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Abstract— Staff expenses can account for up to 70% of 

business costs, with indoor conditions playing a critical role in 

employee health, behavior, and productivity. Optimal thermal 

comfort, typically around 21°C with 40-70% humidity, 

maximizes productivity. However, effective monitoring requires 

comprehensive data, particularly as energy regulations push for 

smarter building management. Although Building Information 

Modeling (BIM, a digital representation of a building's physical 

and functional characteristics) and sensor integration support 

facilities management, many existing systems are proprietary, 

expensive, and inflexible. To address these challenges, this study 

introduces ThermalComfortBot, a sustainable Generative 

Artificial Intelligence (GenAI)-powered Chatbot designed as an 

advanced Information System (IS). Utilizing Large Language 

Models (LLMs, AI models for natural language understanding) 

and Retrieval-Augmented Generation (RAG, a method that 

combines data retrieval with LLMs-generated insights), 

ThermalComfortBot integrates data from BIM, sensors, and 

other relevant sources. Built on open-source technology, it is 

cost-effective and fully customizable, allowing users to tailor 

datasets to their needs. The Chatbot delivers actionable insights 

through a Question-Answering (QA) interface, enabling data-

driven decisions on thermal comfort to improve workplace 

conditions and enhance operational efficiency. 

Keywords— Thermal Comfort Monitoring, Generative 

Artificial Intelligence, Data-Driven Decision Support, Building 

Information Modeling, Sustainable Workplace Solutions. 

I. INTRODUCTION 

Staff costs including wages, benefits, payroll, and 
associated taxes can represent a significant portion of a 
business's overall expenses [1]. A key factor influencing these 
costs is the indoor environmental conditions, which 
significantly affect employees' physiological and 
psychological well-being, habits, and productivity [2]. Among 
the elements impacting indoor environmental quality, 
temperature and humidity are crucial for maintaining thermal 
comfort. The UK Health and Safety Executive (HSE) defines 
thermal comfort as a balance of environmental, work-related, 
and personal factors that contribute to a comfortable 
workplace temperature [3]. Research [4] shows that optimal 
thermal comfort is essential for high productivity levels, with 
studies indicating productivity peaks at around 21°C. 
Excessive heat can cause fatigue, while cold conditions can 
lead to restlessness. Humidity is also vital for comfort, with 
the HSE recommending levels between 40% and 70%. 
Humidity below 30% can result in discomfort, such as dry 
eyes and skin, while levels above 70% can create a stuffy 
atmosphere. True comfort is achieved when temperature and 
humidity fall within this "comfort zone". Thermal comfort 
assessments should be tailored for summer and winter to 
maintain acceptable temperature and humidity levels 
throughout the year. 

Data collection and environmental performance are key 
for building energy efficiency. Monitoring technologies, 
driven by regulations like the European Energy Performance 
of Buildings Directive (EPBD), promote smart systems. 
While BIM is a powerful tool in construction, its use has 
largely focussed on  the design and construction phases [5, 6]. 
Integrating BIM with sensor data improves real-time 
monitoring, offering facility managers actionable insights and 
a user-friendly interface. However, many systems are 
proprietary, making evaluation and optimization difficult, 
leading to inefficiencies and higher costs. The absence of an 
open-source, integrated system hinders data aggregation and 
energy efficiency improvements. To tackle these challenges, 
this research investigates the following question: 

• How can an IS integrate data from diverse sources, 
such as BIM and sensor data, and leverage advanced 
open-source technologies to support organizational 
decision-making in building thermal comfort? 

To address these questions, this study introduces 
ThermalComfortBot, an integrated IS that operates as a 
Chatbot, designed to efficiently consolidate data from 
multiple sources. By leveraging advanced open-source GenAI 
technologies (i.e., systems capable of generating new insights 
from large datasets such as LLMs [8] and RAG [9]), 
ThermalComfortBot is designed to enhance thermal comfort 
monitoring and delivers substantial benefits. It seamlessly 
integrates BIM data, sensor data, and other relevant datasets 
essential for thermal comfort monitoring, offering 
organizations a comprehensive and up-to-date overview of 
their thermal environment. This integration improves 
decision-making by delivering timely, accurate insights that 
support data-driven choices regarding thermal comfort and 
help mitigate health risks. Additionally, ThermalComfortBot 
is built with sustainability in mind, emphasizing the reuse of 
existing LLMs instead of developing new systems from 
scratch, which can be resource intensive. This approach 
facilitates easy upgrades, ensuring that the system remains 
relevant as organizational needs evolve. Its cost-effective 
design minimizes development expenses, making 
ThermalComfortBot a practical solution for continuous 
building monitoring. 

The paper is structured as follows: Section 2 provides the 
background; Section 3 introduces ThermalComfortBot; 
Section 4 details the case study; Section 5 discusses the 
advantages and limitations; and Section 6 offers the 
conclusion. 

II. BACKGROUND 

The Architecture, Engineering, and Construction (AEC) 
industry employs BIM to enhance cost-efficiency, 
productivity, and project quality [7]. BIM provides a platform 
for managing complex building information and enables 
virtual visualization throughout a building's lifecycle. It 
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assesses energy efficiency by factoring in elements like 
orientation and materials while helping facility managers 
maintain thermal comfort through real-time sensor data 
visualization. Recent studies have increasingly focused on 
integrating BIM with sensing technologies, particularly by 
embedding sensor data into Industry Foundation Classes 
(IFC) formats i.e., an open standard developed by 
buildingSMART to enhance interoperability across BIM 
tools. This integration has led to various innovative 
approaches for environmental monitoring in buildings.  

For instance, Lin and Cheung [10] developed a parking 
garage system that utilizes gas, temperature, and humidity 
data for informed decision-making. Desogus et al. [11] 
monitored building conditions with heat pumps and energy 
meters, delivering real-time data through the Dynamo 
platform. Kensek [12] improved façade design by integrating 
environmental sensors with BIM to process light, humidity, 
and CO2 data. Additionally, Zhong et al. [13] proposed a 
framework to manage temperature, humidity, noise, light, and 
air quality, while Opoku et al. [14] implemented a cloud-based 
digital twin to optimize thermal and air quality. 
Valinejadshoubi et al. [15] introduced an automated alert 
system for thermal comfort, and Wu and Li [16] developed 
COZyBIM to balance occupant comfort with energy 
efficiency. Further, Natephra and Motamedi [17] visualized 
live sensor data for real-time indoor insights, while Alavi et 
al. [18] identified discomfort factors through a BIM-based 
approach, and Shahinmoghadam et al. [19] focused on thermal 
comfort assessment with edge computing for real-time 
visualization. Lastly, ElArwady et al. [20] modeled indoor 
thermal comfort to facilitate active air conditioning control. 

These studies underscore the limitations of proprietary 
BIM-sensor integrations for thermal comfort monitoring, 
primarily due to their closed-source nature, which complicates 
evaluation and optimization. The time and resources required 
to assess these proprietary systems can lead to inefficiencies 
and increased costs. Moreover, these solutions often rely 
solely on BIM and sensor data. Effective monitoring systems, 
however, should be adaptable to integrate a wider range of 
relevant datasets, such as HSE guidelines, weather data, 
occupancy records, and user feedback, without incurring 
additional resource demands. Integrated systems should 
provide actionable insights into informed decision-making 
and be customizable to promote cost-effective, sustainable 
solutions tailored for SMEs. 

LLMs excel in Natural Language Processing (NLP) tasks 
and can enhance integrated ISs. While training LLMs is 
resource-intensive, reusing existing models supports 
sustainability. Various LLMs, including BLOOM [21], GPT-
4 [22], and Llama [23] are available; however, they often face 
challenges with domain-specific queries, which can lead to 
inaccuracies. RAG addresses this limitation by retrieving 
relevant external information before generating responses, 
thereby improving accuracy [9]. RAG is applied across 
various fields [24] to improve QA and information retrieval. 
RAG enhances various domains, including medical 
information retrieval and financial QA [24]. In education, it 
analyzes tutoring dialogues for improved decision-making 
and is applied in life sciences. Additionally, RAG streamlines 
IT project requests, supports health education, and aids in 
disaster reporting. It also improves information extraction and 
planning processes while enhancing multilingual question-
answering in HR documents [24]. Despite its potential, the 

integration of LLMs in facilities management remains 
underutilized. However, leveraging these models could enable 
organizations to seamlessly synthesize data from BIM, 
sensors, and other relevant datasets. 

III. PROPOSED SYSTEM 

ThermalComfortBot is a GenAI-driven decision support 
system developed to help building analysts monitor and 
analyze thermal comfort within buildings. By integrating 
multiple datasets, ThermalComfortBot can answer inquiries 
about temperature and humidity fluctuations or comfort issues 
across different building areas. This system provides 
responses in text format, making it easier for analysts to 
understand and address comfort-related concerns efficiently. 
Figure 1 illustrates the seamless integration of datasets to 
deliver text outputs for analyst inquiries, as detailed below: 

Step 1- Analyst Query Input: The process begins when a 
building analyst formulates a specific query, such as 
identifying temperature or humidity anomalies within the 
building. The analyst enters this query into the 
ThermalComfortBot prompt, an interface that allows the 
user to specify issues or areas of interest. This initial step 
sets the stage for ThermalComfortBot to retrieve and 
process data that is directly relevant to the analyst’s 
question. 

Step 2(a) - Data Retrieval from Relevant Sources: Once the 
query is entered, ThermalComfortBot’s retrieval 
mechanism is activated. It searches through various data 
sources to find the most relevant information, including: 

• BIM data, which provides insights into the building’s 

structure. 

• Weather data to understand how outdoor conditions 

may influence indoor temperatures. 

• Sensor data collected from different locations within 

the building, offering precise sensor readings. 

• Historical maintenance records that reveal previous 

issues, impacting current thermal conditions. 

• HSE  guidelines to align with regulatory standards 

for indoor comfort. 

• User feedback on thermal comfort, providing 

insights from occupants’ perspectives. 
The datasets mentioned above were selected based on 

the literature analysis in Section 2. Additionally, other 
datasets can be incorporated as needed, ensuring the system 
remains adaptable and flexible. 

Step 2(b) - Data Processing with the LLM: Once the 
relevant data is retrieved, ThermalComfortBot’s LLM 
specifically the Llama 3.1 model developed by Meta [24] 
processes it to generate comprehensive responses. We 
selected Llama for its powerful capabilities in NLP and its 
open-source nature, which allows for effective data 
interpretation and response generation in our study. 
However, developers are free to choose other models based 
on their specific requirements. The LLM uses the retrieved 
data to contextualize the answer, ensuring it aligns with the 
specifics of the analyst’s question, such as identifying 
temperature or humidity fluctuations in particular rooms or 
patterns across different time periods. 

Step 3 - Generating Responses: ThermalComfortBot output 
provides a summary of key findings, such as high-
temperature spikes or notable anomalies in specific rooms 
or times. 



IV. CASE STUDY 

The proposed system, ThermalComfortBot, is applied in a 
case study involving the strategic placement of temperature 
and humidity sensors throughout a building floor (see Fig. 2). 
Sensors were positioned at various locations, with readings 
taken from May to September 2018 at a sampling interval of 
1 second. This setup tracks temperature and humidity 
variations across four key locations: Room 1 Window, Room 
1, the Landing, and the Bathroom. The goal is to assess the 
impact of these variations on occupant comfort, providing 
building analysts with actionable insights to optimize indoor 

environmental conditions. Room 1 and its window are 
essential for understanding the impact of external climate on 
indoor conditions, especially regarding heat exchange. The 
Landing, as a central area, influences nearby rooms and 
contributes to the home's thermal balance, while the Bathroom 
provides insights into the effects of humidity and moisture on 
occupant comfort.  

As a preliminary assessment of the utility of the system, 
the study aims to compare temperature and humidity across 
monitored locations. Table 1 outlines key questions using 
ThermalComfortBot, showcasing temperature and humidity 
anomalies for in-depth analysis. 

 

 

 

Fig. 1. ThermalComfortBot: Seamlessly Integrating Datasets to Provide Textual Outputs for Analyst Inquiries 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Floor plan illustrating the case study implementation.  
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TABLE I.  TO IDENTIFY ANOMALIES IN TEMPERATURE AND HUMIDITY DATA ACROSS DIFFERENT AREAS OF THE HOUSE. 

No. Question Answer 

1 

What anomalies can be 
identified from the 

temperature data comparison 

of all areas? 

General Observations: The Room 1 Window sensor (Sensor 30) shows the most frequent high-temperature spikes. 
Sensors 28 (Bathroom) and 38 (Landing) mostly remain within range but sometimes reach the higher threshold. 

Summary of Key Anomalies:High-Temperature Spikes in July 2018. 

Low-Temperature Drops in early May 2018.  

2 

What anomalies can be 

identified from the humidity 

data comparison of all areas? 

Sensor-Specific Anomalies: Room 1 Window (Sensor 31) shows frequent high-humidity readings above the 

threshold, while Room 1 (Sensor 45) exhibits consistent high-humidity anomalies. The Landing (Sensor 39) 

occasionally exceeds the threshold but has fewer anomalies overall. In contrast, the Bathroom (Sensor 29) has the 
fewest anomalies, suggesting more stable humidity levels. 

Temporal Distribution: Early Period: Few anomalies from April to early May; Peak Period: Most anomalies from 

mid-May to late August, possibly due to seasonal or environmental factors.  

 

V. DISCUSSION 

ThermalComfortBot is a system designed to monitor 
thermal comfort in buildings, harnessing the capabilities of 
GenAI to deliver actionable insights. By integrating 
temperature and humidity data from strategically placed 
sensors throughout a building, ThermalComfortBot allows 
building analysts to effectively evaluate and optimize indoor 
environmental conditions. This approach enhances occupant 
comfort while contributing to energy efficiency and 
sustainability in building management. With timely 
monitoring and analysis, ThermalComfortBot empowers 
decision-makers to make informed choices regarding Heating, 
Ventilation, and Air Conditioning (HVAC) adjustments, 
insulation improvements, and other modifications necessary 
for optimal thermal comfort. A key feature of 
ThermalComfortBot is its ability to detect anomalies in 
temperature and humidity data. By employing advanced 
LLMs, the system flags unusual readings that may indicate 
potential issues such as inadequate ventilation or insulation 
problems. This proactive management approach enables 
building operators to address concerns before they escalate, 
minimizing discomfort for occupants and reducing energy 
consumption associated with inefficient systems. 

Sustainability is a core feature of ThermalComfortBot, 
leveraging pre-trained LLMs to minimize the environmental 
impact of creating new models. This approach conserves 
computational resources while enhancing efficiency. The 
system is adaptable, allowing customization for various 
building types and environmental conditions without 
extensive retraining. By optimizing thermal comfort, it 
reduces dependence on heating and cooling systems, cutting 
energy consumption and carbon footprints, thereby supporting 
sustainability goals. However, the study has limitations. It 
lacks detailed discussions on sensor placement, relies 
primarily on temperature and humidity data from HSE 
guidelines and BIM, and focuses exclusively on the open-
access Llama model, which could be expanded. Currently, 
ThermalComfortBot is designed for detecting anomalies in 
temperature and humidity, but future work should address 
additional objectives, including: 

• Comparative Analysis: Examining temperature and 
humidity across multiple locations to identify spatial 
variations and assessing responses to external 
conditions, crucial for improving energy efficiency and 
maintaining consistent comfort. 

• Correlation Studies: Exploring relationships between 
internal areas and external environmental conditions to 
better understand energy dynamics and comfort levels. 

• Trend Monitoring: Tracking short and long-term 
fluctuations in temperature and humidity on weekly, 
monthly, and seasonal scales, essential for identifying 
recurring seasonal patterns. 

• Seasonal Variation Analysis: Focusing on summer months 
when temperature and humidity levels rise, analyzing 
these changes to evaluate cooling system performance 
and determine necessary improvements for sustained 
comfort. 

Additionally, future work should include a comprehensive 
system evaluation to ensure the effectiveness and reliability of 
the generated insights. 

VI. CONCLUSIONS 

This study introduces ThermalComfortBot, which 
integrates BIM, sensor data, and other relevant datasets using 
advanced LLMs and RAG, with its implementation 
demonstrated in a residential building case study. Through the 
QA system interface, it provides actionable insights that 
enable data-driven decisions, enhancing workplace 
environments and offering SMEs a cost-effective, 
customizable solution. Chatbot supports timely monitoring, 
optimizing indoor conditions, and proactively identifying 
anomalies in temperature and humidity to address potential 
issues before they escalate. Its sustainability is further 
enhanced by reusing pre-trained LLMs, reducing 
environmental impact [25, 26]. While ThermalComfortBot 
shows great potential for improving thermal comfort and 
energy efficiency, future work should focus on incorporating 
additional building-specific datasets, conducting a detailed 
system evaluation to assess response accuracy, and exploring 
the use of other open-source LLMs to improve the quality and 
comprehensiveness of generated insights. 
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