networks.
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TABLE 6. Comparative analysis with alternative ID techniques for IoT
attacks.

An evaluation of the efficiency of different machine
learning approaches toward detecting intrusions in IoT envi-
ronments was investigated. In this research, experiments on a
number of models with a number of data sets have returned
some interesting findings: RF and NB are very effective
in detecting intrusions from the NSL-KDD data set, while
LSTM can provide very accurate results when working with
SDNIoT-focused datasets. Further, other ensemble learning
techniques, such as ERT, RF, GB, and XGB, exhibited better
performance in IoT real-time attack detection. The result
proves that ERTmaintains an accuracy of 99.7%. It is already
proven that ensemble learning mostly gives high accuracy,
hence the need to emphasize flexibility and efficiency when
applying it to intrusion detection in IoT. It also pointed out
that dataset-specific optimization could be quite important,
and hybrid and ensemble approaches might further improve
the performance of IDS. These insights provide valuable
guidance on choosing and exploiting machine learning mod-
els in order to provide more security for IoT networks.

It includes a specialized dataset, namely RT-IOT2022,
in this paper, which is tailored for an IoT environment.
This dataset will be able to provide a more representative
benchmark for IoT-specific attack detection compared to the
NSL-KDD, UNSW-NB15, and SDN datasets that were used
in prior research.

More importantly, the strategies of tuning, feature selec-
tion, and data preprocessing used in the present work

have been optimized with regard to unique features of
IoT networks, where low-powered devices are used, includ-
ing heterogeneous communication protocols. The proposed
models are real-time and effective, with least utilization of
resources to ensure a detection rate as high as 99.96%. Other
works using similar algorithms relate to more traditional net-
work environments or general intrusion detection tasks with
different datasets and targets of performance optimization.
This is where the contribution of this work to the field differs,
since it contributes in the realm of IoT-specific challenges and
real-time detection.

V. DISCUSSION
Similar to other studies, there are various threats to validity
that could affect the interpretation of the results and general-
izing them. One major internal threat would be the utilization
of a biased dataset for both training and testing machine
learning models; this does not reflect complete representative
diversity in attacks and network traffic as observed in real
IoT environments. This leads to overfitting, especially in
ensemble models such as RF and ERT, which learn specific
patterns in the training data but do poorly when exposed to
scenarios that are not encountered before. To handle this,
cross-validation was done, but even at that, this does not
avoid the risk. Externally, the results might not generalize to
every IoT environment due to varied devices, protocols, and
network architectures not really captured by the dataset. Also,
although GB and XGBoost showed promising performance
in this environment, these algorithms do have high compu-
tational requests that could seriously compromise scalability
on resource-constrained IoT devices. Construct validity in
this respect will also be a point of concern because the
operationalization of the attacks in the dataset may not truly
reflect the real-world constantly changing nature of threats,
and feature selection may have missed key attributes of IoT
traffic patterns.

Finally, questions of validity might arise when relying on
metrics that are related to accuracy, precision, and recall
but do not take into account more critical elements such as
false negatives or real-time detection capability. Whereas in
this work the ensemble methods outperformed other models,
context-specific considerations about network complexity
and the nature of the attacks in IoT environments may make
SVM or KNN a more fitting choice in their respective situ-
ations. Addressing these threats, any further research in this
respect would make IDS more applicable and reliable in case
of IoT networks.

The practical implications of findings from this study
indicate that the ensembles, in particular ERT, XGBoost,
and Random Forest, proposed here can add significant value
to the IoT security frameworks that already exist. These
models can be integrated into real-time monitoring sys-
tems that detect and respond to potential threats in IoT
networks with high precision. Deployment in the IoT envi-
ronment faces some challenges, pertaining to resource con-
straints on the IoT devices, scalability concerning huge and
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complex networks, and real-time processing. Various chal-
lenges identified could be addressed by optimizing the
models for resource efficiency, distributed processing facili-
tated through edge computing, and continuous model updates
to handle evolving threats. Additionally, practical considera-
tions like model adaptability and minimal latency are crucial
for seamless integration into diverse IoT applications.

VI. CONCLUSION
Efficient network security is a basic requirement of the
rapidly changing environment of IoT. One of the pivotal
concepts ensuring the security of the IoT environment against
a plethora of malicious activities includes IDS. This paper
presents the performance evaluation of various machine
learning classifiers—KNN, SVM, DT, GB, XGB, RF, and
ERT—for intrusion detection in IoT networks using the
RT-IoT2022 dataset. The comparative analysis shows that
ensemble models such as GB, XGBoost, RF, and ER perform
well across various metrics, including F1-Score, recall, accu-
racy, and precision. In particular, the ERT showed the highest
accuracy of 99.7% among all models, also coupled with very
good precision and recall, thus making ERT the most effec-
tive model for real-time IoT attack detection. Besides, both
XGBoost and RF are very reliable and accurate, returning an
F1-Score of 0.95 respectively.

These findings highlight the robustness and reliability of
ensemble methods in enhancing IoT security. The superior
performance of these models suggests their suitability for
deployment in real-time IoT IDS, contributing significantly
to the ongoing efforts to fortify IoT infrastructures against
evolving cyber threats. Results highlight the potential of these
approaches in enhancing the security of IoT-based infras-
tructures by developing intrusion detection solutions that are
scalable and efficient. Also, the importance of such insights is
not only in the high accuracy obtained but mostly in practical
implications regarding the protection of critical IoT networks,
increasingly targeted by sophisticated cyber threats. Thework
therefore provides important knowledge to the IoT security
landscape by reinforcing that ensemble methods can serve
as strong defensive mechanisms in providing a path toward
further advancements in securing IoT ecosystems.

In the future work, this method will be implemented on
real network traffic and measuring the performance. In future
predicting intruder’s next action can be done to protect IoT
environment proactively. This method is only limited to
detection approach, we can also add mitigation and preven-
tion measure to enhance its effectiveness.

For the future, hybrid models that combine the strengths
of different approaches for much higher detection accuracy
would be much better to investigate. The incorporation of
unsupervised learning methods, targeting anomaly detection,
will further improve the system’s ability in finding threats
that have not been considered before. Future deployments
shall include testing the models with real network traffic and,
where feasible, proactively predicting intruders’ next steps
towards better protection of IoT environments.
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