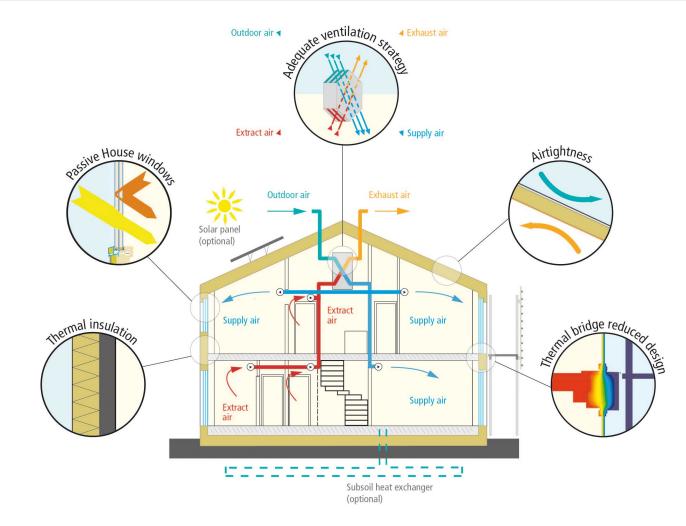


INTERNATIONAL SUSTAINABLE ECOLOGICAL ENGINEERING DESIGN FOR SOCIETY (SEEDS) CONFERENCE 2022

Hosted k	Эγ
----------	----

and delivered in partnership with

UNIVERSITY OF LINCOLN


IS PASSIVHAUS THE FUTURE OF THE UK SOCIAL HOUSING SCHEME?

- Design, Procurement and Post Occupancy Evaluation

Dr. Jill Zhao | BArch MSc PhD Senior Lecturer at the School of Architecture and the Built Environment University of Lincoln

WHAT IS PASSIVHAUS?

- German building performance standard
- Uses a passive design strategy to achieve built environment comfort with minimum energy consumption.
- Requires a robust, well-insulated and airtight building envelope, and a highly efficient mechanical ventilation system

WHAT IS PASSIVHAUS?

• The principles of the Passivhaus ensures the energy consumption target is met.

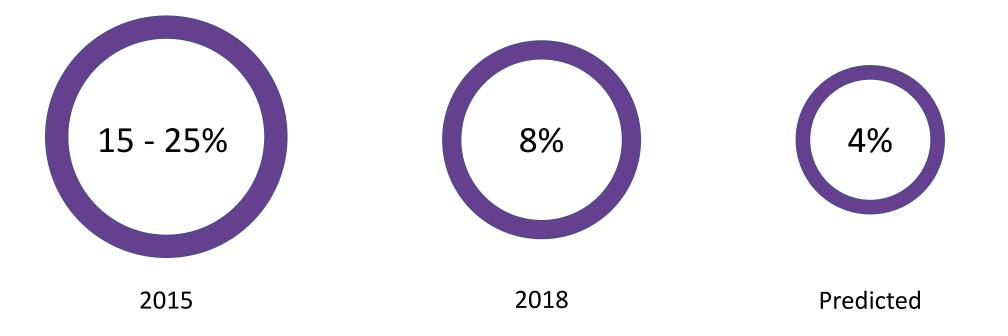
Primary energy demand $\leq 120 \text{ kWh/m}^2 \text{. yr}$ Space heating demand $\leq 15 \text{ kWh/m}^2 \text{. yr}$ Space cooling demand $\leq 15 \text{ kWh/m}^2 \text{. yr}$ Or Specific heating/ cooling load $\leq 10 \text{ W/m}^2$ Airtightness $\leq 0.6 \text{ air changes/ hr @ n50}$ OverheatingTemperatures exceeding 25°C cannot occur in a building for more than 10% of the occupied year

PASSIVHAUS DEVELOPMENT

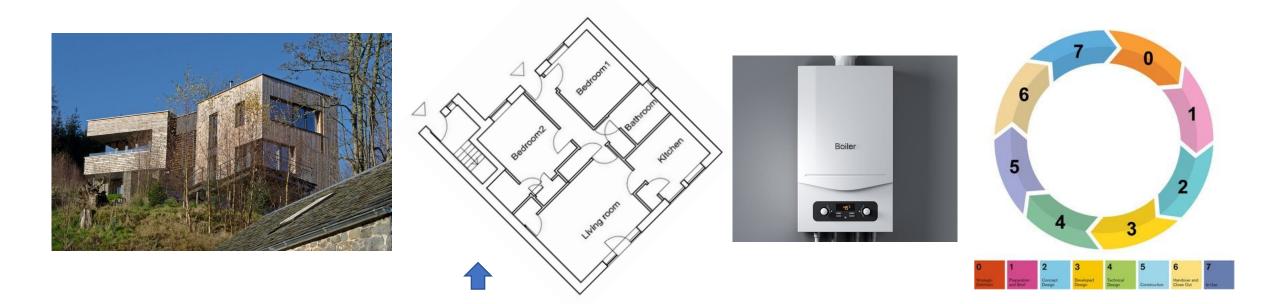
- To date, there are over 33,000 units certified projects worldwide.
- There are 73 social housing
 Passivhaus projects (including 69 new build and 4 refurbished) documented in the UK.

HOUSIN

UK projects counter (estimate as of June 2022)

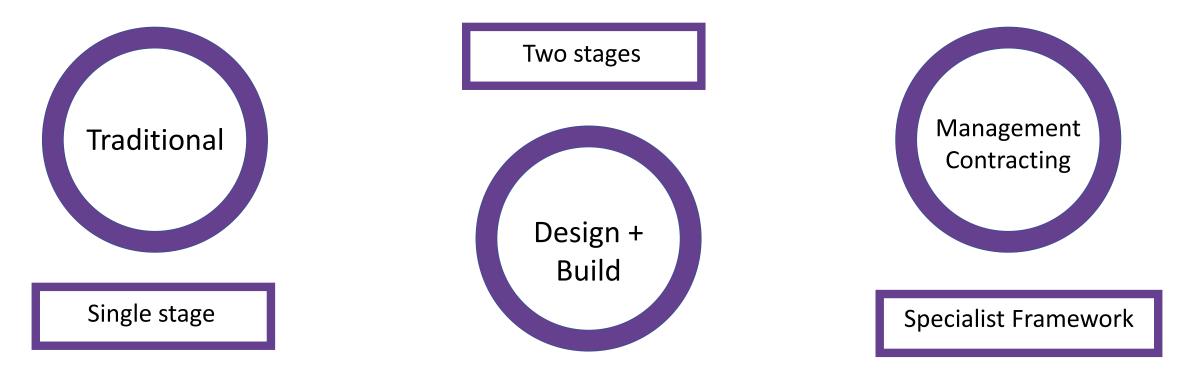


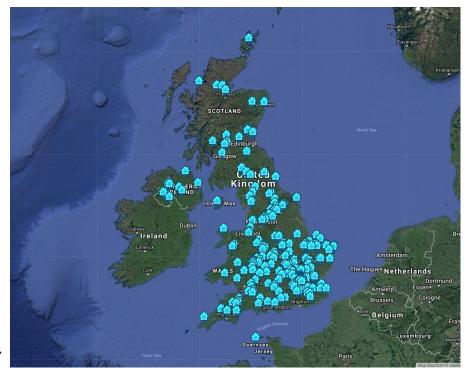
Questions


- What are the barriers and challenges to implementing Passivhaus as social housing model?
- How to overcome those barriers and challenges?
- Is Passivhaus the future of the UK social housing scheme?

• Capital investment - Passivhaus standard is still widely viewed as costly and precarious.

(Barnes, 2015; Passivhaus Trust, 2019; Forde. 2020)

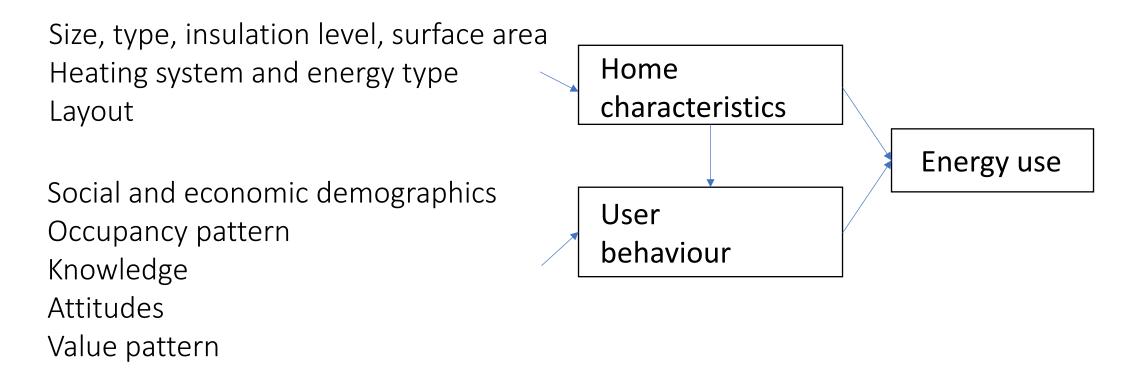

• Capital investment - Passivhaus standard is still widely viewed as costly and precarious.


(Barnes, 2015; Passivhaus Trust, 2019; Forde. 2020)

• Capital investment - Passivhaus standard is still widely viewed as costly and precarious.

o Uncertainty, unfamiliarity and risk involved during the procurement process.

- Capital investment Passivhaus standard is still widely viewed as costly and precarious.
- o Uncertainty, unfamiliarity and risk involved during the procurement process.
- o Skills and expertise shortage in the supply chain



Map of UK Passivhaus Projects, Passivhaus Trust

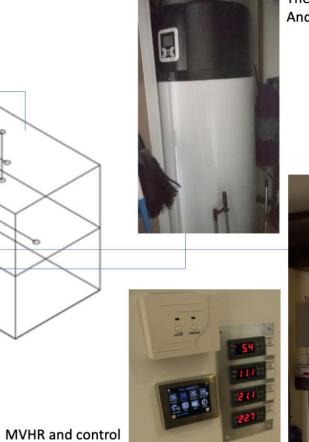
- Capital investment Passivhaus standard is still widely viewed as costly and precarious.
- o Uncertainty, unfamiliarity and risk involved during the procurement process.
- o Skills and expertise shortage in the supply chain
- o User experience, behaviour and energy performance
 - \circ Overheating
 - \circ Air quality
 - Technology challenge
 - Performance gap

(Fletcher et al., 2017; Moreno-Rangel et al., 2021; Gupta, 2019; Zhao and Carter, 2016)

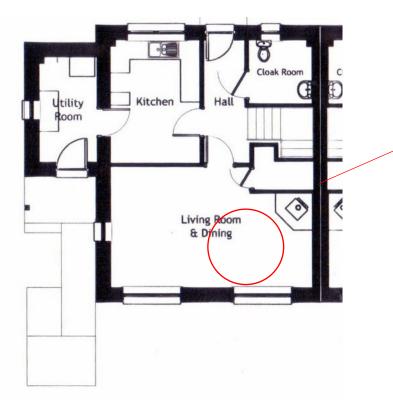
USER BEHAVIOUR AND PERFORMANCE

'The more the building is insulated, the more the lifestyle proportionally influences the heating loads' (de Meester et al., 2013).

HYBRID SYSTEM WITH MVHR


Solar thermal hot water system and control

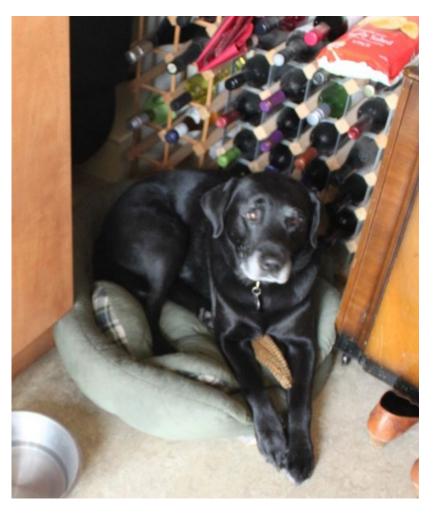
Thermal water tank And control





	DO project				SL project	
Household code	DO1	DO2	DO3	DO4	SL1	SL2
Bioclimatic region	Scotland East					
Construction type	Timber					
Floor area (sq.m)	103	103	88	88	74	80
Household size	3	5	2	2	2	2
Occupants age group	18-60	18-60	18-60	60+	60+	18-60
Occupation date	2011 -2013				07/2015	
Interview date	05/2014				10/2015	

SUMMARY


Project DO	Project SL
High comfort level	Low comfort level
 Learning curve: occupants were 	 Occupants were restricted in behavioural
encouraged to learn and adapt, trial and error	adaptation by the housing association
 Control panels with easy accessibility Good support and communication in community 	 Control panels with low accessibility Poor communication within the community and with housing association
 Active change of lifestyle – co-evolvement 	 Limited adaptation

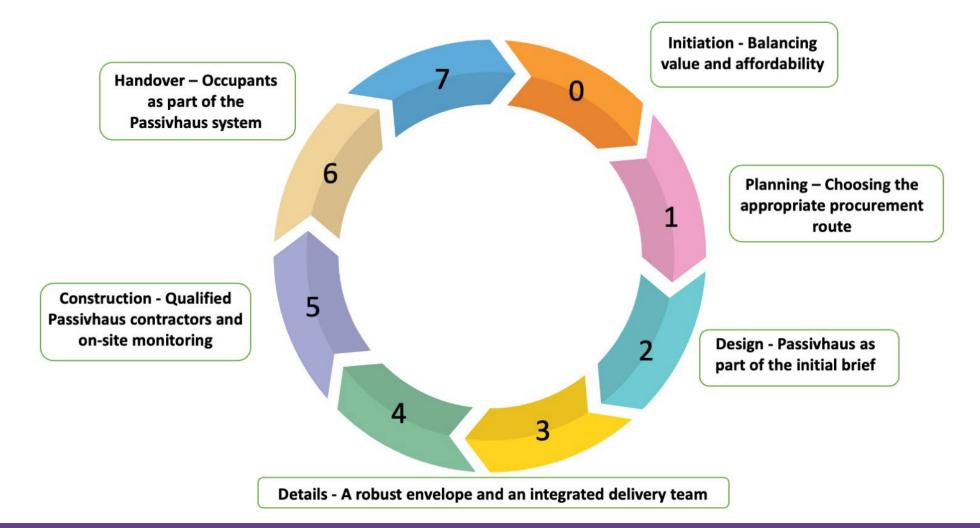
Layout change

...That's why we keep our dog during the winter, he heats up the house... (occupant)

SEEDS 2022 Presentation | Dr. Jill Zhao | University of Lincoln

Stove indicator

- Capital investment Passivhaus standard is still widely viewed as costly and precarious.
- o Uncertainty, unfamiliarity and risk involved during the procurement process.
- o Skills and expertise shortage in the supply chain
- o User experience, behaviour and energy performance
 - \circ Overheating
 - \circ Air quality
 - Technology challenge
 - Performance gap


(Fletcher et al., 2017; Moreno-Rangel et al., 2021; Gupta, 2019; Zhao and Carter, 2016)

OVERCOMING THE BARRIERS

- RIBA Stage 0: Initiation Balancing value and affordability
- RIBA Stage 0-1: Planning Choosing the appropriate procurement route
- RIBA Stage 1-2: Design Passivhaus as part of the initial brief
- RIBA Stage 3-4: Details A robust envelope and an integrated delivery team
- RIBA Stage 5: Construction Qualified Passivhaus contractors and on-site monitoring
- RIBA Stage 6-7: Handover Occupants as part of the Passivhaus system

(Zhao, 2022)

FURTHER RESEARCH

REFERENCES

- Forde, J., Hopfe, C. J., McLeod, R. S., Evins, R., (2020), Temporal optimization for affordable and resilient *Passivhaus* dwellings in the social housing sector, *Applied Energy*, Volume 261, 2020, 114383, ISSN 0306- 2619, https://doi.org/10.1016/j.apenergy.2019.114383.
- Barnes J. (2015), Passivhaus capital cost research project, Passivhaus Trust, AECOM, retrieved from: https://www.Passivhaustrust.org.uk/UserFiles/File/Technical%20Papers/150 128%20PH%20Capital%20Costs.pdf [accessed 06/06/2022]
- Passivhaus Trust (2019) Passivhaus Construction Costs, Passivhaus Trust, retrieved from: https://www.Passivhaustrust.org.uk/UserFiles/File/research%20papers/Costs/ 2019.10_Passivhaus%20Construction%20Costs.pdf, [accessed 06/06/2022]
- Map of UK Passivhaus Projects, Passivhaus Trust, <u>https://www.passivhaustrust.org.uk/news/detail/?nld=787</u>
- ZHAO J., (2022), Passivhaus standard as social housing model in the UK: barriers and opportunities, *implementing* the UN sustainable development goals – regional perspectives (series) SDGs in the European region, edited by Walter leal Filho, Springer, in print

REFERENCES

- Fletcher, M. J., Johnston, D. K., Glew, D. W., Parker, J. M., (2017) An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK, Building and Environment, 121, pp. 106–118. doi: 10.1016/j.buildenv.2017.05.024.
- Moreno-Rangel, A, Musau, F, Sharpe, T & McGill, G (2021), Indoor Air Quality Assessment of Latin America's First Passivhaus Home, Atmosphere, vol. 12, no. 11, p. 1477, https://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000725998500001&site=eds-live&scope=site.
- Gupta, R. (2019) Meta-study of the energy performance gap in UK low energy housing, Meta-study of the energy performance gap in UK low energy housing. Available at: https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai .on1128271529&site=eds-live&scope=site (Accessed: 12 May 2022).
- Zhao J., and Carter K., (2016), Barriers and opportunities in the design and delivery of social housing *Passivhaus* for adaptive comfort' Windsor Conference 2016, Available at: https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai .on1080366428&site=edslive&scope=site.

UNIVERSITY OF LINCOLN

THANK YOU!

jingzhao@Lincoln.ac.uk

