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Abstract: The discrepancy between simulated and hardware experiments, the reality gap, is a chal-
lenge in evolutionary robotics. While strategies have been proposed to address this gap in fixed-body
robots, they are not viable when dealing with populations and generations where the body is in
constant change. The continual evolution of body designs necessitates the manufacturing of new
robotic structures, a process that can be time-consuming if carried out manually. Moreover, the
increased manufacturing time not only prolongs hardware experimental durations but also dis-
rupts the synergy between hardware and simulated experiments. Failure to effectively manage
these challenges could impede the implementation of evolutionary robotics in real-life environ-
ments. The Autonomous Robot Evolution project presents a framework to tackle these challenges
through a case study. This paper describes the main three contributions of this work: Firstly, it
analyses the different reality gap experienced by each different robot or the heterogenous reality
gap. Secondly, it emphasizes the importance of automation in robot manufacturing. And thirdly, it
highlights the necessity of a framework to orchestrate the synergy between simulated and hardware
experiments. In the long term, integrating these contributions into evolutionary robotics is envisioned
to enable the continuous production of robots in real-world environments.

Keywords: evolutionary robotics; evolution of things; automation; software-hardware synergy;
reality gap

1. Introduction

One of the ultimate goals of evolutionary robotics (ER) is the transition from evolu-
tionary computation, or digital evolution, to the evolution of things, or physical evolution [1].
In physical evolution, entire robotic ecosystems will run autonomously with minimal human
intervention, and robots will evolve in real-time and real space adapted to their task and
surroundings. Over the last couple of decades, the ER field has made significant strides
towards this goal, from the early beginnings with the evolution of controllers in physical
robots [2–4] in the 90s, to the joint evolution of body designs and controllers, morpho-
evolution, of robots [5–7], and to recent years, where small populations of robots are
evolved in hardware [8–10]. Despite this progress, this paper highlights three challenges in
ER that need to be addressed before the transition to the continuous production of evolved
robots in real-world environments: the software-hardware synergy balance, the heterogenous
reality gap, and the continuous production of robots and the importance of automation.
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The software-hardware synergy balance: Even though physical evolution can be powerful
by itself, this process can be further augmented with digital evolution. Firstly, due to the
rapid evaluation in digital evolution, a wider range of diverse robot designs and controllers
can be explored [11]. Secondly, damaging physical components can be prevented when
the robots are firstly simulated [3,12]. Thirdly, waste of resources can be avoided when
fabricating sub-optimal robots [3,12]. In most of the work in the literature, the results from
the digital evolution are fabricated into physical robots [10,13–18], however, to close the
software-hardware feedback loop, information needs to be propagated back to the digital
evolution. Since these processes, digital and physical evolution, work at different time scales,
the question arises of when to synchronize them and how to design the robot selection
operator. The issue of long-time evaluations in physical evolution has been raised in previous
literature [1,19–21].

The heterogenous reality gap: The resulting discrepancy between experiments in simu-
lation and experiments in hardware, or the reality gap, has been explored with solutions
proposed [20–23]. These solutions often assume that the designs of the robots are fixed
and will not change. However, this is not the case when digital and physical evolution are
integrated, in which case the body designs constantly change. The reality gap will change
for every single different robot design and behaviour that evolves [16], and if not han-
dled properly, this can impact the number of evaluations and the selection process during
evolution. The question arises of how to cope with this constant change in the reality gap.

The continuous production of robots: The process of manually fabricating robots can be
time-consuming and this impacts robot production throughput. In most of the experiments
with physical robots in ER, the robots are manually constructed, with a handful of excep-
tions [8,18,24]. In contrast to conventional manufacturing automation, where the same
product is produced repeatedly [25], in physical evolution, the product (in this case, robots)
is constantly changing, and the automation facility should be flexible enough to handle
the different robot designs evolved. Realistically, there will always be manufacturability
constraints, which will also affect the types of robots that can be manufactured, also known
as the viable phenotype space [26]. This then becomes a chicken-and-egg problem of how to
design an autonomous fabrication system for relatively diverse robots.

The previous three challenges are interconnected, with their outcomes influencing
one another, as shown in Figure 1. The selection and quantity of physical robots, along
with their body designs, impact the autonomous robot fabrication process, which in turn
determines the production throughput. This throughput affects the balance between the
number of robots evaluated in hardware and those evaluated in simulation. The constantly
shifting reality gap between robots will also impact the final score, which, in turn, affects
the robot selection process.

The Autonomous Robot Evolution project (https://www.york.ac.uk/robot-lab/are/
(accessed on 20 October 2024)) [24] is presented in this paper as a case study to explore
in more detail the previous three challenges. Preliminary strategies to address these
challenges are proposed along with initial results. Additionally, this paper offers three
novel key contributions. First, it presents the full implementation of an autonomous robot
fabrication process. Second, robots with different designs are physically evaluated and
compared to their digital counterparts to assess the reality gap. Finally, it introduces the
first implementation of an integrated digital and physical evolution system.

The structure of the paper is as follows. Section 2 describes the work in the literature
that addresses the previous challenges. Section 3 illuminates the importance of these
challenges and proposes some solutions to address them. Section 4 summarizes the work
in this paper and describes further work.

https://www.york.ac.uk/robot-lab/are/
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Figure 1. This diagram illustrates a minimal framework that integrates both physical and virtual evolu-
tion. Robot selection occurs within the software-hardware block. Physical robots are autonomously
fabricated by a facility focused on minimizing fabrication time to maximize throughput. After fabri-
cation, the robots are evaluated, with the reality gap information fed back into the software-hardware
synergy for further optimization.

2. Related Work

This section will describe approaches to address the challenges introduced: the software-
hardware synergy balance, the heterogeneous reality gap, and the continuous production of robots.

2.1. The Software-Hardware Synergy Balance

The work in the literature regarding software-hardware synergy can be categorized
as simulation-only, sim-to-real, hardware-only and sim-and-hardware. Most of the work on
morpho-evolution in ER has been carried out as simulation-only, where robots are evolved
in a simulated environment and never tested in hardware. This is because digital evolution
offers the advantage of rapidly evaluating a wide range of diverse robot designs and con-
trollers without the risk of damaging physical components, and it avoids wasting resources
on fabricating suboptimal robots [3,11,12]. However, evaluating robots in hardware helps
validate simulation results, and this information can significantly impact the performance
of the algorithms.

Valuable feedback has been provided by hardware experiments conducted by au-
thors in the literature who constructed and evaluated resulting robots from simulation in
sim-to-real. The work by [13] is foundational, as it was the first instance where morphologi-
cal evolution was conducted in simulation, followed by the fabrication, evaluation, and
comparison of the resulting population with their simulated counterparts. This work high-
lighted discrepancies in behaviour, particularly differences in speed, which were attributed
to inaccuracies in the simulation’s friction model. Subsequently, authors such as [16–18,27]
highlighted that discrepancies in results were produced by inaccurate friction coefficients.
Ref. [14] suggested that, when conducting experiments, the actuation in simulation should
be high enough to ensure that the same actuation in the physical robot is able to break the
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static friction, or the robot will be unable to move. Inappropriate modelling of limb-to-limb
collision is suggested as a source of the reality gap by [16]. Ref. [17] mentioned morpholog-
ical differences and inaccurate actuation between simulation and hardware, while ref. [18]
noted that broken connections in hardware introduce behavioural differences. All this prior
knowledge could have been applied to evolve better robot designs, either by adjusting
parameters in the simulator, as done by the authors in [10] (see more in sim-to-real below),
or by modifying the selection operators in the evolutionary process (discussed further in
Section 4).

This feedback can be dismissed entirely when experiments are conducted as hardware-
only, where experiments are carried out in hardware with minimal contribution from
simulation. The trade-off is that these experiments are time-demanding [1,19–21]. Ref. [8]
conducted experiments where a hundred robots were evolved across ten generations in
hardware. The results indicate an improvement in performance after each generation.
Nevertheless, the authors suggest that the combination of simulation and hardware will
help to produce better and more viable solutions in hardware.

As far as the authors are aware, there has been only one attempt to integrate morpho-
evolution in software and hardware (sim-and-hardware). Evolved robots with a pipeline
approach where robots were evolved first in simulation and then manually assembled the
best-performing robots [10]. The performance of these robots was measured; this is referred
to as the first pass. Then, the constraints in the simulation were manually updated, the
initial population was reinitialized with the best-performing robots, and the robots were
evolved again in simulation. A selected group of robots was then assembled physically;
this is referred to as the second pass. The authors discovered that the behaviour of the
robots in simulation better matched the behaviour seen with the physical robots after the
second pass.

In conclusion, even though experiments in ER have been carried out in simulation and
hardware, there is a gap in how experiments from these two domains can be integrated to
exploit their benefits to create even better robot designs. This paper proposes an integration
method and shows preliminary results.

2.2. The Heterogenous Reality Gap

The reality gap, or the discrepancy between simulation and hardware results, has been
a constant challenge, impacting robot performance and necessitating iterative adjustments
in both simulation and hardware to minimize this gap [22]. Numerous approaches have
been proposed in the literature to address the reality gap [20,21,23,28–31]. These approaches
typically assume a static robot design; however, this assumption does not hold true in ER,
where robot morphologies are constantly changing. The reality gap can be reduced by
improving the simulator’s fidelity. However, higher fidelity requires more computational
resources, resulting in longer evaluation times, which is suboptimal in evolutionary robotics,
where numerous evaluations are necessary for each process. Additionally, calibrating
a simulator to accommodate a wide range of robot designs, each interacting with the
environment in unique ways, becomes exponentially more challenging.

Experiments conducted in hardware within the ER domain, which involve evolving
morphologies, have highlighted the existing reality gap [13,14,16–18]. However, the expla-
nations provided by the authors do not clarify whether the reality gap is consistent across
all robots or varies with each evolved robot. Ref. [16] described how the reality gap varied
from robot to robot, possibly linked to both the morphology and behaviour of the robot.
For example, robots exhibiting dragging behaviours experienced a higher reality gap than
those performing gait behaviours. Another example is the collision between limbs, which
is also linked to morphology. The reality gap variation between evolved robots is referred
to in this paper as the heterogenous reality gap.

A key distinction between the platforms described in [13,14,16–18,32] and the ARE
platform is that evolved robots can have various configurations of different components,
such as sensors, joints, and wheels. This is particularly important because it can amplify
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the effects of the heterogeneous reality gap, as each evolved robot interacts with the
environment in unique ways. For example, some robots may walk, drag themselves, or roll
across the terrain.

Ref. [12] introduced a method to minimize the reality gap for robots with varying
numbers of limbs. In this approach, a repertoire of behaviours is generated in simulation.
This repertoire is then used to train a model, which is subsequently deployed in the physical
robot. The robot switches between behaviours to accommodate its current morphology.

In conclusion, evidence suggests that the reality gap varies between different robots
when evaluated in hardware due to differences in their designs and behaviours. It is crucial
to account for this varying reality gap when selecting robots for physical evolution, as it can
significantly impact the evolutionary process, a topic that will be explored in more detail in
later sections of this paper.

2.3. The Continuous Production of Robots

In physical evolution, relatively large numbers of robots will be produced, and manually
constructing these robots will be physically demanding. For this reason, the process of
fabricating evolved robots needs to be automated. Automation, or the use of technology to
perform tasks with minimal human intervention [25], has been widely deployed in industry
to perform repetitive actions. The philosophy of fixed and programmable automation is to
design the process around the product that is to be manufactured, changing the automation
process only when the product changes. However, in ER, the products, or robots, are in
constant change, and therefore flexible (soft) automation is required. Creating such a system
is challenging because the restrictions from the system will impact the evolutionary space,
and therefore the encodings should encapsulate this information, as discussed by [26].
This might be one of the reasons that in most literature, evolved robots are manually
constructed [9,10,13,15–17,33].

The work by [8,34] was the first to automate the process of fabricating evolved robots.
In this approach, a robotic arm assembles robots by performing handling operations such
as rotation and placement and connecting components using hot melt adhesive. The robotic
arm then places the robot in an arena where its fitness is computed using an overhead
camera to assess performance. However, the system lacks sensing capabilities, and the
fabrication process is relatively straightforward due to the modular component design.

The proof-of-concept of an autonomous fabricator of amorphous robots was shown
in [24] and this system was further expanded in [26]. In this system, the amorphous shape
of robots was 3D printed, and a robotic arm assembled all the components, including shape,
brain, wheels, sensors, and joints. Similar to the previous approach, one of the limitations
of this system is that there is no feedback during fabrication, and therefore errors during
production can occur.

Feedback was introduced by [18,35] in a system for fabricating modular robots. A
robotic arm assembles the body designs through magnetic connections. Each module is
labelled with a tag, and a visual tracking system provides necessary feedback, such as
distance and orientation errors, to perform assembly more accurately.

In conclusion, automation is crucial in ER, yet the number of approaches remains
limited. There is a lack of analysis regarding the production of robots and its impact on ER.
This paper examines the robot production throughput and its impact on ER in more detail.

2.4. Summary

Work shown in the literature has insinuated the existence of the three challenges
mentioned in this paper; however, it has not gone into detail. It is important to do so to
understand their impact and, with this understanding, propose appropriate solutions to
mitigate these challenges.

In addition, even though at first glance each challenge might seem independent, they
are closely linked. For instance, since the reality gap will change for each robot, this will
necessitate a higher number of robots to be evaluated and with this an increase in the
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continuous production of robots, highlighting the importance of automation. Since one of
the goals is to minimize the reality gap in the population of robots, simulation must focus
on the regions of the most transferable robots.

3. Framework for the Hardware-Software Integration in Evolutionary Robotics

The Autonomous Robot Evolution (ARE) project is used in this paper to explore and
illuminate the importance of the challenges mentioned in the previous sections. ARE
envisions the integration of digital evolution and physical evolution, combining the benefits
from both domains.

Ultimately, an optimal robot design will evolve to suit a given environment. If the
environment changes, evolution will adapt the design to meet the new conditions. The
ARE system is particularly relevant for remote, unknown locations and/or environments
hazardous to humans.

Physical robots will be autonomous and fabricated by a robot fabricator, RoboFab.
Details of each element will be described in more detail in the next sections.

3.1. The Software-Hardware Synergy Balance

The long-term term version of the software-hardware integration proposed by ARE
is similar to the one implemented by [10], where evaluations in software and hardware
are divided into stages. A budget is allocated to each stage, where the budget can be
time, number of evaluations, or resources. This multi-stage approach facilitates tracking
evolution progression with multiple checkpoints. This process is illustrated in Figure 2.

Figure 2. Long-term vision for the ARE hardware-software integration. A population of robots is
first evolved in simulation and then a subset is selected to initialize a population in hardware. After
evolution in hardware is completed a subset of robots is selected to initialize a new population of
robots in simulation. This cycle repeats until the termination condition is met.

The ARE current implementation is illustrated in Figure 3. It works as an evolutionary
process with four stages reproduction, survival, evaluation, and selection.
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Figure 3. The diagram illustrates the complete hardware evolutionary algorithm proposed in this
paper. The process begins with 10 independent evolutionary processes (islands) of digital evolution,
each generating 50 designs. From these, 5 robots are selected to be built and evaluated in hardware.
To bridge the reality gap, a 3-step process based on local random sampling (LRS) is used during
the evaluation phase. After evaluation, the 5 robots are ranked according to their fitness value and
evolvability score. This ranking determines which robots will initialise (seed) the next set of islands
in the digital evolution phase.

The field of parallel Evolutionary Algorithms (pEA) [36] has demonstrated the ability
to increase solution diversity, accelerate optimization through parallelization, and enhance
generalization through migration. For these reasons, the decision was made to begin the
process by evolving a set of populations (islands) of robots in simulation. Ten independent
evolutionary processes (islands) in simulation are launched each beginning with a different
initial random population of 25 robots and a budget of 50 robots in total. The evolutionary
algorithm (EA) used is an asynchronous version of Morpho-Evolution with Learning using
Archive Inheritance (MELAI) [37]. This EA is a hierarchical optimization process consisting
of two nested processes.

The outer process is a non-generational, asynchronous, pEA that optimizes the design
of the robots. The inner process called the Novelty-based Increasing Population Evolution-
ary Strategy (NIP-ES), optimizes the controller. MELAI includes an archive that stores the
best controllers to bootstrap NIPES. This exploration stage aims to develop a variety of
high-fitness robots with diverse body designs and behaviours.

Once all islands have completed their evolution, 5 robots are selected from the 500 dig-
ital robots in the survival stage based on their fitness and body design novelty. These robots
are then built and tested in the real world.

The evaluation stage has three steps:

1. The physical robot is evaluated 10 times using the controller from its digital twin; this
is referred to as sim-to-real.

2. Next, 80 controllers are sampled locally around the controller from the digital twin, a
step known as local random sampling (LRS). LRS uses a multivariate normal distribu-
tion centred on the controller from the digital twin, with a variance of 0.1.

3. Finally, the best controller from the LRS is re-evaluated 10 times. The fitness of the
physical robot is the average fitness value of these 10 re-evaluations.
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During the selection stage, the 5 physical twins are ranked based on two objectives:
fitness value and evolvability score. The evolvability score measures a genome’s ability
to produce a wide range of robotic designs through mutation. To compute this score,
each robot’s genome is mutated 100 times to generate 100 new designs. The average
distance between the original robot’s design and these 100 new designs is calculated based
on a morphological descriptor, a 3D matrix representing the placement of the robot’s
components. This average is the evolvability score.

In the reproduction stage, the robot with the highest rank initializes (seeds) the starting
population for 4 islands in simulation, the second highest initializes 3 islands, the third 2
islands, and the fourth 1 island. The robots comprising the population at each island are a
mutated version of the robot used to seed the island.

Given the relatively long time required to fabricate robots (more information in
Section 3.2) and the extended duration of evaluations, the hardware budget is smaller,
resulting in smaller robot populations. Because of this, this stage is exploitative, focusing
on identifying the most transferable robots—those that experience smaller reality gaps.
After the hardware budget is depleted, a selected group of best-performing robots is used
to initialize a new stage in simulation.

This approach combines the benefits of the explorative aspect of simulation with the
exploitative aspect of hardware, with the expectation that over time, the most diverse and
transferable robots will evolve.

In the ARE project, a software-hardware experiment was conducted with four stages
in simulation and four stages in hardware. The environment used, shown in Figure 4,
consisted of square arena with sides of approximately two meters and divided by fixed
barriers into a cross shape, with the robot starting in one corner. The floor was made up of
64 equally sized titles. The uneven surface created by small gaps and ridges at the joins
between tiles sometimes made it difficult for robots with only wheels to explore effectively.
The robots themselves were made from the ARE hardware described previously [26]. The
task chosen was exploration, with the fitness function defined by the percentage of the floor
tiles visited at some point during the evaluation time.

Figure 4. The environment used for physical experiments. The robot is shown in the starting location,
where it was replaced for each evaluation.

The sim-to-real performance, or fitness from the physical twin without learning, for
the 4 generations in hardware are shown in Figure 5a. From generation 0 to generation 1,
there is a significant increase in fitness, but from generation 1 to generation 2, there is a
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reduction in fitness. This may be because the simulation stage moves to a region of robots
that are not transferable. In addition, this region could be characterised by good learners.
The key takeaway is that when running software-hardware experiments, careful attention
must be paid to prevent this issue, which might be related to the selection process of the
robots (further details in Section 4) or the allocated budget. More experiments are needed
to confirm these observations. First, a larger number of generations is needed to better
analyse trends where evolution favours learnable robots. Second, it would be beneficial to
run experiments with a different task for comparison.

(a) (b)

Figure 5. (a) on the left shows the performance of sim-to-real across each generation in hardware.
The performance improves from generation 0 to generation 1 but then decreases from generation 1
to generation 2. (b) on the right displays the sim-to-real performance for all five robots across each
generation. The bar plots are sorted based on the robots’ performance within each generation: for
example, blue bars represent robots with the lowest fitness in that generation, while orange bars
indicate robots with the highest fitness. Overall, there is a positive trend, as even the robots with the
lowest fitness show improvement across generations.

Despite the drop in fitness, there are indications that the overall quality of the evolved
robots is improving, as shown in Figure 5b. This figure illustrates the progression of fitness
over each generation for the sorted robots, from the lowest fitness (blue) to the highest
fitness (orange) in their respective generation. For each rank, there is an increasing trend
in fitness after each generation. This along with the work shown in [8,10] highlights the
importance of evaluating populations of physical robots to find better robots.

In conclusion, this section highlights the benefits of integrating evolution in both
software and hardware. Preliminary results suggest an improvement in performance
with each hardware generation; however, these results also reveal challenges associated
with this approach. Additional experiments with physical robots are needed to confirm
these findings.

3.2. Autonomous Fabrication of Robots

As mentioned in Section 2.3 for physical evolution, manually fabricating and assembling
the evolved robots is physically demanding. Therefore, a facility is required to carry out
this labour. However, the design of this facility has direct implications for the body shapes
that can be evolved and the robot throughput.

The ARE project introduced the autonomous robot fabricator (RoboFab), shown in
Figure 6 and described next. At the heart of RoboFab is a robotic arm that moves compo-
nents between various workstations and performs the main assembly process. Operating
without a vision system or similar feedback, the robotic arm retrieves components from
predetermined positions and assembles the robot “blindly” based on its genome. To the
right and rear of RoboFab, two 3D printers produce custom body parts. On the left side, a
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component bank stores all necessary parts for easy access by the robotic arm, with each
component held in a defined position for straightforward retrieval. The assembly fixture
secures the robot during construction and rotates it, giving the robotic arm access to the
correct attachment point for the next component. An example of an evolved robot can be
found in Figure 7.

Figure 6. The RoboFab (short for Robot Fabricator) autonomously manufactures evolved robots. The
main components are highlighted: two 3D printers produce body parts; the robotic arm assembles
the evolved robots; the component bank provides storage for the components until they are needed;
and the assembly fixture holds the new robot during the assembly process.

Figure 7. Example of an ARE robot.

A critical factor in the practicality of the autonomous fabrication of robots is the time
taken for each robot to be produced. Figure 8 illustrates the time taken for each robot’s
production, broken down into the key stages: 3D printing the skeleton, inserting the head
component into the main body, and attaching the remaining organs. While component
assembly takes between 3 and 6 min—comparable to the under 5-min assembly time
reported by [18]—removing the skeleton from the printer requires around 25 min to allow
the print bed to cool. The overall construction time is primarily dominated by the 3D
printing of the skeleton, which takes an average of 4 h and 3 min and this is less than
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the up to 20 h reported in [13], this reduction in time is likely due to differences in 3D
printing settings, such as the larger nozzle size and increased layer height used in the ARE
platform, though this comes at the cost of reduced print quality. The difference in print time
is primarily influenced by the size of the body, with larger parts taking longer to produce.
Consequently, the design decision to allow evolution the option of creating an amorphous
robot directly impacts the time needed to fabricate a single robot.
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Figure 8. Time taken to fabricate each robot is divided by the main stages of construction: 3D
printing the body, inserting the head into the body (which includes time for the print bed to cool),
and attaching the remaining organs, components, and cables.

Production time may well be the limiting factor in practice for evolving robots in
hardware, and these initial results allow for some extrapolation to assess the feasibility
of the system. In the kind of research lab setting expected for the RoboFab, it will likely
run during working hours and can be expected to produce approximately ten robots per
week. To give some idea of the time required to carry out meaningful evolution, an estimate
for the minimum number of individuals to be produced is needed, for which previous
examples can be used. Ref. [8] used a population size of ten for ten generations, giving
a total of 100 individuals per run. For the experiments shown in Section 3.1, a total of
20 robots were evolved. It is important to note that more complex tasks and/or repeated
evolutionary runs will require orders of magnitude more individuals. Table 1 summarizes
the implications of these approximate numbers by estimating the real-world time required
for various combinations of production capacity and individuals needed. It is crucial to
highlight that if a relatively large number of robots, such as 1000, is required, it will take
months or even years, making it unfeasible in practice for lab-based experiments. Therefore,
careful design decisions for the robot fabricator need to be considered regarding the final
application of this facility.

Table 1. Estimated duration of a robot evolution process depending on the total number of individuals
and the (re)production capacity.

1 RoboFab 1 RoboFab 2 RoboFabs
1 3D Printer 3 3D Printer 3 3D Printer

Robots per Day 2 6 12

20 2 weeks 1 week 4 days
100 10 weeks 4 weeks 2 weeks
200 5 months 7 weeks 4 weeks

1000 23 months 9 months 4 months
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The previous estimate in production times assumes that there are no errors during
production within the ARE system. However, similar to the system in [8], errors can occur
during production. The authors in [8] claim that 95% of assemblies were successful, with
some failures including connection failures and collisions during assembly. The errors of
assembly in the ARE platform are summarized in Table 2 and described next.

Table 2. Success and error frequency during assembly.

Success or Error Fault Type Number of Robots

Success 11/20
Cable fault 3/20
Gripping fault 4/20
Assembly fixture fault 1/20
Communication fault 1/20

As mentioned before, RoboFab is an open system and has no external feedback
during assembly. Therefore, the majority of failures are related to failed attempts to grip
components (gripping fault) that were humanly misplaced in their location. The rest of the
errors were caused by inappropriate engineering design decisions such as the cables not
connecting properly into the sockets (cable fault) or message interruption between the PC
and gripper (communication fault). These reasons highlight the importance of feedback in
the autonomous construction of robots and the importance of human supervision at the
early stages of development.

In the approach proposed by [18], a camera mounted on the robot arm can detect
the tags on each module and thus provide an accurate estimation of the location of the
components. Additionally, the attraction of the magnets in the connections facilitates
alignment for attachment. The number of failures in the ARE and future platforms can be
reduced with external feedback.

Even when feedback is incorporated into the system, it cannot be left unattended,
at least in the early stages of development. Due to the sequential nature of the assembly
process, a single failure can lead to a cascade of sequential failures. Therefore, a human is
required to monitor the process.

In conclusion, even though the continuous autonomous fabrication of robots could
be a possible solution to the high number of physical robots needed for physical evolution,
there are two important aspects to consider. First, even with autonomous fabrication, the
time it takes to construct a single robot is long and if this time were to be reduced some
limitations would be introduced to the feasible evolutionary body design space [26]. A
single experiment involving a couple hundred physical robots could take from a few weeks
to half a year to complete, which could impact experimentation. Second, a fabrication
system cannot be left unattended, at least during the early stages of development and for
the near future a human needs to be part of the loop.

3.3. The Heterogeneous Reality Gap

Authors in [16] mentioned that the different shapes and behaviours of evolved robots
produce varying reality gaps between limbed robots. For instance, the length of the limbs
can lead to collisions, and robots with dragging behaviours experience a larger reality
gap than those with gaits. In this paper, the different reality gaps experienced by various
robots referred to as the heterogeneous reality gap, are further analyzed using a selection of
evolved robots.

A sample of six evolved robots with different combinations of components was se-
lected to illustrate the heterogeneity of the reality gap. These robots are shown in Figure 9.
The analysis is divided into three stages introduced in Section 3.1 and summarized next.
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Figure 9. The heterogeneous reality gap. The fitness from the digital twin is shown with the blue
line (sim-fitness). The sim-to-real (STR) column illustrates the evaluation of the physical twin with the
controller from the digital twin where each dot represents an evaluation of the total 10 evaluations
and the median is shown as a dashed line. The local random sampling (LRS) columns show the
100 evaluations of different controllers. The best controller found by LRS is evaluated 10 times as
shown in the best LRS re-evaluated column.

For each robot, the fitness from the digital twin is first shown as the blue line (sim-
fitness). Then, each physical twin is evaluated 10 times with the same controller used in the
digital twin. This stage is referred to as the sim-to-real (STR) experiment (left column). The
objective of this stage is to quantify the reality gap for each robot. In the second stage, a
local random sampling (LRS) method is used to generate 100 new controllers based on the
controller from the simulation (shown in the middle column). The best controller found in
LRS is re-evaluated 10 times in the last stage to validate the results (third column).

The first observation is that the fitness in simulation for these six robots is very similar,
ranging between 0.21 and 0.28 or between 14 and 18 tiles out of 64 tiles, despite their
different shapes and component configurations. This fitness equivalence corresponds to
the robot starting at the bottom-right corner of the arena and reaching one of the other
corners, as illustrated by the blue trajectories. Robots with wheels experience smoother
movement than robots with legs, as shown by the less noisy trajectories.

On average, robots with legs achieve higher fitness in STR than robots with wheels. A
common behaviour observed in robots with wheels is that they get trapped at the edges
of the tiles, altering their locomotion. This behaviour is replicable and is illustrated in
the distribution of the fitness values, which are clustered around the median. In contrast,
robots with legs generally experience a lower reality gap because their behaviours are more
resilient to the environment. However, the behaviour of robots with legs is not as consistent
as that of robots with wheels, as indicated by the distribution of fitness values.

LRS effectively provides different controllers with varying fitness values, as illustrated
for each robot. The range of controllers is wide, and the best controller from LRS is selected
for re-evaluation. All the robots experience an increase in fitness after LRS, indicating
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that learning is necessary for each robot and each reality gap they encounter. Robots with
wheels appear to improve their fitness the most.

The relatively large variability in fitness observed in STR and after LRS is due to
real-world testing, aligning with the findings of [8] where despite the use of elitism from
the authors in physical evolution, robots still exhibit high variability because of uncertainties
and the lack of perfect repeatability.

The most significant aspect of these results is their impact on the selection of the
next generation of robots in simulation and/or hardware. For instance, based on the
results shown in this section, it is likely that STR robots with legs will be selected for
the next generation. However, if robots are selected after learning, then robots with
wheels are more likely to be chosen. Each of these choices could drive the evolutionary
process in different directions, affecting the hardware-software integration discussed in
Section 3.1. The different possible metrics that can be used for the selection operator are
further discussed in Section 4.

In conclusion, each robot with different component configurations experiences a
different reality gap. This gap can be mitigated with a learning algorithm and each robot
needs to run its independent learning process. However, when selecting the next generation
of robots, the question arises of how to make the best selection.

4. Discussion

This paper identifies three major challenges in the transition from digital evolution to
physical evolution. Although these challenges have been suggested in previous literature,
they have not been comprehensively explored. Here, an more in-depth discussion of these
challenges is provided, supported by experiments conducted on the ARE platform.

4.1. Software-Hardware Synergy

Physical evolution offers many benefits, but it also comes with several disadvantages.
To balance these, it is crucial to integrate digital evolution into the system. However, this
integration is not straightforward, and key initial design decisions can significantly influ-
ence the evolutionary path and the bias in robots evolved. One of the most critical design
decisions is the selection operator, which determines which robots migrate between the
virtual and hardware domains, and vice versa.

Robots can be selected based on various metrics, including:

• Fitness in hardware score without learning: the same copy of the controller of the
digital twin is used with the physical twin and the fitness from the physical twin is
used as a score during selection.

• Transferability score: The difference between digital twin fitness and physical twin
fitness (or the reality gap) is used as a score.

• Fitness post-learning: the controller from the digital twin goes through a learning
process in the physical twin to adapt the controller to the physical environment. Then
the fitness post-learning is used as a score.

• Learnability score: The difference between the physical twin fitness pre-learning and
the physical fitness post-learning is used as a score.

Each of these metrics offers unique insights into the robot’s body design and controller,
and they are not necessarily correlated. For instance, a robot without sensors may be more
learnable due to the simplicity of its body design and open-loop controller. However,
robots with sensors and closed-loop controllers tend to be more transferable because their
behaviour can self-correct with the feedback from the environment. Some evidence of this
was presented in Section 3.1. Additionally, the work in [38] demonstrated how learnability
leads to a different robot design space compared to when learnability is not considered in
digital evolution.

The choice of selection metrics affects not only the evolution of body designs but
also the time spent on fabricating and evaluating the robots. For example, if the focus
is on transferability, more time may be devoted to robot fabrication rather than physical



Robotics 2024, 13, 157 15 of 19

evaluation. Conversely, if the emphasis is on learnability, more time will likely be spent
evaluating physical robots.

Learnability is crucial in the evolutionary process. The authors in [38] demonstrated
through simulations that considering learnability can save evaluations. In addition, results
in Section 3.3 show that a simple learning method can enhance the performance of robots
with different designs. This raises questions about how learnability will influence the
dynamics of physical evolution and what future experiments might reveal. On one hand,
learnability can help reduce the number of robots fabricated. On the other hand, inheritance
can be used to bootstrap controllers in physical robots with similar features, thus saving
on evaluations. This approach is similar to what the authors did with an inheritance
archive [37,39] and Lamarckian learning [40,41].

In conclusion, achieving an effective synergy between software and hardware in
physical evolution requires careful consideration of selection metrics. This choice not only
shapes the evolutionary trajectory but also influences the balance between digital and
physical evaluations.

4.2. Autonomous Fabrication of Robots

Population size is a crucial factor that significantly impacts the performance and
efficiency of ER. Smaller populations are generally sufficient for simpler, well-understood
problems, while larger populations are necessary for addressing more complex challenges.
In the context of physical evolution, determining the optimal population size is particularly
challenging due to the considerable time and resources required to fabricate and evaluate
each robot.

One of the primary motivations behind autonomous robot fabrication is to reduce
fabrication time, thereby enabling larger population sizes in physical evolution. However,
even with automation, fabrication time can remain substantial—often taking hours per
robot, depending on the platform [13,18,24]. As analyzed in Section 3.2, producing a few
hundred robots could take anywhere from weeks to months. This suggests that initial
populations in physical evolution are likely to be small and more focused on exploitation
rather than exploration [8].

Fabrication time can be reduced in different ways including:

• Further parallelisation: experiments can be run on more platforms across different
institutions.

• Platform design: the robot platform can be redesigned; for example, by reducing the
robot’s size.

• Manufacturing process: while 3D printing is time-consuming, alternative manufac-
turing processes can reduce fabrication time, though each introduces trade-offs. For
instance, using a laser cutter increases the complexity of autonomous robot assembly.
Resin casting requires mould changes, and CNC machining generates more material
waste and limits design flexibility due to the constraints of cutting tools.

• Reused pre-printed parts: the main body of the robot can be 3D printed into multiple
parts instead of a single piece. If the same piece is needed for a second robot then this
piece can reused.

A long-term goal for physical evolution is achieving near-complete autonomy from
human intervention. However, as demonstrated in both the literature [8] and this paper,
this goal is not yet feasible due to the potential for fabrication faults. This paper also
emphasizes the importance of incorporating feedback mechanisms within autonomous
fabrication systems to minimize these faults. For example, the platform presented in [18]
uses a camera to detect tags on each component, allowing for error correction when the
gripper handles different parts. The main drawback is that adapting this specific system to
work with amorphous robots, where there are no tags, would be challenging. In the event
of any serious faults during fabrication, the process, including 3D printing and assembly,
must be halted, and the issue reported to the operator for prompt resolution.
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In conclusion, while autonomous fabrication can reduce manufacturing time, it re-
mains high and may not be suitable for certain experimental purposes and different and
new manufacturing technologies are required to reduce this time. Additionally, it is crucial
to consider potential manufacturing faults and implement strategies to minimize them,
while also accounting for any implications on the body design landscape.

4.3. The Heterogeneous Reality Gap

When digital evolution and physical evolution are integrated into ER, the heterogenous
reality gap is unavoidable as shown in Section 3.3. This gap means that each evolved robot
will have a different degree of reality gap due to variations in body design and behaviour.
As a result, a reality gap treatment effective for one robot may not be suitable for another.

To address this, an independent controller learner is required for each robot, enabling
it to adapt its controller to its unique physical body and environment. The results presented
in this paper suggest that the performance of the learner will vary depending on the robot’s
body configuration. A promising area for future research in ER is the potential to model a
robot’s reality gap and incorporate this model into the robot itself. This would enable the
robot to not only learn about the discrepancies between simulation and hardware but also
to adapt and account for component wear over time.

Another challenge arises when a learner is used for each evolved physical robot,
leading to long evaluation times. Reducing this time would be advantageous. One approach
to achieving this is by bootstrapping physical robots with relatively well-performing
controllers, similar to the method used with simulated robots in [37]. Another approach is
to incorporate surrogate models to reduce the number of evaluations with physical robots.

It is also important to consider the design of controllers used in ER. Developing a
controller architecture that is effective across robots with different modes of locomotion,
such as wheels and legs, is particularly challenging.

In conclusion, the heterogenous reality gap is a challenge in ER which plays an important
role during the selection of robots for both virtual and physical evolution. Additionally,
the use of independent learners for each physical robot to address this gap could lead to
substantial time spent on evaluation.

5. Conclusions

One of the ultimate goals in Evolutionary Robotics is transitioning from digital evolution,
where robots are evolved in simulation, to physical evolution, where robots are evolved in
hardware. Recent work has made significant strides in this direction [8,10,24]. However,
this paper discusses three key challenges of this transition and their possible mutual
connections, analyzed using the Autonomous Robot Evolution platform.

1. Autonomous Fabrication of Robots: To increase the throughput of robot production,
autonomous fabrication is essential, as ER typically requires large robot populations.
However, it is crucial to consider the time required for fabrication and the system’s
ability to reliably produce robots with diverse shapes, while minimizing faults dur-
ing assembly.

2. Soft-Hardware synergy: Effective integration of software and hardware is vital to
leverage the advantages of both simulated and physical evolution. Careful consider-
ation must be given to parameter design, as selection parameters will significantly
influence the evolutionary process. Therefore, understanding and choosing the appro-
priate metrics is critical.

3. The heterogenous reality gap: The reality gap—differences between simulated and
physical environments—will vary from robot to robot due to differences in body
design and behaviour. As a result, a learning mechanism is needed to adapt each
robot’s controller to its new environment. The downside is that this will increase the
number of evaluations across populations, leading to longer overall evaluation times.
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In summary, while substantial progress has been made in ER, addressing the chal-
lenges of software-hardware integration, managing the dynamic reality gap, and automat-
ing robot production is crucial to transition to the continuous production of evolved robots
in real-world environments. Future work will focus on refining these strategies to further
advance the field toward autonomous robotic ecosystems.
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