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In the article, we aim to understand the responses of living
organisms, exemplified by mycelium, to external stimuli
through the lens of a Turing machine with an oracle (oTM).
To facilitate our exploration, we show that a variant of an
oTM is a cellular automaton with an oracle, which aptly
captures the intricate behaviours observed in organisms
such as fungi, shedding light on their dynamic interactions
with their environment. This interaction reveals forms of
reflection that can be interpreted as a minimum volume of
consciousness. Thus, in our study, we interpret consciousness
as a mathematical phenomenon when an arithmetic function
is arbitrarily modified. We call these modifications the
hybridization of behaviour. oTMs are the mathematical
language of this hybridization.

1. Introduction
We want to distinguish between the following two situations:
(i) one is based on the existence of a biological substance that
can be mechanically excited by external stimuli (this means this
substance behaves like a deterministic automaton), and (ii) the
other is the existence of a substance that reacts to external stimuli
without determinism. This last case contains among others also
the eventual conscious reactions of the substance to the stimuli.
This does not mean that any conscious system cannot react
algorithmically or mechanically, but rather that as long as its
reactions are exclusively deterministic, we cannot distinguish
them from those of (i). We want to understand the distinguished
features of conscious behaviour along with the possibility to
test the presence of a minimal level of consciousness involved
in the reactions, with the opposition to unconscious reactions.
The non-deterministic reactions as above can be also approached
by the propagation of deformation waves through the biological
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substance. It is conceivable that the dosing of the substance with certain chemical agents (anaesthetics)
can dampen the reactions, which would be an indirect fact of the presence of consciousness [1]. Even
though such reactions are strong indications for consciousness being involved still they are neither
sufficient for it nor explain the way of its functioning. That is why we want to understand the situation
of the ‘minimal amount of consciousness’ contained in the bodies of such entities, based on purely
computational means—through the test of non-determinism and the ability to hybridize one’s own
behaviour.

To achieve our goals, we are developing a mathematical model that formally explains the situa-
tion of the presence of consciousness as a Turing machine with oracles (oTM) [2]. It is intentionally
universal and extends Turing machines (TMs) [3] over higher uncomputable classes and can be applied
in most situations where consciousness is present. We interpret consciousness as a general mathemat-
ical feature of various structures and does not necessarily imply any biological basis, so it may be
applicable to artifical intelligence (AI) systems in the future. This separation from biology allows us to
consider the ‘minimum volume of consciousness’, without referring to emotions or feelings, but also
not excluding them.

One conclusion from the construction proposed is the possible algorithmic behaviour of entities or
groups of entities, which do not automatically mean conscious behaviour. To see whether a reacting
entity refers to its consciousness can be seen at the level of TMs or cellular automata. They both
can interpret any algorithm but adding consciousness results in certain deformations of them. It
follows from the presented theory that the precise deformation relies on taking oTMs or oracle cellular
automata. Meanwhile, the formal theory of sets (ZFC) can give models for these machines with
oracles [4]. We can show that such a formal construction develops many features usually attributed to
conscious behaviour [5]. The core of the approach relies on the ability to interpret truly random stimuli
internally as forcing extensions of models of ZFC (where oTMs or oracle cellular automata formulated
in). The initial randomness is assimilated by the oracle which causes the growth (or shrinkage) of
the entity along with its skills to understand and operate in the physical space [4,5]. This is precisely
reflected by forcing the extension M[r] of a model M or taking the ground model N. This means
that such a conscious entity operates uncomputably, extending the algorithmic capability of automata.
Randomness is reversing into the extension of abilities and understanding.

Following [4,5], one can develop a direct analogy with conscious behaviour of complex organisms
versus unconscious physical systems, S. Imagine two completely relative random physical stimulir1, r2 reacting on S. Their relative randomness, in addition to their individual random nature, also
suggests that the stimuli would be completely independent as probabilistic events and would lead to
independent outcomes (responses) of S. Consequently, when one of such stimuli enforces a response
from S, it is still out of reach of S to draw any conclusion about the occurrence of other independent
stimuli. The eventual response from the point of view of ‘what S can know without the inherent
conscious viewing of the entire situation’ is still random and uncorrelated. This is because no inherent
model of the external world is built in the case of unconscious reaction, or if a model is built, it is
typically too weak to capture truly random external phenomena. However, when both random stimuli
act on S in the presence of consciousness, the responses which arise can become logically dependent.
Formally, this is an extended model of ZFC set theory, M[r1] (or M[r2]), which currently houses r2

(r1). From the point of view of oTM, such random stimuli become parts of the oracle, so thus the
extended oracle acts as the source of the algorithmic process connecting r1 and r2 described now by
the extended oTM. However, the Turing uncomputable class of oTM has to be eventually lifted as it is
determined by the class of oracles, e.g. [6,7]. Thus, the presence (or absence) of TMs with oracles which
can be uncomputably mortified in the process of responding to stimuli is a decisive for the presence of
conscious reactions. Conscious organisms, when exposed to such random stimuli, interpret them in the
internal model of the external world, where both stimuli are now represented as parts of the internal
model. That is why we are focussed on the interpretability of formal oTM, along with the resulting
higher classes of Turing uncomputabilities, when analysing conscious behaviour of living organisms.

There are many approaches to defining consciousness: philosophical, psychological, physiological,
neurological, etc. In our work, hence, we rely on a mathematical approach that can be considered
minimalistic, namely an approach from the point of view of robotics. A system is considered to
have a minimal form of consciousness if it is capable of solving problems that do not have an algorith-
mic solution (from the point of view of computability theory, this can be reformulated as follows:
the system solves unsolvable functions). For example, constructing Einstein’s theory of relativity is
an algorithmically unsolvable problem. However, there are also plenty of everyday algorithmically
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unsolvable problems. For example, you find yourself in your friend’s kitchen for the first time and
want to make coffee. Your task is to find the necessary ingredients for coffee in this kitchen and
make it. This is a recognition problem. It can be somehow solved using deep learning, but it does not
have an optimal algorithmic solution. Consciousness then is the ability to solve many problems for
which there is no optimal algorithmic solution. Thus, most approaches to the study of consciousness
follow a natural top-down way of thinking, in which human consciousness is defined by specifying
its attributes, such as self-awareness and others. Here, we rather present a bottom-up approach to
consciousness in general and focus on the ‘minimal’ content of consciousness, which is the case in
very simple (compared with humans) organisms. Our goal is to formally understand this phenomenon
so that this approach can (in principle) be applied to non-biological systems as well. In our previous
work, we observed that oTMs defined in ZFC models satisfy general requirements for conscious
behaviour, also specific to more advanced entities, such as learning, modelling of the external world
or forms of self-awareness. Hence, an entity whose responses follow the action of oTMs satisfies the
criterion of a ‘minimal’ conscious system in this extended sense.

To apply these findings to organisms like fungi would rely on:

(i) the functioning of some fungi can be interpreted by cellular automata and therefore by TMs
(please see [8] and [9]). The question is whether they interpret the oTM or the oracle cellular
automata and how to test it and under what conditions;

(ii) we also need a proper definition of oracle cellular automata. It should be based on the implemen-
tation of true randomness (non-algorithmic) in cellular automata;

(iii) the role of models of ZFC will be included since it is connected with non-algorithmic random-
ness (random forcing) [5]; and

(iv) one should consider whether the modified cellular automata are (or are not) involved in the
fungi’s activity when they react to stimuli and perform some algorithmic behaviour executed on
uncomputable random data. This would depend on specific experimental data.

In §2, we provide some basic definitions of TMs and cellular automata to define a cellular automaton
with an oracle. In §3, we define fungal cellular automata with oracles. In §4, we consider arithmetic
functions and their codes in these oracle cellular automata of fungi. In §5, we analyse how to find the
‘minimum volume of consciousness’ in fungi.

2. Turing machines with oracles and cellular automata with oracles
Definition 1. A TM can be defined as a mathematical construct represented by a 5-tuple M = (Q, Σ, Γ, δ, F), where:

— Q = {q0, q, q′, … } is a finite set of states, where q0 is the start state; assume that qyes is to denote the
accepting state from Q, and qno is to denote the rejecting state from Q;

— Σ is the input alphabet, for example Σ = {0, 1}; then we obtain 2-adic strings s ∈ {0, 1}*;
— Γ denotes the tape alphabet, where Σ is a subset of Γ, indicating that the symbols in the input alphabet are

also valid tape symbols. Additionally, the tape alphabet includes a special symbol B to represent a blank;
— δ:Q × Γ Q × Γ × {L,R} is a partial function defining the transition rules of the TM. For a given state q

and tape symbol s, δ(q, s) = (q′, t, {L,R}) either remains undefined or specifies a triple consisting of the new
state q′, the symbol to write on the tape t, and the direction for the head to move, which can be either left
(L) or right (R);

— F ⊆ Q consists of the accepting states.

Let Σ = {0,1} and x ∈ {0, 1}* be a finite string regarded as an input. A computation on x begins with
the input written on the tape. It is assumed that before and after this string there are contained only
blank cells B. Following the definition provided, the TM initiates computation with its read/write head
positioned at the leftmost non-blank cell, operating in the start state q0. The computation progresses by
adhering to the transition rules denoted by δ, advancing step by step until (if at all) the head reaches
an accepting state (q′ ∈ F). Upon reaching an accepting state, should it occur, the sequence of symbolsy ∈ Σ* inscribed on the tape is deemed the output of the computation, constituting a 2-adic number
(natural number in a binary expansion).
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Let each natural number x, i.e. the member of N, be presented as a finite 2-adic string x ∈ {0, 1}*,

that is, x = x0x1…xn = ∑i = 0

n xi ⋅ 2i, where xi ∈ {0,1}. For example, 7 = 111 = 1 + 2 + 22. Assume that ϕm(x)

denotes the computation of the TM, Mm encoded by m such that the input tape is presented as a
2-adic string x ∈ {0, 1}*. We write ϕm(x) = t if the computation of Mm on x enters an answer t ∈ {0, 1}*
of the accepting states after applying finitely many transition rules. If there exists this t for ϕm(x),
then we write ϕm(x) ↓. Meanwhile, if ϕm(x) never enters an accepting state, then we write ϕm(x) ↑. Letdom(ϕm) = {x: ϕm(x) ↓ }. A function f:U N, where U ⊆ N, is partially computable if there is a TM
encoded by m such that f(s) = t⇔ ϕm(x) = t, where the TM takes a string s ∈ {0, 1}* as input, and halts
with a string of t ∈ {0, 1}* on the tape, and ϕm(x) ↑⇔ r ∉ dom(f). A function f:N N is computable if f
is partially computable and total.

Let us introduce the characteristic function χA for a set A ⊆ N as follows:

χA(x) ::=
1, if x ∈ A;
0, if x ∉ A.

The set A is computable if its characteristic function is computable and computably enumerable if it
serves as the domain of a partial computable function. For instance, consider K = {x : ϕx(x) ↓ }. ThenK is computably enumerable. However, K itself is not computable. To illustrate, we employ a diagonal-
ization argument. Assuming K possesses a computable characteristic function, the function

f(x) ::=
ϕx(x) + 1, if x ∈ K;
0, if x ∉ K,

must be computable. Nonetheless, for all x, it fundamentally differs from ϕx.
Definition 2. An oracle machine is a TM M that has an access to an extra tape called the oracle tape or oracle

that can solve the decision problem for an input x on the basis of oracle O ⊆ {0, 1}*. This automaton is denoted byMO. We write the characteristic function of the set O on the tape: …BBBχO(0)χO(1)χO(2)…. The first functionχO(0) is to say whether 0 belongs to O, χO(1) is to say whether 1 belongs to O, etc. Thus, χO(0)χO(1)χO(2)… is an
infinite 2-adic integer. The machine writes a query string x onto the query tape. Then the machine can calculate
this string standardly, but also it can enter the query state qquery to decide whether x is contained in the languageO, and if so, it replaces everything on the query tape with the symbol 1 (this means that qquery changes to the
state qyes); otherwise, it replaces everything on the query tape with the symbol 0 (this means that qquery changes
to the state qno). After that, the oracle puts the machine into the answer state. This counts as one single step for
the machine.

Hence, whenever a TM, MO obtains x as an input, it may be informed whether x ∈ O to put MO in
the ‘yes’ state (i.e. 1) if x ∈ O; otherwise it puts MO in the ‘no’ state (i.e. 0) if x ∉ O.

Definition 3. A cellular automaton is defined by a 4-tuple A = (d, S,N, δ), where:

— d ∈ N denotes the number of dimensions, and the elements of Zd are referred to as cells;
— S is a finite set of elements representing the states of the automaton A; the cells, which are members of Zd,

take on values from S;
— N ⊂ Zd ∖ {0}d is a finite ordered set containing n = |N| elements, known as the neighbourhood; it is

assumed that each cell has an identical number of neighbours, which equals n;
— δ : Sn + 1 S is the local transition rule, where n = |N|.

At each discrete time moment t = 0, 1, 2, …, the arrangement of states across all cells is determined
by the mapping ct : Zd S, and the progression of the automaton unfolds through the sequencec0, c1, c2, …, which is defined as follows: ct + 1(z) = δ(ct(z), ct(α1), …, ct(αn)), where (α1, …,αn) represents the
neighbours of z. The initial configuration c0 serves as the starting point and completely dictates the
future behaviour of the automaton. This indicates that ct + 1 is entirely determined by ct. This property
enables the construction of the function GA:CA CA, where CA denotes the set encompassing all
potential configurations of the cellular automaton A (precisely, it represents all mappings from Zd toS, as each element of this set can function as the initial configuration c0, though not all elements may
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emerge in the evolution of other configurations). GA is termed the global function of the automaton A.
We assert that a cellular automaton A computes the function f: X Y  if there exist injective mappingsg: X CA and ℎ:Y CA such that GA(g(x)) = ℎ(f(x)) for each x ∈ X . It is noteworthy that CA (for|S| ≥ 2) is not computably enumerable. We should recall that, according to the Church–Turing thesis, a
function f defined on the natural numbers is computable if and only if it can be computed by a TM.
However, there is an important assertion [10] that a cellular automaton, under certain conditions, is
able to simulate a TM. This means that we can also analyse computable functions by means of cellular
automata.

Proposition 1. Let a TM M be presented by tape symbols Γ = {1, …,m} and states Q = {1, …,n}.
We call these machines (n,m)-TMs. The transition function of (n,m)-TM is a function δ: {1, …,n} × {1, …,m} {1, …,n} × {1, …,m} × {−1, 0, 1}. Let the elements of (n,m)-TMs be given as follows:M = l ∈ Z k ∈ ZDkl , where Dkl = N for l ≠ k and Dkk = (N × N). An element (…, il − 1, (i, j), il + 1, … ) from

k ∈ ZDkl  shows that a TM has a state j and reads a symbol i at a position l. The content of the tape of the
TM is given by (…, il − 1, i, il + 1, … ). Assume that N is the set of states of one-dimensional cellular automata of
radii one (CA). Then the set NZ contains every configuration of CA. Let the elements of M are mapped on NZ by
a function F. It is locally defined by two functions g:N Np and ℎ: (N2) Nq as follows:F((…, dl − 1, (i, j),dl + 1, … ))pk + s = g(dk)s
for s = 1, . . . ,p and k < l, F((…, dl − 1, (i, j),dl + 1, … ))pl + s = ℎ(dl)s
for s = 1, …, q and F((…, dl − 1, (i, j),dl + 1, … ))p(k − 1) + q + s = ℎ(dk)s
for s = 1, . . . ,p and k > l.

Let D be a cellular automaton. Then D simulates M with order (p, q) and delay t if there is F such that for anyx ∈ M, there exists t′ ≤ t such that Gt′(F(x)) = F(T(x)), where G is the global transition function of the cellular
automaton D and T is the partial function defined on M that represents M.

Proof. See [10]. ∎
Let us assume that a function f: X Y  is computed by a TM. It means that on the input x ∈ X

it should give the output y = f(x) ∈ Y . However, a TM with an oracle can give an answer without
calculation based on what is contained in the set O, namely, whether f(x) is in this set. Let f(x) ∈ O
and there exist injective mappings g: X CA and ℎ:Y CA for a cellular automaton A such thatGA(g(x)) = ℎ(f(x)) for each x ∈ X . Then we say that A has the oracle f(x).

Definition 4. An oracle cellular automaton is a 5-tuple AO = (d, S,N, δ,O), where d, S,N , δ are the same
as in definition 3 and O ⊆  ∗S is a subset of all infinite strings (i.e. the strings of the infinite length) built
on S. Let S = {0,1}. Then the oracle O consists of some infinite 2-adic strings from the set Z2 of all 2-adic
integers (meanwhile, the set Z2 is infinite1). Each member o ∈ O is interpreted as an additional transition rule,
different from δ and consisting of an infinite number of additional transition rules δt, applied at the time stept = 0,1, 2, …,∞, namely: o ::= (δ0, δ1, δ2, …) = δ0δ1δ2…

Let us note that for S = {0,1}, o ∈ Z2.
We will distinguish between two types of these members of O: (i) standard functions denoted by  ∗δ0, for

which δ0 = δ1 = δ2 = … in (δ0, δ1, δ2, … ), where = is an equality of two functions δi and δj for i ≠ j, which are
equal if they have the same domain and the same codomain, and if for every x in the domain, δi(x) = δj(x); (ii)
and non-standard functions denoted by [δ′], for which there exist i, j ∈ N such that δi′ ≠ δj′ in (δ0′ , δ1′ , δ2′ , … ). The
difference between  ∗δ0 and [δ′] is as follows. If o =  ∗δ0, this means that at each time step t there is applied the
same transition rule δ0. If o = [δ′], this means that at each time step t there is applied the different transition ruleδt′ from the infinite string [δ′]. In other words, if we apply o = [δ′], then we can change the transition rule at each
time step t.
1Let us be reminded that Zn means a Cartesian product of Z, while Zp is a set of p-adic integers.
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Let ct:Zd S for t = 0,1, 2, …, then the evolution of the automaton AO in accordance with the member o ∈ O
means a sequence c0, c1, c2, … defined as follows: ct + 1(z) = δt(ct(z), ct(α1), …, ct(αn)), where (α1, …,αn) are the
neighbours of z and δt is taken at the time step t from (δ0, δ1, δ2, …δt, … ).

Let xt be an input of the automaton AO at the time step t = 0,1,2, …. It can be calculated either in the standard
way, by applying δ of A, or by invoking the oracle member o ∈ O, that is, by applying either o =  ∗δ0 or o = [δ′].
In other words, if δt(xt) is defined for δt from o, then the evolution of the automaton AO takes place in accordance
with the oracle (δt, δt + 1, … ) ∈ O. If not, then AO behaves like A without O.

It should be noted that if the function is non-standard (i.e. it is [δ′]) and the automaton follows it,
then this means that the evolution of such an automaton changes the transitive rule at some or all
steps. This allows us to simulate uncomputable functions with cellular automata. We can amplify this
as follows.

Definition 5. Let AO = (d, S,N, δ,O) be an oracle cellular automaton, where S is a ring (e.g. S = Z or S = Q).
Then, its member o ∈ O is called a hybridization of A if and only ifo ::= (δ0(x0) + ϵ0, δ1(x1) + ϵ1, δ2(x2) + ϵ2, … )

for the inputs xt at the time step t = 0,1,2, …, where ϵt < |δt(xt)| for all t = 0,1,2, …
If the oracle function is standard (i.e. it is  ∗δ0) and the automaton follows it, then it behaves

standardly (without changing its transition rules), but only until the moment when there will be
another appeal to the oracle. If, as a result of this new request, the automaton begins to follow the new
function, then the transitive rule of the automaton will change.

The main idea behind the oracle cellular automata is that these automata have ways to change
the transitive rule over time (definition 4). This is not possible with conventional cellular automata.
An extreme case of such permanent change is automaton hybridization (definition 5). In computer
science, such cellular automata with an oracle have not been used so far. However, they open up
wide possibilities for simulating biological systems. The fact is that biological systems such as fungi
exhibit a remarkable duality in their behaviour, demonstrating characteristics of both rigidity2 and
adaptability. On the one hand, fungi can embody some automata in their behaviour [8,9]. This means
they can operate in a highly predictable manner, responding to specific stimuli with predefined,
programmed responses. Such behaviour is akin to mechanical or computational systems, where input
consistently produces a specific output, reflecting the deterministic nature of automata. However,
on the other hand, biological systems and even one-cellular organisms [11] can also change their
behaviour for the same stimuli. Unlike simple automata, biological entities possess the ability to learn
from their experiences, adapt to new environments and modify their responses based on internal
and external factors. This adaptive behaviour showcases the dynamic nature of biological systems,3

enabling them to cope with changing environments, optimize their survival strategies and exhibit what
can be perceived as a form of decision-making or consciousness. Hence, while biological systems can
display the mechanical predictability of automata, they are also capable of remarkable flexibility and
adaptability, altering their behaviour in response to the same stimuli under different circumstances.
This dual capability highlights the sophisticated nature of biological systems and underscores the
applicability of cellular automata with an oracle not only in simulating the adaptability of fungi and
other creatures, but also in implementing biologically inspired mechanisms of decision-making in AI.

3. Fungal cellular automata with oracles
Every living organism can be represented as an automaton, in which the inputs are stimuli (such as
chemotaxis) and the outputs are motor reactions [12]. Meanwhile, we can observe a wide diversity in
the chemotactic behaviour of even one-cellular organisms [13]. Mathematically, this can be explained
by the fact that a living organism, although presented in the form of an automaton, is not deterministic.
Under certain conditions, the number of outputs in such an automaton exceeds the number of inputs
[14]. This can be interpreted as a feature of living nature—even one cell is able to respond to the
environment with greater variability than the set of perceived signals itself. At best, a deterministic
automaton approximates real behaviour with a certain error. The problem is that a fungus (mould, etc.)

2Rigid behaviour refers to behaviour that is deterministic as understood in behaviourism.
3This ability can be mimicked using deep learning.
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can implement some algorithms, but not all (e.g. some logic gates), only by a certain percentage—e.g.
from 70% to 90%. In some cases, they have no algorithmic solution at all. Then it is worth specifying
an oTM (or a cellular automaton with an oracle), where this oracle will give out random numbers,
in the range of which the numbers from the algorithms will be located. For example, let the TM
generate a logic gate with a probability of 75% for fungi, then an appropriate oTM may generate
random numbers, among which there is this logic gate. This means that the TM with the oracle is now
implemented experimentally by 100%.

Fungi use a sophisticated communication and information processing system, notably through
their mycelium networks [15]. Filamentous fungi such as Aspergillus, Penicillium, Fusarium, Verticillium
and Phanerochaete (see [16]), and other species of Basidiomycota and Zygomycota grow by extending
hyphae at their tips.

Filamentous fungi within the Ascomycota phylum possess porous septa that facilitate cytoplas-
mic streaming [17,18]. Following hyphal injury, Woronin bodies serve to occlude these septal pores,
preventing excessive cytoplasmic leakage [19–23]. Initially, Woronin bodies tend to be localized at the
apex when they first form [24–26]. Subsequently, these bodies undergo transportation and anchoring to
either the cell cortex (Neurospora crassa, Sordaria fimicola) or in close proximity to the septum (Aspergillus
oryzae, Aspergillus nidulans, Aspergillus fumigatus, Magnaporthe grisea, Fusarium oxysporum, Zymoseptoria
tritici) until they are translocated to the septal pore, driven by cytoplasmic flow or ATP depletion
[22–25,27–31]. Those Woronin bodies that are not anchored at the cellular cortex or the septum remain
in the cytoplasm and exhibit high mobility (A. fumigatus, A. nidulans, Z. tritici) [24,26,28]. The occlusion
of septal pores can be triggered by bulk cytoplasmic flow [28] or various developmental and environ-
mental cues, such as cell wall puncturing, high temperature, carbon and nitrogen starvation, high
osmolarity and low pH [32].

Additionally, intact hyphae can also have their septa blocked by Woronin bodies. Septal pore
occlusion may be prompted by factors such as the growth process and stress conditions (high
temperature, as well as carbon and nitrogen starvation; see [32–34]). Thus, the state of the pores (their

Septum associated

Woronin body 

Septum

Leashin

Cytoplasmic

Woronin body

(a)

(b) (c) (d) (e) (f)

~50 µm

~300 µm

Figure 1. Fungal cellular automata. (a) Septate hypha with pores. (b) Cell of the hypha, in which all pores are closed. (c) All
pores of the cell are open. (d) Only south and west pores of the cell are open. (e) One-dimensional fungal cellular automaton.
(f) Two-dimensional fungal cellular automaton.
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openness or closure) is a response to external stimuli, which can be favourable (attractants) or stressful
(repellents). Under conditions of attractants, the pores are open, and under conditions of repellents, the
pores are closed. Each such external stimulus changes the configuration of the pores, and hence the
computational architecture itself. We will further show that each such external stimulus that changes
the computation can be understood as an oracle.

A depiction of the mycelium featuring Woronin bodies is illustrated in figure 1. It is a septate
structure, in which pores can be either open or closed. The compartments within the mycelium have a
different number of adjacent compartments, forming the elementary units of fungal cellular automata
(figure 1b−d)—one cell that has potentially four pores on four different sides and these pores can be
either open or closed. We assume that these compartments can be assembled into one-dimensional
structures (figure 1e) or two-dimensional (figure 1f). Thus, in our study, we investigate a cellular
automaton operating in a d-dimensional grid Zd with some neighbourhoods, characterized by a set of
states S and a global function G. Each cell in the grid possesses four sides that can be open or closed.
Open sides facilitate information exchange between adjacent cells, while closed sides imply mutual
ignorance. By controlling the openness of sides, the dynamic behaviour of the automaton varies. We
consider specific configurations where vertical and horizontal sides of the grid may be initially open or
closed, and in subsequent steps, this situation may be different. An external stimulus is what changes
the openness and closeness of the pores on the corresponding side. We assume that only one stimulus
can be encountered on each side for all automaton cells, and it can be both an attractant and a repellent.
As a result, eight stimuli are possible: An—attractant to the north of the automaton; As—attractant
to the south of the automaton; Aw—attractant to the west of the automaton; Ae—attractant to the
east of the automaton; Rn—repellent to the north of the automaton; Rs—repellent to the south of the
automaton; Rw—repellent to the west of the automaton; Re—repellent to the east of the automaton.

This research focuses on particle flows, where each cell of the automaton contains a finite number of
particles or chips distributed according to certain rules. The evolution occurs synchronously, with each
site simultaneously losing and gaining chips. This mechanism may be simulated by cellular automata
[8,9]. In this context, the state set includes S = {0,1,2, … } ⊂ N representing the number of particles.
However, at the same time, we suppose that all sites (cells) cannot have more than p − 1 chips. As a
result, we get p-adic strings, in which the ciphers in the string can change at each calculation step.

Let us fix p ∈ {2, 3, 5} for a fungal cellular automaton. If a site v ∈ Z2 holds xv = p − 1 chips, the
following actions occur, when all of the four pores of v are open:

(3.1)
xv′ = xv − (p − 1)∃u ∈ Nv ⇒ xu′ = xu + 1.

Here, Nv denotes the von Neumann neighbourhood of site v, and xv′  reflects the updated value of xv.
However, if we have four pores open, but we are dealing with 2-adic strings, then it is not clear at
which pore from four a chip can leak. This makes the machine non-deterministic. However, let us
consider only deterministic automata. Namely, let us assume that the number of pores for all cells of
the automaton is no more than p − 1. For example, for 2-adic strings in all cells only one pore is open.

By incorporating the notion of open or closed sides proposed here, the rule for p adjusts as follows:

(3.2)

xv ≥ p − 1 ⇒ xv′ = xv − α∀u ∈ Nv such that the gate is open⇒ xu′ = xu + 1,

where α ≤ p − 1 denotes the number of open gates.
When the rule is simultaneously applied to every site, the new state at a site v is determined by:xv′ = xv − α + β .

Here, β represents the chips received by site v from its open and firing neighbours, the number of
which does not exceed p − 1.

Let us consider an example of a cellular automaton consisting of one-dimensional horizontal 2-adic
strings three cells long: [x1,x2,x3], where x1,x2,x3 ∈ {0, 1}. Since they are horizontal, external stimuli
for them can only be from the right and left (from the west and from the east). Let us assume that
at the moment there is a repellent on the left (Rw) and an attractant on the right (Ae). Let us also
suppose that chips can only move if there are at least two of them within the framework of one string.
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Then the fungal cellular automaton at this moment (namely with Rw and Ae) simulates the Fredkin

gate. Recall that this is a reversible logic gate, which for the input [x1,x2,x3] ∈ {0,1}3 gives the output

[x1′ ,x2′ ,x3′ ] ∈ {0,1}3 in accordance with table 1. It is the following rule: x1′ = x1, x2′  = OR(AND(NOTx1, x2),
AND(x1, x3)), and x3′  = OR(AND(x1, x2), AND(NOTx1, x3)), i.e. we deal with the three inputs x1, x2, x3,
and the three outputs x1′ , x2′ , x3′ . The fungal cellular automaton maps [0,0,0] to [0,0,0], [0,0,1] to [0,0,1],
[0,1,0] to [0,1,0], [1,0,0] to [1,0,0], because all these strings contain only one unit. The 2-adic string [0,1,1]
includes two units, but it can be mapped only to itself [0,1,1], since there is the repellent Rw on the left
side of the string and its first site cannot receive the unit from its right neighbour. The 2-adic string
[1,1,1] cannot also change. It is complete. Meanwhile, the 2-adic string [1,1,0] is mapped to [1,0,1] and
the string [1,0,1] is mapped to [1,1,0] (see figure 2).

Let us remember that the Fredkin gate is considered universal [35], which means that any logical
or arithmetic operation can be constructed entirely of Fredkin gates. This universality signifies that
Fredkin gates can be used to build any possible computation, making them a powerful tool in the
realm of computing. The fact that fungal mycelia can embody Fredkin gates suggests that such mycelia
can implement various logical and arithmetic functions that can be expressed through a series of
Fredkin gates. However, mycelium has its own physical limitations for implementing, e.g. a fairly long
sequence of Fredkin gates. For example, it may require too high a density of fungi to support a given
computational scheme, or too large a mycelium. However, if we ignore any physical limitations of
the mycelium, owing to its organization as a special cellular automaton, it is able to implement any
arithmetic function.

Summing up, the fungal mycelium as an abstract automaton can implement all logical and
arithmetic functions, since it implements the Fredkin gate. However, this does not mean that we can
observe all these possible implementations of TMs (i.e. logical and arithmetic functions) in reality. It
has been established [36] that biological organisms usually implement only some logical functions as
their natural response. However, through approximation and enhancement of the artificial environ-
ment, biological organisms can be made to perform various logical and arithmetic operations.

Based on this example, we see that cellular automata have external inputs (repellents and attractants
of the mycelium) and internal inputs (p-adic strings, which are transformed owing to the presence or
absence of pores in the cells). Now let us define these automata in the general case.

Definition 6. A fungal cellular automaton with an oracle is a 5-tuple AFO = (d, S,N, δ,O), where

— d ∈ N is a number of dimensions; e.g. if d = 1, then the automaton is one-dimensional;
— S = {0,1, …,p − 1} is a finite set of elements called states. Each state shows a number of chips in an

appropriate cell. We also assume that each cell has no more than p − 1 open pores and the state p − 1 ofv ∈ Zd means that this cell v is active and its chips may leak through pores, otherwise v is inactive;
— N ⊂ Zd ∖ {0}d is a finite ordered set consisting of n = |N| ≤ p − 1 elements, N is said to be a neighbourhood;

but in the fungal cellular automaton we see that n is changeable for some cells at some time momentt = 0,1, … and depends on the number of open pores for such a cell;

Table 1. The Fredkin gate in the permutation matrix form. (The input [000] is mapped to the output [000], [001] is mapped to [001],
etc.)

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 0 1 0

110 0 0 0 0 0 1 0 0

111 0 0 0 0 0 0 0 1
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— δ : Sn + 1 S is the local transition rule. Let Nv be a neighbourhood of the cell v, such that |Nv| = n. We
assume that the pores to the cells of Nv from v can be open. Let α be a number of open pores to Nv. Then δ
maps the state xt(v) of v to the new one xt + 1(v) as follows:

xt + 1(v) =

xt(v) − α + β, if xt(v) = p − 1 ≥ α and α pores are open 
and β ≤ α neighbour cells are active;xt(v) + β, if xt(v) < α and α pores are open 
and β ≤ α neighbour cells are active;xt(v), if pores are closed;xt(v), if xt(v) < α and α pores are open,
but neighbour cells are inactive.

If after calculations, according to this δ, the new state xt + 1(v) = x > p − 1, then we take xt + 1(v) = (p − 1);
— O is the oracle consisting of external stimuli:

o ::= (St0, St1, St2, …),

where each Sti consists of repellents and attractants that make the pores of cells open and closed, which
changes the computing architecture of the automaton, since it changes the number of n elements in the
neighbourhood Nv of the cells v. Suppose a request to the oracle at time t means that the automaton is
checking to see if it can follow o.

Changing the architecture of a fungal cellular automaton in response to stimuli can be interpreted
as the system’s self-positioning in its environment, which is inherently unpredictable. Stimuli appear
randomly, but they cause changes within the system that are subsequently integrated into its function-
ing. Some pores open, some close and the machine produces other p-adic strings.

Rw

Rw

Rw

Rw

Rw

Rw

Rw RwAe

RwAe

RwAe

RwAe

RwAe

RwAe

RwAe

RwAe Ae

Ae

Ae

Ae

Ae

Ae

Ae

Ae

Rw

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 1 1

1 1 0

1 0 1

(a)

(b)

Figure 2. Fungal cellular automaton for the Fredkin gate. The pore of the leftmost cell is blocked owing to the repellent Rw. (a) Six
2-adic strings which do not change. (b) Two 2-adic strings which form an eternal cycle: [1,1,0] is mapped to [1,0,1] and [1,0,1] is
mapped to [1,1,0].
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4. Arithmetic functions and their codes in fungal cellular automata with
oracles

Let us examine discrete time, denoted by t = 0, 1, 2, …, where at each time step t, the cellular automatonAFO has no more than n inputs (active cells) as a reaction to external stimuli and no more than p − 1
particles or chips in each cell. Then the fungal reactions may be analysed as an arithmetic functionfpn(x) = y, where x, y ∈ {0, 1, …,pn − 1}. For instance, in the Fredkin gate (depicted in figure 2), we deal
with the arithmetic function f23, where the inputs and outputs from table 1 are rewritten as natural

numbers: x0x1x2 = i = 0
2 xi ⋅ 2i, which is a binary expansion. For instance, 000 = 0 and 111 = i = 0

2 1 ⋅ 2i = 7.

Therefore, if we have n inputs at time step t and p-adic strings, then AFO calculates an arithmetic
function fpn at this t. As a consequence, if the fungus is exposed to n stimuli or less at each time stept = 0, 1, 2, …, we derive a sequence of functions:

fpnt = 0,fpnt = 1,fpnt = 2, …,

where at each time step t = i, the arithmetic function fpnt = i may differ. This sequence is an oracle o of AFO
which can be interpreted as a p-adic valued function:

(4.1)o ::= f(α) = β,

where α = α0α1α2… and β = β0β1β2…, such that fpnt = i(αi) = βi for each i = 0, 1, 2, …. The quantities α and

β are expressed in pn-adic form, with α = ∑i = 0

∞ αi ⋅ (pn)i and β = ∑i = 0

∞ βi ⋅ (pn)i, where αi, βi run over the set

{0, …,pn − 1} for each i = 0, 1, 2, …
We can list all the arithmetic functions that can be executed within fungal networks, formalized

as AFO, by following a structured approach. To begin, we partition all arithmetic functions over Zp
for varying values of p. For each p, there exists a distinct enumeration of all arithmetic functions
corresponding to a specific time step t. Each function fpnt  signifies one of the potential permutations of
the numbers 0,1, …,pn − 1, and it can be uniquely distinguished by a designated code:

(4.2)⌈fpnt ⌉ = ∑i = 0

t
∑j = 1

pn − 1cji ⋅ j! ⋅ ((pn − 1)!)i .
In this context, cji represents the tally of instances in the ith permutation where the value j appears
to the right of another value smaller than j. For example, in the permutation of the Fredkin gate
(0,1,2,3,4,6,5,7), we observe:

j = 1
23 − 1cj ⋅ j! = 0 ⋅ 1! + 0 ⋅ 2! + 0 ⋅ 3! + 0 ⋅ 4! + 0 ⋅ 5! + 1 ⋅ 6! + 0 ⋅ 7! = 720.

Supposing the Fredkin gate has been used twice with t = 1, we obtain:

∑i = 0

1
∑j = 1

23 − 1cji ⋅ j! ⋅ ((23 − 1)!)i = 720 + 720 ⋅ 7! = 3629520.

For the function fpn∞ , its code is determined by:

(4.3)⌈fpn∞ ⌉ = t = 0

∞

j = 1

pn − 1cjt ⋅ j! ⋅ ((pn − 1)!)t.
Therefore, each p-adic valued arithmetic function fpn as described in equation (4.1) and coded by
equation (4.3) symbolizes an infinite path followed by a fungus in its reactions to the environment
(about p-adic valued logic please see [37]). This path is subject to the condition of encountering no
more than n inputs at each time step t with no more than p − 1 particles or chips in each cell.

It is worth noting that the set O of the fungal cellular automaton AFO can contain arithmetic functionsfpn along with their codes ⌈fpnt ⌉ as an oracle.
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5. Diagonalization argument in fungal cellular automata with oracles
According to proposition 1, the term of computability or decidability of a set X  can be formulated in
the context of cellular automata A (see definition 3), which exhibit the following behaviour:

A(x) =
1, if x ∈ X ;
0, otherwise.

Let Fpt  contain arithmetic functions fpnt . We postulate that this Fpt  is decidable, indicating the existence

of a cellular automaton Ai that determines whether a function fpnt  belongs to Fpt  given its codei = ⌈fpnt ⌉. In essence, this implies the existence of a cellular automaton A capable of processing an

input ⟨i,x⟩ = ⟨⌈fpnt ⌉,fpnt ⟩ and producing Ai(x) as output.
The collection K = {⟨i,x⟩ : Ai(x) terminates} is defined as a halting set. If the computation concludes,

then ⟨i,x⟩ belongs to K.
Proposition 2. The set K is not decidable.
Proof. Using diagonalization argument, we can demonstrate this. Assuming K is decidable, let A0 be

a cellular automaton that decides K:

A0(x) =
1, Ai halts;
0, otherwise.

Given that A0 is a cellular automaton with a specific code e, we have Ae = A0. Let’s introduceFp′t = {i : Ai(i) ≠ 1}, a collection that is undecidable for any given i. Consequently, the set K, which
includes all pairs ⟨i, i⟩ where Ai(i) ≠ 1, is undecidable as well. ∎

However, O of a fungal cellular automaton AFO can contain both arithmetic functions fpnt  and their

codes ⌈fpnt ⌉, as we said. It follows from this that the oracle O is undecidable. TMs (cellular automata)
with an oracle O calculate based on the uncomputable. This is a good analogy with consciousness
as a mechanism of reflection and self-reflection, which cannot be described within the framework
of a domain-specific language, i.e. within the framework of a language for describing reality. Hence,
the diagonalization argument shows that based on arithmetic functions and their codes, we cannot
in general answer the question of whether a given function is solvable. This mathematical fact of
proposition 2 can be interpreted in terms of consciousness. Even if we take arithmetic functions, which
by definition are decidable, our reflection on their decidability is not decidable. Reflection regarding
the computable is no longer computable.

This phenomenon leads to a scenario where the number of outputs surpasses the number of inputs,
termed as ‘hybrid action’. Such reactions, characterized by having n inputs and m ≥ n outputs, may
constitute a ‘hybrid action’, which, by definition, is unsolvable if m > n and falls within the scope of
proposition 2. An illustrative example is as follows:

(5.1)
A(d(fpnt )) = 1, if d(fpnt ) ≥ fpnt  for all fpnt  at t with n inputs;

0, otherwise.

This d(fpnt ) is called a weak diagonalization of fpnt . If d(fpnt ) > fpnt  for all fpnt  at t with n inputs in
equation (5.1), then this diagonalization is called strong.

The statement of proposition 2 concerns the uncomputability of the set O of AFO in the general
case, but it is important for us to be able to model finite sets of natural numbers. For example, when
modelling mycelium, we are dealing with very small sets, and it is important for us to be able to see
hybridization on them (the minimum level of reflection and self-reflection). Equation (5.1) allows us to
do this easily.

Each separate horizontal or vertical string of fungal automata can be regarded as a p-adic number,
where p − 1 is a maximal number of chips in all cells (see definition 6). Let ∘ denote a composition
of two different strings and suppose that this operation is associative and commutative. So, if a, b are
two vertical or horizontal p-adic strings, possibly of different lengths, then a ∘ b is a result of their
composition. Assume that there exists an identity element e such that for all a we have a ∘ e = a. Thise is presented by any p-adic string in which all the cells contain only 0 and their pores are closed, i.e.
these cells are inactive. Also, we have a strong diagonalization e‾ such that for all a we have a ∘ e‾ = e‾.
This e‾ is presented by any p-adic string in which all the cells contain only p − 1, indicating that all cells
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are active. Let a be a function fpnt . Then e‾ is d(fpnt ) for it from equation (5.1) and furthermore e‾ > a for
all a, therefore the diagonalization e‾ is termed as strong.

Let us exemplify the composition a ∘ e‾ = e‾ for a = [0,1,0]. Then e‾ is 2-adic. This a can be vertical or
horizontal, but in any case its composition with e‾ gives e‾ (see figure 3). It is worth noting that e‾ is
greater than any finite 2-adic string consisting of only 1.

We can note that sometimes the composition ∘ behaves like addition for some p-adic strings.
Suppose that a = [0,1,0] and b = [1,0,1] and both are horizontal. Then a ∘ b = a + b = [1,1,1]. However
in general, composition does not give addition. In this structure, we do not have inverse operation
(subtraction for addition), since in AFO we are dealing with chips in cells or their absence and we do
not have negative values. Thus, the composition ∘ forms an Abelian monoid with a diagonalization e‾.
However, we can also obtain an Abelian group if we add an inversion operation −1 to the monoid. As a
result, every element a has an inverse element a−1 such that a ∘ a−1 = e. Furthermore, assume that every
element a has its own diagonalization a−1 such that a ∘ a−1 = a−1 and for every inverse element a−1 there
exists its own diagonalization a such that a−1 ∘ a = a. We define e‾ as a ∘ a−1. In this way, we obtain an
Abelian group with diagonalizations.

The diagonalization e‾, defined as d(fpnt ) in equation (5.1), is an easy model of reflection for

arithmetic functions fpnt . After all, this e‾ is not computable for any arithmetic function at time stept. Using e in a calculation means adding new active cells and changing the transition rule in AFO thanks
to the oracle o. In extensions of the ZFC model, this manifests itself as an extension M[o] through
forcing for the M model.

6. Conclusion and discussion
As we have shown in our previous works [12,14], organisms produce more outputs than inputs,
which is a strong indication of rudimentary consciousness. This is significant not only because it
is not calculable or deterministic, but also owing to the criterion of independence. Let us define a
conscious reaction as one where two completely independent stimuli are perceived by the organism
as dependent, and this joint perception generates a response. This joint view is considered a mani-
festation of consciousness. When two completely independent stimuli act on an organism AO, their
combined state is perceived together by the oracle O, making them no longer independent, which then
generates a joint response. This process can be linked to producing more outcomes than inputs. For
this to be possible, the oracle O must add something to the jointly perceived stimuli, thus rendering
them interdependent. The crucial point here is that the initial stimuli are fully independent, since if
they were initially dependent, we could not determine whether the output conclusions are generated
externally or internally by O. Continuing this reasoning, we can mathematically define a self-awareness
as a diagonalization a−1 for all the responses a at the time step t. These elements a−1 absorb the
responses a, providing maximum closure of all elements into a whole e‾ presented as a ∘ a−1. Therefore,
a composition with such a whole e‾ yields this whole itself. This e‾ is a form of self-awareness, when the
organism AO in its responses to external stimuli may absorb all of these stimuli.

0 01

1 1 1

1 1 1

1 1 1

0

0

1

1 1 1

1 1

1

1

1

1

(a)

(b)

Figure 3. Composition a ∘ e‾ = e‾ for a = [0,1,0]. (a) a is horizontal. (b) a is vertical.
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Theoretically, this article is a continuation of our research in the field of designing consciousness as
a purely mathematical phenomenon [4,5]. However, now we have looked at mycelium as a concrete
example of computation in the framework of oTM, which we previously defined in the language of
pure mathematics. Practically, this is a continuation of the study of fungi as automata [8,9,38,39], as
well as experimental research [1] according to which a certain orchestration is found in the reactions of
the mycelium, so that fungi respond to anaesthesia, demonstrating the presence of a minimal level of
consciousness.

Hence, our research remains in certain analogy with the hypothesis of orchestrated objective
reduction [40] which suggests that consciousness arises from quantum processes occurring in
structures called microtubules within cells. According to this hypothesis, these quantum processes
contribute to consciousness by collapsing the quantum state of microtubules into classical states,
thereby influencing neural activity and ultimately giving rise to conscious experience. The term
‘orchestrated’ emphasizes the idea that these quantum processes are somehow coordinated or
orchestrated in a way that leads to coherent conscious experience, while ‘objective reduction’ refers
to the collapse of the quantum state to a classical state. According to Penrose & Hameroff [40], the
phenomenon of consciousness is possible owing to chemical microprocesses in an individual cell,
such as microtubules and actin filaments [12]. However, we contend that even a single cell exhibits
a rudimentary form of consciousness, evident in its capacity to hybridize its behaviour (definition 5).
This is demonstrated by its ability to produce more outputs than inputs during the computational
process. This model of more outputs than inputs in computation is well formalized by an oTM. Thus,
the specificity of our approach is that we consider consciousness not as an event of the collapse of
quantum states into classical ones, but as a purely mathematical phenomenon in the appearance of
reflection during calculations with the emergence of diagonalization e‾. Quantum processes occurring
in the brain can be a source for true mathematically random internal stimuli acting on the level of cells
and its constituents which thus enable conscious reactions. Even in the case of comparatively simple
organisms like mycelium their behaviour can be well represented as a cellular automaton with an
oracle and the mathematical form of consciousness and random reactivity are still applied. This means
that the mycelium actually has a minimal form of consciousness in this sense.

The concept of identifying parallels to conscious behaviour in oTMs, as applied in this article, is
based on several key observations:

(i) consciousness embodies a system’s self-awareness and comprehension of its existence within
its surrounding environment, which is often unpredictable and random, since stimuli are often
independent in advance, but they may be treated as dependent by the system;

(ii) the environment exerts its influence on the system through random independent stimuli,
prompting joint responses and reactions;

(iii) these stimuli induce changes in the system, which then integrates and adapts to them;
(iv) over time, the system comprehends and internalizes these changes, transforming the initially

random and independent stimuli into familiar elements;
(v) the influence of stimuli on the system can range in intensity, sometimes to the extent of being

disregarded altogether. As a result, stimuli do not always elicit a clear-cut reaction; instead, they
may trigger a blend or fusion of responses, leading to hybridized reactions (definition 5);

(vi) reflection regarding stimuli manifests itself in voluntary changes in their potential impact so that
stimuli may be even absorbed and neglected; and

(vii) self-reflection or self-awareness is found when cycles appear owing to the maximization of
reflection with changes in stimulus intensity, which is expressed through a diagonalization.

In essence, this framework posits that conscious behaviour in oTMs can be analogized to the cognitive
processes involved in perceiving, adapting to and interpreting stimuli within a dynamic environment.
These complex phenomena can be studied in simple organisms, such as mycelium as a specific
computational process within the framework of fungal cellular automata with an oracle.

In the future, we plan to undertake a series of experiments involving fungal mycelium to dem-
onstrate how a cellular automaton with an oracle can effectively simulate the mycelium’s response
to external stimuli, while also identifying instances of diagonalization e‾. These experiments are
particularly challenging owing to the extended duration required, often exceeding a year. Further-
more, conducting such experiments necessitates a robust mathematical model. We intend to use the
framework presented in this article to develop the necessary model and guide our experimental
design. The concept of diagonalization e‾ is integral to our study. It refers to a specific mathematical
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property that allows the system to maintain consistency and coherence across different states and
inputs. Identifying and understanding these diagonalization manifestations within the mycelium’s
behaviour will provide deeper insights into its computational capabilities, demonstrating a form of
self-awareness.
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