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ABSTRACT
This note investigates the adaptive security control issue for uncertain delayed semi-
Markov jump systems (DSMJSs) within the framework of sliding mode control
(SMC), in which the DSMJSs are affected by generally unknown transition rates
(GUTRs), actuator failures (AFs) and cyber attacks. By virtue of the strong ap-
proximation ability of neural network (NN), an adaptive NN-based SMC synthesis
is carried out, which could not only force the state trajectories onto the proposed
sliding surface but also ensure the DSMJSs operate as demanded in spite of the
interference errors, structural uncertainty, hidden AFs, cyber attacks and GUTRs.
Then, in view of the reachability of the proposed linear-type sliding mode surface
(SMS), linear matrix inequalities (LMIs) and stochastic stability theory, a novel
stochastically stable criterion for the resultant DSMJSs is obtained. At last, the
single-link robot arm model is offered as an instance with simulation to illustrate
the viability of the devisedstrategy.

KEYWORDS
Adaptive neural networks; sliding mode control; delayed semi-Markov jumping
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1. Introduction

Over the past decades, some steps towards adaptive nonlinear control for switched
systems have been followed (e.g., the mode-dependent average dwell time switching
in Cui, Ahn, and Xiang (2023), the arbitrary switching in Cui, Wu, and Xiang (2021)
and the asynchronous switching in Li, Ahn, and Xiang (2018), etc). In comparison to
these switching mechanisms, Markov jump system (MJS), as a typical sort of hybrid
system, can modela wide range of physical plants with abrupt changes in structures
and network interactions by virtue of a special stochastic jump mechanism (Li and
Xiang, 2016; Liu, Chen, and Yu, 2023a; Sheng, Zhang, and Gao, 2014), where the
switching signals are driven by a Markov chain. Distinct from the MJSs in which the
transition time must rely on exponential distribution for the time-varying transition
rates (TRs), semi-Markov jump systems (s-MJSs) are more suitable for describing the
mutation situation of the actual systems, and a lot of efforts have thrown some light
on the control approaches to s-MJSs, see Ouaret (2022); Zhang, Niu, Zhao, Zhao,
and Yang (2021); Zong, Qi, and Karimi (2020). Furthermore, as a crucial role in the
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transition process between different system modes, TRs can be regarded as the main
components for s-MJSs, and several researches within totally known TRs havebeen
reported, see Zhang et al. (2021); Zhao, Niu, and Song (2023a); Zong et al. (2020).
Nevertheless, the aforementioned works with known TRs may be too ideal. As a result,
several noteworthy conclusions of control schemes for s-MJSs with partly unknown
TRs were obtained (Liang, Zhang, Karimi, and Zhou, 2018; Zhang, Sun, Pan, and
Lam, 2022). However, given the abrupt jumps of the system modes and occurrence of
unknown uncertainties, it might be too restrictive to pay attention to partly unknown
TRs in actual plant. Then, control study for s-MJSs with generally unknown transition
rates (GUTRs) is more significant to model the relevant physical plants, and some
remarkable control strategies have been reported in this direction (Jiang, Kao, Karimi,
and Gao, 2018; Xu, Gao, and Qi, 2021). Meanwhile, limited by the construction of the
system, the existence of time-delay in a dynamical system has been seen as a major
factor of instability and/or subpar performance (Gu, Zhu, and Nouri, 2022; Sename,
2003). Thus, some steps towards both MJS and s-MJS with time-delay were pursued
(Samidurai, Manivannan, Ahn, and Karimi, 2016; Yan, Tian, Li, Zhang, and Li, 2019;
Zhu, Zhang, Sreeram, Shammakh, and Ahmad, 2016). Meanwhile, great attention
has been attracted on control problems for the delayed s-MJSs (DSMJSs) subject to
GUTRs recently, such as observer based anti-interference control (Xu et al., 2021) and
sliding mode control (SMC) in Qi, Park, Cheng, and Kao (2017).

As a typical nonlinear control strategy, SMC has garnered significant attention in
the light of its ability to handle disturbances and uncertainties (Liu, Wu, Wu, Luo, and
Franquelo, 2019; Liu, Yu, and Lam, 2023b; Wu and Ho, 2010; Zhao, Liu, Jiang, and
Gao, 2023b; Zhao, Yang, Xia, and Wang, 2016). In particular, in the light of the afore-
mentioned superiorities, some results have been absorbed into analysis and synthesis
of uncertain s-MJSs based upon SMC strategy (Song, Niu, Lam, and Zou, 2020; Wei,
Park, Qiu, Wu, and Jung, 2017). In Qi, Zong, and Zheng (2020), an adaptive event-
triggered SMC method was achieved to accomplish the desirable behavior for DSMJSs.
Moreover, as a frequently occurring kind of disturbances to system operation, the fail-
ure issue may lead to inevitable parameter deviation andresultin unpredictable errors,
which might cause serious obstacles to the operation of actuator. Consequently, mean-
ingful fruits on actuator failures (AFs) were provided in some literature, see Song, Niu,
and Zou (2018); Xing, Wen, Liu, Su, and Cai (2017); You, Yan, Sun, Zhang, and Li
(2020); Zhu, Mobayen, Nemati, Zhang, and Wei (2023). Just recently, various attempts
fors-MJSs impacted by AFs wereconducted (Jiang, Kao, Gao, and Yao, 2017; Li, She,
Cheng, Shi, Peng, and Zhong, 2022). Furthermore, given the continuing advancement
of networked embedded control technologies, the actuators are more susceptible to
cyber attacks (Meng, Niu, Ding, and Zhao, 2018). In this case, attackers may take
advantage of the flaws in communication protocols to tamper with data transmission
through signal channels, which will lead to inevitable delays in s-MJS, and further
degrade the system performance. For these reasons, some researches have been devot-
ed to the issue of DSMJSs against actuator attacks (AAs) in recent years, see(Cao,
Niu, and Zou, 2019; Wang and Ma, 2023). Nevertheless, the control methods against
AAs in the above literature were not fully taken under the case of GUTRs and the
norm-bounded assumption of the attack signals must be satisfied, which may bring
conservatism for controller design to some extent and forms one impetus of this work.

Regarding an additional analytical aspect, in view of the approximation capability
to unknown attack signals, neural networks (NNs) have received widespread researches,
and some attention was paid toNN-based control methodsfor resisting the cyberattack-
s, see Cao et al. (2019). Additionally, the integralsliding mode surfaces (SMSs) and

2



the corresponding sliding mode controller were established in most existing studies to
cope with the issues of uncertain s-MJSs, see Song et al. (2020); Wei et al. (2017).
Nevertheless, it is worth pointing out that fewer efforts have been dedicated to the
DSMJSs with linear-type sliding surface design. Therefore, the topic combining adap-
tive NN and SMC to deal with the security control problem of DSMJSs still has much
research space, which finally stimulates us to make small progress in this paper.

By employing an adaptive NN-based SMC method, this paper attemptsto address
the security issue of uncertain DSMJSs with GUTRs,AFs and AAs. In brief, the main
outcomes are listed below:

1) Differing from Liu et al. (2019), a simplified linear-type sliding mode surface
(SMS) is established, from which an novel adaptive SMC framework for uncertain
DSMJSs is introduced, and a new sufficient condition for the closed-loop system to
be stochastically stable is derived from a set of linear matrix inequalities (LMIs),
stochastic stability theory and the specified structure of the designed SMS;

2) In comparison to Wei et al. (2017), a novel NN-based sliding mode controller is
synthesized to guarantee both the finite-time reachability of the proposed SMS and
robustness performance despite unknown AAs and GUTRs, where the norm-bounded
assumption for unknown nonlinear attacks in previous reported works such as Qi, Lv,
Zong, and Ahn (2021); Song et al. (2018) will not be required.

3) The effectiveness of the proposed theoretical results has been verified by simula-
tion compared with method in Qi et al. (2021), which shows that the proposed control
approach could enhance the control accuracy with less energy consumption (EC).

Notation. Throughout the paper, for any matrix G ∈ Rn×n, GT and G−1 denote
its transpose and inverse respectively. tr {G} denotes the trace of G, the diagonal
matrix is denoted by diag {G1, G2, · · · , Gm} with diagonal matrices G1, G2, · · · , Gm,
and sym{G} is used to denote G+GT. E {·} is used to denote the expectation operator.
|·| denotes the absolute value of a real number, ‖·‖1 and ‖·‖ denote the 1-norm and
2-norm of a matrix G. sgn {·} denotes the sign function.

2. Problem description and preparations

The DSMJS considered in this paper is described as:

ẋ (t) = (At (rt) + ∆At (rt, t))x (t) + (Aτ (rt) + ∆Aτ (rt, t))x (t− τ)

+B (rt) (µ (t, u) + Φ (x, t, τ)) ,
(1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn denotes the state vector, τ is the system
constant time-delay. At(rt) ∈ Rn×n, Aτ (rt) ∈ Rn×n and B(rt) ∈ Rn×m are fixed
matrices. ∆At (rt, t) and ∆Aτ (rt, t) are the model uncertainties of the system given
by the following forms:

∆At(rt, t) =M(rt)Y (t)N (rt), ∆Aτ (rt, t) =M(rt)Y (t)Nτ (rt),

whereM(rt), N (rt) and Nτ (rt) are known matrices, and the time-dependent unknown
parametric matrix is denoted by Y (t). Φ (x, t, τ) indicates the uncertain perturbations
such as noise interference in communication channels injected by malicious attackers.
The following mathematical model stands for the AFs: µ (t, u) = Γ (t)u (t), and u (t)
represents the control input. Γ (t) ∈ Rm×m denotes an uncertain function, which
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means the damaged condition of the AFs with Γ (0) = 0, and the specific expression
is defined as the following diagonal matrix:

Γ (t) = diag {ð1 (t) ,ð2 (t) , . . . ,ðm (t)} , (2)

in which 0 6 ðj 6 ðj (t) 6 ð̄j , the known boundaries of ðj (t) ( j = 1, 2, . . . ,m )

are represented by ðj ∈ (0, 1) and ð̄j ∈ (0, 1). Meanwhile, we define Γ0 ,

diag
{
ð1

0,ð2
0, . . . ,ðm0

}
with ðj0 ,

(
ðj + ð̄j

)
/2, ℘j (t) ,

(
ðj (t)− ðj0

)
/ðj0 ∈

[−ϑj , ϑj ], in which ϑj =
(
ð̄j − ðj

)
/
(
ð̄j + ðj

)
, Λ (t) , diag {℘1 (t) , ℘2 (t) , . . . , ℘m (t)}.

Γ (t) can be represented by Γ (t) = Γ0 (I + Λ (t)), in which γ is given as a threshold
meeting ‖Λ (t)‖ 6 γ. Therefore, ‖Γ (t)‖ = ‖Γ0 (I + (Λ (t)))‖ 6 ζ can be obtained,
where ζ > 0 is a bounded scalar, thus one has 1

ζ ‖Γ (t)‖ 6 1. {rt, t ≥ 0} represents

the semi-Markov process in J = {1, 2, ..., J}, and the jump of rt is subjected to the
transition probability matrix Π = [ηij ]J×J(i, j ∈ J ) characterized with

Pij = Pr(rt+∆t = j|rt = i) =

{
ηij∆t+ o(∆t), if i 6= j,
1 + ηii∆t+ o(∆t), if i = j.

Herein, the TR is defined by ηij = η̂ij +∆ηij , where ηij stands for the TR from time

t with mode i to time t + ∆t with mode j, in which i 6= j, ηii = −
∑J

j=1,j 6=i ηij . η̂ij
stands for the determinable part and ∆ηij refers to the corresponding uncertainty part
with |∆ηij | 6 βij . Then, the following two index sets are employed for assessing the
unknown TRs:

Ωk
i , {j : ηij can be available for j ∈ J } ,

Ωuk
i , {j : ηij can not be available for j ∈ J } .

(3)

In order to explore the unknown TRs in different cases, for ∀i ∈ J , the TRs are divided
into four categories:

(1) i ∈ Ωk
i and j ∈ Ωuk

i 6= �;
(2) i ∈ Ωuk

i and Ωk
i 6= �;

(3) Ωuk
i = J and j ∈ Ωk

j for some j ∈ J ;
(4) Ωuk

i = J and j /∈ Ωk
j for any j ∈ J .

Let rt = i ∈ J , then At(rt), ∆At(rt, t), Aτ (rt), ∆Aτ (rt, t), B(rt), M(rt), N (rt) and
Nτ (rt) can be simplified to Ai, ∆Ai(t), Aiτ , ∆Aiτ (t), Mi, Nit and Niτ . As a result,
system (1) is written as:

ẋ (t) = (Ait +∆Ait (t))x (t) + (Aiτ +∆Aiτ (t))x (t− τ)

+Bi (Γ (t)u (t) + Φ (x, t, τ)) .
(4)

In addition, based on the approximation capacity of NN, the AA signal Φ (x, t, τ) can
be reconstructed as

Φ (x, t, τ) = WTϕ
(
HTX̄

)
+ φ (x) , (5)

where X̄ =
[
xT (t) , xT (t− τ) ,−1

]T
is the input signal to NN, and “ − 1” stands for

the input offset. φ (x) represents the error vector, which fulfills ‖φ (x)‖ 6 φ0 with
φ0 > 0 being an arbitrary constant. H ∈ R(2n+1)×p and W ∈ Rp×m represent the
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optimization weight matrix of both input-to-hidden layer and hidden-to-output layer
respectively, from which the hidden layer of NN is designed with p neurons, and the
threshold of H is set as:

ϕ (xl) =
1

1− e−`lxl
, l = 1, 2, · · · , p, (6)

with `l > 0. By reason of the unknown matrices H and W , the adaptive algorithm
is developed while designing the NN-based SMC law. W̃ and H̃ are denoted by W̃ =
Ŵ −W and H̃ = Ĥ − H respectively, and properties of the above NN mathematical
model are given in the Lemmas as follows.

Remark 1. The type of AAs mentioned in this note can be divided into the false-
data-injection (FDI) attacks (Li, Guo, Xia, and Yang, 2020). In such attacks, the
false data can impede the actuator’s functionality by injecting false information into
the signal channel by hidden attackers, which further results in instability and/or
breakdown of the DSMJSs. Furthermore, the FDI attacks may currently occur in
practical engineering, e.g., cyber-physical systems, DC motor, power system and other
engineering fields (An and Yang (2018); Cao et al. (2019); Liu et al. (2023a); Qi et al.
(2021); Yang, Zhang, and Guo (2022); etc).

Lemma 2.1 (Yeşildirek and Lewis (1995)). The attack signal estimation is written as

Φ̂(x, t, τ) = ŴTϕ(ĤTX̄), and the approximated error Φ̃(x, t, τ) = Φ̂(x, t, τ)−Φ(x, t, τ)
is rebuilt as

Φ̃ (x, t, τ) = W̃T
(
ϕ̂− ϕ̂′ĤTX̄

)
+ ŴTϕ̂′H̃TX̄ + v (x) , (7)

where v(x) is the residual value with the representation of

v (x) = W̃Tϕ̂′HTX̄ +WTo
(
H̃TX̄

)
− h (x) , (8)

in which o (·) is o
(
H̃TX̄

)
→ 0 with H̃TX̄→ 0, ϕ̂′ = ϕ′

(
ĤTX̄

)
and ϕ̂ = ϕ

(
ĤTX̄

)
.

Lemma 2.2 (Fu (1996)). The description of v (x) satisfies the boundedness, which
can be expressed as:

‖v (x)‖ < αTω, (9)

where α ∈ R4 is an uncertain vector, ω is a known vector with representation of ω =(
1,
∥∥X̄∥∥ ,∥∥X̄∥∥∥∥Ŵ∥∥

F
,
∥∥X̄∥∥∥∥H̄∥∥

F

)T
.

Lemma 2.3 (Wang, Xie, and De Souza (1992)). For any scalar F > 0, real vectors
d and e with the required dimensions, the following inequality can be held:

dTe+ eTd 6 dTF−1d+ eTFe. (10)

Lemma 2.4 (Xiong and Lam (2009)). Given any real scalar δ and matrix G, it follows
that

δ
(
G + GT

)
6 δ2 + GT−1GT, (11)
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where matrix T meets T > 0.

Definition 2.5 (Boukas (2007)). Considering V (x (t) , i) as a Lyapunov functional
candidate, the infinitesimal operator LV (x (t) , i) can be defined as

LV (x (t) , i) = lim
∆→0+

1

∆
[E {V (x (t+∆) , rt+∆) |x (t) , rt = i} −V (x (t) , i)] . (12)

3. Main results

3.1. Reachability analysis of linear-type SMS

This subsection is focused on the linear-type SMS design and its reachability assess-
ment, where the SMS function is established as:

s (t) = Bi
TPix (t) , (13)

in which the parametric matrix Pi > 0 will be designed in Subsection 3.2.

Theorem 3.1. If a SMC law based on the adaptive NN is constructed as:

u (t) =− 1

ζ

(
Bi

TPiBi
)−1(

Bi
TPi
)(
Aitx (t) +Aiτx (t− τ)

)
− Ŵ Tρ

(
ĤTḠ

)
−Fi (t) ,

(14)

where

Fi (t) =
1

ζ

[(
Bi

TPiBi
)−1

σ + α̂Tω +
∥∥(BiTPiBi)−1(

Bi
TPi
)∥∥(

‖Mi‖ ‖Nit‖ ‖x (t)‖+ ‖Mi‖ ‖Niτ‖ ‖x (t− τ)‖
)]

sgn(s(t)),

(15)

in which σ is to be given later, and the adaptive rules are designed as:

˙̂W =

{
~1
−1Υ

(
ρ̂− ρ̂′HTḠ

)
sT (t) , if s (t) 6= 0,

0, if s (t) = 0;

˙̂H =

{
~2
−1Υ

(
ḠsT (t) ŴTρ̂′

)
, if s (t) 6= 0,

0, if s (t) = 0;

˙̂α =

{
~3
−1Υ ‖s (t)‖ω, if s (t) 6= 0,

0, if s (t) = 0;

(16)

in which Υ is defined as Υ = maxi∈J
∥∥BiTPiBi∥∥ , ~1, ~2, and ~3 represent the coeffi-

cients of the adaptive rules respectively, σ is a positive constant which will be designed
later. Then the signals s (t), W̃, H̃ and α̃ of the resultant system are bounded.
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Proof. Construct the Lyapunov function as below:

V1 (s (t) , i) =
1

2
sT (t) s (t) +

1

2
tr
{
W̃T~1W̃

}
+

1

2
tr
{
H̃T~2H̃

}
+

1

2
α̃T~3α̃.

(17)

By Definition 2.5, the infinitesimal operator L on V1 (s (t) , i) gives

LV1 (s (t) , i) = lim
∆→0

1

∆

[
E {V1 (s (t+∆) , rt+∆) |s (t) , rt = i} − V1 (s (t) , i)

]
= lim

∆→0

1

∆
· 1

2

[[ N∑
j=1,j 6=i

Pr {r (t+∆) = j|r (t) = i}sT (t+∆) s (t+∆)

+

N∑
j=1,j 6=i

Pr {r (t+∆) = i|r (t) = i}sT (t+∆) s (t+∆)
]

− 1

2
sT (t) s (t)

]
+ tr

{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α (18)

= lim
∆→0

1

∆
· 1

2

[[ N∑
j=1,j 6=i

ξij (Gi (h+∆)−Gi (h))

1−Gi (h)
sT (t+∆) s (t+∆)

+
1−Gi (h+∆)

1−Gi (h)
sT (t+∆) s (t+∆)

]
− 1

2
sT (t) s (t)

]
+ tr

{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α,

in which h denotes the sojourn time, Gi (h) stands for the cumulative distribution
function of h if the subsystem stays at mode i, and ξij represents the probability
intensity from mode i to mode j. Regarding to the SMS function, the Taylor expansion
of s(t) is stated as

s (t+∆) = s (t) + ṡ (t)∆+ o (∆) , (19)

when ∆ → 0. Taking the condition lim
∆→0

Gi(h+∆)−Gi(h)
1−Gi(h) = 0 and the characteristics of

the cumulative distribution function into consideration, it follows that

lim
∆→0

Gi (h +∆)−Gi (h)

∆ (1−Gi (h))
= ηi (h) , lim

∆→0

1−Gi (h +∆)

1−Gi (h)
= 1, (20)

where ηi (h) represents the TR from mode i. Denote ηij , ξijηi (h) when i 6= j and

ηii , −
∑J

j=1,j 6=i ηij . Based on (19), one has

LV1 (s (t) , i) =sT (t)
(
Bi

TPiBi
)
µ (t, u)

+ sT (t)
(
Bi

TPi
)

((Ait +∆Ait (t))x (t)

+ (Aiτ +∆Aiτ (t))x (t− τ)) + tr
{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α.

(21)
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By applying the controller in (14), it gives

LV1 (s (t) , i) 6sT (t)
(
Bi

TPi
)
Aitx (t) + sT (t)

(
Bi

TPi
)
∆Ait (t)x (t)

+ sT (t)
(
Bi

TPi
)
Aiτx (t− τ) + sT (t)

(
Bi

TPi
)
∆Aiτ (t)x (t− τ)

+ sT (t)
(
Bi

TPiBi
)
Γ (t)

[
− 1

ζ

(
Bi

TPiBi
)−1(

Bi
TPi
)
Aitx (t)

− 1

ζ

(
Bi

TPiBi
)−1(

Bi
TPi
)
Aiτx (t− τ)

− ŴTρ
(
ĤTḠ

)
−
[
− 1

ζ

(
Bi

TPiBi
)−1(

σ + α̂Tω
)

(22)

+
1

ζ

∥∥∥(BiTPiBi)−1(
Bi

TPi
)∥∥∥ ( ‖Mi‖ ‖Nit‖ ‖x (t)‖

+ ‖Mi‖ ‖Niτ‖ ‖x (t− τ)‖
)]

sgn(s(t))
]

+ sT (t)
(
Bi

TPiBi
)
Φ (x, t, τ)

+ tr
{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α.

By the condition 1
ζ ‖Γ (t)‖ 6 1 and Lemma 2.2, (22) is turned into

LV1 (s (t) , i) 6 ‖s (t)‖1
∥∥(BiTPi)∥∥ (‖Mi‖ ‖Nit‖ (‖x (t)‖1 − ‖x (t)‖)

+ ‖Mi‖ ‖Niτ‖ (‖x (t− τ)‖1 − ‖x (t− τ)‖))
+ ‖s (t)‖1

(
Bi

TPiBi
)
Γ (t)

[
− ŴTρ

(
ĤTḠ

)
−
[(
Bi

TPiBi
)−1σ

ζ
+
α̂Tω

ζ

]
sgn(s(t))

]
+ ‖s (t)‖1

(
Bi

TPiBi
)
Φ (x, t, τ)

+ tr
{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α.

(23)

Since ‖·‖ 6 ‖·‖1, it follows that

LV1 (s (t) , i) 6− ‖s (t)‖
(
Bi

TPiBi
) ˙̃WT

(
ρ̂− ρ̂′HTḠ

)
− ‖s (t)‖

(
Bi

TPiBi
)
ŴTρ̂′H̃TḠ− ‖s (t)‖

(
Bi

TPiBi
)
αTω

− ‖s (t)‖
(
Bi

TPiBi
)
σ − ‖s (t)‖

(
Bi

TPiBi
)
α̂Tω (24)

+ tr
{
W̃T~1

˙̃W
}

+ tr
{
H̃T~2

˙̃H
}

+ α̃T~3
˙̃α

6 −σ ‖s (t)‖Υ + ζ ‖s (t)‖Υ
(
α̃T − α̂T − αT

)
ω

6 −σ Υ ‖s (t)‖ 6 0.

According to inequality (24), it can be obtained that s (t), W̃, H̃ and α̃ are bounded.
Therefore, the proof is completed.

Remark 2. It can be seen that the boundedness of adaptive rules
˙̂W,

˙̂H and ˙̂α can
also be derived drawing upon the above conclusion of Theorem 3.1, which also means
that the estimation error Φ̃ (x, t, τ) of AA has boundary. Subsequently, the following
theorem is addressed to guarantee the SMS s (t) = 0 in finite time with probability 1.
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Theorem 3.2. Consider the system (4), if the SMC law is synthesized as (14), (15)
and (16) with the positive scalar σ selected to satisfy σ >

∥∥Φ̃ (x, t, τ)
∥∥, the system

trajectories can arrive on the devised SMS s (t) = 0 in finite time almost surely.

Proof. The Lyapunov candidate is selected as

V2 (s (t) , i) =
1

2
sT (t) s (t) . (25)

The infinitesimal operator L on V2 (s (t) , i) can be shown as

LV2 (s (t) , i) = lim
∆→0

1

∆
[E {V1 (s (t+∆) , rt+∆) |s (t) , rt = i} − V1 (s (t) , i)]

= lim
∆→0

1

∆
· 1

2

[[ N∑
j=1,j 6=i

Pr {r (t+∆) = j|r (t) = i}

sT (t+∆) s (t+∆) +

N∑
j=1,j 6=i

Pr {r (t+∆) = i|r (t) = i}
]

sT (t+∆) s (t+∆)− 1

2
sT (t) s (t)

]

= lim
∆→0

1

∆
· 1

2

[[ N∑
j=1,j 6=i

ξij (Gi (h +∆)−Gi (h))

1−Gi (h)
sT (t+∆) s (t+∆)

+
1−Gi (h +∆)

1−Gi (h)
sT (t+∆) s (t+∆)

]
− 1

2
sT (t) s (t)

]
.

(26)

By (19) and (20), it gives

LV2 (s (t) , i) =sT (t)
(
Bi

TPi
)(

(Aitx (t) +∆Ait (t))x (t)

+ (Aiτ +∆Aiτ (t))x (t− τ)
)

+ sT (t)
(
Bi

TPiBi
)
µ (t, u) .

(27)

Substituting (14) into (2), one has

LV2 (s (t) , i) =sT (t)
(
Bi

TPi
)(

(Aitx (t) +∆Ait (t))x (t)

+ (Aiτ +∆Aiτ (t))x (t− τ)
)

+ sT (t)
(
Bi

TPiBi
)
Γ (t)

[
− 1

ζ

(
Bi

TPiBi
)(
Bi

TPi
)

(Aitx (t) +Aiτx (t− τ))− Ŵ Tρ
(
ĤTḠ

)
−Fi (t)

]
.

(28)
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Using (15), it gives

LV2 (s (t) , i) =sT (t)
(
Bi

TPi
)

(∆Ait (t)x (t) +∆Aiτ (t)x (t− τ))

+ sT (t)Bi
TPiBiΓ (t)

[
− 1

ζ

∥∥(BiTPiBi)−1∥∥∥∥BiTPi∥∥
· (‖Mi‖ ‖Nit‖ ‖x (t)‖+ ‖Mi‖ ‖Niτ‖ ‖x (t− τ)‖)

+
(
Bi

TPiBi
)−1

(
σ − Φ̃ (x, t, τ)

) ]
.

(29)

Since (23) and ‖·‖ 6 ‖·‖1, it follows that

LV2 (s (t) , i) 6 ‖s (t)‖1
(
Bi

TPi
)

(∆Ait (t)x (t) +∆Aiτ (t)x (t− τ))

+ ‖s (t)‖1Bi
TPiBiΓ (t)

[
− 1

ζ

∥∥(BiTPiBi)−1∥∥∥∥BiTPi∥∥
· (‖Mi‖ ‖Nit‖ ‖x (t)‖+ ‖Mi‖ ‖Niτ‖ ‖x (t− τ)‖)

− 1

ζ

∥∥BiTPiBi∥∥∥∥BiTPi∥∥(σ − Φ̃ (x, t, τ)
)]

6
∥∥s (t)

∥∥∥∥BiTPiBi∥∥∥∥(BiTPiBi)−1∥∥(σ − Φ̃ (x, t, τ)
)

6− σ1 ‖s (t)‖ 6 0,

(30)

in which σ1 represents a positive scalar. Further, we can obtain that

LV2 (s (t) , i) 6 −σ1

√
V2 (s (t) , i), ∀t > 0. (31)

By Itô’s formula, it yields

L‖s (t)‖ = L
√
V2 (s (t) , i) 6 −σ1/2, (32)

and hence

E ‖s (t)‖ 6 E ‖s (0)‖ − (σ1/2) t. (33)

It can be seen that E ‖s (t)‖ converges to zero in finite time, which concludes there
is an instant T = 2m0/ζ meeting E ‖s (t)‖ = 0 almost surely for all t > T , and
m0 = E ‖s (0)‖ <∞. Thus, the proof is completed.

Remark 3. Differing from Niu, Lam, Wang, and Ho (2008) which only guaranteed
the uniform boundedness of the sliding variable, the designed adaptive NN-based SMC
strategy implemented can not only satisfy the boundedness of signals but also admit
the trajectories onto the proposed SMS s (t) = 0 in finite time almost surely, from
which the assumption of norm boundedness for uncertain attacks is not required.

Remark 4. Adaptive NN is used to synthesize the novel SMC law (14) in this paper
based on the approximation capability to uncertain attacks, and the control diagram
of the devised scheme is displayed in Fig. 1. Furthermore, compared to the method in
Wei et al. (2017) which only took the AFs into account, the proposed control scheme
could ensure the closed-loop DSMJSs to be operated as demanded in spite of the
simultaneous existence of actuator partial failures, AAs and GUTRs.
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Figure 1. Block diagram of the control scheme

3.2. Stability analysis

In this section, a novel sufficient condition for the resultant DSMJSs to be stochasti-
cally stable on the sliding motion is presented in the light of the devised SMS.

Theorem 3.3. If matrices Pi > 0, Q > 0, Ug,i > 0, Zg,i > 0, Wi > 0, Xi,jα > 0 and
a positive scalar ι exist such that the following requirements are fulfilled:
Case 1: i ∈ Ωk

i and g ∈ Ωuk
i,

Ξ$ +Ξ1 PiAiτ + ιNi
TNiτ (PiMi)

T ψ1

∗ −Q+ ιNiτTNiτ 0 0
∗ ∗ −ιI 0
∗ ∗ ∗ −Ug,i

 < 0; (34)

where

Ξ$ = sym {Pi (Ai −BiKi)}+Q+ ι1
−1Ni

TNi + PiMiMi
TPi,

Ξ1 =
∑
j∈Ωik

[η̂ij (Pj − Pg) +
1

4
(βij)

2 Ug,i],

ψ1 = [(Pj,1 − Pg) , (Pj,2 − Pg) , · · · , (Pj1 − Pg)] ;

(35)

Case 2: i ∈ Ωi
uk, g ∈ Ωuk

i and Ωi
k 6= �,


Ξ$ +Ξ2 PiAiτ + ιNi

TNiτ (PiMi)
T ψ2

∗ −Q+ ιNiτTNiτ 0 0

∗ ∗ −ιI 0

∗ ∗ ∗ −Zg,i

 < 0,

Pi − Pg > 0;

(36)
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where

Ξ2 =
∑
j∈Ωik

[η̂ij (Pj − Pg) +
1

4
(βij)

2Zg,i],

ψ2 = [(Pj,1 − Pg) , (Pj,2 − Pg) , · · · , (Pj2 − Pg)] ;

(37)

Case 3: Ωk
i = J , g ∈ Ωuk

i and j ∈ Ωk
j for some j 6= i,

Ξ$ +Ξ3 PiAiτ + ιNi
TNiτ (PiMi)

T Pi − Pg
∗ −Q+ ιNiτTNiτ 0 0
∗ ∗ −ιI 0
∗ ∗ ∗ −Wi

 < 0; (38)

where

Ξ3 = αiη̂jj (Pi − Pg) +
1

4
(βjj)

2Wi; (39)

Case 4: Ωuk
i = J , g ∈ Ωuk

i, jα ∈ Ωk
j and j /∈ Ωk

j for any j ∈ J ,


Ξ$ +Ξ4 PiAiτ + ιNi

TNiτ (PiMi)
T Pjα − Pj

∗ −Q+ ιNiτTNiτ 0 0

∗ ∗ −ιI 0

∗ ∗ ∗ −Xi,jα

 < 0,

Pi − Pg > 0;

(40)

where

Ξ4 = η̂jjα (Pjα − Pg) +
1

4
(βjjα)2Xi,jα . (41)

Then the resultant DSMJS (4) will be stochastically stable.

Proof. Choose the Lyapunov function as

V3 (x (t) , i) = xT (t)Pix (t) +

∫ t

t−τ
xT (s)Qx (s) ds. (42)

Then, it gives

LV3 (x (t) , i) = lim
∆→0

1

∆

[ N∑
j=1,j 6=i

Pr {r (t+∆) = j|r (t) = i}xT (t+∆)Pjx (t+∆)

+ Pr {r (t+∆) = i|r (t) = i}xT (t+∆)Pix (t+∆)

− xT (t)Pix (t)
]

+ xT (t)Qx (t)− xT (t− τ)Qx (t− τ) (43)

= lim
∆→0

1

∆

[ N∑
j=1,j 6=i

ξij (Gi (h +∆)−Gi (h))

1−Gi (h)
xT (t+∆)Pjx (t+∆)
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+
1−Gi (h +∆)

1−Gi (h)
xT (t+∆)Pix (t+∆)− xT (t)Pix (t)

]
+ xT (t)Qx (t)− xT (t− τ)Qx (t− τ) ,

for the smaller ∆, the Taylor expansion of x (t+∆) can be approximately set to

x (t+∆) = x (t) + ẋ (t)∆+ o (∆) , (44)

when ∆→ 0. Then the infinitesimal generator LV3 (x (t) , i) becomes

LV3 (x (t) , i) =xT (t)Qx (t) + xT (t) · sym {Pi (Ai −BiKi)}x (t)

+ xT (t)PiBi (Γ0 (I + Λ (t))u (t) + Φ (x, t, τ)

+Kix (t) + f (t)) +

J∑
j=1

ηijx
T (t)Pjx (t)

+ 2xT (t)PiAiτx (t− τ) + 2xT (t)Pi∆Aiτx (t− τ)

+ 2xT (t)Pi∆Aitx (t)− xT (t− τ)Qx (t− τ) .

(45)

It is noteworthy that the reachability of SMS s (t) = 0 has been satisfied. Therefore,
(45) is turned into

LV3 (x (t) , i) = + 2xT (t)PiAiτx (t− τ) + 2xT (t)Pi∆Aiτx (t− τ)

+ xT (t) · sym {Pi (Ai −BiKi)}x (t)

+

J∑
j=1

ηijx
T (t)Pjx (t) + xT (t)Qx (t)

+ 2xT (t)Pi∆Aix (t)− xT (t− τ)Qx (t− τ) .

(46)

Additionally, one has

2xT (t)Pi∆Ait (t)x (t) +∆Aiτ (t)x (t− τ)

6ι1i
−1xT (t)PiMiMi

TPix (t) + ι1i [Nitx (t)

+Niτx (t− τ)]T · [Nitx (t) +Niτx (t− τ)] .

(47)

Consequently, one can obtain

LV3 6
[
xT (t) , xT (t− τ)

]TO (x, i)
[
x (t) , x (t− τ)

]
, (48)

where

O (x, i) =

[
Ξ$ +

∑J
j=1 ηijPj PiAiτ
∗ −Q

]
. (49)

Case 1: i ∈ Ωk
i.

Denote λi,k ,
∑

i∈Ωik
ηij . Due to Ωi

k 6= �, it gives that λi,k < 0. Then
∑J

j=1 ηijPj
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can be described as

N∑
j=1

ηijPj =
∑
j∈Ωki

ηijPj +
∑

j∈Ωuki

ηijPj

=
∑
j∈Ωki

ηijPj − λi,k
∑

j∈Ωuki

ηij
−λi,k

Pj ,

(50)

in which
∑

j∈Ωuki
ηij
−λi,k = 1 and 0 < ηij

−λi,k < 1, j ∈ Ωuk
i. Hence, for any g ∈ Ωuk

i, one

has

Ξ$ +
∑
j∈Ωik

ηij (Pj − Pg) =
∑
g∈Ωiuk

ηij
−λi,k

[
Ξ$ +

∑
j∈Ωik

ηij (Pj − Pg)
]
. (51)

Evidently, one has∑
j∈Ωik

ηij (Pj − Pg) =
∑
j∈Ωik

η̂ij (Pj − Pg) +
∑
j∈Ωik

∆ηij (Pj − Pg). (52)

Then it yields that for any Ug,i :

∑
j∈Ωik

∆ηij (Pj − Pg) =
∑
j∈Ωik

[
1

2
∆ηij ((Pj − Pg) + (Pj − Pg))

]

6
∑
j∈Ωik

[
1

4
(βij)

2 Ug,i + (Pj − Pg)Ug,i−1 (Pj − Pg)T

]
.

(53)

By invoking the Schur complement and (35), LV3 (x (t) , i) < 0 is obtained, which
illustrates that the stochastic stability of system (4) can be satisfied.
Case 2: i ∈ Ωi

uk and Ωi
k 6= �.

Denote λi,k ,
∑

j∈Ωik
ηij . Since Ωi

uk 6= �, then one has λi,k > 0. And

N∑
j=1

ηijPj =
∑
j∈Ωik

ηijPj + ηiiPi +
∑
j∈Ωiuk

ηijPj

=
∑
j∈Ωik

ηijPj + ηiiPi − (ηii + λi,k)
∑

j∈Ωiuk,j 6=i

ηij
−ηii − λi,k

Pj ,

(54)

in which 0 6 ηij/ (−ηii − λi,k) 6 1, k ∈ Ωi
uk and

∑
j∈Ωiuk,j 6=i

ηij
−ηii−λi,k = 1. For any

g ∈ Ωi
uk, we have

Ξ$ +

J∑
j=1

ηijPj =
∑

g∈Ωiuk,j 6=i

ηig
−ηii − λi,k

[
Ξ$ + diag

{
ηii (Pi − Pg)

+
∑
j∈Ωik

ηij (Pj − Pg), ηii (Pi − Pg) +
∑
j∈Ωik

ηij (Pj − Pg)
}]
.

(55)
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Since 0 6 ηij 6 −ηii − λi,k, Ξi +
∑J

j=1 ηijPj < 0 is equivalent to

Ξ$ + ηii (Pi − Pg) +
∑
j∈Ωik

ηij (Pj − Pg) < 0. (56)

By reason of ηii < 0, then it holds if{
Pi − Pg > 0,

Ξ$ +
∑

j∈Ωik
ηij (Pj − Pg) < 0.

(57)

Using the similar step as (53), for any Zi,g, one has∑
j∈Ωik

ηij (Pj − Pg) 6
∑
j∈Ωik

η̂ij (Pj − Pg)

+
∑
j∈Ωik

[
1

4
(βij)

2Zg,i + (Pj − Pg)Zg,i−1 (Pj − Pg)T

]
.

(58)

In the light of Schur complement and (37), LV3 (x (t) , i) < 0 also holds in this case.
Case 3: Ωk

i = J and j ∈ Ωk
j for some j 6= i.

In such case, ηii is estimated by αηjj . Denote λi,k , ηii. Therefore,
∑

j=1 ηijPj is
changed into

J∑
j=1

ηijPj = ηiiPi +
∑

j∈Ωuki

ηijPj = ηiiPi − λi,k
∑

j∈Ωuki

ηij
−λi,k

Pj . (59)

Noticing that
∑

j∈Ωuki
ηij = −ηii = −λi,k > 0. Consequently, for any g ∈ Ωuk

i, it
follows

Ξ$ +

N∑
j=1

ηijPj =
∑

g∈Ωuki

ηig
−λi,k

[Ξ$ + ηii (Pi − Pg)]

= Ξ$ + ηii (Pi − Pg) = Ξ$ + αiηjj (Pi − Pg) .

(60)

Along the line in (59) and (60), one has

αiηjj (Pi − Pg) = αiη̂jj (Pi − Pg) + αi∆ηjj (Pi − Pg) . (61)

For any Wi > 0, one has

∆ηjj (Pi − Pg) =
[1

2
∆ηjj (Pi − Pg) +

1

2
∆ηjj (Pi − Pg)

]
6
[(βjj)

2

4
Wi + (Pi − Pg) (Wi)

−1 (Pi − Pg)T
]
.

(62)

On the basis of (60), (61) and (62), one sees that the DSMJSs in (4) are stochastically
stable based on Schur complement and (39).
Case 4: Ωuk

i = J and j /∈ Ωk
i for any j ∈ J .
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In such case, ηija is estimated by ηjja . Also, we denote λi,k , ηija (ja 6= i). Then,∑J
j=1 ηijPj is changed into

J∑
j=1

ηijPj = ηijaPja + ηiiPi +
∑

j∈Ii,uk,j 6=i
ηijPj

= ηijaPja + ηiiPi − (ηii + λi,k)
∑

j∈Ωuki,j 6=i

ηijPj
−ηii − λi,k

,

(63)

then, one has

Ξ$ +

N∑
j=1

ηijPj =
∑

g∈Ωuki,j 6=i

[
Ξ$

+ ηii (Pi − Pg) + ηija (Pja − Pg)
]
,

(64)

since 0 6 ηij 6 −ηii − λi,k, then Ξ$ + ηii (Pi − Pg) + ηija (Pja − Pg) < 0 is equivalent
to

Ξi,4 + ηii (Pi − Pg) + αiηjja (Pja − Pg) < 0. (65)

It is obvious that ηii < 0. Therefore, holds if{
Pi − Pg > 0,

Ξ$ + αiηjja (Pja − Pg) < 0.
(66)

For any Xijα > 0, it holds that

ηjja (Pja − Pg) = η̂jja (Pja − Pg) +∆ηjja (Pja − Pg)
6 η̂jja (Pja − Pg)

+

[
(βjja)

2

4
Xija + (Pja − Pg) (Xija)

−1 (Pja − Pg)
T

]
.

(67)

Similar to (61), LV3 (x (t) , i) < 0 can hold, which accomplishes the proof.

4. Simulation example

In this section, the model of single-link robot arm in Shen, Li, Cao, Wu, and Lu
(2020) is introduced to evaluate the availability of the proposed method, which can
be described as follows

∂̈ (t) = −M (rt) gL

J (rt)
sin (∂ (t))− D

J (rt)
∂̇ (t) +

1

J (rt)
µ (t, u) ,

in which ∂ (t), M (rt), L, J (rt), D and g mean the arm’s angular position, mass of the
payload, the length of the arm, the moment of inertia, the coefficient of viscous friction
and the acceleration of gravity respectively, and the specific selection values are given
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as follows: g = 9.80m/s2, L = 0.5m and D = 2N · s/m2. In the actual operation of
the robotarm, some variations of the payloads and working environment may cause
random changes in M (rt) and J (rt). Then, setting x1 (t) = ∂ (t), x2 (t) = ∂̇ (t), and
the model of single-link robot arm with rt = i is considered as:

Ai =

[
0 1

−MigL
Ji

−D
Ji

]
, Bi =

[
0
1
Ji

]
,

where the parameters Mi and Ji are given by: M1 = M2 = M3 = 1.5, J1 = 1, J2 = 1.5
and J3 = 2, which correspond to these three modes, respectively. The structural un-
certainties Y (t) and the AF model µ (t, u) are given as Y (t) = 0.3 cos (100t) , µ (t, u) =
(0.5 + 0.3 sin (t))u (t). And the AA signals are chosen as:

Φ (x, t, τ) =


0.3 + 0.2 cos (100t) , 0.5s 6 t < 4s;

3 + 0.5 sin (50t) (x2 (t) + x2 (t− τ)) , 8s 6 t < 10s;

0, t /∈ [0.5s, 4s) ∪ [8s, 10s) ;

in which the system time-delay τ is set as τ = 0.1s. And the system matrices with
three modes are displayed as follows:

A1 =

[
0 1

−7.35 −2

]
, A2 =

[
0 1
−4.9 −1.33

]
, A3 =

[
0 1
−3.8 −1

]
;

B1 =

[
0
1

]
, B2 =

[
0

0.67

]
, B3 =

[
0

0.5

]
;

A1τ =

[
0.9 0.9
0.4 1

]
, A2τ =

[
0.8 0.7
0.7 0.7

]
, A3τ =

[
0.7 0.6
0.6 0.5

]
;

K1 =

[
−0.2127
3.4535

]
,K2 =

[
−1.9578
3.6754

]
,K3 =

[
−1.2356
−0.9631

]
;

M1 =

[
−0.9 0.5
0.1 −0.6

]
,M2 =

[
−0.5 0.3
0.1 −0.5

]
,M3 =

[
−0.2 0.2
0.1 −0.2

]
;

N1 =

[
0.2 −0.1
0 −0.1

]
,N2 =

[
0.1 −0.1
0 −0.1

]
,N3 =

[
−0.2 0.4

0 −0.1

]
;

N1τ =

[
−0.1 0

0 −0.1

]
,N2τ =

[
−0.1 0

0 −0.1

]
,N3τ =

[
−0.1 0

0 −0.1

]
.

17



Set the TR matrix as follows:

Π1 =

−0.45 +∆η11 ? 0.27 +∆η13

? ? 0.38 +∆η23

? ? ?

 ,
where the unknown element “?” implies that both η̂ij and ∆ηij of the mentioned TR
information are not available, i, j ∈ {1, 2, 3}. By virtue of Theorem 3.3, the corre-
sponding matrices are solved:

P1 =

[
1.5323 0.3790
0.3790 0.3955

]
, P2 =

[
1.6982 0.7321
0.7321 0.7443

]
, P3 =

[
1.7796 0.7818
0.7818 0.7879

]
;

Q1 =

[
2.5755 2.3115
2.3115 2.3724

]
,U1,1 =

[
2.7836 0.1978
0.1978 2.5050

]
,U1,3 =

[
2.3848 0.0150
0.0150 2.3856

]
,

Z2,3 =

[
2.4635 0.0816
0.0816 2.4968

]
,W3 =

[
2.5410 0.0893
0.0893 2.5023

]
.

In the simulation experiment, the NN has been designed with 20 neurons, and the
gains ~i are chosen as ~1 = 0.1, ~2 = 0.2 and ~3 = 0.2. Additionally, the initial
condition for system state is given as x (t) = [1, 0.5]T, and the initial values of Ŵ, Ĥ
and α̂ are chosen as Ŵ(0) = [0.1]20×1, Ĥ(0) = [0.1]5×20 and α̂(0) = [0.1, 0.2, 0.1, 0.1]T

respectively. Herein, in order to reduce system chattering, s (t) / (0.01 + ‖s (t)‖) is
considered to replace the term sgn(s (t)). Meanwhile, to illustrate the validity of the
proposed adaptive NN-based SMC strategy, the SMC methoddesigned in Qi et al.
(2020) is utilized as a comparison, from which the corresponding matrices Kcom,i are
generated as follows:

Kcom,1 = [−19.7826− 0.8103] ,Kcom,2 = [−21.3626− 9.3536] .

In view of the aforementioned settings, the simulation verification between the devised
control strategy and the method in Qi et al. (2020) is performed below. The jump mode
rt, the state trajectories x (t) and control signals u (t), sliding variable s (t) and norm

curves of α̂ (t), Ŵ (t) and Ĥ (t) are offered in Figs. 2-6. In detail, Fig. 1 shows the state
response of the target system. Fig. 2 plots the curves of the control input. In Fig. 3
and Fig. 4, the norm curves of adaptive parameters are displayed. As seen from Fig.
1, although the state responses of the resultant DSMJSs are clearly influenced by AA
signals during the time periods [0.5s, 4s] and [8s, 10s], the system will swiftly recover
to its stable state under the proposed NN-based SMC law. As can be seen, the current
control scheme could achieve better static and dynamic performance in contrast to the
method in Qi et al. (2021).

Additionally, EC, integral absolute error (IAE), integral time multiplied absolute
error (ITAE) and integral of squared error (ISE) are offered to analyze the two meth-
ods through the above quantitative indicators (Moawad, Elawady, and Sarhan, 2019;
Mobayen and Majd, 2012), from which the detailed descriptions are dispalyed as fol-
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20



lows:

EC =

∫ 20s

0
u2 (t) dt, IAE =

∫ 20s

0
‖e (t)‖dt,

ITAE =

∫ 20s

0
t ‖e (t)‖dt, ISE =

∫ 20s

0
‖e (t)‖2 dt,

where e (t) = xd (t) − x (t) refers to the state error, x (t) stands for the actual state
and xd (t) = 0 denotes the ideal system state. Therefore, the results of the indicators
are then displayed in Table 1, which demonstrates that the proposed control approach
could enhance control accuracy with less EC.

Table 1. Comparisons results ofperformance indicators

Methods Proposed method Method in Qi et. al (2020)
EC 165.9948 5257.3375
IAE 1.7355 11.8778

ITAE 7.4881 97.0757
ISE 1.5486 13.4764

5. Conclusion

An adaptive NN-based SMC approach to address the security control problem for
DSMJSs with GUTRs, AAs, and AFs has been proposed in this research. By virtue
of strong approximation ability of NN, an adaptive NN-based sliding mode controller
synthesis has been developed, which could not only force the state trajectories onto
the devised SMS but also ensure the DSMJSs that operates as demanded. Then,
a novelstochastic stability decision condition on the sliding motion has been derived
under the premise of reachability of the proposed SMS. Finally, a single-link robot arm
model has been adopted as an example with simulation comparison to demonstrate
the feasibility of the prescribed control strategy.

In future research, the proposed control method will been considered to be applied
for more general s-MJSs with time-varying delays, actuator attacks and sensor attacks,
simultaneously. Besides, due to the limitations of physical devices, actuator saturation
often inevitably appears in practical systems, which may reduce performance and even
lead to instability of the system. Therefore, the security control for stochastic nonlinear
systems with actuator saturation will also be the scope of our future work.
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