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Abstract: This study proposes a universal (U)-control enhanced with dynamic inversion for a class
of multiple-input multiple-output (MIMO) quadrotor flight tracking operations. In the technique, a
robust compensator is integrated with the U-controller to achieve stabilisation at the equilibrium and
setpoint tracking in the presence of any unmodelled uncertainties and external disturbances. A series
of bench tests of simulated and real experiments on a Parrot Mambo quadrotor are conducted to show
the design framework from the academic formulation to Simulink simulation and real flight tests.

Keywords: U-model realisation; U-dynamic inversion; quadrotor UAV; quadrotor control; trajectory
tracking, simulation and flying tests

1. Introduction

Over the last decade, the fast advancement of unmanned aerial vehicles (UAVs) has
opened numerous possibilities in various fields such as surveillance, environmental moni-
toring, and delivery services. Among the many different types of UAVs, quadrotor systems
have gained significant attention due to their mechanical simplicity, agile manoeuvrability,
hovering capability, and their ability to vertically take off and land without requiring
long runways. These factors along with the rapid development and mass production of
electronics in general over the last decade have driven the prices of components down,
making them much more affordable, and hence spurring a revolutionary impact in this
field where high-performance drones are available to hobbyists whereas this was not the
case before. Due to this wide-scale availability and adoption, the control of quadrotor
systems has been a hot topic of research and development, which has brought substantial
challenges, particularly due to their underactuated nature—using less inputs to drive more
outputs. This underactuation requires sophisticated control strategies to achieve precise
trajectory tracking and stabilisation which reduce the weight of the UAVs.

Regarding quadrotor control, classical control approaches, such as PID control, have
been broadly taken as the first choice in applications due to their practical simplicity
and ease of implementation [1,2]. Hybrid methods that combine the PID with other
methods like Linear Quadratic Regulators (LQRs) [3] and Fuzzy control [4] have also been
explored. However, these methods often fall short in handling the nonlinear dynamics and
coupling effects inherent in quadrotor systems in flight tests. As a result, more advanced
control techniques, including model predictive control (MPC) [5], sliding mode control
(SMC) [6], and other nonlinear control approaches [7], have tried to enhance the capacity
and robustness of quadrotor control systems.

Even after such tremendous effort has been devoted to UAV control, there are still some
improvement domains that could enhance the control system design. Consequently, this
paper expands a model-based U-control system design platform [8–11] to achieve trajectory
tracking while maintaining robust stability in UAV control, which uses a transparent double
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dynamic inversion within two loops. In the inner loop, the plant dynamic inversion makes
the control system design separate from the plant model, and the outer loop dynamic
inversion makes the whole system performance specification be achieved with feedback
and be unilaterally independent from the plant model. In comparison to some conventional
delegate approaches, feedback linearisation control (FLC) has been widely considered as a
representative approach [12] in dealing with nonlinear models by transforming into a linear
one through coordinate conversions. Another well-known approach is backstepping control
(BSC) [13], which is a Lyapunov-based recursive design approach and is able to accomplish
the stabilisation and tracking tasks for a specific set of complex nonlinear systems. These
two approaches use dynamic inversion in one way or another; however, they suffer from
some shortcomings: (1) the FLC first utilises the complex coordinate transformation to
design a linear control system, and then transforms the designed controller to the original
controller to generate the required controller output. Unfavourably, such conversion
needs strong linear algebraic conditions [14]. For BSC, it is normally applicable to a
class of triangle-type models. The BSC is effective for second-order dynamics; however,
the complexity would exponentially increase with the increase in the system dynamic
order [15]. (2) To date, to the author’s best knowledge, almost all the existing nonlinear
dynamic inversion formulations have assumed linearity with the plant input (that is,
output affine plants). Accordingly, a general and concise mode-based dynamic inversion-
augmented control method called model-based U-control has been established by using the
expression of the U-model, which converts almost all the existing models into U-realisation
without referring to the coordinate transform and backstepping process [9,10,16]. It should
be mentioned that model-based U-control can dramatically reduce the complexity of
designing linear, and particularly nonlinear, control systems, and the U-dynamic inversion
and controller design are achieved separately. However, like all the other model-based
dynamic inversion approaches, the U-dynamic inversion unavoidably depends on the
model accuracy and the robustness against internal uncertainty and external disturbance.
Developing an effective model-based U-control method has been the first motivation to
balance the universal control flexibility and proper robustness. This study provides a new
angle to enhance the objectives and to bench-test the new model-based U-control feasibility
and effectiveness through simulations and real flight tests of the UAV.

The key contributions of this work to justify the research motivation and novelty include
the following:

• This is the first validity bench test to model-based U-control with UAV flights in a
comprehensive procedure, from analytical formulation to simulation demonstration
and real flight tests. The applied control system design procedure has general guidance
to other industrial applications and is a representative showcase to disseminate U-
control methodology.

• In the methodology of U-model-based control, this study proposes a robust compen-
sator to ensure trajectory accuracy and robustness against disturbances in the model-
based dynamic inversion. This is supplementary to robust U-control approaches.

• We expand U-sliding mode control (USMC) to MIMO systems from single-input and
single-output (SISO) formulation [17].

• We lay a practically effective foundation/platform for establishing the U-control
strategy in coping with the challenges posed by underactuation and coupling in the
control of quadrotor MIMO systems.

• A series of bench tests of simulated and real experiments on a Parrot Mambo quadrotor
are conducted to show the design framework from academic formulation to Simulink
simulation and real flight tests. This framework could be used for various UAV or
related mobile robot motion control system design.

For the following presentation, Section 2 describes the quadcopter physical model as a
problem background and introduces the U-model and U-model dynamic inversion (UMDI)
control strategy along with a robust U-model dynamic inversion plus sliding mode control
(UDI + USMC) compensator. Section 3 provides the computational simulation setup and
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results, validates the proposed approach with the expected performances. Finally, Section 4
summarises the study and gives some potential research directions.

2. Quadrotor Dynamics and U-Control
2.1. Quadcopter System Overview

Taken as a research background for testing the developed approach, this study chooses
a Parrot© Mambo Minidrone (Parrot S.A, Paris, France) (Figure 1), since it is cost-effective
and has a manipulable small size for assessing the practical performance of the designed
controllers in a closed-door environment without interference from outside factors like
wind, etc. The Simulink Hardware Support Package for Parrot Minidrones, developed by
the Original Equipment Manufacturer (OEM), delivers a realistic simulation environment
for evaluating controller designs. After being successfully validated with the simulation
demonstrations, the controller can then be embedded into the onboard processor by the
Hardware Support Package provided to conduct experiments on the hardware to bench-test
the outcomes in a real-world scenario.

The minidrone has two sensors on its underside: an ultrasound sensor and a low-
resolution (640 × 480) camera. The ultrasound sensor measures vertical distance accurately
up to 13 feet, though its performance varies depending on the floor material. The camera
uses optical flow to estimate horizontal motion and speed, but its effectiveness depends on
floor colour and texture. Thick carpets can interfere with both sensors. The minidrone’s
affordability (around EUR 70) makes it appealing for research despite these limitations.
Internally, the minidrone has a pressure sensor for Altitude and an Inertial Measurement
Unit (IMU) that includes a three-axis accelerometer and gyroscope. The raw sensor data un-
dergo bias correction, frame rotation, and low-pass filtering to remove noise. Two Kalman
filters are implemented to estimate Altitude and XY position, while a complementary filter
handles Roll, pitch and Yaw. The sampling time interval for the simulation and flight tests is
set to 0.005 s. Actuator limitations are also taken into consideration, with controller output
being capped with saturation functions to prevent exceeding the defined thrust limits.
These processes are standardized by the OEM’s Hardware Support Package, ensuring
consistent results. The ground effect also poses considerable challenges to this class of
drones; due to their inherent low values of inertia and weight, they are easily affected by it.

Figure 1. A Parrot Mambo quadrotor and its Simulink simulation environment.

The quadrotor system possesses six degrees of freedom to translate in the three Carte-
sian directions, i.e., along the X, Y and Z axes, and rotates about these three axes, with Roll
ϕ, pitch θ and Yaw ψ denoting the rotations about the X, Y and Z axes, respectively [18].

2.1.1. Assumptions

The dynamic model of the quadrotor system was derived under the assumption that
both the structure and rotors are symmetrical and rigid. Another assumption is that the
the quadrotor systems’ centre of mass is not situated at the origin of the body-fixed frame;
however, the body–frame axes are aligned with the principal axes of the quadrotor. This
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assumption results in a diagonal inertia matrix. Lastly, it is assumed that the generated
aerodynamic forces and moments are directly related to the square of the rotor’s speed.

2.1.2. Frames of Reference

The quadrotor’s dynamics are described by employing the following pair of reference
frames: the inertial reference frame (IRF) E(XE, YE, ZE) and the Body Reference Frame
(BRF) B(XB, YB, ZB), as illustrated in Figure 2. The quadrotor orientation in the coor-
dinate space is described by Θ =

[
ϕ θ ψ

]T , where the Euler angle ϕ represents the
Roll (rotation about the X axis), θ represents the pitch (rotation about the Y axis) and
ψ represents the Yaw (rotation about the Z axis). These attitude angles are bounded as
ϕ ∈ (−π

2 , π
2 ), θ ∈ (−π

2 , π
2 ) and ψ ∈ (−π, π) because of the various acrobatic flying ma-

noeuvres, which are not admissible. ωB =
[
p q r

]T represents the quadrotor’s angular
velocity in the BRF.

To model the quadrotor UAV, a coordinate transformation matrix between these
two reference frames is necessary as the translational equations of motion are described in
the IRF while the rotational equations and angular velocities are defined in the BRF. The co-
ordinate transformation matrix is therefore defined as follows (Rϕθψ) in Equation (1) [19].

RE
B =

CθCψ SθCψSϕ − SψCϕ SθCψCϕ + SψSϕ

CθSψ SθSψSϕ + CψCϕ SθSψCϕ − CψSϕ

−Sθ CθSϕ CθCϕ

 (1)

Figure 2. Body Reference Frame and Earth Reference Frame for the Mambo Minidrone.

The transformational relationship between angular velocities calculated in the two dif-
ferent frames of reference, i.e., the IRF and BRF, can be described with the help of the vector
M, which is used to transform the angular velocities ωB measured in the BRF to Euler rates
Θ̇ measured in the IRF and vice versa. Equations (2) and (3) show this relationship and
how the transformations can be carried out from one frame of reference to another using
the matrix M and its inverse M−1 as follows when ωB = MΘ̇:p

q
r

 =

1 0 −Sθ

0 Cϕ SϕCθ

0 −Sϕ CϕCθ

ϕ̇
θ̇
ψ̇

 (2)

and Θ̇ = M−1ωB
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ϕ̇
θ̇
ψ̇

 =

1 SϕTθ CϕTθ

0 Cϕ −Sϕ

0 Sϕ

Cθ

Cϕ

Cθ


p

q
r

 (3)

where “S”, “C” and “T” denote “sin”, “cos” and “tan” trigonometric functions, respectively.

2.1.3. Rotor Dynamics

The thrust T and moment M generated by the ith rotor are calculated as follows:

Ti = (CTρAR2)Ω2
i = (kTi)Ω2

i

Mi = (CQρAR3)Ω2
i = (kMi)Ω2

i
(4)

where Ωi represents the ith rotor speed. kTi and kMi are aerodynamic constants that are
associated with the thrust and torque generated by the rotor depending on its shape and
configuration. These coefficients can be determined experimentally (Table 1).

Table 1. Parrot Mambo parameters.

Parameter Value Units

Thrust Coefficient, CT 0.0107
Torque Coefficient, CQ 7.8264 × 10−4

Air density, ρ 1.184 kg/m3

Rotor Radius, R 0.033 m
Rotor Disk Area, A = πR2 0.0034212 m2

L 0.0624 m
Rotor inertia, Jr 1.0209375 × 10−7 kg.m2

Inertia moment along X axis, Jxx 0.0000582857 kg.m2

Inertia moment along Y axis, Jyy 0.0000716914 kg.m2

Inertia moment along Z axis, Jzz 0.0001 kg.m2

Values taken from Parrot Minidrone Simulink hardware package.

The thrust and moment generated by the rotor rely on the rotor’s physical properties,
the air density, and the speed at which the rotor is spinning. The term Ω2 indicates that
the thrust and moment are in proportion to the square of the angular velocity of the rotor,
which is a key aspect in understanding how changes in rotor speed affect the generated
thrust and moment.

The total moments are formulated below:

τx =

√
2

2
L(T1 − T2 − T3 + T4)

τy =

√
2

2
L(−T1 − T2 + T3 + T4)

τz = (M1 − M2 + M3 − M4)

(5)

where L denotes the distance from the quadrotor mass centre to the rotor rotation axis.
The control inputs Ui where i ∈ 1, . . . , 4 are described as follows:


U1
U2
U3
U4

 =


1 1 1 1√
2

2 L −
√

2
2 L −

√
2

2 L
√

2
2 L

−
√

2
2 L −

√
2

2 L
√

2
2 L

√
2

2 L
kM1
KT1

kM2
KT2

kM3
KT3

kM4
KT4




T1
T2
T3
T4

 (6)

where U1 is for the whole thrust added on the quadrotor , U2 represents the Roll torque τx ,
U3 represents the pitch torque τy and U4 represents the Yaw torque τz.
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2.1.4. Translational Subsystem

The equations of motion that describe the system behaviour along the three Cartesian
axes in the inertial reference frame (IRF) are

mẌ = mg + RT
ϕθψu1ZE (7)

where m is the quadrotor mass, g is the acceleration due to the gravity of Earth, RT
ϕθψ is the

coordinate transformation matrix from Equation (1) and zE =
[
0 0 1

]T is a unit vector
in the inertial frame of reference (IRF).

Equation (7) is then expanded and rewritten as follows:ẍ
ÿ
z̈

 =

 0
0
−g

+

CϕSθCψ + SϕSψ

CϕSθSψ − SϕCψ

CϕCθ

U1

m
(8)

2.1.5. Rotational Subsystem

The rotational dynamics of a quadrotor are derived by utilizing the Newton–Euler
equations as follows:

Jω̇B + ωB × JωB + Mg = τ (9)

where J is the quadrotor inertia matrix, Mg is the gyroscopic moment generated by the

rotors and τ =
[
τx τy τz

]T represents the cumulative effect of moments exerted on the
quadrotor. The gyroscopic moment can be characterized as

Mg = ωB ×
[
0 0 Jrωr

]T (10)

where Jr denotes the propeller’s inertia and ωr represents the relative speed of the propeller,
which is defined as

Ωr =
4

∑
i=1

(−1)i+1ωi (11)

Consequently, the attitude dynamics of the system can be summarised by using Equa-
tions (6) and (9) as follows:

ϕ̈
θ̈
ψ̈

 =


(

Jyy−Jzz
Jxx

)
θ̇ψ̇(

Jzz−Jxx
Jyy

)
ϕ̇ψ̇(

Jxx−Jyy
Jzz

)
ϕ̇θ̇

− JrΩr


θ̇

Jxx
−ϕ̇
Jyy

0

+


U2
Jxx
U3
Jyy
U4
Jzz

 (12)

Subsystems (8) and (12) together represent the full dynamic description of a quadrotor
system. As can be observed, the equations that describe the rotational motion of the
quadrotor are completely independent of the translational elements X, Y and Z and their
derivatives. However, the quadrotor translational motion is dependent on the rotational
components ϕ, θ and ψ. Therefore, the overall system is made up of two subsystems with
the rotational system in the inner loop, while the translational subsystem in the outer
loop generates the required reference signals for the inner loop in the form of desired
Roll and pitch angles to track the desired location. Effective attitude control, therefore, is
critical to ensure that the UAVs can perform a wide range of tasks that can range from
simple hovering to complex aerial manoeuvrers while maintaining stability and responding
appropriately to external disturbances like wind since the UAV’s position is controlled
indirectly by manipulating the pitch, Roll and Yaw.

2.2. Model-Based U-Control Platform

Figure 3 shows the model-based U-control framework [8,20]; the controller consists
of two parts, with the first being the universal controller (Gcl) which is to be designed
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completely independently from the plant, according to the desired indices, and the second
part being the plant inverse (G−1

p ). Consequently, the primary objective in the entire
designing process boils down to the determination of the inverse G−1

p of the plant Gp that
is to be regulated and the combination of the plant inverse with the specified universal
controller Gcl .

The following is a brief overview highlighting the up-to-date research of the U-control
design framework approach. In [20], the authors propose a pole placement control strategy
for complex dynamic systems by leveraging U-models, demonstrating improved system
stability and performance. In [8], a general U-block model-based design procedure is
proposed that aims to simplify the control of a class of complex polynomial difference
equations. The methodology effectively transforms nonlinear control problems into linear
ones using U-models, facilitating easier controller design and implementation. Further
developing on the previous work, [9] extends the U-model methodology to rational non-
linear systems, offering insights into controlling more complex dynamics, highlighting
the flexibility of U-models in addressing the challenges posed by rational nonlinearities in
control systems. In [21], the authors address the issue of input delay in nonlinear processes,
using a U-model-based predictive control approach that significantly enhances control
accuracy and system responsiveness, showcasing the practical applicability of U-models in
real-world scenarios. More recently, [22] explores the application of U-model-augmented
control in the context of underactuated unmanned marine robotics. Ref. [10] presents
solutions for reversing dynamics based on the U-model and [11] outlines a comprehensive
U-control framework for continuous-time systems. Ref. [16] consolidates the U-model and
U-control methodologies, providing a detailed analysis of their application in complex
dynamic systems.

Remark 1. It is worth noting that robust flat control (RFC) [23,24] has been a very effective
approach using dynamic inversion to enhance the control system design in a large class of wheeled
mobile robots, UAVs and other motion systems. In comparison with model-based U-control, RFC
needs coordinate transform to achieve the dynamic inversion to determine the control input and
the model-based U-control directly takes dynamic inversion from the plant U-model realisation,
which is straightforward in the reformulation of the plant model into a control-oriented time-varying
model [16]. Regarding the robustness of the two approaches, RFC could be more effective than model-
based U-control. Surely, RFC provides a very useful reference to improve U-control robustness and
we will provide simulation comparison as well in future publications.

Figure 3. U-control framework.

2.2.1. Design of U-Controller Gcl

To begin the process of designing the universal controller, assign the desired system
performance in advance with the selection of an ideal closed-loop transfer function as

Y(s)
R(s)

= G(s) =
ω2

n
s2 + 2ζωns + ω2

n
=

4
s2 + 4s + 4

(13)

where ζ = 1 is the selected damping ratio and ωn = 2 is the chosen undamped natural
frequency, so that the system output response is critically damped to prevent any overshoot,
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ensuring that the system returns to the desired state in the shortest possible time without
oscillating [25,26].

The determination of the universal controller treats the pair of the plant and its inverse
as a unit in the feedback control system, and then takes the inverse of the closed-loop
transfer function in Equation (13) as follows:

Gcl =
G

1 − G
=

4
s2 + 4s

(14)

2.2.2. U-Polynomial Realisation

Before calculating the plant inverse, the system needs to be converted to its U-
realisation (either U-Polynomial or U-state space) depending on the system. A brief
overview of the realisation of the system to its appropriate U-realisation is given in this
section before proceeding to controller design.

Consider a general SISO continuous-time polynomial system defined with (y(t), λ(t)
and u(t)) where y(t) ∈ R and u(t) ∈ R are the system output and system input, respec-
tively, at time t ∈ R+, which is described as follows:

Υ(t)(M) =
J

∑
j=0

λj(ΥM−1, (ΞN−1, µ)
(

u(t)(N)
)j

, M ≥ N (15)

where the term y(t)(M) represents the Mth-order derivative of the output y(t) and the
term u(t)(N) represents the Nth-order derivative of the system input u(t), while the term
λj(∗) ∈ R represents a time-varying parameter that absorbs all the other inputs and outputs.

ΥM−1 =
[
y(t)(M−1), y(t)(M−2), ...y(t)

]
∈ RM

ΞN−1 =
[
u(t)(N−1), u(t)(N−2), ...u(t)

]
∈ RM

µ =
(

u(t)(N)
)j

(16)

Consider an example showcasing the U-realisation of a classical nonlinear polynomial
representation [27]:

z̈ = z + (z − 2)ż + (4 + z2)v + (z + ż2)v2 (17)

The U-model realisation, then, is
z̈ = λ0 + λ1v + λ2v2

λ0 = z + (z − 2)ż

λ1 = (4 + z2)

λ2 = (z + ż2)

(18)

Comparing Equations (17) and (18), the model’s U-realisation is quite forthright.
The U-realisation is the same as the original polynomial in attributes but is expressed in a
control-oriented structure.

2.2.3. U-State Space Realisation

Consider a general SISO state space description as follows:{
Q̇ = G(Q, u)

y = H(Q)
(19)

where u, y,∈ R, Q ∈ Rn, G ∈ Rn → and H ∈ R are the smooth mappings u → Q ∈ R → Rn

and Q → y ∈ Rn → R, respectively.
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This state space representation of the system is expressed as a multilayer polynomial
representation as follows: 

q̇1 = G1(q1, q2, . . . , qn),

q̇2 = G2(q1, q2, . . . , qn),
...

q̇n = Gn(q1, q2, . . . , qn, u),

y = H(q1, q2, . . . , qn)

(20)

Convert this multilayer polynomial expression into a multilayer U-realisation as

q̇1 =
n

∑
i=0

λ1ig1i(q2),

q̇2 =
n

∑
i=0

λ2ig2i(q3),

...

q̇n =
n

∑
i=0

λnigni(u),

y =
n

∑
i=0

hi(q1, q2, . . . , qn)

(21)

where λ(∗) and g(∗) are the time-varying parameters absorbing the remaining terms in
the state space model. It is worth mentioning that the U-state space realisation is a form
of expanded multilayer U-Polynomial expression because each line of the U-state space
realisation can be considered a U-Polynomial by itself.

In case Equation (21) is unable to exhibit the explicit association between the system
output term y and the input term u, differentiate y and substitute to xi items in system (21)
with the polynomial expression for each xi in Equation (20). This iterative process should
be carried out until an explicit expression between y(m) and u is exhibited, where y(m)

denotes the mth derivative of the model output y.

2.3. Determining the Dynamic Inverse

After establishing a direct association between y(m) and u in system (21), the system
equation can be restructured as follows:

y(m) = λ1(q1, q2, . . . , qn−1, qn) + λ2(q1, q2, . . . , qn−1, qn)u (22)

where λi (i ∈ 1, 2, . . .) is a time-varying gain vector soaking up all the state variables.
Equation (22) can be identified as an alternative U-model polynomial described by
Equation (15). The output of the plant inverter ui can be calculated by reorganising and
isolating the input term u in Equation (22):

u =
y(m) − λ1(q1, q2, . . . , qn−1, qn)

λ2(q1, q2, . . . , qn−1, qn)
(23)

In addition, the state variables qi are worked out by the integral of q̇i associated with
the plant. This relationship is expressed as qi = q̇i · 1

s , where 1
s is the integral operation of

the Laplace transform.
For illustration purposes, consider a simple nonlinear plant modelled by
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q̇1 = q2

q̇2 = −q1 − sin (q2) + u
y = q1

(24)

Since no direct relation between the input u and output y can be observed here, y is
differentiated repeatedly till an expression linking the two explicitly is obtained.

ÿ = −q1 − sin (q2) + u (25)

Equation (25) establishes a direct link between the input and output, making it a viable
option for dynamic inversion.

The associated U-realisation and the dynamic inverse is then
ÿ = λ0 + λ1u
λ0 = −q1 − sin (q2) ; λ1 = 1
ui = ÿ−λ0

λ1
= ÿ + q1 + sin (q2)

(26)

With the aim of assigning the plant output y equivalent to the output (v) of the con-
troller (Gcl), the plant dynamic inversion G−1

p can be computed. This involves substituting
the highest order of the y term with v of the same order. Following this, the expression is
integrated twice to yield y:

y =
λ0

s2 +
λ1

s2 u (27)

To directly determine the second-order derivative v̈, the universal controller can be
modified directly to ensure that the same dynamic orders of v and y are in the designed
control system.

Remark 2. For the system represented by Equation (24), the method to accomplish this goal is
through multiplication of the second-order Laplace operator s2 with the universal controller Gcl
to yield v̈ = s2v. Consequently, the output y is substituted by the second-order derivative of the
invariant controller Gcl output, denoted as v̈. Therefore, u = q1 + sin q2 + v̈ results in GpG−1

p = 1.
Furthermore, the universal controller Gcl from Equation (14) can be rewritten as follows:

Gcl =
4s2

s2 + 4s
(28)

2.4. Compensated Plant Inverter G−1
c Design

As shown in Figure 4, expanded from Figure 3 , this study introduces a sliding mode
control (SMC) into model-based U-control for MIMO systems to enhance their robustness
through the addition of a robust SMC to accommodate errors induced from the plant
inverter G−1

p due to the plant uncertainties and system disturbances. To determine G−1
c ,

for a general second-order system that is defined as
q̇1 = g1(q1, q2)

q̇2 = g2(q1, q2) + h(q1, q2)u + d
y = q1

(29)

where gi ∈ Rn is a smooth function absorbing all states, h represents the relationship
between state variables and control outputs u and d are the disturbance of where |d| < d̄.

The state error vector is defined as follows:{
q̃1 = q1 − qd

q̃2 = q̇1 − q̇d
(30)
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where q̇1 and q̇d are the derivatives of the plant output q1 and desired output qd, respectively.
Then, we can define a sliding mode manifold σ by [28]

σ = c1q̃1 + q̃2 (31)

And its derivative σ̇ is calculated as follows:

σ̇ = c1(q̇1 − q̇d) + (q̇2 − q̈d) (32)

where ci ∈ R+and i ∈ R+ are the coefficient specifying a stable Hurwitz polynomial and
the asymptotically convergent speed [28].

Similar to the state space expression, replace the highest-order derivative of the desired
output q̈d with vs. Consequently, the lower-order derivatives of the desired output qd are

q̇d = vs.
(

1
s

)
qd = vs.

(
1
s

)2 (33)

where the term 1
s is the Laplace integration operator. Accordingly, convert error

Equations (30) and (32) into q̃1 = q1 − v
(

1
s

)2

q̃2 = q̇1 − v
(

1
s

) (34)

σ̇ = c1

(
q̇1 − v

(
1
s

))
+ (q̈1 − v) (35)

The calculation process for the mth-order derivative of state q1, i.e., m
q1

, is found by
continuously differentiating its lower-order derivatives; the detailed process is described
in [17]. In the case of a second-order system, as described here, m = 2, so q̈1 is calculated as{

q̇1 = G1(q1, q2) = G1(q1, q2)

q̈1 = ∂G1
∂q1

G1 +
∂G1
∂q2

(G2 + hus + d)
(36)

Substituting this value of q̈1 in Equation (35), it is then rewritten as follows:

σ̇ = c1

(
q̇1 − v

(
1
s

))
+

((
∂G1

∂q1
G1 +

∂G1

∂q2
(G2 + hu + d)

)
− v

)
(37)

The robust sliding mode controller output is made of two parts, with the first being
the equivalent control ueq and the second part being the switching control usw. To obtain
the equivalent controller output, let σ̇ = 0 [28].

Similarly , the USMC final controller output consists of two parts, with the first being
from the ideal plant inverse G−1

p , i.e., ideal inversion output ui and the compensated
inversion output uc. Equating them and reorganising the terms gives the following:

ui + uc = ueq + usw

uc = usw + ueq − ui
(38)

Differentiating the system output y from Equation (29) until you obtain a direct
relationship between y and u shows

ẏ = q̇1 = q2

ÿ = q̈1 = q̇2 = g(q1, q2) + u = λ0 + λ1u
(39)
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In Equation (39), the term q̇2 is rewritten into its U-model equivalent form, i.e.,
λ0 + λ1u. Referring to the relationship between the plant input u and the system out-
put y, the ideal inverted output, denoted as ui, can be determined as follows:

ui =
ÿ − λ0

λ1
=

v − λ0

λ1
(40)

Replacing the term q̇2 with its U-model equivalent from Equation (35) gives

σ̇ = c
(

q̇1 − v
1
s

)
+ (λ0 + λ1u − v) (41)

Setting σ̇ = 0 to calculate ueq gives

ueq =
v − c

(
q̇1 − v 1

s

)
− λ0

λ1
(42)

usw = −(εsign(σ) + kσ) (43)

where ε = (d̄ + ρ) with ρ > 0 and k > 0. Then, from Equation (38),

uc = usw + ueq − ui

= −(εsign(σ) + kσ) +
v − c

(
q2 − v 1

s

)
− λ0

λ1
− (v − λ0)

λ1

= −(εsign(σ) + kσ) +
�v − c

(
q2 − v 1

s

)
−��λ0 − �v +��λ0

λ1

= −(εsign(σ) + kσ) +
−c

(
q2 − v 1

s

)
λ1

(44)

where c ∈ R+, k ∈ R+ and ε =∈ R+ are design parameters associated with the Sliding
Mode Compensator. This uc represents the compensator output and together with the ideal
inverter output ui forms the final overall controller output us, as can be shown in Figure 4.

Figure 4. U-model dynamic inversion with compensator.

Remark 3. To reduce the effects of the chattering effect, replace the discontinuous function sign(σ)
with a smooth sigmoid function [28] as sign(σ) ≈ σ

|σ|+ξ
, where ξ is a small positive scalar and it

can be observed that, point-wise,

lim
ξ→0

σ

|σ|+ ξ
= sign(σ)

Equation (44) can therefore be rewritten by substituting the sign(∗) function as follows:

uc =

−(ε
σ

|σ|+ ξ
+ kσ) +

−c
(

q2 − v 1
s

)
λ1

 (45)
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Taking the final USMC controller output, us = uc + ui, and substituting in the value
of us in Equation (37), we end up with the following:

σ̇ = −(εsign(σ) + kσ) +
∂G1

∂q2
d (46)

To analyse the stability of this approach, we use Lyapunov theory ,where a typical
Lyapunov candidate function and its time derivative are defined as

V(σ) =
1
2

σ2 ≥ 0

V̇(σ) = σσ̇
(47)

using control input u that stabilizes the system satisfying σ̇ = −(εsign(σ) + kσ) + ∂G1
∂q2

d,
where k is a positive gain and ε = (d̄ + ρ) , with ρ > 0. Then, substituting the control law
into the time derivative,

V̇(σ) = σσ̇ = σ

(
−εsign(σ)− kσ +

∂G1

∂q2
d
)

= −ε|σ| − kσ2 + σ

(
∂G1

∂q2
d
)

= −(d̄ + ρ)|σ| − kσ2 + σ

(
∂G1

∂q2
d
)
≤ −ρ|σ| − kσ2 ≤ 0

(48)

and by selecting gains where k > 0 and ε = (d̄ + ρ) , where ρ is a positive number that is
greater than |d| to cancel out the effect of disturbances, it follows that

V̇(σ) ≤ 0 (49)

This demonstrates that when appropriate positive gains are used in the control law,
V̇(σ) is negative semi-definite, leading to stability.

Secondly, the controller Gcl(s) is used to specify the desired system performance
in Equation (13) , where ζ = 1 represents the selected damping ratio and ωn = 2 is
the undamped natural frequency so that the closed loop control system generates a fast
monotonic response and zero steady state error to level reference. The corresponding
characteristic equation D(s) and its roots s1 and s2 are

D(s) = s2 + 4s + 4 = 0

s1, s2 = −2
(50)

Since the first column of the Routh array is [1, 4, 4] and all its elements are positive,
indicating no change of sign, and all the poles are in the left half of the s-plane, the system
as a whole is Routh-stable while the inner loop dynamic inversion results in GpG−1

p → 1.

3. Main Results
3.1. Model-Based U-Control of the Rotational Subsystem

The Roll of the quadrotor system is represented by the following subsystem:

ẋ1 = ϕ̇ = x2

ẋ2 = ϕ̈ =
Jyy − Jzz

Jxx
θ̇ψ̇ − JrΩr

θ̇

Jxx
+

U2

Jxx

(51)

The U-realisation of the Roll subsystem is
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ϕ̈ = λ0 + λ1U2

λ0 =
Jyy − Jzz

Jxx
θ̇ψ̇ − JrΩr

θ̇

Jxx

λ1 =
1

Jxx

(52)

The control input term U2 is determined by

U2 =
ϕ̈ − λ0

λ1
(53)

Similarly, for the pitch channel, the U-controller is designed by first converting the
state space subsystem into its U-control expression and then extracting the control input
term as above.

ẋ3 = θ̇ = x4

ẋ4 = θ̈ =
Jzz − Jxx

Jyy
ϕ̇ψ̇ − JrΩr

−ϕ̇

Jyy
+

U3

Jyy

(54)

The U-model realisation of the pitch subsystem is

θ̈ = λ0 + λ1U3

λ0 =
Jzz − Jxx

Jyy
ϕ̇ψ̇ − JrΩr

ϕ̇

Jyy

λ1 =
1

Jyy

(55)

We can work out the control input term U3 using

U3 =
θ̈ − λ0

λ1
(56)

Again, repeating the same process as before by converting the state space subsystem
into its U-control realisation, the Yaw subsystem can therefore be written as follows:

ẋ5 = ψ̇ = x6

ẋ6 = ψ̈ =
Jxx − Jyy

Jzz
ϕ̇θ̇ +

U4

Jzz

(57)


ψ̈ = λ0 + λ1U4

λ0 =
Jxx − Jyy

Jzz
ϕ̇θ̇

λ1 =
1

Jzz

(58)

The control input term U4 can now be calculated as

U4 =
ψ̈ − λ0

λ1
(59)

3.2. Model-Based U-Control of Translational Subsystem

For the Altitude channel, since there is a direct control input U1 for its regulation,
we similarly designed the channel to follow that of the rotational subsystems where they
are processed as a series of multiple SISO systems. For the position control along the
X and Y directions, the control is indirect in the sense that a decoupling algorithm needs to
calculate the specified Roll (ϕd) and pitch (θd) that are passed onto the attitude controller
to successfully track the desired trajectories.
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3.2.1. Altitude Controller

The Altitude subsystem has the following principle model:

ẋ7 = ż = x8

ẋ8 = z̈ = −g + (CϕCθ)
U1

m

(60)

Converting this into the U-control realisation, the Altitude subsystem is
z̈ = λ0 + λ1U1

λ0 = −g

λ1 =
(CϕCθ)

m

(61)

The control input term U4 can now be calculated as follows:

U1 =
z̈ − λ0

λ1
(62)

3.2.2. Model-Based Position U-Controller

From Figure 5, it is clear that the outer loop deals with the positioning by generating
the desired setpoints for Roll (ϕd) and pitch (θd), which are then passed onto the rotational
subsystem as reference co‘mmands. The desired trajectories xd and yd are passed on to
the position controller along with the Yaw output and thrust as the change in Yaw affects
the heading, and, therefore, trajectories need to be calculated accordingly and the vertical
and horizontal thrust components from Roll and pitch manoeuvres will affect the Altitude
thrust. In order to address these issues, virtual inputs ux, uy and uz are used as they
simplify and decouple the complex underactuated dynamics of the quadrotor, making it
easier to design and implement control strategies. The decoupling algorithm simplifies
the design of controllers because each virtual input can be associated with a specific axis
or motion:

• ux controls the Roll and lateral motion (sideways movement).
• uy controls the pitch and longitudinal motion (forward/backward movement).
• uz controls the thrust and vertical motion (up/down movement).

One can formulate the required pitch θd and Rollϕd angles using the following decou-
pling algorithm [29]: 

ϕd = arcsin
(

m
ux sin(ψ)− uy cos(psi)

u1

)
θd = arctan

(
ux cos(ψ) + uy sin(psi)

uz

) (63)

The position of the system is determined by the following subsystem:[
ẍ
ÿ

]
=

[
(CϕSθCψ + SϕSψ)
(CϕSθSψ − SϕCψ)

]
U1

m
=

[
ux
uy

]
(64)

Converting these into the U-control realisation, the position control subsystem is
as follows: {

ẍ = λ0 + λ1ux ; where λ0 = 0 ; λ1 = 1

ÿ = λ0 + λ1uy ; where λ0 = 0 ; λ1 = 1
(65)

The virtual control inputs uy and uy can now be calculated as



Drones 2024, 8, 599 16 of 24

ux =
v − λ0

λ1
; uy =

v − λ0

λ1
(66)

Figure 5. Schematic of the proposed control approach.

Implementing the derived control laws, the simulated system performance can be seen
in Figure 6. It is noted that the model-based U-dynamic inversion approach is sensitive
to model inaccuracies and its performance deteriorates in the presence of unmodelled
dynamics or disturbances, resulting in model–inverse mismatch (i.e., Gp × G−1

p ̸= 1).
To accommodate the problem, a robust compensator with a Quasi-Sliding Mode [28] is
added to strengthen the stability and eliminate convergent error.

Figure 6. Trajectory tracking performance of UMDI compared with a tuned PID controller. (a) Trajec-
tory in X coordinate. (b) Trajectory in Y coordinate. (c) Trajectory in Z coordinate. (d) Trajectory in
Yaw channel.

3.3. Robust Compensator Design Procedure

Following from Section 2.4, a robust Sliding Mode-based Compensator is implemented
to improve the performance of the UMDI due to its sensitivity to model inaccuracies.
Considering the Yaw subsystem from earlier, defined by its state space Equation (57),
U-state space realisation (58) and finally the ideal inversion defined by Equation (59),
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ẋ5 = ψ̇ = x6

ẋ6 = ψ̈ =
Jxx − Jyy

Jzz
ϕ̇θ̇ +

U4

Jzz

(67)


ψ̈ = λ0 + λ1U4

λ0 =
Jxx − Jyy

Jzz
ϕ̇θ̇

λ1 =
1

Jzz

(68)

The ideal inversion output term U4 is calculated directly as there is a direct relationship
between input u and output ψ:

U4 =
ψ̈ − λ0

λ1
=

v − λ0

λ1
(69)

Based on Equations (34) and (35), the error equations for m = 2 (i.e., a second-order
system) are as follows: q̃1 = ψ − v

(
1
s

)2

q̃2 = ˙̃q1 = ψ̇ − v
(

1
s

) (70)

The sliding mode manifold σ and its derivative σ̇ are given by

σ = cq̃1 + q̃2

σ̇ = c ˙̃q1 + ˙̃q2 = c
(

ψ̇ − v
1
s

)
+ (ψ̈ − v)

(71)

Replacing the term ψ̈ with its U-model equivalent from Equation (58) gives

σ̇ = c
(

ψ̇ − v
1
s

)
+ (λ0 + λ1u − v) (72)

Setting σ̇ = 0 to calculate ueq gives

ueq =
v − c

(
ψ̇ − v 1

s

)
− λ0

λ1
(73)

usw = −(εsign(σ) + kσ) (74)

From Equation (38),

uc = usw + ueq − ui

= −(εsign(σ) + kσ) +
v − c

(
ψ̇ − v 1

s

)
− λ0

λ1
− (v − λ0)

λ1

= −(εsign(σ) + kσ) +
�v − c

(
ψ̇ − v 1

s

)
−��λ0 − �v +��λ0

λ1

= −(εsign(σ) + kσ) +
−c

(
ψ̇ − v 1

s

)
λ1

= −
(

ε
σ

|σ|+ ξ
+ kσ

)
+

−c
(

ψ̇ − v 1
s

)
λ1

(75)

where c ∈ R+, k ∈ R+ and ε ∈ R+ are design parameters associated with the Sliding Mode
Compensator. The results after the implementation of the compensator can be observed in
Figure 7 showcasing elimination of the steady state error and improved response time.
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Figure 7. Comparison of the Yaw channel output with and without a compensator.

Following a similar approach, robust compensators for the Roll, pitch and Altitude
channels can be designed using the design parameters in Table 2.

Table 2. Compensator design parameters.

c k ξ

Altitude Z (m) 10 1 0.1
Yaw (ψ) (radians) 10 5 0.1
Roll (ϕ) (radians) 10 10 0.03
Pitch (θ) (radians) 10 10 0.03

Remark 4. Equation (75) gives the compensated controller output uc, where usw represents the
switching controller for driving the system to the sliding surface (or sliding boundary in this specific
case), ueq represents the equivalent control that ensures the system state stays inside the sliding
boundary and ui represents the ideal plant inversion calculated using the UMDI controller.

To compare the simulated performance of the designed controllers quantitatively,
the Root Mean Square values of the simulated tracking errors are calculated in Table 3.
Figure 8 shows the flight trajectories in 3D and 2D coordinates. Figure 9 shows the time
sequence of the trajectories in X, Y, Z directions, and Yaw channel respectively. It can
be observed that while both PID and the USMC controllers can drive the quadrotor to
the desired trajectory, the U-dynamic inversion-based controller suffers from deteriorated
performance due to unmodelled dynamics/parameters and therefore is unable to accurately
track the desired trajectory.

Table 3. Root Mean Square Errors (RMSEs) in trajectory following.

PID UMDI USMC

X (m) 0.1026 0.2749 0.1113
Y (m) 0.1589 0.2885 0.0860
Z (m) 0.0980 0.1159 0.1244

Roll (ϕ) (radians) 0.0025 0.0304 0.0107
Pitch (θ) (radians) 0.0021 0.0327 0.0105
Yaw (ψ) (radians) 0.0543 0.0809 0.0715
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Figure 8. (a) The reference and quadrotor flight trajectory in 3D space using the designed controllers.
(b) A 2D overview of the flight trajectory.

Figure 9. (a) Comparison of positioning in X coordinate. (b) Comparison of positioning in Y
coordinate. (c) Comparison of positioning in Z coordinate. (d) Comparison of trajectory tracking in
Yaw channel.

Flight tests to verify the simulation results were performed on the Parrot Mambo
Minidrone using the same controller parameters. While the fully actuated subsystem
(Altitude and Yaw) showed good tracking (Figure 10), the position tracking was unstable
and exhibited very high chattering, suggesting that the measures taken while designing
the controller, e.g., the introduction of the sigmoid function to replace the discontinuous
function sign(σ) to reduce system chattering, were inadequate. The outer loop that gener-
ates the desired pitch and Roll angles for position control (Equation (63)) uses the Altitude
controller output terms u1, uz and Yaw ψ; chattering in these terms generates unstable
trajectories, causing the minidrone to become unstable. Since the minidrone is a very light
weight and has a small test platform with very low inertia, it cannot handle such mechanical
chattering and therefore becomes unstable. However, the designed controller did show
improved performance in both Yaw and Altitude channels, reducing the steady state error
and achieving an overall smoother hover performance, as can be seen in Figure 11.
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Figure 10. Performance of proposed USMC controller compared with a tuned PID controller. (a) Yaw
channel. (b) Altitude channel with hovering command.

Figure 11. USMC approach results compared with a tuned PID controller. (a) An enlarged view of
the Yaw channel showing the steady state error. (b) An enlarged view of the Altitude channel in
hovering mode comparing the two controller performances.

Table 4 shows the effectiveness of these experimental results and compares them to
the simulated results from earlier by using the RMS errors. It can further be observed from
Figure 12 that the experimental results follow the simulated results more closely using the
proposed approach when compared to a PID controller. This can be partially explained
by the fact that the PID gains that were tuned for simulations need further tuning for
flight tests, i.e., the performance of PID controllers varies in simulated and real flight tests.
In contrast, the proposed approach after simulations is quite straightforward and does not
need any further modifications for successful implementation during flight tests.

Table 4. Root Mean Square Errors (RMSEs) in trajectory following for real flight tests.

PID USMC

Z (m) 0.0501 0.0138
Yaw (ψ) (radians) 0.0284 0.0177
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Figure 12. Comparison of simulation and flight test performance for USMC approach and tuned
PID controller. (a) PID simulation result compared to flight test result for Yaw channel. (b) USMC
simulation result compared to flight test result for Yaw channel. (c) PID simulation result compared
to flight test result for Altitude channel. (d) USMC simulation result compared to flight test result for
Altitude channel.

4. Discussions

Comparing the results of a tuned PID controller, a UMDI controller and the compen-
sated robust USMC, it can be concluded that the UMDI controller results in deteriorated
performance in the presence of unmodelled disturbances, but the addition of a robust
compensator improves the performance, as can be seen in Table 3 where the RMSE is taken
to statistically analyse the performance on controllers. It can be concluded that if a system
is modelled accurately without outside disturbance, the UMDI-based controller is effec-
tive since there is no model–inversion mismatch and, therefore, Gp.Gp

−1 = 1. However,
real dynamic systems always have some outside interference and unmodelled dynamics;
therefore, these disturbances and model inaccuracies need to be taken into account while
designing a controller. Therefore, some sort of a compensator is a must while using this
approach to impart some robustness to the system. The Sliding Mode-based Compensator,
while ensuring robustness, introduces chattering. This is partly fixed by using a Quasi-
Sliding Mode control to approximate the sign(∗) function; however, that does not drive
the dynamics to the sliding surface but rather to a sliding boundary, therefore possibly
affecting system performance. Other possible ways to avoid chattering effects need to be
studied and integrated with U-control possibly with a higher-order sliding mode approach
like super twisting sliding mode. The resultant simulation plots show that the new proce-
dure successfully addresses the challenges involved, like system underactuation, coupling,
unmodelled dynamics and disturbances.

There are some warnings that one needs to be aware of in the implementation of the
model-based U-control for UAV:
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1. The actuator saturation could limit the SMC for large control inputs.
2. Comparing the model-free trial-and-error PID (which is time-consuming in the gain

tuning and difficult to achieve desired performance) embedded in the Simulink,
the model-based U-control requires a nominal model for each different type of UAV,
so it requires more design and implementation expertise/cost in calibration.

3. More effective model-free control with merits in concise implementation and easy
robust tuning could be considered in the next stage of this research.

5. Conclusions

This paper integrates a U-model-based dynamic inversion with an SMC compensator
to control the trajectory of a quadrotor system flight operation. The designed controller
shows strong stability and accurate setpoint tracking, even facing the model uncertainties.

On the whole, after comparing the results and relaxing implementation constraints, the
built-in PID control is still preferred over advanced approaches due to its simplicity, even
if tuning it involves some trial-and-error and guesstimating. The unmodelled dynamics
and especially the external disturbances in the Roll and pitch channels destabilize the
system and deteriorate its performance. This can affect the system performance, greatly
preventing its implementation on physical systems. While the designed compensator
improves the performance of the controller greatly, it might not be a feasible solution when
running hardware-in-loop tests due to the chattering effects introduced by sliding mode
control. Therefore, to ensure robustness along with practical applicability there is a need to
integrate a chattering-free (or reduced chattering) alternative controller that can provide
robustness and improve performance. Possible future work should be focused on this
where the bounded disturbances/model inaccuracies can be lumped together and studied.
Another alternative would be to implement a chattering-free robust controller like a super
twisting [28] controller design in future work. Model-free control approaches [30–32] can
also provide a subject for exploration and their integration with U-control can improve
overall performance and system design simplicity. Furthermore, comprehensive tests of
the different UAVs are on the cards for future studies.
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