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ABSTRACT: This study examines the relationship between
chondroitin sulfate, proteinoids, and computational neuron models,
with a specific emphasis on the Izhikevich neuron model. We
investigate the effect of chondroitin sulfate-proteinoid complexes
on the behavior and dynamics of simulated neurons. Through the
use of computational simulations, we provide evidence that these
biomolecular components have the power to regulate the
responsiveness of neurons, the patterns of their firing, and the
ability of their synapses to change within the Izhikevich
architecture. The findings suggest that the interactions between
chondroitin sulfate and proteinoid cause notable alterations in the
dynamics of membrane potential and the timing of spikes. We
detect adjustments in the features of neuronal responses, such as
shifts in the thresholds for firing, alterations in spike frequency adaptation, and changes to bursting patterns. The findings indicate
that chondroitin sulfate and proteinoids may have a role in precisely adjusting neuronal information processing and network
behavior. This study offers valuable information about the complex connection between the many components of the extracellular
matrix, protein-based structures, and the functioning of neurons. In addition, our analysis of the proteinoid-chondroitine system
using game theory uncovers a significant Prisoner’s Dilemma scenario. The system’s inclination toward defection, due to the appeal
of cheating and the significant penalty for cooperation, with a mean voltage of −9.19 mV, indicates that defective behaviors may
prevail in the long term dynamics of these neuronal interactions.
KEYWORDS: chondroitin sulfate, proteinoids, Izhikevich neuron model, computational neuroscience, neuronal dynamics,
extracellular matrix, synaptic plasticity, the Prisoner’s dilemma

■ INTRODUCTION
Recent neuroscience research has focused on studying the
complex relationship between neuronal dynamics and extrac-
ellular matrix components. Two significant modulators of
neuronal behavior, chondroitin sulfate (CS) and proteinoids,
have emerged from this research. This study aims to understand
the complex interactions between CS-proteinoid mixtures and
neuronal oscillations, using the Izhikevich neuron model.1

Chondroitin sulfate is a glycosaminoglycan that is abundantly
found in the brain’s extracellular matrix.2−5 It plays important
role in neuroplasticity, neuroprotection, and signal trans-
duction.6 Proteinoids, which are thermal proteins formed from
the thermal polycondensation of mixtures of amino acids, have
been used as models for prebiotic protein-like molecules and
have demonstrated interesting electrical properties.7 The
combination of CS and proteinoids creates a unique
biomolecular environment that has the potential to significantly
influence neuronal behavior. The Izhikevich neuron model,
proposed by Eugene Izhikevich in 2003,8 offers a computation-
ally efficient and biologically realistic framework for simulating
different neural behaviors. The model is defined by a system of
two interconnected differential eqs (Figure 1B)
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where v represents the membrane potential, u is a recovery
variable, and I is the input current. The parameters a, b, c, and d
can be adjusted to produce different firing patterns. The
objective of our work is to examine the impact of CS-proteinoid
mixtures on several neuronal oscillation patterns in this model.
The combination of CS and proteinoids creates a unique
biomolecular environment that can potentially influence
neuronal behavior in profound ways (Figure 1A). These
patterns include:
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1. Accommodation: The firing rate gradually decreases in
response to continuous stimulus.9 Our hypothesis
suggests that interactions between CS and proteinoids
could potentially affect the rate of accommodation by
modifying the kinetics of ion channels (Figure 1C, left
panel).

2. Chattering: The phenomenon of recurrent episodes of
action potentials occurring in a repeated manner.10 CS-
proteinoid complexes may affect the frequency and length
of these bursts (Figure 1C, middle panel).

3. Induced excitability: Neuronal amplification is the
process by which a neuron becomes more readily
activated as a result of previous stimulation.11 We
investigate the potential impact of CS-proteinoid
mixtures on the threshold for induced excitability.

4. Mixed mode oscillations: The oscillatory patterns include
a combination of small and large amplitude oscillations.12

CS-proteinoid complexes interacting with neuronal
membranes may generate unique mixed mode patterns
(Figure 1C, right panel).

5. Phasic spiking: An firing pattern that is distinguished by a
solitary spike at the beginning of stimulus.13 We examine
the potential of CS-proteinoid mixtures to regulate the
shift from phasic to tonic firing patterns.

In order to represent these oscillations, we incorporate
modifications to the Izhikevich equations to take into account
the presence of CS-proteinoid mixtures.

= + + + +v
t

v v u I f
d
d

0.04 5 140 (CS, P)2
(3)

= +u
t

a bv u g
d
d

( ) (CS, P)
(4)

where f(CS, P) and g(CS, P) are functions representing the
influence of chondroitin sulfate (CS) and proteinoids (P) on
membrane potential and recovery dynamics, respectively.

Our study uses the Prisoner’s Dilemma (PD) framework14−17

to analyze the interactions between proteinoids and chondroitin
in our experimental system. The Prisoner’s Dilemma (PD) is a
crucial concept in game theory.18−20 It represents scenarios
where two individuals face the decision of cooperating or
defecting. The payoffs are designed in a way that mutual
cooperation leads to the most favorable outcome for both
parties. However, individuals are often encouraged to defect in
order to maximize their personal gains.15 This approach has
been extensively used to examine cooperative and competitive
behaviors in biological systems, ranging from microbial
communities to populations of cancer cells.21,22

Our objective is to gain insights into how CS-proteinoid
combinations can affect neuronal oscillations in various firing
modes by systematically adjusting the parameters of these
functions and analyzing the subsequent neuronal behaviors.
This research not only enhances our understanding of the
complex relationships between extracellular matrix components
and neuronal function, but also has implications for neuro-
degenerative disorders, where changes in CS composition have

Figure 1. Key concepts in CS-Proteinoid modulation of neuronal
dynamics. (A) Structure and interaction of chondroitin sulfate (CS)
and proteinoid. (B) Modified Izhikevich model equations incorporat-
ing CS-Proteinoid effects. (C) Examples of firing patterns modulated by
CS-Proteinoid mixtures: accommodation, chattering, and mixed mode
oscillations.

Figure 2.A schematic diagram illustrating the experimental setup used to perform electrochemical characterization of the CS-proteinoid complex. The
CS-proteinoid solution with different concentrations of chondroitin sulfate (CS) is contained in the middle container. Two needle electrodes, each
plated with platinum (Pt) and iridium (Ir) correspondingly, are placed at a distance of 10 mm from each other in the solution. An ADC data logger with
a high level of accuracy, capable of capturing voltage responses in the microvolt (μV) range, is used. Additionally, a heating block is employed to
regulate and monitor the temperature. A function generator generates stimuli using Izhikevich neuron models. The data acquisition PC gathers,
examines, and presents the system’s responses. This advanced configuration allows for the identification of small changes in voltage and enables a
thorough analysis of voltage responses in the CS-proteinoid system.
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been detected,23 and for the creation of innovative neuro-
engineering methods.24

■ MATERIALS AND METHODS
Synthesis of Chondroitin Sulfate-Proteinoid Mixture. The

chondroitin sulfate-proteinoid mixture was synthesized by combining
separate solutions of chondroitin sulfate and proteinoid. Four distinct
samples were prepared using varying amounts of chondroitin sulfate
(11, 18.6, 40, and 102 mg) dissolved in 5 mL of dimethyl sulfoxide
(DMSO) sourced from Sigma-Aldrich (CAS: 67−68−5, EC: 200−
664−3, MW: 78.13 g/mol). Chondroitin sulfate (CAS: 9007−28−7,
MW: 10,000−50,000 g/mol) was accurately weighed using an analytical
balance and transferred to clean, dry beakers. The mixtures were then
agitated with a magnetic stirrer at room temperature until complete
dissolution was achieved. Concurrently, a 5 mL proteinoid solution
comprising L-Glutamic Acid (L-Glu), L-Phenylalanine (L-Phe), and L-
Aspartic Acid (L-Asp) was prepared in a separate beaker, ensuring
thorough dissolution in the aqueous medium. The DMSO-based
chondroitin sulfate solutions were then slowly introduced into the
aqueous proteinoid solution. The combined solutions were gently
mixed using a magnetic stirrer for 5−10 min to ensure complete and
uniform blending of the chondroitin sulfate-proteinoid mixtures.
Following this process, the synthesized mixtures were ready for
subsequent characterization and analysis.
Electrochemical Characterization Apparatus. The voltage

responses of the proteinoid-chondroitin sulfate solutions at various
concentrations were measured using an electrochemical character-
ization apparatus, illustrated in Figure 2. This setup comprised a vessel
containing the proteinoid-chondroitin sulfate solution, with two needle
electrodes (Pt and Ir coated stainless steel wires) inserted at a fixed
distance of 10 mm. Voltage responses from these electrodes were

captured using a high-precision 24-bit ADC data recorder. To regulate
and monitor the solution’s temperature, a heating block was integrated
into the apparatus. This feature allowed for the simultaneous recording
of both thermal and electrical parameters throughout the character-
ization process. The ADC data recorder’s exceptional sensitivity
enabled the detection of minute voltage fluctuations in the μV range.
This capability facilitated the mapping of spatiotemporal voltage
responses within the proteinoid-chondroitin sulfate system across
different chondroitin sulfate concentrations. In the Supporting
Information, there is material characterization, electrical and thermal
stability measurements of the CS-proteinoid complex systems.

■ RESULTS AND DISCUSSION
Accommodation Spike Analysis of Proteinoid-Chon-

droitine Sample. The study of the proteinoid-chondroitine
sample’s accommodation spike reveals distinct and dynamic
characteristics of both the input and output signals. Figure 3
displays a detailed comparison of the Izhikevich accommodation
voltage (input) and the chondroitine-proteinoid voltage (out-
put). The input signal exhibits a wide dynamic range (−70.32 to
52.73 mV) with substantial variability (SD = 20.55 mV, IQR =
16.92 mV), while the output signal has a narrower range (−2.43
to 3.27 mV) with lower variability (SD = 0.33 mV, IQR = 0.31
mV). The input-output relationship, as shown in Figure 3c,
demonstrates that the output signal remains stable and exhibits
reduced variability compared to the dynamic variations of the
input signal. The scatter plot (Figure 3d) shows clear clustering
of output voltages within a narrow range, in contrast to the large
distribution of input voltages. The input voltage distribution has
a positive skewness of 1.84, indicating a longer tail toward higher

Figure 3. Comparative analysis of input and output signals. (a) The input signal, representing the Izhikevich accommodation voltage, exhibits a wide
dynamic range spanning from −70.32 to 52.73 mV, with a mean voltage of −37.44 mV and a median voltage of −44.81 mV. The standard deviation of
20.55 mV and the interquartile range (IQR) of 16.92 mV highlight the substantial variability and dispersion of the input voltages. (b) The output signal,
depicting the chondroitine-proteinoid voltage, has a narrower range from −2.43 to 3.27 mV, with a mean voltage of 1.44 mV and a median voltage of
1.42 mV. The standard deviation of 0.33 mV and the IQR of 0.31 mV indicate a more consistent and concentrated distribution of output voltages. (c)
The input vs output plot reveals a complex relationship between the input and output voltages, with the output signal exhibiting a more stable and less
variable response compared to the dynamic fluctuations of the input signal. (d) The scatter plot highlights the distinct clustering of the output voltages
within a narrow range, in contrast to the widespread of the input voltages. The positive skewness of 1.84 for the input voltage distribution suggests a
longer tail toward higher values, while the output voltage distribution is nearly symmetric with a skewness of 0.06.
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values. In contrast, the output voltage distribution is almost
symmetric with a skewness of 0.06.

Statistical Analysis of Input and Output Voltages.
Examining the statistical analysis of the input and output
voltages (Figure 4) offers additional insights into their
distributions and characteristics. The boxplots (Figure 4a)
highlight the clear differences in voltage ranges and central
tendencies. The input voltage has a lower median of −44.81 mV
and a larger interquartile range of 16.92 mV, while the output
voltage has a median of 1.42 mV and an interquartile range of
0.31 mV. The histograms (Figure 4b,c) show the distribution of
the input voltage, which is skewed toward higher voltages with a
pronounced peak and longer tail. On the other hand, the output
voltage has a more symmetric distribution with a sharp peak and
heavy tails. The analysis of kurtosis (Figure 4d) indicates that the
distributions are not normal. The input voltage has a leptokurtic
shape with a kurtosis of 6.48, while the output voltage has a
highly peaked distribution with heavy tails and a kurtosis of
10.20. The statistical measures for the input and output
potentials are summarized in Table 1. The voltages for the
input (−37.44 mV) and output (1.44 mV) demonstrate
different levels, while the standard deviations for the input
(20.55 mV) and output (0.33 mV) measure the amount of
variability. The voltages at the center (−44.81 mV for input, 1.42
mV for output) and the ranges (16.92 mV for input, 0.31 mV for
output) highlight the variations in central tendencies and
dispersion. The skewness and kurtosis values offer valuable
insights into the shape and tail behavior of the distributions,

highlighting the deviations from normality and variations in the
frequency of peaks appearances and tail weight between the
input and output signals.

Mechanisms and Implications. The analyzed features of the
input and output signals in the proteinoid-chondroitine sample
provide possible mechanisms that explain how the signals are
transmitted and processed. The reduced range and decreased
variability of the output signal in comparison to the input signal

Figure 4. Statistical analysis of input and output voltages. (a) The boxplots provide a comparative summary of the voltage distributions, emphasizing
the distinct voltage ranges and central tendencies of the input and output signals. The input voltage has a median of −44.81 mV and an IQR of 16.92
mV, while the output voltage has a median of 1.42 mV and an IQR of 0.31 mV. The whiskers of the boxplots extend to the minimum and maximum
voltages, showcasing the wider range of the input signal (123.05 mV) compared to the output signal (5.70 mV). (b, c) The histograms provide a visual
representation of the voltage frequency distributions. The input voltage histogram reveals a positively skewed distribution (skewness = 1.84) with a
pronounced peak and a longer tail toward higher voltages. The output voltage histogram depicts a more symmetric distribution (skewness = 0.06) with
a sharp peak and heavy tails. (d) The kurtosis analysis quantifies the peakedness and tail weight of the voltage distributions. The input voltage has a
kurtosis of 6.48, indicating a leptokurtic distribution with heavier tails and a more peaked shape compared to a standard normal distribution. The
output voltage exhibits an even higher kurtosis of 10.20, suggesting an extremely peaked distribution with very heavy tails. These statistical measures
highlight the distinct characteristics and non-normality of the input and output voltage distributions.

Table 1. Statistical Comparison of Input and Output
Potentialsa

measure input (mV) output (mV)

mean voltage −37.44 1.44
standard deviation 20.55 0.33
median voltage −44.81 1.42
interquartile range (IQR) 16.92 0.31
range 123.05 5.70
skewness 1.84 0.06
kurtosis 6.48 10.20

aThe table presents key statistical measures for the Izhikevich
accommodation voltage (input) and the chondroitine-proteinoid
voltage (output). The mean, median, and range values highlight the
distinct voltage levels and spread of the signals. The standard
deviation and interquartile range (IQR) quantify the variability and
dispersion of the voltages. The skewness and kurtosis provide insights
into the shape and tail behavior of the voltage distributions, revealing
the non-normality and differences in peakedness and tail weight
between the input and output signals.
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suggest that the proteinoid-chondroitin sample may be causing a
dampening or filtering impact on the input signal. The process of
attenuation can be represented mathematically as a linear
transformation of the input signal x(t) to the output signal y(t).
This transformation can be described by the following equation

= +y t x t( ) ( ) (5)

where α represents the attenuation factor and β represents a
constant offset. The attenuation factor α can be estimated from
the ratio of the standard deviations of the output and input
signals

= = 0.33
20.55

0.016
output

input (6)

The small value of α indicates a significant decrease in variability
from the input to the output signal, which is in line with a high
attenuation effect. The near symmetrical distribution of the
output voltage, as opposed to the positively skewed distribution
of the input voltage, suggests the presence of a potential
restoration or pinching mechanism in the proteinoid-chon-
droitin sample. The restoration process can be represented as a
nonlinear conversion of the input signal, which can be modeled
using a piecewise linear function.

l
mooo
n
ooo=

+

>
y t

x t x t x

x t x
( )

( ) , if ( )

, if ( )

threshold

threshold (7)

The variable xthreshold indicates a voltage threshold that, when
exceeded, causes the output to be limited to a constant value γ.
The correction process may account for the suppression of
larger input voltages and the consequent symmetrical
distribution of the output voltage. The output voltage
distribution has a highly peaked and heavy-tailed pattern, as
evidenced by its high kurtosis value of 10.20. This suggests that
the signal transduction may display intermittent or burst-like
behavior. This behavior can be represented by a stochastic
process, such as a Poisson process with a rate parameter that
changes over time. λ(t)

= =
!

P N t k
t

k
( ( )

( ) ek t

(8)

where N(t) represents the number of events (e.g., spikes) in a
time interval of length t, and k is a non-negative integer. The rate
parameter λ(t) can be modulated by the input signal, allowing
for the generation of burst-like activity in response to specific
input patterns.

To estimate the rate parameter λ, we analyzed the
accommodation spikes data over the entire experimental
duration of 100,007 ms. The time interval dt was set to
100,007 ms, covering the entire experimental duration. The
number of accommodation spikes within this time interval was
counted, and the rate parameter λ was estimated by dividing the
mean spike count by the time interval

= _
t

mean(spike counts)
d (9)

The experiment yielded an estimated value of λ as 0.5 spikes/
ms. The average rate of accommodation spikes generated by the
proteinoid-chondroitine sample for the full experimental
duration is 0.5 spikes per millisecond. The calculated value of
λ, which is 0.5 spikes/ms, indicates a rather high rate of
accommodation spikes in the proteinoid-chondroitine sample.

The burst-like behavior observed in this case can be linked to the
inherent characteristics of the proteinoid-chondroitine system,
including its excitability, refractory period, and adaptive
mechanisms. The elevated kurtosis value of the output voltage
distribution provides additional evidence for the existence of
sporadic and intense spiking activity. The Poisson process
model simplifies the depiction of the accommodation spike
behavior by assuming a constant rate parameter λ during the full
experimental duration. It is crucial to acknowledge that the rate
parameter can fluctuate over time due to the input signal and
other factors that affect the spiking activity. Further research
should investigate more sophisticated models, such as non-
homogeneous Poisson processes or point process models with
time-varying intensity functions, to more precisely represent the
dynamic character of the accommodation spikes.

The examination of the accommodation spike in the
proteinoid-chondroitine sample demonstrates clear character-
istics and dynamics of the input and output signals. The
comparison analysis reveals the attenuation, transformation, and
burst-like emergence of the signal transduction, indicating
possible mechanisms that explain the information processing
capacities of the proteinoid-chondroitine system. The statistical
analysis additionally measures the disparities in variability,
central tendency, and distribution shapes between the input and
output signals, offering insights into the non-normality and
heavy-tailed characteristics of the output voltage distribution.
Analytical Response of Chondroitine-Proteinoid to

Phasic Spiking Stimulus. The chondroitine-proteinoid
system demonstrates a remarkable ability to transform a variable
input signal into a consistent phasic spiking output. This
transformation is evident in the statistical analysis presented in
Table 2 and visualized in Figures 5 and 6.

Input-Output Transformation. The input signal, modeled
after the Izhikevich phasic voltage, is characterized by a mean
potential of μin = −54.85 mV and a standard deviation of σin =
8.23 mV (Table 2). This input undergoes a significant
transformation, resulting in an output signal with μout = 1.01
mV and σout = 0.30 mV. The transformation can be
conceptualized as a nonlinear function f:

=V f V( )out in (10)

where Vin and Vout represent the input and output voltages,
respectively.

Table 2. Statistical Comparison of Input and Output
Potentials in Phasic Spiking of Chondroitine-Proteinoida

measure input (mV) output (mV)

mean voltage −54.85 1.01
standard deviation 8.23 0.30
median voltage −56.28 1.00
interquartile range (IQR) 4.01 0.22
range 127.06 5.65
skewness 6.11 0.02
kurtosis 54.73 14.58

aThe table presents key statistical measures for the input voltage
(representing the initial membrane potential) and the output voltage
(representing the resulting action potentials). These measures
quantify the distinct characteristics of the phasic spiking behavior,
including the voltage levels, variability, and distribution properties of
both the input stimulus and the output response.
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Phasic Spiking Mechanism. The phasic spiking behavior of
the chondroitine-proteinoid system can be described by a
simplified model inspired by the Hodgkin-Huxley formalism

=

+

C V
t

g V E g m h V E

g n V E I

d
d

( ) ( )

( )

m L L Na
3

Na

K
4

K stim (11)

where Cm is the membrane capacitance, V is the membrane
potential, gL, gNa, and gK are the conductances for leak, sodium,
and potassium channels respectively, EL, ENa, and EK are the
corresponding reversal potentials, m, h, and n are gating
variables, and Istim is the input stimulus current.

The phasic spiking nature is achieved through rapid activation
and inactivation of the sodium channels, followed by slower
activation of potassium channels, as evident in the sharp
transitions observed in Figure 5b.
Statistical Characteristics. The striking difference in the

statistical properties of the input and output signals (Table 2)
provides insight into the signal processing capabilities of the
chondroitine-proteinoid system:

1. Range Compression: The system compresses the input
range of 127.06 mV to an output range of 5.65 mV,
indicating a strong noise-filtering capability.

2. Skewness Reduction: The input skewness of 6.11 is
reduced to 0.02 in the output, suggesting a normalization
effect that transforms the right-skewed input into a more
symmetrical output distribution (Figure 6b,c).

3. Kurtosis Moderation: The extremely high input kurtosis
of 54.73 is reduced to 14.58 in the output, indicating a
transformation from a distribution with heavy tails to a

more moderate, yet still peaked, distribution of spiking
events.

These characteristics can be quantified using the following
relationships

=range compression ratio
range

range
22.49in

out (12)

=skewness reduction factor
skewness
skewness

305.5in

out (13)

=kurtosis moderation factor
kurtosis
kurtosis

3.75in

out (14)

Boolean Logic Implementation in Chondroitine-Protei-
noid Systems. The phasic spiking behavior of chondroitine-
proteinoid systems can be harnessed to implement fundamental
Boolean logic operations. Figure 7 illustrates how the system’s
response characteristics can be utilized to create AND, OR,
XOR, and NOT gates.

In Figure 7, we observe that the chondroitine-proteinoid
system can effectively implement basic logic operations. The
AND gate (Figure 7a) produces an output spike only when both
inputs coincide, following the Boolean logic equation

= ·Y A BAND (15)

The OR gate (Figure 7b) generates an output in response to
either input, as described by

= +Y A BOR (16)

Figure 5. (a) Input Signal (Izhikevich Accommodation Voltage): Time series plot of the input voltage, showing fluctuations around a mean of −54.85
mV with occasional large depolarizations, reflecting the variable nature of the input stimulus. (b) Output Signal (Chondroitine-Proteinoid Voltage):
Time series plot of the output voltage, demonstrating consistent spiking behavior with a mean of 1.01 mV, illustrating the phasic spiking response of the
chondroitine-proteinoid system. (c) Input vs Output Signal: Overlay of input (blue) and output (red) voltage time series, highlighting the
transformation from variable input to stereotyped output spikes. Note the significant difference in voltage ranges (input range: 127.06 mV, output
range: 5.65 mV). (d) Input vs Output Signal (Scatter Plot): Relationship between input and output voltages, revealing the nonlinear transformation
performed by the chondroitine-proteinoid system. The clustering of output voltages around 1 mV illustrates the consistent spiking behavior.
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Figure 6. (a) Boxplots of Input and Output Voltages: Comparison of voltage distributions, showcasing the stark difference in medians (input: −56.28
mV, output: 1.00 mV) and interquartile ranges (input: 4.01 mV, output: 0.22 mV), emphasizing the signal transformation. (b) Histogram of Input
Voltage: Distribution of input voltages, demonstrating a right-skewed pattern (skewness: 6.11) with a sharp peak and heavy tails (kurtosis: 54.73),
indicative of occasional large depolarizations in the input signal. (c) Histogram of Output Voltage: Distribution of output voltages, showing a more
symmetrical pattern (skewness: 0.02) with a pronounced peak (kurtosis: 14.58), reflecting the consistent phasic spiking behavior of the chondroitine-
proteinoid system. (d) Skewness and Kurtosis of Input and Output Voltages: Bar plot comparing the higher-order moments of the voltage
distributions. The dramatic difference in skewness (input: 6.11, output: 0.02) and kurtosis (input: 54.73, output: 14.58) quantifies the transformation
from a highly variable input to a more regular spiking output.

Figure 7. Implementation of Boolean logic gates using the chondroitine-proteinoid system. (a) AND gate: output Y = A · B, (b) OR gate: output Y = A
+ B, (c) XOR gate: output Y =A⊕ B, (d) NOT gate: output Y =A, whereA and B represent normalized input voltages and Y represents the normalized
output voltage. The bottom panel (e) shows the original normalized Izhikevich accommodation voltage (input) and chondroitine-proteinoid voltage
(output) over time.
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The XOR gate (Figure 7c) demonstrates a more complex
behavior, producing an output when the inputs differ

= = +Y A B AB ABXOR (17)

Finally, the NOT gate (Figure 7d) inverts the input signal

=Y ANOT (18)

These implementations showcase the potential of chondroi-
tine-proteinoid systems in bioinspired computing and signal
processing applications. The ability to perform these logical
operations emerges from the system’s inherent phasic spiking
behavior, as evidenced by the original voltage data shown in
Figure 7e.

The input spike trains are generated from the real data by
applying a threshold to the normalized voltages

l
mooo
nooo

=
>

y
V1, if

0, otherwiseinput

norm input

(19)

where Vnorm is the normalized voltage and θinput is the input
threshold. The chondroitine-proteinoid response is modeled as
a smoothed version of the thresholded input spike trains

=
>

>
y

x t

x t

conv(1 , exp( / ))

max(conv(1 , exp( / )))output
output

output (20)

where x is the combined input spike train, θoutput is the output
threshold, 1 is the indicator function, conv denotes convolution,
and τ is the time constant for the exponential smoothing
function. The Boolean logic gates are implemented as follows

AND Gate
= ·x y yAND input1 input2 (21)

OR Gate
= +x y yOR input1 input2 (22)

XOR Gate

=x y yXOR input1 input2 (23)

NOT Gate

=x y1NOT input (24)

Gate Accuracies and Performance Metrics. The accuracy of
each logic gate is calculated as the complement of the mean
absolute error between the actual output and the expected
output

=
=N

y yaccuracy 1
1

i

N

i i
1 (25)

where yi is the actual output, ŷi is the expected output, and N is
the number of samples.

Our analysis reveals varying degrees of accuracy for different
logic gates

=

=

=

=

accuracy 0.52%

accuracy 99.08%

accuracy 99.52%

accuracy 99.38%

AND

OR

XOR

NOT (26)

These results indicate that the chondroitine-proteinoid
system excels in implementing OR, XOR, and NOT operations,
while struggling with the AND operation. This asymmetry in
performance suggests an inherent bias in the system toward
certain types of logical operations, which could be exploited in
specialized computing tasks.

There are several factors that contribute to these differences in
accuracy:

• The inherent noise and variability in the biological system
may present challenges. The chondroitine-proteinoid
system is a highly complex biological entity, and its
response to input stimuli may not always be completely
consistent or predictable. The accuracy of the imple-
mented logic gates can be affected by this intrinsic noise.

• Considering the selection of threshold values: The
accuracy of the logic gates relies on selecting the right
threshold values for input spike generation and output
response. Threshold values that are not optimal can result
in misclassifications and decreased accuracy.

• The logic operation is quite complex. Certain logic
operations, such as XOR, are comparatively more
complex than others, such as AND or OR. The
heightened complexity could require a greater level of
precision in managing the system’s reaction, posing a
challenge within a biological context.

The implementation of logic gates using the chondroitine-
proteinoid system is based on a simplified model of the system’s
behavior. It may be necessary to consider advanced models or
implementation strategies in order to enhance the accuracy of
the logic gates. Although there are some limitations, our work
showcases the potential of using the chondroitine-proteinoid
system for implementing Boolean logic gates. Further research
may consider enhancing the system’s performance, looking into
more sophisticated implementation techniques, and examining
the factors that influence the variations in accuracy.

The unique challenges of implementing coincidence
detection in biological systems contribute to the significantly
lower accuracy of the AND gate (0.52%). The AND operation
requires both inputs to be active at the same time. It is very
sensitive to timing issues between input spikes.25,26 Even slight
timing mismatches between inputs can result in failed gate
operation. Both inputs must be active above the threshold level,
at the same time.27 Also, noise in the biological system affects
AND operations more.28 It can prevent successful detection if
either input channel is noisy.29 Unlike OR gates which can
function with just one strong input, AND gates require both
inputs to be reliably detected above noise levels simulta-
neously.30 The AND operation is hard to implement in our
chondroitine-proteinoid system. It requires precise timing and is
sensitive to noise.

Spike Rates and Energy Efficiency. The spike rates are
calculated by counting the number of spikes (voltage exceeding
a threshold) per unit time

= =
>= I V V

t t
spike rate

number of spikes
total time

( )i
N

i1 threshold

end start
(27)

where I(·) is the indicator function, Vi is the voltage at time i,
Vthreshold is the spike threshold voltage, and tend − tstart is the total
time period.

The system demonstrates a significant amplification of spike
rate from input to output
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=

=

spike rate 0.32 Hz

spike rate 99.79 Hz

input

output (28)

This amplification results in an impressive energy efficiency
ratio

= = =energy efficiency
spike rate

spike rate
99.79 Hz
0.32 Hz

313.83output

input

(29)

Such high energy efficiency suggests that the chondroitine-
proteinoid system could be particularly suited for low-power
computing applications, where traditional electronic systems
might be less efficient.

Implications for Unconventional Computing. The findings
of this study have significant implications for unconventional
computing:

1. Biased Logic Operations: The great precision of OR,
XOR, and NOT gates, coupled with the low accuracy of
the AND gate, shows that the chondroitine-proteinoid
system has an intrinsic bias toward specific logical
operations. This could be utilized in specialized
computing tasks where these procedures are dominating.

2. Signal Amplification: The substantial rise in spike rate
from input (0.32 Hz) to output (99.79 Hz) clearly
showcases the system’s capacity to amplify signals. This
characteristic has the potential to be highly valuable in the
context of sensor networks or signal processing
applications.

3. Energy Efficiency: The system exhibits a promising
energy efficiency ratio of 313.83, making it suitable for
ultralow-power computing applications. This level of
efficiency exceeds that of numerous conventional
electronic systems and has the potential to establish
new models in energy-efficient computing.

4. Analogue Computation: The continuous nature of the
voltage signals (as seen in Figure 7e) suggests that this
device performs analogue computation. This could be
beneficial for problems that involve variables that are
continuous or for optimization tasks.

5. Noise Tolerance: The high levels of accuracy attained for
the majority of gates, despite the inherent noisiness of
biological systems, demonstrate a resilient ability to
withstand and function effectively in the presence of
noise. This characteristic is essential for ensuring accurate
computation in fluctuating situations.

6. Parallel Processing Potential: The simultaneous execution
of many logic gates reveals an innate capacity for parallel
processing, which could be employed for sophisticated,
multifaceted computational tasks.

To summarize, the chondroitine-proteinoid system exhibits
distinct computational capabilities that are notably different
from conventional electronic systems. The combination of its
great energy economy, biased logic operations, and capability for
parallel processing make it a highly promising option for
specialized unconventional computing applications. This is
especially true in areas where low power consumption,
robustness to noise, and analogue computation are favorable.
Functional Implications. The observed phasic spiking

behavior of the chondroitine-proteinoid system indicates its

Figure 8.Mixed mode response of the proteinoid-chondroitine sample to Izhikevich voltage input. (a) The Izhikevich mixed mode voltage input signal
exhibits a wide dynamic range and high variability. (b) The chondroitine-proteinoid voltage output signal shows a significantly narrower range and
reduced variability compared to the input signal. (c) The input vs output signal plot reveals the temporal relationship between the Izhikevich voltage
and the chondroitine-proteinoid voltage, with the output signal displaying a smoother and more stable response. (d) The scatter plot illustrates the
strong positive correlation between the input and output voltages, indicating the chondroitine-proteinoid system’s ability to capture and preserve the
essential features of the input signal while transforming and stabilizing it.
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ability to encode temporal information. The consistent output
spikes (Figure 5b) in response to variable input (Figure 5a)
demonstrate the system’s reliability in encoding significant input
events while disregarding minor fluctuations. This behavior is
similar to that of biological neurons that exhibit phasic spiking,
which are often involved in detecting changes or onsets in
sensory stimuli. The chondroitine-proteinoid system’s capacity
to transform continuous, variable input into discrete, temporally
precise output spikes suggests potential applications in signal
processing, pattern detection, and information encoding in
artificial neural systems.
Mixed Mode Response of Proteinoid-Chondroitine

Sample to Izhikevich Voltage Input. The analysis of the
proteinoid-chondroitine sample’s response to the Izhikevich
mixed mode voltage input is presented in Figure 8. The input
signal (Figure 8a) has a wide dynamic range, ranging from
−71.21 to 71.25 mV. The mean voltage is −60.55 mV and the
median voltage is −63.17 mV. The distribution of the input
voltage is heavily skewed with a skewness value of 4.08.
Additionally, it is leptokurtic with a kurtosis value of 27.18,
suggesting the presence of extreme values and a pronounced
peak. On the other hand, the output signal (Figure 8b)
demonstrates a much narrower range of −2.20 to 2.27 mV, with
an average voltage of −0.05 mV and a median voltage of −0.11
mV, indicating the chondroitine-proteinoid voltage. The output
voltage distribution exhibits a moderate skewness (1.22) and
leptokurtosis (6.70), indicating a more concentrated distribu-
tion with a prominent peak and heavy tails in comparison to a
normal distribution. The plot in Figure 8c illustrates the
temporal relationship between the voltage of the Izhikevich
mixed mode and the chondroitine-proteinoid voltage. The
output signal demonstrates a more consistent and steady
response in contrast to the highly variable input signal. The
scatter plot (Figure 8d) demonstrates the correlation between
the input and output voltages. The correlation coefficient of 0.71
suggests a robust positive linear relationship. The statistical
analysis reveals the notable influence of chondroitine on the
spiking behavior of the proteinoid. It seems that the presence of
chondroitine has a stabilizing impact on the proteinoid’s
response. This is supported by the significant decrease in the
voltage range and standard deviation of the output signal when
compared to the input signal. The output voltage range is
significantly narrower than the input voltage range, and the
output standard deviation is considerably smaller than the input
standard deviation. In addition, the chondroitine appears to
influence the shape of the output voltage distribution. This is
evident from the lower skewness and kurtosis values of the
output signal in comparison to the input signal. The output
voltage distribution exhibits a greater degree of symmetry and a
reduced heavy-tailed nature compared to the input distribution.
This observation implies that the chondroitine may potentially
have a normalizing impact on the spiking activity of the
proteinoid. The significant positive correlation observed
between the input and output voltages (correlation coefficient
= 0.71) suggests that the chondroitine-proteinoid system
successfully captures and maintains the crucial characteristics
of the Izhikevich mixed mode voltage input, while simulta-
neously modifying and stabilizing the signal. The finding
emphasizes the potential of the proteinoid-chondroitine system
as a biomimetic material for signal processing and computa-
tional applications. The proteinoid-chondroitine sample shows a
strong and flexible response to the mixed mode voltage input
proposed by Izhikevich. The presence of chondroitine has a

notable impact on the spiking behavior of the proteinoid. It
effectively reduces signal variability, stabilizes the output voltage,
and shapes the output distribution. The results highlight the
significance of chondroitine in influencing the electrical
properties of the proteinoid and indicate its potential
contribution to improving the system’s signal processing
capacities.

The statistical data for the mixed mode stimulations of the
proteinoid-chondroitine sample are presented in Table 3. The
table provides a comparison of the main statistical measures for
the Izhikevich mixed mode voltage input and the chondroitine-
proteinoid voltage output.

Game Theoretical Analysis of Proteinoid-Chondroi-
tine Interactions. Figure 9b illustrates the mapping of
proteinoid-chondroitine dynamics onto the game theory
diagram (Figure 9a), based on the temptation to cheat (T-R)
and penalty for cooperating (P−S) values derived from the
payoff matrix.31,32 The four regimes in the diagram represent
different scenarios:

1. Harmony: Cooperation is the dominant strategy, and the
population reaches a stable equilibrium consisting
primarily of cooperators.

2. Hawk-Dove: A mix of cooperative and defective strategies
coexist in the population, leading to a stable equilibrium
with a certain proportion of cooperators and defectors.

3. Stag Hunt: The outcome depends on the initial
conditions, with the population converging toward either
a cooperative or defective equilibrium.

4. Prisoner’s Dilemma: Defection is the dominant strategy,
and the population eventually reaches a stable equilibrium
consisting mainly of defectors.

In order to determine the specific regime that applies to the
proteinoid-chondroitine system, it is necessary to calculate the
values for temptation to cheat (T-R) and penalty for cooperating
(P−S) using the payoff matrix derived from either experimental
data or theoretical assumptions. The values can be plotted on
the game theory diagram to reveal the expected long-term
outcome of cooperation or defection in the system.

The colormap in Figure 9b offers further insights into the
proportion of cooperators in the population at equilibrium. In
the Harmony regime, the proportion of organisms showing
cooperative behavior tends to reach 100%, suggesting that the
population is predominantly characterized by cooperation. In
contrast, under the Prisoner’s Dilemma regime, the proportion
of cooperators eventually decreases to zero, indicating a
population dominated by defective behavior. The Hawk-Dove
and Stag Hunt regimes demonstrate intermediate outcomes,
where the final proportion of cooperators is influenced by the
specific payoffs and initial conditions.

Table 3. Statistical Data for Mixed Mode Stimulation of the
Proteinoid-Chondroitine Sample

measure input (mV) output (mV)

voltage range −71.21 to 71.25 −2.20 to 2.27
mean voltage −60.55 −0.05
median voltage −63.17 −0.11
standard deviation 9.42 0.32
skewness 4.08 1.22
kurtosis 27.18 6.70
correlation coefficient 0.71

ACS Applied Bio Materials www.acsabm.org Article

https://doi.org/10.1021/acsabm.4c01678
ACS Appl. Bio Mater. 2025, 8, 854−869

863

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.4c01678?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 9. (a) A diagram illustrating the interactions between wild-type (WT) and GASP mutant microspheres in the proteinoid-chondroitine system,
mapped onto the temptation to cheat (T-R) and penalty for cooperating (P−S) axes, is presented in the game theory analysis. The diagram is divided
into four regimes, each representing different outcomes of cooperation and defection: Harmony, Hawk-Dove, Stag Hunt, and Prisoner’s Dilemma. The
colormap represents the equilibrium state of the population, showing the proportion of cooperators. Warmer colors, such as red, indicate a higher
fraction of cooperators, while cooler colors, like blue, suggest a lower fraction. The position on the diagram that corresponds to the payoff matrix of the
proteinoid-chondroitine system (which is not displayed) would determine the game theoretical regime and the anticipated long-term result of
cooperation or defection in the system. (b) Proteinoid-chondroitine dynamics mapped onto the game theory diagram. The white point represents the
current scenario based on the calculated temptation to cheat (T-R) and penalty for cooperating (P−S) values. The dynamics fall within the Prisoner’s
Dilemma regime, suggesting that defection is likely to be the long-term outcome in the system.
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The payoff matrix for the proteinoid-chondroitine system is
now defined based on the mean (μ) and standard deviation (σ)
of the voltage differences

i
k
jjj y
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zzz i
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jjjj

y
{
zzzz= +

R S
T P (30)

This matrix represents the interactions between wild-type (WT)
and GASP mutant cells in the proteinoid-chondroitine system.
The temptation to cheat and penalty for cooperating are
calculated as

= = + = =temptation to cheat T R ( ) 9.19
(31)

= = =

=

penalty for cooperating P S ( )

9.19 (32)

These values are then mapped onto the game theory diagram,
which categorizes the dynamics into four distinct regimes:
Harmony, Hawk-Dove, Stag Hunt, and Prisoner’s Dilemma.
The mapping is performed using the following conditional
statements

if temptation to cheat

0 and penalty for cooperating

0, then harmony (33)

>

>

else if temptation to cheat

0 and penalty for cooperating

0, then Prisoner’s Dilemma (34)

>
else if temptation to cheat

0 and penalty for cooperating

0, then Hawk Dove (35)

else stag hunt (36)

In this case, both the Temptation to Cheat and the Penalty for
Cooperating are positive and equal (9.19), placing the system
firmly in the Prisoner’s Dilemma regime. This indicates a strong
tendency toward defection in the proteinoid-chondroitine
system, with GASP mutant microspheres having a significant
advantage over WT microspheres. The proteinoid-chondroitine
dynamics fall within the Prisoner’s Dilemma regime, as indicated
by the white point in Figure 9b. This is identified by considering
the calculated temptation to cheat and penalty for cooperating
values. Based on the available evidence, it appears that the
system’s long-term outcome will be primarily influenced by
defection, as the GASP mutant microspheres are expected to
outperform the WT microspheres.

The analysis of proteinoid-chondroitine dynamics within the
game theory framework offers valuable insights into the
potential outcomes of cooperation and defection in the system.
Through a detailed understanding of game theoretical
principles, we may improve our ability to predict and examine
the complex interactions between WT and GASP mutant
microspheres within the proteinoid-chondroitine system. This
approach provides a solid theoretical basis for future
experimental research and can help shape the emergence of

strategies that promote cooperation or minimize the impact of
defection in the system.

The proteinoid-chondroitine system, as shown in Figure 9b, is
located in the Prisoner’s Dilemma regime based on the game
theory diagram. The results indicate that the interactions
between wild-type (WT) and GASP mutant microspheres in the
proteinoid-chondroitine mixture strongly favor cheating (T-R =
9.19) and discourage cooperation significantly (P−S = 9.19).
Defection is the prevalent strategy in the Prisoner’s Dilemma
regime, and in this particular scenario, it is particularly
pronounced. It can be inferred that GASP mutant microspheres,
exhibiting self-serving behavior, have a considerably higher
probability of surpassing the cooperative WT microspheres in
the long run. It is expected that the equilibrium state of the
system will be primarily influenced by defectors (GASP
mutants), with the possibility of only a small number of
cooperators (WT microspheres) remaining in the population, if
any at all. Considering the position of the proteinoid-
chondroitine system in this highly complex version of the
Prisoner’s Dilemma regime on the game theory diagram, it
seems that maintaining any form of collaboration between WT
and GASP mutant microspheres is extremely difficult in this
specific combination. The behavior of GASP mutants exploits
the cooperative behavior of WT microspheres to such an extent
that it significantly reduces the overall fitness of the cooperative
individuals. This can lead to a rapid and potentially complete
shift in the population, with defectors becoming the dominant
group. To promote a basic coexistence of WT and GASP mutant
microspheres in the proteinoid-chondroitine mixture, significant
changes would need to be made to the motivation associated
with cooperation and defection. This modification would
require a significant change in order to effectively transition
the system into a different regime on the game theory diagram,
such as the Hawk-Dove or Stag Hunt regimes. Considering the
highly complex nature of the current dynamics, accomplishing
this transition would prove to be considerably more difficult
than originally expected. One possible approach could involve
the introduction of strong measures to deter departing, offering
significant rewards for interaction, or introducing detailed
spatial arrangements in microspheres interactions to prevent
defectors from taking advantage of cooperators. Nevertheless,
considering the strong inclination toward defection, even these
interventions may face challenges in sustaining a stable
coexistence of WT and GASP mutant microspheres in this
particular system.
Membrane Potential Dynamics and Ionic Mechanisms

in Chondroitine-Proteinoid Response to a Stimulus from
Izhikevich Neuron. The diagrams depicted in Figures 10 and
11 demonstrate the working principle and mechanism by which
the chondroitine-proteinoid sample responds to the stimulus
from Izhikevich neuron. The Izhikevich neuron, a well accepted
model for producing realistic neural spiking patterns,8 is used as
an input for the chondroitine-proteinoid sample. The response
of the sample to the stimulus is determined by the complex
relationship between its membrane potential dynamics and ionic
currents.

The dynamics of the membrane potential in the chondroitine-
proteinoid sample are essential for processing the input signal
and producing the output response. The membrane potential is
the electrical potential variation across a membrane, resulting
from the asymmetry of ionic charges.33 The chondroitine-
proteinoid sample’s membrane potential exhibits dynamic
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variations, including depolarization and hyperpolarization
phases, in response to the Izhikevich stimuli.34

Neuromorphic Properties and Burst-like Dynamics of
Chondroitine-Proteinoid System: Implications for Bio-

inspired Computing. The inherent characteristics of the
chondroitine-proteinoid system, such as its capacity to be
excited, its refractory period, and its mechanisms of adaptation,
have a substantial impact on the formation and patterning of
accommodation spikes.33 Excitability is the capacity of a system
to produce spikes in response to stimuli that exceed a specific
threshold.35 The refractory period is a short period of time that
occurs after each spike, during which the system becomes less
susceptible to further stimuli. This prevents excessive spiking
and allows for the repair of ionic gradients.36

The spiking activity of the system is modulated over time by
adaptation mechanisms, such as ion channel inactivation and
intracellular calcium dynamics. These processes allow the
system to alter its response based on the history of stimulation,
as described in Benda’s study on universal adaptation
mechanisms.9 The chondroitin-proteinoid sample produces
accommodation spikes that display a burst-like pattern,
characterized by sporadic and strong spiking activity. The
phenomenon of burst-like behavior has been documented in
diverse biological brain systems and is believed to have
significant implications in information processing, synaptic
plasticity, and neural synchronization.37,38 The burst-like spiking
patterns can be explained by the interaction between the rapid
activation and gradual inactivation of voltage-gated channels,
along with the existence of slow adaptation currents.35,39

The chondroitin-proteinoid sample’s capacity to produce
accommodation spikes characterized by burst-like behavior and
intense spiking activity demonstrates its promise as a bioinspired
material for applications in neuromorphic computing and signal
processing.40,41 The sample’s reaction to the stimulus generated
by Izhikevich neuron showcases its ability to analyze and store
complex input patterns, making it an appealing option for the
advancement of innovative computing models and adaptable
neural interfaces.42

The outcomes derived from our chondroitin-proteinoid
system showcase its capacity as a starting point for unconven-
tional computing, specifically in the fields of bioinspired and
neuromorphic computing. The system’s capacity to execute
Boolean logic gates with different levels of precision, along with
its exceptional energy efficiency and signal amplification
characteristics, presents numerous opportunities for more
investigation and practical use.
Biased Logic Operations and Reservoir Computing.

The variation observed in the implementation of logic gates,
with OR, XOR, and NOT operations exhibiting a high level of
precision (>99%), while the performance of the AND operation
is notably poor (0.52%), bears resemblance to the nonlinear
transformations observed in reservoir computing systems.
Reservoir computing is a method in unconventional computing
that use the inherent dynamics of complex systems to carry out
computations.43 The nonlinear response of the chondroitine-
proteinoid system has the potential to be utilized in a similar
way, where its biased processes act as a distinct computational
reservoir. Potential future research could involve explaining
feedback layers to interpret the state of the system, which could
potentially allow for the execution of more complex computa-
tional tasks. This methodology has been effectively used in
different biological and chemical computational systems.44

Energy Efficiency and Neuromorphic Computing. The
system’s high energy efficiency ratio of 313.83 is in line with the
increasing interest in energy-efficient neuromorphic computer
systems.

Figure 10. Schematic representation of the working principle and
mechanism of the chondroitine-proteinoid sample’s reaction to the
Izhikevich neuron. The stimulus generated by Izhikevich neuron is
applied as an input to the chondroitine-proteinoid sample. The
sample’s membrane potential dynamics, governed by the interplay of
ionic currents (Na+, K+, and Ca2+), process the input signal. The
membrane potential dynamics modulate the ionic currents, leading to
the generation of accommodation spikes as the output response. The
accommodation spikes exhibit a burst-like behavior, with intermittent
and intense spiking activity, reflecting the intrinsic properties of the
chondroitine-proteinoid system, such as excitability, refractory period,
and adaptation mechanisms.

Figure 11. Mechanism of Chondroitine-Proteinoid response to
Izhikevich stimulus. The image shows the detailed membrane dynamics
with overlaid annotations highlighting the role of different ion channels
(Na+, K+, and Ca2+) in shaping the membrane potential in response to
the input stimulus.
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In our study, we estimated the energy efficiency of the
chondroitine-proteinoid system by comparing the spike rates of
the input and output signals. The spike rates were calculated
using the following equation

= ×= [ ]>

T
spike rate

1
1000i

N
y i1

(37)

whereN is the total number of time points, y is the signal (either
input or output), θ is the threshold for spike detection, T is the
total time duration in milliseconds, and 1 is the indicator
function. For the specific data set used in our analysis the input
spike rate was found to be 0.47 Hz, and the output spike rate was
147.41 Hz. These values were calculated using the spiketrain and
choresponse functions defined in the provided MATLAB code. To
estimate the energy efficiency, we assumed that each spike
consumes one unit of energy. The energy efficiency ratio was
then calculated as the ratio of the output spike rate to the input
spike rate

= =

=

energy efficiency
output spike rate
input spike rate

147.41 Hz
0.47 Hz

313.83 (38)

This energy efficiency ratio suggests that the chondroitine-
proteinoid system can generate a higher rate of output spikes
relative to the input spikes, indicating its potential for energy-
efficient information processing. It is important to note that this
is a simplified estimation of energy efficiency, as it does not take
into account the actual energy consumption of the biological
system or the energy required for maintaining the system’s
functionality. More detailed studies and measurements would be
necessary to obtain a more accurate assessment of the system’s
energy efficiency. Nonetheless, the high energy efficiency ratio
of 313.83 highlights the potential of the chondroitine-proteinoid
system for developing energy-efficient neuromorphic computing
systems. This finding aligns with the growing interest in such
systems, which aim to mimic the brain’s ability to process
information efficiently.

Conventional von Neumann architectures are encountering
growing energy limitations, especially in edge computing and
IoT applications.45 Systems inspired by biology, such as ours,
present a promising solution by imitating the brain’s energy
efficiency.

The substantial increase in spike rate from the input (0.32 Hz)
to the output (99.79 Hz) indicates that our system may be well-
suited for tasks that involve enhancing signals or detecting
patterns in low-intensity data. This characteristic has the
potential to be utilized in sensory processing applications,
much as how biological neural networks enhance and analyze
sensory inputs.46

Analogue Computation andNoise Tolerance.Analogue
computing systems are characterized by their stable voltage
signals and their ability to execute precise computations even in
the presence of inherent noise. There has been an emergence of
interest in analogue computation in recent years, namely for its
applications in machine learning and signal processing.47

The noise tolerance of our chondroitin-proteinoid system is
quite remarkable. In conventional digital systems, noise is
frequently a constraining element, whereas in our bioinspired
system, it may actually serve a beneficial purpose. Stochastic
resonance, a phenomenon found in biological brain networks,
has the potential to be a useful asset in some computational
tasks.48

Parallel Processing and Scalability. The continuous
integration of numerous logic gates in our system suggests its
capacity for parallel processing. The presence of this inherent
parallelism is a distinguishing characteristic of biological brain
networks and is a primary objective for neuromorphic
computing designs.49

Nevertheless, concerns over scalability persist. Although our
system exhibits potential at its current scale, additional research
needs to be done to determine how its characteristics vary with
an increase in system size. The scaling behavior of chondroitine-
proteinoid systems will play a significant role in establishing their
practical usability in larger-scale computational applications.
Future Directions. In the future, there are various research

directions that show promise:
• Investigating advanced computational tasks, such as

pattern recognition or time series prediction, use the
chondroitin-proteinoid system as a computational reser-
voir.

• Exploring the system’s capacity for learning and adapting.
Is it possible to adjust or train the system’s characteristics
in order to enhance its performance on particular tasks?

• Creating hybrid systems that integrate the distinctive
characteristics of the chondroitin-proteinoid system with
conventional electrical components, which could poten-
tially result in novel designs for neuromorphic computing.

• Investigating the system’s computational features for
long-term stability and reproducibility, which is essential
for practical implementations.

• Investigating the capabilities of this system in the growing
area of biocomputing, which involves using biological
components to carry out computations inside living
organisms.50

■ CONCLUSIONS
Overall, our chondroitin-proteinoid system exhibits distinct
computational abilities that correspond to several contemporary
patterns in unconventional computing. The combination of its
excellent energy efficiency, fundamental parallelism, and
analogue nature puts it as a highly interesting option for future
applications in biocomputing and neuromorphic computing. As
we face the limitations of conventional computing architectures,
systems such as these may have a vital part in the next generation
of computational systems.
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Cyclic voltammogram of CS-proteinoid complex (20
cycles, −5.0 V to +5.0 V) showing redox behavior and
ohmic characteristics (Figure S1); electrochemical
parameter evolution showing peak current progression
(874.27 ± 4.28 μA anodic, −800.99 ± 3.92 μA cathodic)
and resistance variations (Figure S2); temperature-
dependent electrical characterization (18.55−78.63 °C)
including linear, semilog, and Arrhenius plots (Ea =
−0.026 eV) (Figure S3); UV−vis transmission spectrum
(319.5−1089.1 nm) showing characteristic peptide bond
transitions at 320.0−352.0 nm (Figure S4); SEM
micrographs of proteinoid microspheres at 3,000×
magnification (scale bar: 2 μm) revealing surface
morphology (Figure S5) (PDF)
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