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The increasing use of machine learning, with its significant computational and environmental costs,
has motivated the exploration of unconventional computing substrates. Liquid substrates, such as
colloids, are of particular interest due to their ability to conform to various shapes while exhibiting
complex dynamics resulting from the collective behaviour of the constituent colloidal particles. This
study explores the potential of using a PEDOT:PSS colloidal suspension as a physical reservoir for
reservoir computing in spoken digit recognition. Reservoir computing uses high-dimensional
dynamical systems to perform tasks with different substrates, including physical ones. Here, a
physical reservoir is implemented that encodes temporal data by exploiting the rich dynamics inherent
in colloidal suspensions, thus avoiding reliance on conventional computing hardware. The reservoir
processes audio input encoded as spike sequences, which are then classified using a trained readout
layer to identify spoken digits. Evaluation across different speaker scenarios shows that the colloidal
reservoir achieves high accuracy in classification tasks, demonstrating its viability as a physical
reservoir substrate.

The 20th century saw the emergence of classical computing, given by the
computationalmodel formulatedbyAlanTuring and its physical realisation
through the von Neumann architecture (and more recently, the modified
Harvard) using semiconductor-based transistors and later integrated cir-
cuits. However, unconventional computing offers the exciting prospect of
disrupting this long-standing paradigm in the 21st century.

Unconventional computing encompasses a wide range of computing
paradigms that push the boundaries of conventional semiconductor-based
digital electronics. These paradigms are often inspired by natural phe-
nomena, exploiting the intrinsic computational capabilities of physical,
chemical, and/or biological systems. Bymaking use of the unique properties
and dynamics of these systems, unconventional computing architectures
promise to overcome fundamental limitations of classical computing, such
as energy efficiency, fault tolerance, and the ability to directly interface with
and process complex analogue signals from the physical world1.

One of the most widespread and resource-intensive fields today is
artificial intelligence and machine learning. Over the last decade, Artificial
Neural Networks (ANNs) have become an increasingly dominant techni-
que for information and data processing. ANNs mimic the behaviour of
biological systems, with a computational model consisting of neuron-like
units connected by weighted links that resemble neural synapses. Recurrent
Neural Networks (RNNs) have recently become the most popular type of
ANN due to their ability to handle dynamic spatio-temporal data and
embed temporal dependencies in their structure, and they are used inmajor

language models such as Google’s Gemini and OpenAI’s ChatGPT. A
striking problem with these models is their enormous computational
complexity, which requires not only large amounts of data but also sig-
nificant energy to power servers and GPUs for their training.

Reservoir computing (RC) is anRNN-based framework that is suitable
for processing temporal and sequential information and is derived from
echo state networks (ESNs) and liquid state machines (LSMs)2–8. The
domain of reservoir computing was inspired by Julian Miller’s in materia
computing9–13.

Theparadigmof reservoir computing involves using ahighlynonlinear
system to map the input signal into a much higher-dimensional space. The
state of the reservoir is then harvested using a readout layer and trained to
produce the desired output. Not all complex systems are suitable as good
reservoirs, as theymust exhibit (slowly fading)memory, knownas echo state
properties, and separability (as shown in Fig. 1). To improve the classifi-
cation performance of anRC, it is essential to ensure that the reservoir states
produced by two different input histories are significantly different
(separated).

The reservoir can be either computational, instantiated through
numerical models, or physical, harnessing the inherent properties of phy-
sical systems. Physical reservoirs offer a significant advantage by cir-
cumventing the need for conventional computing architectures and instead
leveraging the rich dynamics inherent to various physical substrates to
perform high-dimensional mappings and complex transformations.
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Various physical RC implementations have been proposed across
different domains, utilising a wide range of physical phenomena. For
example, spintronic oscillators, which consist of nanoscale magnetic tunnel
junctions, have been shown to function as reservoirs capable of performing
tasks such as pattern recognition and time-series prediction14,15. In the
optical and photonic domains, integrated photonic reservoirs based on
delay-coupled systems and coupled semiconductor optical amplifiers show
promise for information processing and signal classification16. Memristor
crossbar arrays, which leverage the voltage-controlled resistance char-
acteristics of these devices, and ferroelectric diodes have also been investi-
gated as physical reservoirs for various machine learning tasks17,18.

In addition to solid-state implementations, physical RC has also been
explored on unconventional substrates, such as field-programmable gate
arrays (FPGAs)19. Furthermore, liquid systems have been proposed as
reservoirs for time-series forecasting and pattern recognition, utilising the
chaotic dynamics of turbulentflows. In addition, physical reservoirsmadeof
compliant and deformable materials, known as soft robotic systems, have
been shown to encode temporal information in their morphological
dynamics20–22.

Liquid cybernetic systems, conceptualised as colloidal suspensions
capable of autonomous information processing, have demonstrated intri-
guing features, including autolographic capabilities — the ability to self-
encode information within their inherent dynamics and morphological
reconfigurations23,24. Our prior experimental investigations with zinc oxide
(ZnO) colloidal suspensions under controlled laboratory conditions have
showcased their potential as electrical analogue neuromorphic processors,
successfully implementing synaptic plasticity-like learning and emulating
Pavlovian conditioning reflexes25–27. Complementing these findings, the
computational abilities of magnetite (Fe3O4) ferrofluid suspensions for
handwritten digit recognition have further exemplified the versatility of
these liquid-based physical reservoirs for information processing tasks28.

The autolographic nature of these liquid cybernetic systems can be
attributed to the complex dynamics that govern the collective behaviour of
the constituent colloidal particles. In the case of ZnO colloids, the self-
organised electrohydrodynamic patterns emerging from the interplay
between applied electric fields and the electrophoretic mobility of the
charged particles enable the encoding and processing of information within
the evolving morphologies and spatiotemporal dynamics of the colloidal
ensemble25. Similarly, for ferrofluids composed of superparamagnetic
nanoparticles, the complex magnetohydrodynamic phenomena arising
from the coupling between magnetic fields and the fluid flow dynamics
facilitate the transduction and processing of information within the
reconfigurable patterns exhibited by the colloidal suspension29.

The adventof colloid-based computing systems represents a significant
paradigm shift in computing and materials science, offering a compelling
alternative to conventional solid-state systems for operations in harsh
environments23. These environments, characterised by extreme tempera-
tures, pressures, radiation, or chemical hazards, present significant chal-
lenges for traditional computing systems30. Colloids, which feature a liquid
state of aggregation and are based on highly compliant materials (such as

those found in living organisms), offer innovative solutions, particularly in
terms of mobility and shape. Colloids also demonstrate minimal resistance
to compressive forces, allowing them to conform to different shapes. By
integrating theprinciples of liquid cybernetic systems and the adaptability of
colloid-based systems, researcherswill be able todevelophighly resilient and
versatile computing solutions for applications in harsh environments such
as deep-sea exploration, post-disaster search and rescue, or interplanetary
surface investigations.

In this paper, we investigate the properties of a poly(3,4-ethylene-
dioxythiophene)polystyrenesulphonate (PEDOT:PSS) colloidal suspension
as a physical reservoir for classification of spoken digits. Extensive research
has explored the application of PEDOT:PSS inneuromorphic devices due to
its advantageous properties, including its potential as a bio-interfacing
material and its use in organic electronic devices31–34. Its characteristics, such
as promising thermoelectric properties, high electrical conductivity, and
transparency make it the most widely used conductive polymer35,36. PED-
OT:PSS exhibits tunable electrical conductivity, high flexibility, and high
permeability to gases, making it a promising material to act as a temporary
storage or transport path for abundant inflowing ions37,38.

Here, we show that the combination of history-dependent output and
highly nonlinear dynamics aligns with the high complexity present in the
interactions of colloidal particles. This creates an ideal scenario for reservoir
computing, a paradigm that leverages the inherent dynamics of physical
systems for information processing. By utilizing this approach, wewere able
to effectively perform the classification of utterances from 5 different
speakers with distinct accents.

Results and Discussion
Properties of the PEDOT:PSS colloidal suspension
The sequence of partially cationic ethylenedioxythiophene (PEDOT) and
anionic styrenesulphonic acid (PSS) monomer units (primary structure, as
seen in Fig. 2a) forms a polyion complex of PEDOT oligomers and PSS
chains through electrostatic interactions (secondary structure, as seen in
Fig. 2b)39, which is dispersable in water as colloidal gel particles (tertiary
structure, as seen in Fig. 2c)40. These gel particles display a micelle-like
structure in aqueous solutions with a hydrophobic PEDOT-rich core and a
hydrophilic PSS-rich shell41.

The current/voltage characteristics of the colloid were investigated
using a scan rate of 0.2 V s−1 as seen in Fig. 3a, with the onset potentials for
oxidisation and reduction being, respectively, 3.5 V and −3.7 V.

PEDOTchanges from its neutral non conductive state to its conductive
and oxidised state and decreases the resistance of the liquid42, following the
reaction below

PEDOTþ:PSS� þHþ þ e�"PEDOT0 þHþ:PSS�: ð1Þ

This charge and discharge phenomenon that induces changes in the
resistance of thematerials is related to the doping and de-doping that occur
in intrinsically conductive polymers43 and results in the flow of positive or
negative ions along the polymer chain.

The I−V curve shown in Fig. 3a exhibits the typical pinchedhysteresis
loop of a classical memristor44. The current/voltage characteristics of the
materials show both a history-dependent output and highly nonlinear
dynamics45–51, both essential to RC.

Colloidal particles typically interact through nonspecific forces such as
van der Waals attraction and electrostatic repulsion, naturally progressing
towards an equilibriumstate.However, whenan externalfield is applied, the
energy landscape of these polarisable particles is altered, driving them away
from equilibrium and onto alternative pathways that would otherwise be
inaccessible. This process leads to the formation of suprastructures influ-
enced by the external field52–54.

At this scale, the fluid dynamics of the particles are characterised by a
low Reynolds number, Re ¼ ρvL

μ , where ρ and μ denote, respectively, the
density and viscosity of the fluid, and v and L represent, respectively, the
velocity and characteristic length of the object. This parameter, which

Fig. 1 | Illustration of the separability property of a reservoir due to its nonlinear
mapping. The low-dimensional, linearly non-separable feature set are taken to a
higher dimension via the reservoir. The new high-dimensional features are now
linearly separable via a hyperplane.
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correlates with the viscous behaviour of all Newtonian fluids, is the ratio of
inertial forces (resistant to change or motion) to viscous forces (dominated
by fluid viscosity) acting on a particle immersed in the fluid55.

Colloids, having characteristic lengths on the order of micrometres,
exhibit Reynolds numbers in water that are significantly lower than 1
(Re≪ 1). This indicates a regime of creeping motion where inertial forces
are negligible compared to viscous forces55. For colloids solvated in water,
the fluid behaves as viscous asmolasses does to humans. A key consequence

of such lowReynolds numbers is articulated by the scallop theorem56, which
states that nomomentum can be accumulatedwhile swimming through the
fluid. Therefore, the dissipation of the resulting structures is not instanta-
neous, emphasising the memory effect of the colloidal arrangements (see
Fig. S2 in Supplementary Information for an illustration of the presence of
memory in the colloidal suspension).

The necessity of highly nonlinear dimensionalmapping in reservoirs is
largely fulfilled by the motion of particles within the fluid. Colloids behave

Fig. 2 | PEDOT:PSS structure. a Chemical struc-
ture of PEDOT:PSS. b Cationic oligomeric PEDOT
attached to a long anionic PSS chain. c Dispersed
colloidal gel nanoparticle in water.
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Fig. 3 | Electrical properties of the PEDOT:PSS colloid. a I−V curve from −5 V to
5 V for the PEDOT:PSS colloid. bMeasured output voltage induced by an input sine
wave for both the PEDOT:PSS colloid and deionised (DI) water. c Fourier transform
of the recorded measured output voltage of the PEDOT:PSS colloid. The formula

displayed in the plot shows the calculated total harmonic distortion (THD) of the
signal, and the inset displays both the fundamental component and the second, third,
and fourth harmonics.
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similarly to large atomsdue to their Brownianmotion57, which is inherent to
small particles and their susceptibility to thermal noise. Consequently,
colloidal motion is inherently random and complex58.

Furthermore, introducing stimuli such as electric fields, direct
electric currents, and induced magnetic fields within the colloidal
suspension, creates a number of side effects that perturb the dynamics of
particlemovements, including the Ludwig-Sorét effect,magnetic advection,
electro-osmosis, and dielectrophoretic effects, making the system a
very complex and chaotic substrate59. Figure 3b and S1 (in Supplementary
Information) show that the nonlinear behaviour is mediated by the
ion drift in suspension, which responds to the time-varying local
electric field to change the ionic states of the reservoir. The Fourier
transform of the measured voltage in the colloidal suspension, shown
in Fig. 3c, demonstrates the high degree of nonlinearity of the suspen-
sion, with the presence of a high harmonic distortion (as illustrated
by the inset)60.

Theoretical background of reservoir computing
Let uðtÞ 2 RM be the M continuous-in-time input signals
and uj ¼ ½u1;j; u2;j; . . . ; uM;j�⊺, j = 0, 1, …, T − 1, where T is the number
of points in the training dataset, be the discrete time version of u(t) at
a time tj.

The input signals are projected into the high-dimensional reservoir
composed of N interconnected nodes by a matrix Win 2 RN ×M . The
reservoir is represented by an adjacency matrix W 2 RN ×N and encodes
the strength of each pair of nodes. In our case of a physical reservoir, both
Win and W are determined by our experimental system and colloidal
suspension.

The difference equation representing the reservoir is then

xjþ1 ¼ ð1� αÞxj þ αf ðWxj þWinuj þ bÞ; ð2Þ

where α is the leaking rate, xj 2 RN is the state vector at a time tj, f is the
activation function, and b is the bias vector. For the classification problem,
here, we extended the state vector in time by defining

a ¼ ½x⊺0 ; x⊺1 ; . . . ; x⊺T�1�⊺: ð3Þ

where a is the extended state vector in time.
The output layer of the reservoir is a linear transformation of the

accumulation vector a, Wout 2 RC ×N ×T

o ¼ Wouta; ð4Þ

where C is the number of classes.
Finally, the normalised probabilities vector ŷ is given by

ŷ ¼ softmaxðoÞ; ð5Þ

where

ŷk ¼ softmaxðokÞ ¼
expðokÞP
l expðolÞ

ð6Þ

maps a vector of real numbers into a vector of probabilities. Each
probability ŷk 2 ½0; 1� and the sum of the probabilities is 1. The
output layer is trained using supervised training with a cross-entropy loss
function

L ¼ �
XC

k¼1

yk log ŷk; ð7Þ

where yk∈ {0, 1} indicates whether the class label kwas correctly (yk = 1) or
incorrectly (yk = 0) classified.

Here, to avoid overfitting,we also addedaL1-regularisation term in the
loss function; thus, the final loss function can be written as

L ¼ �
XC

k¼1

yk log ŷk þ λ
XC

1

jwk;out j; ð8Þ

where λ is the regularisation factor and wk,out is the k-th column ofWout.
The final architecture used in this work is shown in Fig. 4.

Speaker-dependent scenario
In the speaker-dependent scenario, each speaker was evaluated separately,
and the accuracy of the classifier was evaluated individually. In Table 1, the
accuracy obtained for the reservoir trained with each individual speaker is
shown. Our reservoir framework has proven to be able to correctly classify
the spoken digits with large accuracy, even though the dataset is small. The
minimum value of accuracy was of 75.15%, themaximumwas 85.25%, and
the average value between all speakers was of 82.15%.

Tounderstandhow the classifierwas performing in the classificationof
each digit, in Fig. 5, the average confusion matrix of all experiments is
shown. The matrix is almost perfectly diagonal, which indicates that the
reservoir was able to successfully classify all digits in a similar manner.

The high separability capabilities of our physical reservoir, which
enabled a classification accuracy of over 80%, are illustrated in Fig. 6, where
the utterances, their corresponding spike representations, and themeasured
electrical signals from the reservoir are shown for the spoken digits “0”, ”5”,
and “9” from the same speaker. Inparticular, themeasured responses shown
inFig. 6g–i exhibit highly nonlinear behaviour and strikingly different visual
characteristics across the different spoken digits.

Speaker-independent scenario. In this speaker-independent scenario,
the reservoir was trained on utterances from one speaker and tested on
the data from the remaining speakers. As no data fromother speakerswas
included in the training, this experiment tested the fundamental ability of
our physical reservoir computing architecture to adapt to and learn from

Win

Wout
u(t)

Input

Encoding
Physical Reservoir

A g g r e g at i o n 
Layer

Softmax Layer

Readouto

a

Fig. 4 | Architecture of the physical reservoir based classifier. The diagram shows
how the data is first encoded, processed at the physical reservoir, the output of the
reservoir is aggregated, and then passed through a trainable readout layer to generate
a set of probabilities for classification.

Table 1 | Classification performance for the reservoir based
classifier in a speaker-dependent scenario

Speaker Accuracy (%)

1 84.04

2 85.25

3 84.65

4 80

5 75.15

6 83.84

Avg. 82.15

Std. 3.89
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a very small sample of data. The aim was to determine whether it was
possible for the reservoir to infer the correct digit labels from such limited
training examples for a single speaker.

The results for each individual speaker in this single-speaker training
setting are shown in Table 2, which shows the accuracy obtained for the
reservoir trained on each speaker’s data. As expected, the classification
accuracy was quite poor across all speakers, with an average of only 7.91%
and a maximum of only 9.49%. This poor performance is a direct result of
the extremely small amount of training data provided to the reservoir in this

state.With so few examples, not enough variability in the spoken digits was
presented for the reservoir to effectively learn separable representations and
generalise digit classification to novel examples from that speaker.

Furthermore, the presence of data from only a single speaker during
training may have led to an overfitting of the classifier dynamics in the
reservoir system. Rather than learning general representations of digit
classes that are invariant to speaker features, it is likely that the reservoir
preferentially encoded speaker-specific features and features that were
specific to that individual’s vocal patterns, and this could explain why
performance was so low for all speakers as the classifier failed to extract
robust, general features of each digit class.

The average confusion matrix across all single speaker experiments,
shown in Fig. 7, illustrates the poor classification performance. There is a
highdegree of false negatives for eachdigit label, indicating that the reservoir
was unable to reliably separate any of the digit classes under this extremely
data-limited single-speaker training regime.

These results are not surprising given the inherent complexity of the
spoken digit classification task and the fact that the reservoir was only
exposed to a handful of training examples from a single speaker. In the next
scenarios, wewill show that it is possible for the classifier to improve rapidly.

In this speaker-independent scenario, the reservoir was trained using
two speakers’ utterances and tested on the remaining data from the dataset.
Since the order in which the data is being applied to the reservoir is con-
sidered indifferent, a total of 15 combinations of the two speakers were
considered for training and testing.

The results for each of these 15 combinations are shown in Table 3,
which presents the accuracy obtained for the reservoir trained with each
individual combination of the two speakers. The performance of the clas-
sifier was greatly improved when trained on data from two speakers, if
compared with the training using just one speaker’s data. Specifically, there
was a fourfold increase in the average accuracy across the 15 combinations
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Fig. 6 | Example of utterances, spike representation, andmeasured signals for the reservoir. a–cUtterances for “0'', “5'', “9'', respectively. d–f Spike representations for “0'',
“5'', and “9'', respectively. g–iMeasured signals for “0'', “5'', and “9'', respectively.

Fig. 5 | Average confusion matrix for the speaker-dependent scenario. Average
confusion matrix for the speaker-dependent scenario, where training and testing
were performed for each speaker. Averaged counts and normalised percentages are
displayed for each digit.
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compared to the single speaker case. This result demonstrates that our
physical reservoir architecturebenefited substantially fromthe largerdataset
created by combining data frommultiple speakers. Remarkably, it was able
to generalise well for digit classification even with this relatively small
increase in the number of training samples and variety of speakers.

This improved generalisation ability is further illustrated in Fig. 8
where the average confusion matrix across all 15 experimental combina-
tions is displayed. Compared to the confusion matrix for the single speaker
case shown previously in Fig. 5, it can be clearly seen that the degree of false
negative errors for each digit class is greatly reduced when training on the
combined two-speaker data. However, some digits remained more chal-
lenging to classify correctly than others. Notably, the digit 0was the one that
displayed the largest number of misclassification errors across the 15 two-
speaker combinations on average.

Full dataset
In this scenario, where the reservoir was trained on data from all speakers in
the dataset, the classification accuracy reached 56.83%. Although not out-
standing, this level of performance suggests that our physical reservoir
computing approach has a significant ability to learn generalised repre-
sentations and effectively classify spoken digit signals from multiple
speakers with some degree of accuracy, even when trained on limited data.

The difficulty of achieving high recognition accuracy from small
sample sizes is a significant challenge not only for traditional gradient-based
machine learning techniques but for any pattern recognition system tasked
with learning from sparse data. However, the reservoir demonstrated its

potential value by achieving 56.83% accuracy on this multi-speaker task
after training on the dataset in a single, efficient computation phase.

This competitive performance, achieved by effectively just training the
output layer, exemplifies two key practical advantages of reservoir com-
putation over conventional gradient-descent methods: minimal training
time requirements and the ability to rapidly encode general signal features
from limited data into high-dimensional transient dynamics. These attri-
butesmake reservoir approaches particularly suitable for applicationswhere
training data is costly or time-consuming to acquire, or where rapid model
adaptation is essential.

Analysis of the confusionmatrix for themulti-speaker scenario, shown
in Fig. 9, shows that although overall accuracywasmodest, the classifier was
able to correctly identify examples from all digit classes to some extentwhen
trained on the combined speaker data.

Conclusions
In this paper, we present a colloidal suspension of PEDOT:PSS as a physical
reservoir for spoken-digit recognition tasks using reservoir computing.

In a speaker-dependent scenario, we achieved an average accuracy of
82.15% when tested on individual speakers, demonstrating the reservoir’s
ability to effectively separate and classify different spoken digits. For the
speaker-independent scenario, with limited training data from one or two
speakers, the system’s performance improved significantly when trained on
data from multiple speakers, achieving up to 46.45% average accuracy.
When trained on the full dataset with all speakers, we achieved a reasonable
accuracy of 56.83% for the multi-speaker spoken digit recognition task,
despite the use of limited data. Our study highlights the potential of using
unconventional computational substrates such as colloidal suspensions,
which can exploit their inherent nonlinear dynamics and high-dimensional
encoding capabilities to perform machine learning tasks without direct
training of the physical system. This work contributes to the emerging field
of colloid-based computing systems. The use of PEDOT:PSS in a colloidal
form combines the advantages of liquid cybernetic systems with the unique
properties of this conductive polymer, paving the way for highly resilient
and versatile computing solutions.

Methods
PEDOT:PSS suspension synthesis
Analytical grade PEDOT:PSS suspension (3.0–4.0% in H2O, high con-
ductivity grade) was obtained from Merck. 200 μl of PEDOT:PSS was
subjected to ultrasonication for 0.5 h. The aqueous PEDOT:PSS was then
placed in a plastic Petri dish for further experiments.

Fig. 7 | Average confusionmatrix for speaker-independent scenario trained with
a single speake. Average confusion matrix for the speaker-independent scenario,
where a single speaker was used for training and testing on the remaining data.
Averaged counts and normalised percentages are displayed for each digit.

Fig. 8 | Average confusionmatrix for speaker-independent scenario trained with
two speaker. Average confusion matrix for the speaker-independent scenario,
where the reservoir was trained on two speakers and tested on the remaining ones.
Averaged counts and normalised percentages are shown for each digit.

Table 2 | Classification performance of the reservoir-based
classifier in a speaker-independent scenario, trained on one
speaker and tested on the remaining data

Speaker used in training Accuracy (%)

1 5.64

2 8.76

3 7.70

4 8.26

5 7.65

6 9.49

Avg. 7.91

Std. 1.31
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PEDOT:PSS characterisation
Current/voltage characterisation was conducted with the help of a Keithley
2450 sourcemeter. A PC-based oscilloscope (PicoTechnology, PicoScope
5442D)wasused to generate andmeasure the sinewave signals in the colloid
and deionised water. All electrical measurements were carried out using Pt/
Ir probes at room temperature in air.

Experimental setup and datasets for reservoir computing
The Free Spoken Digit Dataset (FSDD)61 was selected to evaluate the pro-
posed framework. It is a free, open-source speech dataset that includes
recordings of spoken digits from0 to 9, each approximately 0.5 s long, in 16-
bit 8 kHz mono .WAV files. The dataset consists of 3000 utterances in
English from six speakers (50 repetitions of each digit per speaker) with
different accents. To explore the neuromorphic response of the reservoir,
the FSDD dataset was encoded into a spike sequence that represents the
human auditory-nerve transformation of acoustic signals, following the

method described by Zilany et al.62,63. This encoding was performed using
the Auditory Modelling Toolbox (AMT) version 1.564 in Octave 8.4.0. This
approach allows us to assess the capacity of the reservoir to classify auditory
information in a format similar to that processed by the human auditory
system, following the premise of neuromorphic computing65,66, while also
providing a simplified signal representation that may enhance the reser-
voir’s classification accuracy.

Training and testing were evaluated using three different schemes.
First, we evaluated a speaker-dependent scenario, where the classifier
was trained and tested using only the utterances of one individual
speaker. A 66%/33% split in stratified fashion was used for training and
testing, and the split was made in a stratified fashion tomaintain balance
between the classes. Subsequently, we proceeded with a k-fold cross-
validation on speaker-independent scenarios, where the classifier was
trained and tested using one/two speaker(s) and tested on the remaining.
The final accuracy was the average value between all possible combi-
nations. Finally, a 66%/33% stratified split for training and testing was
used for the whole dataset. All features were normalised before training,
and the training time for the readout layer in all experiments was less
than 650 ms.

Besides encoding, the results for this paper were evaluated using
Python 3.11.5 on an ARM-based CPU running macOS. The output layer
was trained using TensorFlow 2.12.067.

The spike signals were applied to the colloidal suspension using an
arbitrary function generator (RIGOL, DG4162), controlled via Ethernet
using the LXI protocol implemented with the python-vxi11 module on a
laptop, and a 10 μm Pt/Ir probe. The signals were normalised so that the
highest peak corresponded to 5 V. Three output Pt/Ir probes, spaced 5 mm
apart, were positioned 5mm from the input probe and connected to a PC-
based oscilloscope (Pico Technology, PicoScope 5442D). The measured
voltage was sent to the same laptop for data processing. The experimental
setup for the physical reservoir is shown in Fig. 10.

Data availability
Datasets generated during the current study are available from 10.5281/
zenodo.13786593. The Free Spoken Digit Dataset (FSDD) is available at
https://github.com/Jakobovski/free-spoken-digit-dataset.
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