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ABSTRACT
This paper presents the key components in the Universal(U)-control framework for designing
dynamic control systems from model-based to model-free paradigms, in which the pillars include
U-control system configuration, open-loop dynamic inversion, closed-loop dynamic inversion, gen-
eralmodel-free cancellation of nonlinear-dynamic-coupling effect,model-free-sliding-mode control
(MFSMC) andmodel-free composite nonlinear feedback (CNF) control. This paper is devoted todeliv-
ering intuitive and easy-to-understand explanations for the involved approaches with a series of
schematic diagrams. Readers can refer to the corresponding publications for more details on the
theoretical analyses. In addition, some showcase examples are provided in this paper to facilitate
the understanding of certain important concepts.
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1. Introduction

1.1. Configuration of Universal(U)-control

The U-control system for a general class of single-
input and single-output (SISO) dynamic plants with
reference input r ∈ R and system output y ∈ R is
defined as

�U : (� ,�(CIV , P̂−1), P) ⇔ (� ,CIV , In)

⇔ (� ,CIV) (1)

where� denotes the control system configuration, P is
the nth-order dynamic plant which will be specified in
Section 2,� is the controller set with two functionali-
ties for the dynamic inversion P̂−1 and the closed-loop
performance specification CIV in cascade, In is the
identity matrix for the nth-order dynamic plants in
state-space expressions and In = 1 for the plants in
polynomial expressions. Consequently, the U-control
represents a type of mapping from the reference input
space to the system output space, �U : r → y.

There are two technique pillars, plant dynamic
inversion (DI) and separation of control performance
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with dynamic plant, in the U-control configuration,
which are structured with two design platforms to
cover the whole model spectrum frommodel-based to
model-free.

1.1.1. Model-based U-control
This is defined as

�U : (� ,�(CIV , P̂−1), P) ⇔ (� ,CIV , (P−1, P) ∈ In)

⇔ (� ,CIV , In)

⇔ (� ,CIV) (2)

Figure 1 illustrates the model-based U-control system
(Zhu & Guo, 2002), in which y ∈ R and r ∈ R are the
systemoutput and reference input, respectively.P is the
dynamic plant and u ∈ R is the plant input. As shown
in the dotted block, the controller is composed of
two cascaded function blocks, P−1 is the plant instant
dynamic inverter (IDI) to achieve P−1P = 1, CIV is
the invariant controller (normally a linear dynamic
component) to specify the closed-loop performance
(Y(s) = CIV(s)(1 + CIV(s))−1R(s) in terms of Laplace
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Figure 1. Model-based U-control system.

Figure 2. Model-free U-control system.

operator s) and v ∈ R is the controller output. The
resultant system on the right side indicates that the
plant has been cancelled into a unit, and therefore CIV
is invariant and independent of the plant models.

1.1.2. Model-free U-control
This is defined as

�U : (� ,�(CIV , P̂−1), P)

⇔ (� ,CIV ,CDI(P̂−1, P) ∈ In)

⇔ (� ,CIV , In) ⇔ (� ,CIV) (3)

Figure 2 shows the configuration of the model-free
U-control systems (Zhu, 2021). As shown in Figure
2, the plant P is regarded as a total uncertainty in
a black box with enabling input u and obtainable
state/output x/y. The asymptotic dynamic inversion
(ADI) x → xd, ∀CDI(P̂−1, P) is obtained by an asymp-
totic stabilisation process in the inner closed loop,
which P̂−1 = MFSMC is a model-free sliding mode
controller/inverter (Zhu, 2021). The resultant sys-
tem on the right side shows that the plant has been
reversed to either a unit constant or a unit matrix.
As such, CIV is an invariant controller and is inde-
pendent of the plant dynamics. While CIV is a linear
controller, the closed-loop performance is achieved
with Y(s) = CIV(s)(1 + CIV(s))−1R(s) in terms of the
Laplace operator s.

1.2. Characteristics of U-control

The phrase of Universal-control comes from the fol-
lowing considerations.

(1) The universality of the U-control design covers
the whole model spectrum from model-based to
model-free and separates the plant dynamic treat-
ment from the control system performance speci-
fication. For example, refer to Figure 2, separate
the robust stabilisation for the plant asymptotic
dynamic inversion in the inner loop and con-
trol system performance specification in the outer
loop independently. Another facilitation of the U-
control is that it can be used for motion control
(many mechanical systems) with a single inner
loop (Li, Zhu, et al., 2023) and setpoint con-
trol (many industrial process operations) with the
double loop (Geng et al., 2019) in Figure 2.

(2) Universal supplement to the conventional con-
trol system design approaches such as pole place-
ment control (Zhu & Guo, 2002), Smith predic-
tive control (Geng et al., 2019), Composite non-
linear feedback control (Zhu, Mobayen, et al.,
2023), decentralise control (Zhu, Li, et al., 2023b),
decoupling control (Zhu, Li, et al., 2023a), con-
trol with hard nonlinear inputs, underactuated
control (Hussain et al., 2020), which have been
expanded generically applicable to nonlinear non-
affine dynamic systems besides augmenting the
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control approach functionalities. For example, the
composite nonlinear control (CNF), a fundamen-
tal approach, before U-control, the CFN has been
uniquely designed to take the parallel control
structure (Chen et al., 2003; Lin et al., 1998;).
Now U-control has derived a type of cascade con-
trol for the CNF, which enhances the CNF in the
form of model-free and applicable to nonlinear
non-affine dynamic plants (Zhu, Mobayen, et al.,
2023). In short, U-control is seamlessly integrated
and complementedwithmany of the existing con-
trol methodologies.

(3) Generalised universal dynamic inversion with
twonew concepts and algorithms, instant dynamic
inversion (IDI) for the model-based U-control
and asymptotic dynamic inversion (ADI) for
the model-free U-control. These could be the
enhancements to the other existing dynamic
inversion approaches. Furthermore, the dynamic
inversion has expanded the conventional cancel-
lation of nonlinearity and dynamics to include
the decoupling, a type of cancellation of the cou-
pling, in the fully actuated MIMO systems (Zhu,
Li, et al., 2023a).

(4) Generalisation of model-free control. Regarding
control system design, there have been two pre-
dominant methods: (1) offline physical-model-
based design (such as pole placement control and
linear quadratic regulation/LQR) (Fisher & Bhat-
tacharya, 2009; Slotine & Li, 1991) and (2) data-
driven adaptive (Astrom & Wittenmark, 1995)
pointwise-model-based design (such as adap-
tive control, neural network enhanced control
and the other traditional named model-free con-
trols), which is conventionally called <model-
free control> (Hou & Xiong, 2019). It should
be noted that the conventional model-free con-
trol is <physical model-free control> but still
uses <pointwise model – data-driven model>
(Hou & Wang, 2013) to design the adaptive con-
trollers. In brief, both methods use model-based
control, the difference between them is if the phys-
ical model (offline model) or data-driven point-
wise model (online model) is used. In addition,
for those other data-driven control systems, even
not using a pointwise model, they still use data
iteration to make control decisions, which could
be avoided in some way in the U-control. The
model-free U-control proposes a new method,

total-model-free robust control (TMFRC), which
treats plants as a total uncertainty in a black box
with enabled control inputs and attainable out-
puts (either measured or estimated). By removing
the design requirement on a physical model, data-
driven pointwise model and data iteration, the
TMFRC provides merits with generality and sim-
plicity in the control system design and robust-
ness in the control functionality and the param-
eter tuning. In technique, the TMFRC uses a
model-free sliding mode control (MFSMC) that
has been developed by satisfying the Lyapunov
differential inequality, rather than solving the Lya-
punov differential equality in model-based SMC.
Accordingly, the model-free U-control system is
assessed with the Lyapunov robust stability condi-
tions. Compared to the model-free PID controller
tuning by trial and error, the TMFRC keeps the
control system performance invariant by satisfy-
ing the Lyapunov differential inequality within
the system boundary, rather like PID maintains
the control system performance variation point
by point even stability remained. A good exam-
ple to illustrate is the Simulink PID auto-tuning
function. Further if tuning by experience, such
trial-error-based PID tuning is emendated with
tedious tries of the three gain combinations.

(5) Expansion of robustness sensitivity function (RSF)
analysis. As the total mode-free control is pro-
posed, naturally how to evaluate its robustness is
an issue to address. Conventional RSF is a model-
based analysis. The U-control study has proposed
a total robustness sensitivity function (TRSF) for
the model-free U-control systems (Zhu, Li, et al.,
2023a). The TRSF is still required for further jus-
tification and formulation in theoretical aspects.

(6) The feasibility and generality of U-control have
been demonstrated by simulations and real sys-
tems in universities and companies across coun-
tries (Hussain et al., 2020; Wei et al., 2022, plus
real bench testing papers under preparation in the
leading author’s team).

1.3. Literature review

For completeness, the following critical literature
review is presented in comparison of the representative
approaches in the related topics, which justifies the
motivation of the proposed U-control.
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1.3.1. Dynamic inversion for control
It has been observed that the most popular methodol-
ogy in nonlinear control design is the dynamic inver-
sion in one way or another (cancelling the dynamic
model to generate a reference feedforward compen-
sation action under the assumption that the referred
plant dynamical model is an acceptable representation
of real plant) (Isidori, 1995). Accordingly, dynamic
inversion is one of the key components in nonlinear
control systemdesign (Steffensen et al., 2023; Vu, 1997;
Zhang et al., 2020). During the implementation of the
nonlinear dynamic inversion methods, the nonlinear
dynamics are inverted or compensated for designing
a control law that cancels out the nonlinear effects,
which makes the system behave as if it were linear.
The basic idea behind the dynamic inversion is to first
design a controller with a specified linear dynamic sys-
tem around a desired operating point, and then use
such a controller as a starting point to compensate for
the impacts of nonlinearities existing in the actual sys-
tem. This kind of compensation is typically achieved
by adding terms to the controller that counteracts the
nonlinear effects and accordingly inverting their influ-
ence on the system behaviour. The dynamic inversion
approach is particularly well-suited for systems with
complex and highly nonlinear dynamics, to which the
traditional linear control techniques may be inappli-
cable. In recent years, the dynamic inversion method
has found successful applications in a diversity of areas
such as aerospace, robotics, automotive control and
other fields where the precise control of nonlinear
systems is required (Acquatella et al., 2020; Li, Liu,
et al., 2023; Steffensen et al., 2023; Taherinezhad &
Ramirez-Serrano, 2023).

1.3.2. Model-based control
There are various model-based dynamic inversion
approaches in the existing literature. Among them, the
feedback linearisation control (FLC) has stood out as a
typical method (Slotine & Li, 1991), where the non-
linear model is converted into a linear one through
coordinate conversions. Another popular method is
the so-called backstepping control (BSC) (Zhang et al.,
2023), which is a Lyapunov-based recursive design
approach and can accomplish the stabilisation and
tracking tasks for a specific set of complex nonlin-
ear systems. Nevertheless, the model-based dynamic
inversion method has the following three shortcom-
ings: (1) The performance heavily relies on themodel’s

accuracy. Clearly, in most practical scenarios, it is by
no means a trivial task to establish an accurate system
model. In this context, it would be difficult to design
proper controllers for nonlinear systems. (2) When it
comes to the popular model-based dynamic inversion
approaches, the FLC first utilises the complex coordi-
nate transformation to design a linear control system
and then transforms the designed controller to the
original controller to generate the required controller
output. Unfortunately, such a method requires strong
Lie algebra conditions (Duan, 2021). For BSC, it is
normally applicable to a class of triangle types of mod-
els. For example, the BSC is effective for second-order
dynamics. However, the complexity would exponen-
tially increase with the increase of the order of system
dynamics (Echiheb et al., 2023). (3) So far, almost all
the existing nonlinear dynamic inversion formulations
have assumed linearity with the plant input (that is,
nonlinear affine plants). Accordingly, a general and
concise mode-based dynamic inversionmethod called
model-basedU-control has been put forward using the
expression of U-model, which converts almost all the
existing models into U-realisation without resorting
to the coordinate transform and backstepping process
(Zhang et al., 2020; Zhu & Guo, 2002). It is worth not-
ing that the model-based U-control can significantly
relieve the complexity in designing linear and nonlin-
ear control systems, and the U-dynamic inversion and
controller design are achieved separately. However, it
should be noted that like all the other model-based
dynamic inversion approaches, the U-dynamic inver-
sion performance heavily relies on the model accuracy
which robustness in dealing with model uncertainty
is under study. Developing a model-based U-control
method constitutes the firstmotivation for establishing
the universal control system design platform.

1.3.3. Model-free control
In existing literature, many control strategies have
been developed for the plants with unknown models,
and some representatives include, but are not limited
to, adaptive control (AC) (Chen & Astolfi, 2022; Tao,
2014), active disturbance rejection control (ADRC)
(Fareh et al., 2021; Feng & Guo, 2017; Huang & Xue,
2014) and recently appeared model-free U-control
(Zhu, 2021; Zhu, 2023; Zhu, Li, et al., 2023a; Zhu,
Mobayen, et al., 2023). Consideringwhether themodel
is utilised for controller design, AC is a data-driven
model-based approach since it needs to estimate the
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online model and ADRC needs to estimate an online
non-parameter model output using an extended state
observer (ESO). Recently, a new class of control meth-
ods named model-free control has attracted ever-
increasing research attention. In the context of model-
free control, the design of the controller is indepen-
dent of the physical model of the plant to be con-
trolled. Instead, the controller is designed by learning
or adapting directly from the system’s input-output
data or through the trial-and-error approach. One
popular method falling into this category is known
as reinforcement learning (Vamvoudakis et al., 2021),
where a learning agent can make decisions through
its interaction with the environment and the feed-
back it receives in the form of rewards. As time passes
by, the agent gains knowledge about which actions
result in greater rewards and accordingly adapts its
behaviour without requiring the explicit model of the
environment. Notably, the model-free control meth-
ods are particularly suitable in the case where the
system dynamics are complex or poorly understood.
They can also be advantageous in certain scenarios
where the system is subject to changes or uncertainties
and the traditional model-based control methods are
no longer effective. However, the model-free control
approaches also have some inherent challenges, such
as requiring large amounts of data for iterative learn-
ing and being more computationally intensive than
themodel-basedmethods. Additionally, suchmethods
may not be effective when applied to new or unseen
environments. The other most popular approach is
the adaptive control (Astrom & Wittenmark, 1995;
Hou & Wang, 2013), which does not require a plant
physical model, but estimates a data-driven pointwise
model. Strictly speaking adaptive control is still a type
of model-based design approach, where the offline
physical model is replaced by data-driven pointwise
model. Like themodel-based design, adaptive requires
an extra step to estimate the online model. The
unsolved challenging issue is model-free decoupling
(a type of cancellation that could be treated as inver-
sion formulation) with fully actuated MIMO dynamic
plants.

Considering the above discussions, it has a space to
propose a model-free dynamic inversion strategy with
the U-control method, thereby improving the short-
comings of the current model-free control method.
Referring to Figure 2, the model-free U-control has
derived an asymptotic dynamic inversion approach

(Zhu, 2021, 2023), by treating the model unknown
plant as a total uncertainty with enabled inputs and
attainable outputs, formulating model-free dynamic
inversion in the form of a closed loop to achieve
the asymptotic dynamic inversion, that is, the output
asymptotically converges to the reference input in the
closed loop. The U-control has expanded the dynamic
inversion including the MIMO system decoupling
(Zhu, Li, et al., 2023a). Developing a model-free U-
control method constitutes the second motivation
for establishing the universal control system design
platform.

The primary contributions of this study are high-
lighted as follows:

(1) Provide a systematic summary of the U-control
methodology and configuration with existing
results, which can serve as a condensed collection
of the theory, algorithms, simulation and applica-
tions.

(2) Present further enhanced model-based U-control
schemes with a generic form.

(3) Summarise the latestmodel-free U-control results
in a general framework.

The remainder of this paper is outlined as fol-
lows. Section 2 provides the preliminaries for pre-
sentingmodel-based andmodel-freeU-control, which
include a description of the general SISO plant, U-
model realisation and dynamic inversions. Section 3
presents the model-based U-control schemes includ-
ing pole placement control and Smith predictive con-
trol. Section 4 provides a concise introduction to
the model-free U-control strategies including model-
free sliding mode control (MFSMC), composite non-
linear feedback (CNF) control, decentralised con-
trol and decoupling control. Section 5 concludes
this paper.

2. Preliminaries

This section includes the formulations of (1) dynamic
plant for control, (2) U-model realisation and (3)
dynamic inversion.

2.1. Dynamic plant for control

Consider a general set of the nth-order single-
input single-output (SISO) nonlinear plants with the
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following dynamics:

P : y(n) = f (y(0∼n−1), θ , u) (4)

where y ∈ R and u ∈ R are defined as the sys-
tem output and input, respectively, and y(0∼n−1) =
[y · · · y(n−1)]T ∈ R

n is the output derivative vector, θ ∈
R
L is the parameter vector in proper dimension and

f : u → y is a real function, representing the mapping
from the input set to the output set and is sufficiently
differentiable. The control input u is to be designed
to change the system characteristics by specifications
in a closed-loop framework. To design the control
systems, assume that the plant satisfies the following
constraints.

Remark 2.1: While f is known, it can be described
by both polynomial and state-space equations. The
corresponding canonical state-space equation can be
derived by letting x = y(0∼n−1) = [x1 = y x2 = ẏ
· · · xn−1 = y(n−1)]T ∈ R

n and xn = f (x, θ , u) (Zhu,
2023).

Assumption 2.1: The plant is locally constrained by
the Lipschitz condition |f (x1)− f (x2)| ≤ KL|x1 − x2|,
KL ∈ R≥0. Consequently, the plant (4) can describe
the discontinuous differential equation with piecewise
continuous inputs as well.

Assumption 2.2: The plant is Bounded-Input-
Bounded-Output (BIBO). Specifically, for the finite
values Bu > 0 and By > 0, the plant’s input and output
signals satisfy ∃Bu, ∀t(|y(t)| ≤ Bu) and ∃By, ∀t(|y(t)|
≤ By).

Assumption 2.3: The generalisation of the controlla-
bility and observability of nonlinear control systems
are formulated either based on linearisation around an
equilibrium point or based on the concepts of differen-
tial geometry (Zabczyk, 2020). The plant is assumed
to satisfy the observable/controllable conditions, in
which the corresponding matrices derived from the
Lie derivative have full ranks and proper dimensions
in the linearisation formulation and proper algebra in
the form of the differential geometry.

Assumption 2.4: The plant is a class of asymptotically
stable zero dynamics, which have the minimum phase
properties. Therefore, plant invertibility exists and is
stable.

Assumption 2.5: For a disturbance d ∈ R added
at plant (4) in the form of y(n) = f (y(0∼n−1), u, d),
the amplitude and derivative of the disturbance are
bounded. That is, ∃D, ∀t, |d(t)| ≤ D = sup(|d|) ∈ R

+
and ∃Dd, ∀t, |ḋ(t)| ≤ Dd = sup(|ḋ|) ∈ R

+.

Assumption 2.6: While the plant (4) model is
unknown, which is deemed as a total uncertainty in
a black box, it is assumed that its input is enabled to
drive the plant to generate the attainable outputs.

2.2. U-model

With reference to plant (4), the U-model (Zhu et al.,
2016) is defined as an expanded polynomial from the
nonlinear function f (∗) in the following expression of

Um(u) : y(n) = U(α(y(0∼n−1), θ),μ(u))

=
M∑
i=0

αiμi(u) (5)

whereM is the number of the model input (controller
output) function of u, μi(u) are the functions of u,
such as u3 and sin(u) and the time-varying param-
eter vector α(t) = [

α0(t) · · · αM(t)
] ∈ R

M+1 is
a function of y(0∼n−1) and the parameter vector θ =
(θ0 · · · θL) ∈ R

L.

Property 2.1: Let ψ : R
L+1 → R

M+1 be the map
from plant (4) to the U-model and its inverse be ψ−1,

that is, f (y(0∼n−1), θ , u)
ψ−→ U(α(y(0∼n−1), θ),μ(u)).

Then it has the following properties (Zhu et al., 2016)

(1) The map is injective (one-to-one)
(2) The map is surjective (onto)
(3) Therefore, the map is bijective as it is both injec-

tive and surjective.
(4) The map is invertible.
(5) The map does not change any of both model

characteristics, such as output response, stability,
dynamics and statics.

Remark 2.2: The U-model does not change the orig-
inal plant (4) properties such as dynamics, stabil-
ity and input and output external relationship. How-
ever, by such mapping (re-organisation) of the model
expression of control input oriented with time-varying
parameters, U-model provides a generic control-
oriented prototype to facilitate dynamic inversion and
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separation of the plant dynamics from the control
system design specifications to generate the invariant
controller (Zhang et al., 2020).

Remark 2.3: It should be noted that the U-model is
only used for model-based U-control. For model-free
U-control plant (4) is treated as a total uncertainty in a
black box with enabling input and measurable output
(Zhu, 2021, 2023).

2.3. Dynamic inversions

There are two types of dynamic inversions associated
with the U-control, instant dynamic inversion (IDI)
for the model-free U-control and asymptotic dynamic
inversion (ADI) for the model-free U-control.

The instant dynamic inversion (IDI) (Li et al., 2020)
is a procedure to take the inversion of a given U-model
(5) to determine the control input u with a specified
desired output y(n)d , which is defined as follows:

U−1
m (u) : u ∈ y(n)d − U(α(y(0∼n−1), θ),μ(u))

= y(n)d −
M∑
i=0

αiμi(u) = 0 (6)

Remark 2.4: The solution of the polynomial equation
gives y(n) = y(n)d ↔ y(n) − y(n)d = 0 ↔ y(n)(y(n)d )−1 =
1, Therefore, it gives U(u)U−1

m (u) = U−1
m (u)U(u) →

y(n) = y(n)d .

While the plant (4) model is unknown, deemed as
a total uncertainty in a black box with enabled input
and attainable output. The asymptotic dynamic inver-
sion (ADI) has been proposed using a closed loop, the
inner loop, as shown in Figure 2. The ADI is defined
as follows:

x = CDI(xd, P̂−1, P)
asymp−→ x = xd ↔ x − xd

= 0n ↔ x(xd)−1 = In (7)

where x and xd are the plant state vector and the
desired state vector, respectively. As shown in Figure
2, CDI denotes a closed-look dynamic inversion, P is
the model unknown plant, P̂−1 is a dynamic inver-
sion controller, currently, a model-free sliding mode
controller is used (Zhu, 2021).

Remark 2.5: The dynamic inversions share two alge-
bra properties, U(u)U−1

m (u) = 1 in multiplication

and U(u)− (U−1
m (u))−1 = 0 in summation. They are

equivalent in terms of inversion operation.

Remark 2.6: As the IDI is derived from the accurate
model, its robustness against model uncertainty is still
an open topic associated with the study of the model-
based U-control.

To explain the U-model realisation (5) from (4) and
itsmodel-based dynamic inversion, let us pick up a few
exemplary models.

(1) Linear continuous time model: ÿ = −2ẏ − 3y +
4u. The U-realisation is expressed as ÿ = α0 +
α1u, ∀α0 = −2ẏ − 3y,α1 = 4. Consequently, the
inversion is formulated by u = ÿ−α0

α1
.

(2) Nonlinear discrete-time (here t is used for
the discrete-time instant) rational model (Zhu
et al., 2018): y(t) = 0.5y(t−1)+sin(u(t−1))+u(t−1)

1+exp(−y2(t−1)) .
The U-realisation is expressed as y(t) = α0 +
α1 sin(u(t − 1))+ α2u(t − 1), ∀α0 =

0.5y(t−1)
1+exp(−y2(t−1)) ,α1,2 = 1

1+exp(−y2(t−1)) . Conseque-
ntly, the inversion is formulated by u : y(t)−
α0 + α1 sin(u(t − 1))+ α2u(t − 1) = 0.

(3) Linear state-spacemodel:
[
ẋ1
ẋ2

]
= [ 0 1−5 −6

] [ x1
x2

] +[ 0
7
]
u. To determine the control u, express the

U-realisation as ẋ2 = α0 + α1u, ∀α0 = −5x1 −
6x2,α1 = 7. Consequently, the inversion is for-
mulated by u = x2−α0

α1
.

(4) Non-affinenonlinear dynamicmodel (Zhu, 2023):
ξ̈ + ξ ξ̇ + υξ̇ + 0.6ξ − sin(υ)− 2υ − υ3 = 0,
where (ξ , υ) denotes a pair of the model output
and input. The U-realisation is expressed as ξ̈ =∑4

i=0 αiμi(υ), where (α0,μ0) ∈ (−ξ ξ̇ − 0.6ξ , 1),
(α1,μ1)∈(−ξ̇ , υ), (α2,μ2)∈(1, sin(υ)), (α3,μ3)

∈ (2, υ) and (α4,μ4) ∈ (1, υ3). Consequently, the
inversion is formulated by υ : ξ̈ − ∑4

i=0 αiμi(υ)

= 0.

Remark 2.7: The U-model can be deduced by resort-
ing to the models from physical laws and/or the iden-
tified models from data. The time-varying parameters
α(y(0∼n−1), θ) ∈ R

M+1 are used to absorb the non-
current-control variables in discrete-time models and
the non-control variables in continuous-time models.
Consequently, the u variable polynomial is named the
U-model, which is a type of control-oriented model
since it can facilitate the design of control systems.
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Figure 3 shows the paradigm structure of the
model-based dynamic inversion, where y(n)d is the
desired output response. There are three types of
dynamic inversion algorithms to determine the control
u, which drives the plant output to achieve the desired
y(n)d at output.

(1) Numerical iterative Newton Raphson (N-R) root
solver (Chong & Żak, 2013). Referring to the U-
model equation (6), the correspondingN-R solver
is formulated by

uk+1 = uk − (y(n)d − U(uk))

×
(
∂(y(n)d − U(uk))

∂uk

)−1

(8)

where k ≥ 0 is the iteration pointer when execut-
ing recursive calculations.
For commonly used power polynomials y(n) =∑M

i=0 αiu
i, (8) can be expressed as (Zhu & Guo,

2002)

uk+1 = uk −
y(n)d −

M∑
j=0
αju

j
k

∂

[
y(n)d −

M∑
j=0
αju

j
k

]

∂uk

(9)

(2) Functional equation root solver. Write the U-
model equation (6) in the form of a transcenden-
tal polynomial equation y(n)d − U(α(y(0∼n−1), θ),
μ(u)) = 0. Solving such an equation requires cer-
tain solvers in Matlab or Maple software pro-
grams, such as the Matlab function used to deter-
mine the symbolic and numerical roots.

(3) U-neural network has been developed to facil-
itate the dynamic inversion (Zhu et al., 2019).
Although such a method is initially developed
for model-based computation, it has the potential
for the model-free dynamic inversion by integrat-
ing the neuro-computing method with iterative
training/learning to adapt the pointwise solutions.

Figure 3. Model-based dynamic inversion.

3. Model-based U-control

3.1. Pole placement U-control

Pole placement control (Astrom &Wittenmark, 1995)
is a technique used in control theory to design con-
trollers for linear time-invariant (LTI) systems. The
goal is to assign the closed-loop system’s poles at
desired positions in the Laplace coordinate system (a
type of complex plane) to obtain specific properties,
such as stability, transient response and robustness.
In general, the implementation of the pole placement
control method includes the following steps.

(1) Plant representation: This step aims to describe
the dynamic behaviour of the plant as an LTI
model. Thismodel is often represented by transfer
functions in the complex domain or state-space
equations in the time domain.

(2) Desired pole locations: Based on the desired per-
formance objectives, such as settling time, over-
shoot and stability margins, the engineer chooses
the desired locations for the closed-loop poles in
the complex plane.

(3) Controller design: Based on the desired pole loca-
tions, design a controller that will shift the open-
loop poles to the desired positions when the feed-
back loop is closed. In the case of state-space rep-
resentation, a full state feedback gain vector can be
designed to assign the desired eigenvalues/poles
in the closed-loop system. The transfer-function-
based representation and the state-space-based
representation, respectively, correspond to the
dynamic controller and the constant gain con-
troller.

(4) Designed system analysis: Once the controller
is determined, the closed-loop system’s stability,
transient response and other performancemetrics
are analysed to ensure that the required system
performance is satisfied.

It should be noted that the U-control can expand
the linear plant into a general nonlinear plant in both
polynomial and state-space models while keeping the
closed-loop control performances achieved based on
the conventional linear plant models. Moreover, the
U-control method also separates its controller design
and dynamic inversion, which avoids using the plant
model in solving the Diophantine equation (Zhu &
Guo, 2002).
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3.1.1. Expanded Astrom approach (discrete time)
Figure 4 depicts the control systemconfiguration of the
Astrom approach (Astrom & Wittenmark, 1995). The
control system design can be briefly explained as fol-
lows. For a given linear SISO discrete-time dynamic
plant P = B

A which B and A are the numerator poly-
nomial and denominator polynomial, respectively in
the discrete-time transfer function. To design a lin-
ear controller with Ru = Tr − Sy which R, T and S are
the polynomials to specify the control input u, the set
point reference r and the system output y, respectively.
For a given desired closed-loop system characteris-
tic equation Ac = 0, solving the Diophantine equation
AR + BS = Ac to determine the controller polynomi-
als R and S and Ac(1) = T to achieve the zero steady-
state error for a setpoint reference input. The factors in
the characteristic equation are the poles for designing
the closed-loop systems. This approach is only feasible
for linear dynamic plants.

Figure 5 shows the expanded Astrom approach,
named pole placement U-control (Zhu & Guo, 2002),
which aims to make the Astrom approach generically
applicable to nonlinear dynamic plants within the U-
control framework. The solution to the Diophantine
equation is reduced to R + S = Ac due to the dynamic
inversionmaking P−1P = 1. Consequently, the design
of pole placement U-control is independent of the
plants, nomatterwhether they have linear or nonlinear
dynamics.

Figure 4. Astrom pole placement control system.

Figure 5. Expanded Astrom pole placement control system.

3.1.2. Direct pole placement (continuous time)
Figure 1 shows the structure of the direct pole place-
ment U-control. The objectives in the design of the
direct pole placement U-control include the following
three aspects:

(1) Achieve model-based dynamic inversion for
P−1P = 1.

(2) Assign the control system performance in terms
of closed-loop Laplace transfer function Y

R =
G = CIV(1 + CIV)

−1. The corresponding poles/
eigenvalues are assigned to satisfy the closed-
loop characteristic equation 1 + CIV = 0. There-
fore, the invariant controller can be designed with
CIV = [1 − G]−1G.

(3) For the steady-state performance to constant
setpoints, one has lim

t→∞ e(t) = lim
t→∞(r(t)− y

(t)) → 0.

3.2. Smith predictive U-control (discrete time)

Smith predictive control, also known as Smith predic-
tor (Normey-Rico & Camacho, 2007), is an approach
used to cope with process delays that appear in control
systems with feedback loops. It is particularly useful
for systems with significant dead time or transport
delays, where the time consumed for a control action to
affect the process output is non-negligible. It has been
observed that in a standard feedback control system,
delays would lead to instability, poor performance or
even system failure. To this end, the Smith predictive
control method has been developed to address such
an issue by predicting the future behaviour of the pro-
cess and incorporating this prediction into the control
algorithm.

In general, the conventional Smith control method
includes the following four aspects (Normey-Rico &
Camacho, 2007).

(1) Process/plant model: This step aims to estab-
lish the mathematical models for the underlying
plant/process, which are necessary for the design
of control systems. The establishedmodels should
capture the dynamics of the process, including any
delays.

(2) Delay compensation: The predictor includes a
delay model in the control configuration, and this
delaymodel can predict the system’s future output



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 493

with reference to the instant control input and the
past outputs.

(3) Control algorithm: The control algorithm com-
bines the predicted future process output with
the desired setpoint to generate the control sig-
nal, which is achieved using some well-known
control methods, such as PID control and model
predictive control.

(4) Feedback: The actual process output is contin-
uously monitored, and the feedback is used to
update the control signal. The feedback loop
ensures that the control action can be adjusted
based on the difference between the predicted and
actual process outputs.

The Smith predictive control also has some limita-
tions, such as the strong dependence on model accu-
racy. In this regard, such a method is mainly used
for linear plants. Fortunately, the U-control method
can expand the time-delayed linear plant into a gen-
eral time-delayed nonlinear plant while keeping the
closed-loop control performances achieved based on
the conventional linear plant models (Geng et al.,
2019).

Figure 6 illustrates the paradigm structure of the
expanded Smith predictive control. The dynamic
inverter P−1 makes the Smith predictive control
method (originally developed for linear models)
applicable to non-linear models (Geng et al., 2019).
Most of the symbols used have been defined in pre-
vious sections, except the plant P and its nominal
model P̂ are in the discrete-time domain and the q−1

operator makes q−ky(n) = y(n − k) (n is the sampling
instance and −k denotes the k step time delay). The
cancellation of the plant by dynamic inversion makes
the Smith predictive control generally applicable to

non-linear systems in either polynomial or state-
space models. It should be noted that the U-control
requires the same model accuracy for better control
effects.

3.3. Summary ofmodel-based U-control

Based on the above discussions, we can give a sum-
mary of the model-based U-control methods as fol-
lows:

(1) It is straightforward to implement the model-
based U-control methods in terms of control sys-
tem configuration and controller design.

(2) Two controllers are used in the cascade structure
to achieve dynamic inversion and control system
performance specification.

(3) The design method of the linear control system
is also applicable to the nonlinear dynamic plants
(even for nonlinear non-affine systems) since the
dynamic inversion has made the design process
independent of the plant models.

(4) The downside of the model-base control is that it
heavily relies on the model accuracy even though
the feedback control can copewith tiny uncertain-
ties in the neighbourhood of the nominal model.
As such, it is quite necessary to develop model-
free U-control methods and hence enhance the
control robustness.

4. Model-free U-control

4.1. Design procedure

The general structure of the model-free U-control
is shown in Figure 2. The model of plant (4) is

Figure 6. Smith predictive U-control.
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assumingly unavailable in this case. That is, plant (4)
is treated as a total uncertainty in a black box with
enabling input andmeasurable output. Themodel-free
U-control is defined in (3). The design procedure is
explained below.

(1) Robust dynamic inversion of plant: The inner
loop aims to use MFSMC to produce an nth-
order identity matrix or a unit constant and then
cancel the plant interaction in the control sys-
tem design, which can guarantee robust stabil-
ity in the dynamic inversion process. The inner
loop is not intended to claim additional speci-
fications of the system response. As expected, if
the dynamic inversion is achieved, the perfor-
mance controller in the outer loop can be inde-
pendently assigned regardless of the plant/model.
This outer loop controller is known as the invari-
ant controller. If the full states are not avail-
able for sliding mode control (SMC), the state
observers can be employed. For example, the ESO
(Guo & Zhao, 2011) can be used to obtain the
state vector.

(2) Whole performance specification: Setting up the
outer loop has three objectives: (1) Achieve the
whole system control performances. For instance,
a required linear dynamic response in the system
can be assigned with a Laplace transfer function
in a complex domain, which can be achieved by
resorting to the closed-loop implementation with
a performance controller. This approach is more
robust than the open loop implementation, espe-
cially when dealing with the frequently encoun-
tered constant disturbances. (2) Narrow down the
closed-loop bandwidth to facilitate the process of
plant inversion. (3) Use an invariant controller
to provide the desired state vector for the inner
loop SMC.

(3) Detachable motion control and setpoint control:
The inner loop can be used for the motion con-
trol and both loops are suitable for the setpoint
control. The invariant controller can be specified
by the sliding mode PID (SMPID) (a type of U-
PID Zhu 2023) and the CNF control (a new type
of cascade U-CNF control that can generate vari-
able damping ratio in comparison with the con-
ventional parallel CNF configuration and hence

guarantee the overshoot-free monotonic response
with the fast-damping ratio).

4.2. MFSMC andmodel-free extended state
observer (MFESO)

The SMC is a robust control methodology used to sta-
bilise systems and track reference trajectories against
uncertainties and disturbances. The first step of the
SMC is to select a sliding surface in the state coordi-
nate system such that the desirable performance can
be achieved when the system trajectory is constrained
to this surface. Then, proper feedback gains should
be designed to guarantee that the system trajectory
stays on this surface despite the existence of distur-
bances or uncertainties. It has been reviewed thatmost
conventional SMC methods are based on the models
and the controller outputs are determined by solving
a sliding mode derivative equality (Yan et al., 2017).
The U-control strategy has developed a procedure to
design the MFSMC without using an adaptive data-
driven pointwise model, which simplifies the design
procedure and increases the global robustness (Zhu,
2021, 2023).

The MFSMC (Zhu, 2021, 2023) constitutes the core
technique to establish amodel-free control framework.
The procedure of designing the MFSMC is explained
as follows.

(1) Assign a linear sliding mode manifold σ(e) =
σ(x − xd) = σ , where (x, xd) is the pair for the
plant state vector and the desired state vector and
σ is defined by (Slotine & Li, 1991):

σ =
(
d
dt

+ c
)n−1

e, R
n → R (10)

where the strictly positive constant c ∈ R
+ denotes

the slope (that is, the exponential convergence
rate) of the sliding manifold, making the poly-
nomial σ satisfy the Hurwitz stability condi-
tions. The sliding mode σ(∗) = 0 specifies a
time-varying R

n hyperplane to guarantee that the
tracking error trajectory asymptotically exponen-
tially converges to zero.

(2) Design the model-free controllers. Specifically,
the switching control usw and the equivalent
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control ueq are designed by

σ̇ = u = ueq + usw

usw = −kgsgn(σ )|σ̇ σ + ασ 2 ≤ 0 ∀|σ | > δ

ueq = ρ(σ |σ̇ σ + ασ 2 ≤ 0) ∀|σ | ≤ δ

(11)

where δ is the sliding mode boundary distance
function (also known as the boundary thickness)
to the sliding mode σ(e) = 0 with L2 norm δ =
||σ(e)||2. The constant gain kg ∈ R+ in the switch-
ing control usw and ρ(σ) in the equivalent control
ueq is designed to satisfy the differential inequality
V̇ + αV ≤ 0 or V̇ = σ̇ σ < 0, (α = 0) in which
α ∈ R

+ is the exponential convergence rate for
the Lyapunov differential equation; V = 1

2σ
2 and

V̇ = σ̇ σ are the quadratic control Lyapunov func-
tion and its derivative, respectively.

Remark 4.1: There are various options to assign the
decreasing control function ρ(σ). This study selects
two typical controllers ueq = ρ(σ) for MFSMCs,
called the augmented proportional and integral (PI)
MFSMC and the continuousMFSMC (Zhu 2023). The
details are given as follows:

4.2.1. PI function

σ̇ = u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

usw = −kgsgn(σ )|σ̇ σ
+ ασ 2 ≤ 0 ∀|σ | > δ

ueq = −kpσ − ki
∫
σ |σ̇ σ

+ ασ 2 ≤ 0 ∀|σ | ≤ δ

(12)

where the coefficients kg , kp, ki ∈ R
+ are the gains

chosen in line with the Lyapunov asymptotic sta-
bility. To accommodate the system bound |sup(k)|,
these gains need to be assigned to satisfy that
|sup(k)| < kg , |sup(k)| < (kp + ki), and |(kp)σ 2| >∣∣(ki)σ ∫

σ
∣∣ , ∀kp > ki. If the bound is unknown, take

the trial-and-error approach to determine these gains.

4.2.2. ContinuousMFSMC
Various monotonic nonlinear functions can be
adopted for the continuousMFSMC.Among them, the
most typical one is the sigmoid/logistic function, based

on which the controller can be expressed as

σ̇ = u = ρ(σ)

ρ(σ ) = −kssigmoid(k0σ)+ ks
2

|σ̇ σ + ασ 2

≤ 0, |sup(k)| < ks, k0 ∈ R
+

(13)

where sigmoid(k0σ) = 1
1+e−k0σ

, the gain ks regulates
the convergence direction and speed for the equivalent
sliding mode, and the width gain k0 is used to adjust
the equivalent sliding mode boundary thickness.

Remark 4.2: The model-free SMC covers the model-
based SMC as a special case. For the former, the con-
troller output is obtained by solving the differential
inequality σ̇ σ < 0, while for the latter, the differential
equality σ̇ = 0 is utilised.

Figure 7 (Zhu, 2021, 2023) shows the model-based
sliding mode and the model-free sliding modes in the
coordinate system with respect to the (σ , σ̇ ) plane.

The MFSMC is a type of control method requiring
all state signals. If the state vector is not fully measur-
able, some state observers should be incorporated to
estimate the state vector. To this end, the ESO (Guo
& Zhao, 2011) has been revised within the U-control
framework to develop a kind of MFESO.

Referring to plant (4) with unknown bounded dis-
turbance d, assign the estimated state vector z =
y(0∼n−1) = [ z1=y z2=ẏ ··· zn−1=y(n−1) ]T ∈ R

n and zn =
f (z, u, d) to formulate the MFESO in the following
form:

żj = zj+1 + βje1, j = 1, 2, · · · n − 1

żn = zn+1 + βne1 + u

żn+1 = βn+1e1

(14)

where e1 = (y − z1) is the error, βj = ωjcj, j ∈ [1,
2, · · · , n + 1] are the observer gains to be adjusted,
ω is the observer bandwidth and cj, j ∈ 1, · · · , n +
1 are the associated constants assigned by cj =
(n+1)!

j!(n+1−j)! , with which the Hurwitz stability constrains
(s + 1)n+1 = ∑n+1

j=0 cjsn+1−j are satisfied.
Figure 8 shows the location of the MFESO in the

U-control scheme.
When it comes to the theoretical analyses of the

MFSMC, the theoretical derivation and the proof of
robust stability have been provided by Zhu (2023) and
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Figure 7. Sliding modes.

Figure 8. Model-free U-control with MFESO.

the total robustness based on the system sensitivity has
been analysed by Zhu, Li, et al. (2023a).

It should be pointed out that the non-affine nonlin-
ear plant P : ξ̈ + ξ ξ̇ + υξ̇ + 0.6ξ − sin(υ)− 2υ −
υ3 − d = 0 (where (ξ , υ) is the pair for the plant out-
put and input and d is an unknown but bounded
external disturbance) has been used as a benchmark
example to test the performance of MFSMC in various
publications (Zhu, 2021, 2023; Zhu, Li, et al., 2023a;
Zhu, Li, et al., 2023b; Zhu et al., 2023c; Zhu, Mobayen,
et al., 2023).

4.3. Expanded CNF control

The CNF control is used to regulate the nonlin-
ear dynamical systems, particularly the systems with

uncertain or time-varying dynamics. Such a scheme
usually combines multiple linear and/or nonlinear
control techniques to achieve desired performance
objectives such as stability, tracking and disturbance
rejection. The basic idea behind CNF control is to
decompose the whole control task into multiple com-
ponents, each of which is responsible for addressing a
specific aspect of the system’s behaviour. These com-
ponents are then combined in a systematic way to for-
mulate a composite control strategy that can effectively
regulate the control operation. It should be emphasised
that the CNF control can provide robust control per-
formance even in the case of internal uncertainties and
external disturbances, which indicates that the integra-
tion of linear and nonlinear control techniques enables
better performance than using either approach alone
(Lu & Lan, 2019).

The implementation of the conventional CNF con-
trol scheme includes the following five steps.

(1) Systemmodelling: Modelling of the plant dynam-
ics serves as a cornerstone for the design of
the control system. Two typical methods are lin-
earising nonlinear models and using data-driven
approaches to identify the system dynamics.
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(2) Decomposition: In this step, the whole control
task is decomposed into multiple control objec-
tives, such as stability, tracking and disturbance
rejection. Each control objective is achieved by
resorting to a specific control component.

(3) Controller design: For each control objective,
appropriate control techniques are selected and
implemented, which include, but are not limited
to, linear PID control, state feedback pole place-
ment, slidingmode control and backstepping con-
trol in certain nonlinear control toolboxes.

(4) Composite control law: The individual control
components are combined into a composite con-
trol law using appropriate combination rules, such
as simple linear combinations, weighted sums and
other more sophisticated techniques (e.g. feed-
back linearisation and adaptive control).

(5) Implementation and tuning: The composite con-
trol law is implemented in the control system,
and its parameters are tuned to achieve desired
performance objectives. To this end, simulation
studies and experimental validation are usu-
ally conducted to ensure that the control per-
formance is achieved under various operating
conditions.

The conventional CNF control methods share
two commonalities: (1) the design of almost all the
conventional CNF control approaches is dependent
on a plant/process model even though most adap-
tive strategies, neural networks and other model-
free approaches are based on the pointwise online
data-fitting models; (2) a parallel control structure,
including the linear control and nonlinear control, is
exploited, which usually involves complicated numer-
ical calculations. This is particularly true for the non-
linear systems since the Lyapunov equation needs to
be solved (Chen et al., 2003). Based on the above
discussions, it makes practical sense to develop the

model-free CNF control scheme within the U-control
framework, which is abbreviated as U-CNF control.

Figure 9 shows the structure diagrams of conven-
tional CNF control and U-CNF control. In the U-CNF
control, two controls ul and uf (existing in the con-
ventional CNF control) are merged into one control
CIV(ζ ). By choosing the proper time-varying damping
ratio ζ according to the error e, the desired dynamics
and steady-state performance can be achieved without
the need to solve the Lyapunov equation due to the
advantage of model-free design (Zhu, Mobayen, et al.,
2023).

4.4. Multi-inputmulti-output (MIMO) U-control

The MIMO U-control approach, usually abbreviated
as the U-MIMO approach, is essentially a model-
free design scheme and aims to cope with the inter-
connected coupling effects in designing the fully
actuated MIMO control systems. Considering the
interdependencies between inputs and outputs, two
approaches have been proposed by treating theMIMO
plants as a total uncertainty in a black box with
two external ends for driving force and response
measurements.

4.4.1. Decentralised U-control
In this method, the individual input-output pairs are
regulated independently through the SISO controllers.
In fact, the model-based design has been the preva-
lent approach in recent years, where the control sys-
tems are designed with specified control objectives by
taking the nominal system models as references. The
uncertainties (arising from the inaccuracies and/or
variations in model parameters) are considered in this
approach (Chen et al., 2022). It is worth mentioning
that the model-free design should also be fully investi-
gated due to its significant advantages in practice. The
key idea is treating the plant as in a black box with an

Figure 9. (a) Conventional CNF control and (b) U-CNF control.
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Figure 10. Decoupling U-control.

equal number of enabling inputs and measurable out-
puts. For example, when it comes to the fully actuated
MIMOplant, them input/output (I/O) subsystems can
be designed as m SISO control systems such that the
invariant control matrix is diagonal and the Lyapunov
stability of the whole system is dependent on each
subsystem’s stability (Zhu, Li, et al., 2023b).

4.4.2. Decoupling U-control
Model-based decoupling control is a relatively mature
technique, which is used to mitigate the interfer-
ences among the inputs and outputs in multivari-
able control systems. In the MIMO systems, it is
often the case that the control variables influence
multiple outputs simultaneously, thereby leading to
unwanted coupling effects that can degrade perfor-
mance or incur instability. Model-based decoupling
control aims to design controllers that can decou-
ple the system’s inputs and outputs effectively, under
which each input only affects its corresponding out-
put (Bhattacharyya & Keel, 2022). The decoupling
U-control (Zhu, Li, et al., 2023a) aims to provide a
general model-free decoupling scheme for non-affine
nonlinear MIMO plants, which is a nontrivial task
since no reference model is available and there are dif-
ficulties in decoupling such nonlinear plants. Figure
10 illustrates the paradigm structure of the decou-
pling U-control system, where the D block serves
the purpose of decoupling. The I/O coupling matrix
function can facilitate the derivation of two types
of decouplers, namely, U-decoupler/functional inver-
sion and D-decoupler/static matrix inversion, which
also provide evidence for the existing theorem of
the MFSMC and form the basis for the nonlinear-
dynamic-coupling inversion. Additionally, a simulated
bench test is conducted on a non-affine two-input
two-output nonlinear plant with the following system

dynamics: P2x2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ÿ1 + y2ẏ1 + u2ẏ2 + 0.6y1

− sin(u1)− 2u2 − u31 = 0

ÿ2 − 1.5(1 − y21)ẏ2 + y1

− 2u1 + u32 = 0

and

the comparative results are also provided for the U-
control and a model-based dynamic decoupling con-
trol with respect to a two-input two-output linear
plant.

5. Conclusions

The U-control framework has provided an effective
supplementary approach to enhance the performance
of various existing approaches applicable within the
whole spectrum from model-based to model-free.
More importantly, the U-control can be applied to
a diversity of scenarios, from motion control to set-
point control. The pursuit of the U-control is a type
of applied method to achieve concise design of con-
trol systems, effective tuning of control parameters
and promote practical applications. The integration
of U-control with other conventional approaches can
be described by the problem-method relationships, as
shown in Figure 11 and Table 1 lists some of the con-
sidered future work. Although the authors and their

Figure 11. Integration of U-control and the other methods.
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Table 1. Future U-control work integrated with the existing methods.

Problems Conventional methods U-control to supplement

SISO plants Pole place, Smith predictive control, neural net-
work control, composite nonlinear feedback
control, event trigger control, control of nonlin-
ear dynamicswith discontinuous control inputs

U-control will be integrated in forms of model-based and model-free
to enhance dynamic inversion, dealing with uncertainties and distur-
bance. Some algorithm enhancements could be the model-free termi-
nal SMC to remove the singularity and chattering effects encountered
in themost conventional algorithms. The other expansion could be the
integration of control Lyapunov function and control barrier function
for both stability and safety in model-free U-control.

MIMO plants Underactuated control Model-based and model-free sliding mode U-controls could be
expanded by coupling the underactuated control inputs so that this
generalisation could remove the coordinate transform request convert-
ing nth order,m plant outputs into n∗m lines of the state-space model.
Consequently, the U-control directly uses the Lagrangian equation
model for control system design, which is meaningful in design effec-
tiveness and physical implementation.

Application bench tests Under actuated control systems, particularly
those motion control systems in robots,
unmanned aerial vehicles’ operation is
described by Lagrangian equations.

Model-free U-control with simulations and real bench tests is aimed
to increase the generality, conciseness in design and robustness in
tuning and control. The development could start from inverted pen-
dulums, unmanned aerial vehicles and many others that appeared in
mechatronic systems.

Nonlinear dynamic systems with non-
continuous inputs (such as dead zone,
friction and hysteresis) frequently appeared in
mechatronic systems.

Model-free U-control in dealing with such complete uncertainties with
piecewise smoothness.

Co-design of emerging man-made products
and systems, such as robots, unmanned aerial
vehicles (UAVs), etc.

Regarding the codesign of UAVs, it could involve the integrated devel-
opment of hardware and software systems to optimise performance,
functionality and efficiency. Codesign ensures that all components of
the UAV are designed to work seamlessly together, addressing various
design challenges and requirements. Surely, U-control, in principle of
separationofmodel andplant and totalmodel-free,wouldprovide new
insight and prototype with the related applications

research teams have published a series of results on the
U-control, such a method has not received sufficient
attention from the control and related communities.
Hopefully, this paper can pave the way for the theoreti-
cal research and practical applications of theU-control
framework.
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