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Abstract—With increasing reliance on Cyber Physical Sys-
tems (CPS) for automation and control in Industry 4.0 and
5.0, ensuring their security against cyber threats has become
paramount. Traditional security mechanisms, constrained by
operational continuity and safety requirements, offer limited
proactive threat detection capabilities against sophisticated Ad-
vanced Persistent Threats (APT). This research introduces the
use of a Digital Twin testbed for repeatable simulation of diverse
threat scenarios, generation of rich and varied datasets that
depict a cyber incident, along with the ability to train time-series
classification models for attack recognition. Our research aims
to overcome the limitations of physical testbeds and challenges
of data scarcity for Machine Learning (ML) or Deep Learning
(DL) model development. By leveraging Digital Twins for data-
driven analysis, this study proposes the use of supervised DL
for accurate threat detection and classification in CPS within
smart manufacturing. This paper demonstrates that Digital Twins
testbed provides a cost-effective option for generating datasets
to train and test supervised deep learning-based time series
classification model for threat detection in CPS. It also discusses
the benefits and limitations of the proposed testbed and suggests
future research areas.

Index Terms—digital twin, testbed, cyber security, threat
simulation and detection, cyber physical systems

I. INTRODUCTION

A. Challenges in Securing Cyber-Physical Systems (CPS)

In the realms of Industry 4.0 and 5.0, smart manufactur-
ing often uses computerized and Internet-connected CPS to
automate industrial processes, boosting productivity and fos-
tering enhanced human-machine collaboration [1]. However,
securing these systems present unique challenges, as they may
have been designed historically without connectivity in mind,
and they require continual uptime and so can be difficult to
update. Therefore, strategies such as security through obscurity
or isolation have been traditionally employed to protect these
systems [2].

Cyber attacks targeting CPS can have severe consequences
[3], as seen in the Maroochy water treatment plant attack in
2000, where a cyber incident led to the spillage of 800,000
liters of untreated sewage, affecting the local community. Sim-
ilarly, the cyber attack on Ukraine’s electric grid demonstrated
the APT attack groups have the capabilities to cause extensive
power outage. These examples highlight the urgent need for
robust threat detection system.

B. Use of Testbeds for Security Experimentation

Testbeds provide a scaled-down, controlled replica envi-
ronment of a complex industrial system, and are typically
developed for high-risk industries where failures could have
severe implications for public health, safety, and the environ-
ment [4], such as safety-critical manufacturing [5] and railway
infrastructure [6]. These testbeds allow researchers to examine
potential threats, test security measures, collect data, and train
personnel in a risk-free and controlled environment.

While physical testbeds provide a realistic environment for
experimentation, using physical testbeds come with significant
drawbacks, including high setup and maintenance costs [7],
confidentiality issues with real production data [8], [9], and
the impracticality of replicating full-scale production environ-
ments. These inherent limitations often lead to difficulty in
reproducing or verifying the work of others across the research
community. Recognising these challenges, virtual testbeds,
often based on simulation software such as Simulink [10],
have emerged as a viable option for a more flexible and cost-
effective approach as shown by [11] and [12].

Building on this notion, our research explores the potential
of Digital Twins, which are virtual replicas of real-world pro-
cesses, systems, or objects, as a testbed for simulating various
threats in CPS and leveraging deep learning-based time series
classification for advanced detection. This paper introduces
a Digital Twin testbed that integrates Factory I/O [13], a
simulation software with virtual sensors and actuators, and
OpenPLC [14], an open-source programmable logic controller
(PLC) platform, to create a virtual representation of physical
manufacturing processes.

Our approach is novel in its focus on using supervised mod-
els for classifying both normal and advanced threat scenarios
in CPS, providing actionable insights for enhanced situational
awareness and rapid incident response. Our testbed enables a
cost-effective, risk-free platform that facilitates realistic and
repeatable threat simulation, data collection, model develop-
ment, and evaluation. Furthermore, it addresses the limitations
of traditional security mechanisms, and offers deeper insights
into CPS dynamics for predictive security analytics.



C. Research Questions and Contributions

To overcome the challenges in industrial cyber security
research and explore alternatives to physical testbeds, this
paper aims to address the following two research questions:

1) To what extent can Digital Twins simulate varied threat
scenarios in CPS to create robust datasets for enabling
a proactive data-driven threat detection mechanism?

2) Can threat detection models trained on data from Digital
Twins accurately classify threats in smart manufacturing
CPS using time series classification with deep learning?

To answer the above questions, we leverage existing sim-
ulation technology to conduct threat simulation and data
collection. The curated dataset is then used to train and test
various time series classification models with deep learning
for benchmarking their capabilities on accurately detecting and
classifying simulated threats. This research make the following
contributions to the field of CPS security:

• We demonstrate that a Digital Twin testbed can provide a
cost-efficient and risk-free option for simulating various
threat scenarios on CPS in smart manufacturing, and
efficiently collecting and labeling data for training and
testing threat detection models.

• We present the use of a Digital Twin to gather data for
training and testing different supervised deep learning-
based time series classification models, providing a novel
approach to benchmark and enhance threat detection.

The remainder of this paper is organized as follows: Section
II discusses related work and identifies gaps in current research
practices. Section III details the design and implementation
of the Digital Twins testbed, outlines the simulated threat
scenarios, and describes the data collection, feature extrac-
tion, and labeling processes. The methodology and results of
applying time series classification models for threat detection
are presented in Section IIIE, and followed by a discussion
of findings and limitations in Section IV. The paper concludes
with future research directions in Section V.

II. RELATED WORKS

This section outlines the existing research literature and
practices on using testbeds for research, the issues of insuffi-
cient security datasets and the use of Digital Twins for cyber
security research are also discussed.

A. Use of Testbeds for Cyber Security Research

The implementation of physical testbeds ( [15], [16], [17],
[18], [19], [20], [5]), integrating real Industrial Control Sys-
tem (ICS) hardware and software, provides a highly realistic
environment but significant financial investment and resources
for development and maintenance [7]. Given the large scale
and investment, it is not typically feasible to replicate such
testbeds for the purpose of reproducible academic research.

In contrast, virtual testbeds usually leverage simulation
software such as Simulink [10] for process simulation and
MiniNet [21] for networking simulation. Although cost-
effective and scalable, virtual testbeds may be criticised due

to authenticity or fidelity of the real-world processes being
modelled. For instance, GRFICS [22] relies on simulation soft-
ware to emulate industrial components, such as SCADASim
[23] for simulating SCADA system and MiniCPS [24] for
simulating Programmable Logic Controllers (PLC). Despite
criticisms, several studies [25], [11], [26], [27] demonstrated
the use of virtual testbeds can successfully enable cyber
security research.

Striking a balance, hybrid testbeds such as [12], [6], incor-
porating less ICS hardware components compared to physical
testbeds, and use software to simulate part of the industrial
processes. Hybrid testbeds offer a cost-effective setup, encom-
passing some physical aspects of the process, however the
challenge of testbed sharing remains.

B. Datasets related to Advanced Persistent Threat (APT)

The scarcity of robust datasets for Advanced Persistent
Threat (APT) research significantly hampers the ability to
detect sophisticated cyber threats. Such issue have been out-
standing for years, surveys conducted by [28], [29], [8], [9]
and [30] all found that datasets used by researchers have been
outdated, non-representative, lack of diversity and unreliable.

For the development, evaluation, and benchmarking of in-
trusion and anomaly detection systems to be effective, access
to quality datasets is essential. However, dataset creation for
the purposes of scientific empirical-based study is not straight-
forward. In some cases, datasets are constrained by operational
and confidentiality concerns, leading to difficulties in sharing
these datasets to the wider community. This contributes to the
inability to reproduce research findings and subjects the work
to potential criticism or rejection from academic publishers
[31]. The absence of a systematic approach to develop, refresh,
and maintain a repository of comprehensive, reliable datasets
continues to be a significant barrier in APT research. Over-
coming this gap is imperative for advancing threat detection.

C. Leveraging Digital Twin for Cyber Security Research

The adoption of Digital Twins within cyber security research
has seen a notable increase in recent years. Digital Twins
have been applied in various contexts, including cyber range
exercise [32], security compliance assessment [33], incident
detection [34] and enhancing anomaly-based intrusion detec-
tion system with data collected from Digital Twins [35].

While our research aligns with these innovative approaches,
particularly with the use of Digital Twins for dataset gen-
eration as proposed by [36] for weakly supervised machine
learning for anomaly detection, our work differ and focus on
training and testing supervised deep learning-based time series
classifiers, aiming on classifying both normal and advanced
threat scenarios related to CPS in smart manufacturing. Our
novel research work further refines the existing threat detection
mechanism by investigating the use of supervised model
for providing clear, actionable insights into various threat
scenarios. This approach aims to enable operators relevant
information for situational awareness, such that they could
respond to incidents quickly and appropriately.



III. DESIGN AND PROOF OF CONCEPT

This section outlines the methods for designing and imple-
menting Digital Twins of Cyber-Physical Systems (CPS) as
a testbed for threat simulation, dataset creation and detection
model development, for which a conceptual design is illus-
trated in Figure 1 and explained in the sub-sections.

Fig. 1. Conceptual Design of Digital Twins Testbed

A. Design and Implementation of Digital Twins Testbed

In addressing the challenges of building physical testbeds
for security research, we prioritised two critical factors when
designing Digital Twins testbed for threat simulation.

1) Ease of Testbed Setup: the testbed shall be cost-effective
to create, operate, dismantle, replicate and modify as needed.

2) Ease of Data Collection: to enable data-driven security
research, the data generated by the testbed shall be easily
obtainable and shareable, facilitating reproducible, verifiable
and collaborative research efforts.

With this practical reason, our Digital Twins testbed is
implemented using Factory I/O [13] and OpenPLC [14].

• Factory I/O - it is a simulation software with sensors
and actuators commonly used in smart manufacturing.
It allows risk-free simulation and data collection for
studying the physics dynamics of CPS and intuitively
visualise the impacts to non-technical audiences under
different unsafe threat conditions.

• OpenPLC - it is an open-source Programmable Logic
Controllers (PLC) software benchmark with IEC 61131-
3 standard to enable trustful simulation of control logic
on sensors and actuators that are relevant and applicable
to real-world industrial systems. Currently, the OpenPLC
Runtime managing the Factory I/O simulation is hosted
on a Raspberry Pi 4 Model B [37].

For the purpose of exploring the effectiveness of time series
classification in accurately detecting and classifying multiple
simulated threats, this testbed can generate a diverse and
comprehensive dataset that encompasses a broad spectrum
of threat scenarios. With the total investment under £100
(including cost of Raspberry Pi and the monthly licence fee for
Factory I/O), this affordable testbed provides an ideal platform
for dataset creation and model evaluation.

B. Threat Simulation: Case study

A risk-based approach is adopted when determining the
factory scenes and threat scenarios, ensuring the case study

is relevant to real-world industrial settings. In particular,
we focus on disruptions to the quality checking process, as
quality control is a crucial operation in manufacturing which
significantly impacts product integrity. Failures or disruptions
in these processes can lead to substantial financial losses due to
product recalls and legal actions, as well as a loss of customer
trust and reputational damage due to substandard products.

Our Digital Twin testbed simulates an automated quality
check process on a conveyor belt system, a common setup
in industrial environment. Generally, automation tasks such
as sorting, picking, and assembling are typically intercon-
nected via conveyor belts, which facilitate the movement
of workpieces across different automation stations along the
production line. Thus, any malfunction or manipulation of a
conveyor belt can significantly disrupt the entire assembly line
operation. From a cyber security perspective, threat actors,
such as Advanced Persistent Threat (APT) groups, could
employ stealthy techniques to subtly decelerate, accelerate,
halt, or reverse the direction of the conveyor belts. Their aim is
to undermine production efficiency, damage products, or allow
suboptimal products to pass the quality check. While subtle
alterations may appear trivial initially, their cumulative effect
can lead to long-term productivity or financial losses.

To prepare for threat simulation in Factory I/O, a simple
scene is set up as shown in Figure 2. The scene involves quality
checks on boxes of random sizes using a sensor situated next
to a pusher. When the quality check sensor detects larger
boxes (goods regarded unqualified), the pusher pushes away
the box. In contrast, the pusher will not react when smaller
boxes (goods regarded qualified) pass along the conveyor belt.

Akin to typical CPS, users can control actuators with sen-
sors in Factory I/O, where the speed and direction of conveyor
belt can be adjusted with the potentiometer, as shown in
Figure 3. Reflecting typical manufacturing conditions, Factory
I/O’s potentiometer has an Analog input range from -5 volts to
+5 volts, the input value is displayed on the LED display on the
switchboard. Positive input values denote forward movement,
negative input values denote backward movement. With the
forced tag feature in Factory I/O, control over actuators can
be overridden manually to enable threat simulation such as
fault or failure injection. Such forced actuation can force the
conveyor belt to move at a range from -10 volts to +10 volts,
simulating unexpected conveying speed.

With the current scene setup, 10 threat scenarios related to
the manipulation of the conveyor belt speed and direction are
created, as shown in Table I.

The above list entails a wide range of potential threats on the
quality check process, and as shown in Figure 4, our Digital
Twins testbed enable intuitive visualisation to understand the
impacts of threat scenario.

C. Data Collection and Preprocessing

To create a dataset that facilitate training and testing of
supervised classifier for threat detection, 10 simulation runs
are conducted for each of the 10 scenarios described in Table I,
creating 100 instances in the dataset. The data are methodically



Fig. 2. Quality Checking Scene in Factory I/O

Fig. 3. Overview of the Key Elements in the Simulated Factory

TABLE I
10 SCENARIOS FOR THREAT SIMULATION - SPEED WAS BASED ON

AVAILABLE SETTINGS IN FACTORY I/O ASSETS

Label Trigger Point Speed Status Conveyor Speed
1 Sensor Normal speed 2.31 < speed ≤ 5.00
2 Sensor Too slow or halt 0 ≤ speed ≤ 2.30
3 Sensor Oscillate Subtle speed change

at any value
4 Sensor Wrong direction -5 < speed < 0
5 Forced Actuator Normal speed 2.31 < speed ≤ 5.00
6 Forced Actuator Too slow or halt 0 ≤ speed ≤ 2.30
7 Forced Actuator Too fast 5.01 < speed ≤ 7.00
8 Forced Actuator Extremely fast 7.01 < speed ≤ 10.00
9 Forced Actuator Oscillate Subtle speed change

at any value
10 Forced Actuator Wrong direction -10 < speed < 0

Fig. 4. Impact of Speed Manipulation on Conveyor Belt System

collected from the Factory I/O and processed before model
training via several Python scripts.

1) Step 1: Data Acquisition: For comprehensive and ef-
ficient data collection from Factory I/O, a custom Python
script (data collector enhanced.py) was executed alongside
each simulation run. The script fetched data via Factory I/O’s
Web API at half-second intervals during the 1-minute simula-
tion run, creating 119 timepoints per simulation instance.

2) Step 2: Feature Extraction and Labelling: specific fea-
tures were extracted to capture the dynamics of the conveyor
belt system with the aforesaid python script, aiming to provide
insights on the CPS state changes over time, including

• Trigger point: Identification of whether movements were
triggered by sensor inputs or direct actuator manipulation.

• Speed change and acceleration indicator: Analysis of
speed variations and acceleration patterns to discover any
abnormal behaviours.

• Actual conveyor status: Assessment of conveyor opera-
tions based on actuator outputs.

Each instance was labelled by the aforesaid Python script
to assist analysis on different threat scenarios.

3) Step 3: Data Consolidation and Refinement: All 100
instances in separate .csv files were merged into one dataset
using a second Python script (combineCSV.py), resulting in a
comprehensive .csv file. To refine our dataset for model train-
ing, a subsequent filtering process was employed with Python
script (combined dataset filtered.py), retaining only six essen-
tial variables that were deemed most indicative of conveyor
belt performance. Specifically, ’var 0’ captures the poten-
tiometer input affecting conveyor’s speed.’var 1’ and ’var 2’
track actual speed and its display. ’var 3’ indicates speed
changes. ’var 4’ and ’var 5’ distinguish acceleration and op-
erational status. This resulting dataset (factoryiodata.csv), with
11,900 timepoints, are used for training the threat detector.

D. Threat Detection using Time Series Classification

Leveraging the Digital Twins testbed, we have been able
to gather a rich, diverse dataset that accurately reflects the
dynamics and interactions between sensors and actuators in
CPS in Factory I/O. This approach addresses the persistent
challenge of obtaining high-quality data for training supervised
machine learning models for precise threat detection.



With the goal of achieving high accuracy in threat detection
and classification while minimizing false positives and neg-
atives, which are critical for manufacturing, we explore the
effectiveness of Time Series Classification (TSC) algorithms,
that are typically used in domains such as speech or motion
recognition in smart healthcare systems, to assign labels to
time series data based on learned data patterns over time.

For the purpose of benchmarking, several deep learning-
based TSC models were selected to evaluate their performance
on our dataset. To ensure simplicity in the sharing and re-
production of our research findings, we utilized the sktime
Python library—a comprehensive time series analysis toolkit
developed by The Alan Turing Institute [38], and the imple-
mentation of deep learning model training and evaluation was
conducted within a Google Colab [39]. The dataset comprising
100 instances was divided into training and testing subsets
in a 70:30 ratio, employing stratification and a predefined
random seed to ensure reproducibility and fairness in model
performance assessment.

E. Benchmarking the Results of Threat Detection

Several architectures are used for evaluation: Convolu-
tional Neural Networks (CNN), Fully Convolutional Networks
(FCN), InceptionTime, Long Short-Term Memory Fully Con-
volutional Networks (LSTM-FCN), Multi-Channel Deep Con-
volutional Neural Networks (MCDCNN), and Residual Neural
Networks (ResNet). Each model was evaluated based on
accuracy, precision, recall, and F1-score, as shown in Table II,
providing a comprehensive measure of their performance in
accurately classifying different threat scenarios.

TABLE II
COMPARATIVE ANALYSIS OF DEEP LEARNING TIME SERIES

CLASSIFICATION MODELS

Model Accuracy Precision Recall F1-Score
CNN 90.0% 93.0% 90.0% 89.0%
FCN 93.0% 95.0% 93.0% 93.0%
InceptionTime 90.0% 93.0% 90.0% 89.0%
LSTM-FCN 93.0% 94.0% 93.0% 93.0%
MCDCNN 90.0% 93.0% 90.0% 89.0%
ResNet 87.0% 90.0% 87.0% 85.0%

From the comparative analysis, the deep learning based
TSC models such as FCN and LSTM-FCN demonstrated
excellent performance, achieving an accuracy of 93% on the
test set. This high level of accuracy indicates the model’s
effectiveness in distinguishing between different operational
states and identifying specific threat scenarios based on the
temporal patterns in the conveyor belt’s speed.

Furthermore, although feature about oscillation (i.e. illogical
acceleration and deceleration) were extracted during data
preprocessing stage by assessing if there are five or more
notable abnormal speed changes within a 15-second window,
the analysis of the model’s performance indicated that most
of the TSC models have misclassified this type of threat,
highlighting areas for further refinement on feature extraction.

IV. DISCUSSION

This study has demonstrated the use of Digital Twins of CPS
as an effective testbed for repeatable simulations of a wide
range of threat scenarios within a risk-free environment. This
approach provides a cost-effective and efficient alternative to
physical testbeds, traditionally employed for security research.

The Digital Twins testbed not only facilitated the efficient
generation of a diverse dataset for exploring the applicability
of Time Series Classification (TSC) in accurately detecting and
classifying threats, but also signifies a potential paradigm shift
from traditional reliance on anomaly-based detection methods,
which merely indicate the presence of anomalies as ’normal’
or ’abnormal,’ towards adopting supervised machine learning
and deep learning models, which efficiently classify specific
threats, thereby providing operators with clear and explainable
insights into the nature of the encountered threat for more
efficient incident analysis and response.

The Digital Twins testbed, developed using Factory I/O
[13], showcased an efficient methodology for simulating di-
verse threat scenarios. However, the current version of Factory
I/O restricts the import of customized assets. Consequently,
our current threat datasets include abnormal behaviors of
conveyor speed but do not cover other possible threats, such
as tampering goods’ weight and quantity. This limitation un-
derscores the potential benefits of leveraging other simulation-
capable software, such as the Unity game engine [40], to gain
greater flexibility in the development of Digital Twins testbeds.

Although our comparative analysis highlighted the high
accuracy achieved on detecting most of the threat scenarios,
there are still challenge associated with detecting subtle os-
cillatory patterns within time series data - a typical low and
slow Advanced Persistent Threats (APTs) attack behaviour.
Future research endeavors will focus on increasing sample size
and enhancing feature extraction techniques to better identify
these nuanced patterns that subtly undermine manufacturing
processes. Moreover, as Roopak [41] achieved 99% accuracy
using LSTM for attack classification in IoT networks, we could
explore their techniques to enhance model accuracy.

V. CONCLUSION AND FUTURE WORK

This paper introduced a Digital Twin testbed utilizing Fac-
tory I/O, designed to enhance threat detection within Cyber-
Physical Systems (CPS) in smart manufacturing. Our method-
ology enables the safe simulation of sophisticated threats
against CPS and supports the creation of extensive datasets
essential for developing and validating time series classifica-
tion models via deep learning. Such classification models not
only facilitate accurate threat detection but also expedite the
process of understanding and responding to identified threats.

As our research progresses beyond the simulation of CPS
components, we envision the integration of our Digital Twin
testbed with common industrial networks such as OPC UA and
Modbus, as well as other systems typically used in the smart
manufacturing, such as Human-Machine Interface (HMI), Su-
pervisory Control and Data Acquisition (SCADA) system.
This enhancement aims to simulate more complex scenarios,



broadening the testbed’s relevance and application to real-
world industrial settings, and expanding scope of datasets.

Furthermore, exploring the potential of early time series
classifiers based on our datasets represents a compelling
research opportunity. Such investigations could illuminate the
feasibility of early threat detection with supervised Machine
Learning or Deep Learning, which is paramount for the
prompt response to and mitigation of incidents, ensuring robust
and trustable cyber security measures in smart manufacturing
environments in Industry 4.0 and 5.0.

VI. DATASET AND CODE

This research is conducted as part of the UWE Bristol’s
Fully Funded PhD programme. The code and the dataset are
available at: https://github.com/carolsworld/FactoryIO TSC.
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