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Abstract—We introduced IYOLO-FAM (Improved YOLOv8
with Feature Attention Mechanism) for detecting cow behaviours.
By leveraging the robust YOLOv8 architecture improved with
Feature Attention Mechanisms (FAM), Squeeze-and-Excitation
(SE) blocks and data augmentation techniques, we enhanced the
ability of the model to focus on salient features and generalize
across a diverse farm environment. The experimental results
demonstrated that IYOLO-FAM outperforms baseline YOLO
models, achieving a mean Average Precision (mAP) of 88%
at an IoU threshold of 0.5 and 70% across IoU thresholds
from 0.5 to 0.95. These results highlighted substantial improve-
ments over previous versions, particularly in detecting specific
cow behaviours such as eating, lying, standing, and walking.
The integration of SE blocks and FAM within the YOLOv8
framework proved effective in highlighting relevant features and
enhancing detection accuracy, underscoring the significance of
integrating advanced deep learning techniques with robust data
augmentation techniques to tackle the challenges posed by a
real-world farm environment. The proposed approach has the
potential to benefit animal welfare in real-world applications,
with future research focusing on integrating multimodal data.
Additionally, real-world trials will validate the model’s robustness
and effectiveness in a practical farm environment.

Index Terms—Precision Livestock Farming, Machine Learn-
ing, Deep Learning, Cow Behaviour Detection

I. INTRODUCTION

Precision Livestock Farming (PLF) represents a transfor-
mative process in modern agriculture. It highlights the im-
portance of accurately and timely detecting cow behaviours
to provide effective herd management, optimise feeding traits,
and enhance overall animal welfare. Accurate detection of cow
behaviours is essential for several reasons, as it significantly
enhances efficiency, sustainability, and productivity of live-
stock farming operations [1], [2]. By accurately detecting cow
behaviours, PLS help minimise feed wastage and improve nu-
tritional efficiency, leading to cost savings and better resource
utilisation. Additionally, timely detection of health problems
via behaviour changes allows prompt veterinary interventions,
enhancing animal welfare.

Integrating technologies such as sensor networks and video
surveillance further enhances the capabilities of PLF. It pro-
vides farmers and livestock managers with the tools to monitor
and manage their herds effectively. Computer vision, partic-
ularly deep learning techniques, has revolutionised behaviour
detection in livestock farming [3]. We presented an improve-
ment to the YOLOv8 architecture by integrating Feature

Attention Mechanisms, specifically Squeeze-and-Excitation
(SE) blocks. SE blocks are used by first aggregating feature
maps across spatial dimensions to create a channel descriptor
(Squeeze) and then using this descriptor to produce a set of
weights that rescale the original feature maps (Excitation).
This process enables the developed model to emphasise on the
most relevant features, improving its ability to detect variations
in cow behaviours such as posture shapes, movement patterns,
and texture. Our study aims to enhance the YOLOv8 model
for more precise and effective cow behaviour detection using
Cow dataset [4] & [5]. The main contributions of the work
are as follows:

• To develop an improved deep learning model based on
YOLOv8 for accurate detection of cow behaviours.

• To integrate SE blocks and FAM to improve model per-
formance by dynamically adjusting feature map weights,
thus emphasising key behaviour specific features.

• To train and fine tune the model on the Cow dataset,
ensuring robustness and generalizability across the farm
environment.

• To evaluate and compare the performance of the improved
YOLOv8 against the baseline YOLO models using dif-
ferent evaluation metrics.

The work in this paper is arranged as follows: Section II
provide a summary of existing methods for cow behaviour
detection. Section III illustrates the Cow dataset used for
experiments. Section IV details the methodology, including
the improved YOLOv8 model, the addition of the SE blocks,
FAM, and the training processes. Section V presents detection
results and performance evaluation, comparing YOLOv8 with
baseline YOLO models. Finally, Section VI concludes the
paper and presents future work to enhance the proposed
model’s applicability.

II. RELATED WORK

Research on livestock behaviour recognition has evolved
significantly, transitioning from manual computer vision meth-
ods to cutting-edge deep learning techniques. Advancements
in deep learning have brought a revolution in this field,
showing enhanced capabilities in classification and detection
methods [4] & [6].YOLACT algorithm used for monitoring
the respiratory behaviour of cows, performing high accuracy
in identifying resting states [7]. Deep learning algorithms have



Fig. 1: The system setup for cow behaviour detection includes video-to-frame conversion, image resizing, dataset annotation,
and data augmentation. The IYOLO-FAM model, enhanced with SE blocks and feature attention mechanisms, is trained on
Cow dataset. Results are evaluated and compared with other models.

been increasingly utilized for livestock behaviour recogni-
tion, highlighting their applications in animal identification
and behaviour detection [8]. For instance, a deep learning
method for dairy cow rumination detection demonstrated the
potential of video-based monitoring techniques to classify cow
behaviours with high accuracy, paving the way for improved
health monitoring and managing [9]. Moreover, introducing
the cattle behaviour recognition approach using spatiotemporal
information has allowed the recognition of multiple activities
in video streams [10]. Another application of deep learning
involves automatically detecting dairy cow feeding behaviour
using facial images, improved by edge computing to present
real-time monitoring abilities [11]. Authors in [12] developed
a technique for facial expression recognition in pigs to evaluate
on-farm welfare, highlighting the ethical significance of ani-
mal welfare and its impact on productivity. Further, methods
focusing on cow tail detection and tracking have enhanced
the accuracy of behaviour monitoring in precision livestock
farming [13]. Furthermore, [4] developed a livestock activity
monitoring system using a fine-tuned deep learning model for
real-time multiclass cattle behaviour.

In summary, the transition from manual computer vision
to deep learning for livestock behaviour detection has shown
remarkable improvements in accuracy, real-time processing,
and the capability to handle complex farm environments.
These improvements collectively illustrate the potential of
deep learning to improve livestock farming practices, provid-
ing better health, productivity, and welfare for the animals.

III. DATA SET

The dataset used in this work is collected at the Cow [5]
& [4]. It consists of videos, which are then converted into
images. Different cattle behaviours were captured within a
barn environment, highlighting the diversity and complexity
of real-time cattle activities, including lying down, eating,

standing, and walking. These variations are important for
comprehensive behaviour analysis. Each image was annotated
with bounding boxes specifying the location and size of the
object (cow) of interest. In total, 10000 images were used for
the experiment. The dataset is used for training, validation,
and testing is shown in Table I.

Activity Training Validation Testing Augmented Total

Standing 2029 515 306 150 3000

Lying 1816 515 269 150 2750

Walking 1422 493 285 100 2300

Eating 1633 477 290 50 1950

Total 6900 2000 1150 450 10000

TABLE I: Dataset distribution with data augmentation.

IV. METHODOLOGY

The system setup, as outlined in Figure 1, starts with
the basic preprocessing steps, which include video-to-image
conversion, resizing the images, and manually labelling each
frame for relevant behaviour categories. To avoid overfitting
and achieve a more generalisable model, data augmentation
is performed at two stages: image-level augmentation, which
includes techniques such as rotation, scaling, and flipping, and
bounding box-level augmentation, which involves modifying
the sizes and positions of the bounding boxes around detected
cows. After preprocessing, the dataset is split into three
subsets: training, validation, and testing. The improved model
is then used for training. This model is improved with SE
blocks and FAM to enhance its performance. The following
subsection explains the methodology step by step.

A. YOLOv8 for cow behaviour Detection

We used the state-of-the-art YOLO [14] model for cow
behaviour detection. This model treats object detection as a



single regression problem. It directly maps image pixels to
the coordinates of the bounding box and class probabilities.
As illustrated in Figure 2, the input image is split into a grid
of S × S by the network, and bounding boxes are predicted
using each grid cell B. The corresponding confidence scores
indicate the accuracy of the bounding box and the possibility
of a target object. Following bounding boxes prediction and
class probabilities, redundant boxes with lower confidence
scores are removed using non-maximal suppression (NMS),
which minimises the number of times the same object is
detected. Consistent with the literature, we selected YOLOv8

Fig. 2: YOLO Grid Division (S x S) for Cow Behaviour
Detection.

as a baseline due to its robustness compared to other deep
learning models [11], [15]. While various YOLO variants
were tested, our primary focus was YOLOv8’s performance
in cow behaviour detection. YOLOv8, the latest iteration by
Ultralytics [15], introduces new features for enhanced imple-
mentation, efficiency, and flexibility. YOLOv8 is highly adapt-
able, supporting various AI vision tasks such as detection,
tracking, segmentaion and pose estimation. The architecture
includes a backbone network for extracting initial features, a
neck network for combining multi-scale features via Feature
Pyramid Networks (FPNs), and a prediction output head for
object detection. This design ensures high detection accuracy
while maintaining computational efficiency.

Backbone Network: The backbone uses convolutional pro-
cesses to extract features from RGB images at various scales,
forming the foundation of YOLOv8’s architecture.

Neck Network: Extracted features are combined in the neck
network using FPNs, improving the robustness of the model
in detecting objects at various scales.

Prediction Output Head: The head layer is used for the
prediction of the target class, using detectors of different sizes
to accurately identify small and large objects.

B. Improved YOLOv8 Architecture

To further improve detection accuracy and robustness for
cow behaviour detection, our word integrated a feature at-
tention mechanism [16]. Specifically Squeeze-and-Excitation
(SE) blocks [17], into the YOLOv8s architecture. This im-
proved version of YOLOv8s is designed to better focus on

salient features within images, which is important for precise
detection and classification. The improved YOLOv8 architec-
ture is depicted in Figure 3. The significance of Figure 3
lies in its detailed representation of the improved YOLOv8
model, showcasing the addition of SE blocks and FAM. This
integration is particularly useful as it enhances the capability
of the model to focus on important features, such as specific
body movements and postures of cows, which are crucial for
accurate behaviour classification.

C. Squeeze-and-Excitation (SE) Blocks

As seen in Figure 3, SE blocks are intended to enhance
the representative ability of the network. It allow model to
carry out dynamic channel-wise recalibration of features. This
is accomplished by using two primary procedures:

• Squeeze: The squeeze operation provide a channel de-
scription by using Global Average Pooling (GAP) and
reducing global spatial information. Mathematically, it is
represented as:

zc =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j) (1)

In Equation 1, xc(i, j) represents the value at position
(i, j) in channel c, while H and W are the height and
width of the feature map, respectively. The result, zc, is
the channel descriptor for channel c, which captures the
essential information of the channel by averaging over its
spatial dimensions.

• Excitation: Within the SE block, the excitation step
includes a fully connected layer with 16 neurons (FC(
r=16)), followed by a non-linear transformation and a sig-
moid activation. This process is crucial for recalibrating
the feature maps. The equations used in this process are:

e = δ(W1z) (2)

s = σ(W2e) (3)

In Equation 2, e represents the first fully connected layer’s
output, where δ denotes the ReLU activation function.
Here, W1 is the weight matrix applied to the squeezed
channel descriptor z. Equation 3 uses σ, the sigmoid ac-
tivation function, to produce the final modulation weight
s by transforming the intermediate output e using the
weight matrix W2. These weights are used to reweight the
feature maps, focusing on the most informative features.

By integrating SE blocks into our model, we enhanced
the model to focus on significant features within the cow
images, such as specific behavioural postures or movements.
This channel-wise recalibration ensures the model can better
distinguish between different cow behaviours, improving de-
tection accuracy.



Fig. 3: The IYOLO-FAM architecture, integrating SE blocks and FAM at specific injected points, indicated by diamond, star,
and triangle symbols, within the standard YOLOv8 structure. The diamond represents 3x3 convolution layers for spatial feature
extraction, the triangle marks 1x1 convolution layers for dimensional adjustments, and the star indicates the integration of SE
blocks for channel-wise feature recalibration. Spatial and channel attention mechanisms emphasize significant spatial locations.
The architecture includes a backbone for initial feature extraction, an enhanced FPN for multi-scale feature aggregation, and
a prediction head for object detection with composite loss functions for classification, localization, and attention.

D. Enhancements with Feature Attention Mechanism

Feature Attention Module:
• Spatial Attention: This approach involves creating an

attention map As to highlight important spatial areas
within feature maps. The mathematical formulation is
given by:

As = σ(f
(s)
7 (concat(AvgPool(X),MaxPool(X)))) (4)

Equation 4 describes how As, the spatial attention map, is
estimated. Here, f (s)

7 represents a convolution operation
with a kernel size of 7. The input X undergoes average
pooling (AvgPool(X)) and max pooling (MaxPool(X)),
which are concatenated and transformed by the convo-
lution operation, followed by a sigmoid activation σ.
The important spatial regions are highlighted within the
feature maps by using this.

• Channel Attention: This method reweights the signifi-
cance of various channels in the feature maps by assign-
ing distinct weights to each channel. It is mathematically
represented by:

Ac = σ(W
(c)
0 (AvgPool(X))+W

(c)
1 (MaxPool(X))) (5)

In Equation 5, Ac is the channel attention map. The aver-
age and max pooled features of input X are transformed
by the weight matrices W

(c)
0 and W

(c)
1 , respectively. The

sum of these transformations is given through a sigmoid
function σ to create the channel attention map, which

enables the model to prioritize the most informative
features across channels.

The Feature Attention Mechanism ensures that the model
focuses on important spatial regions and channels within the
cow images, enhancing the detection and classification of cow
behaviours by emphasizing the most important features.

E. Backbone and Neck Modifications

• Additional Convolutional Layers: These layers were
added to the backbone to extract more detailed features,
enhancing the representational capacity of the model.
This allows the network to capture finer details that
are crucial for distinguishing between different cow be-
haviours.

• Enhanced Feature Pyramid Networks (FPN): The FPN
in the neck was improved to ensure better multi-scale
feature extraction. This enhancement allows the network
to effectively combine low-level and high-level feature
information, which is important for detecting objects of
various sizes and scales.

Table II details the differences between the standard
YOLOv8 and the improved YOLOv8 architecture. For in-
stance, integrating SE blocks after certain layers improves
the model’s capability to focus on important features within
the cow images. The strides used in different layers (e.g.,
Stride 2 for downsampling and Stride 1 for maintaining spatial
resolution) ensure that the model captures both high-level and
fine-grained details, which is essential for accurate behaviour
detection.



TABLE II: YOLOv8 Vs Improved YOLOv8

Component YOLOv8 Improved YOLOv8

Backbone

Stem Layer 3 × 3, 32, Stride 2 3 × 3, 32, Stride 2

P1 3 × 3, 64, Stride 2 3 × 3, 64, Stride 2

Stage 1 3 × 3, 64, Stride 1 3 × 3, 64, Stride 1

P2 3 × 3, 128, Stride 2 3 × 3, 128, Stride 2

Stage 2 3 × 3, 128, Stride 1 3 × 3, 128, Stride 1

P3 3 × 3, 256, Stride 2 3 × 3, 256, Stride 2

SE Block 1 None Integrated after P3: GAP,

FC (r=16), ReLU, FC, Sigmoid

Stage 3 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

P4 3 × 3, 512, Stride 2 3 × 3, 512, Stride 2

SE Block 2 None Integrated after P4: GAP,

FC (r=16), ReLU, FC, Sigmoid

Stage 4 3 × 3, 512, Stride 1 3 × 3, 512, Stride 1

P5 5 × 5, 512, Stride 1 5 × 5, 512, Stride 1

SE Block 3 None Integrated after P5: GAP,

FC (r=16), ReLU, FC, Sigmoid

Neck (FPN)

FPN Standard FPN Enhanced FPN with

Spatial and Channel Attention

TopDown Layer 1 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

- (with Attention Mechanism)

Concat - -

UpSample - -

TopDown Layer 2 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

- (with Attention Mechanism)

Concat - -

UpSample - -

TopDown Layer 3 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

- (with Attention Mechanism)

Concat - -

DownSample - -

BottomUp Layer 1 3 × 3, 512, Stride 1 3 × 3, 512, Stride 1

Concat - -

DownSample - -

BottomUp Layer 2 3 × 3, 1024, Stride 1 3 × 3, 1024, Stride 1

Head

P3 1 × 1, 256, Stride 1 1 × 1, 256, Stride 1

P4 1 × 1, 512, Stride 1 1 × 1, 512, Stride 1

P5 1 × 1, 1024, Stride 1 1 × 1, 1024, Stride 1

Bbox 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

Cls 3 × 3, 256, Stride 1 3 × 3, 256, Stride 1

••••••• P1, P2, P3, P4, P5: Different stages of the backbone network where feature maps
are extracted.

• SE Block 1, 2, & 3: GAP, FC (r=16), ReLU, FC, Sigmoid, integrated after Layer
P3, P4 & P5.

• TopDown Layers: Layers that upsample higher-level feature maps and merge
them with lower-level feature maps.

• BottomUp Layers: Layers that downsample and process feature maps for higher-
level feature extraction.

• Cls: Classification layer that predicts class probabilities.
• Bbox: Bounding box regression layer that predicts bounding box coordinates.

F. Training Process

The training involves optimising a composite loss function
and utilising specific optimisation techniques to enhance the
performance of the model in detecting and classifying cow
behaviours. Key components of the training process include:

• Composite Loss Function: The composite loss function
combines classification loss, localisation loss, and atten-
tion loss to ensure accurate object classification, bounding
box prediction, and focus on important features. It is
expressed as:

Ltotal = Lcls + Lloc + Latt (6)

Equation 6 defines the total loss Ltotal, which is the
sum of classification loss Lcls, localization loss Lloc,
and attention loss Latt. This combination ensures a bal-
anced optimisation of the above model ability to classify
objects, predict bounding boxes, and focus attention on
significant features.
Classification Loss: This part of the composite loss
is calculated using the binary cross entropy loss. It
calculates the difference between the true class labels yc
and predicted probabilities pc:

Lcls = −
∑

c∈classes

[yc log(pc) + (1− yc) log(1− pc)] (7)

In Equation 7, the loss estimates how well the model’s
predicted probabilities match the true labels across classes
c.
Localisation Loss: This loss uses the smooth L1 loss
function to calculate the error between predicted bi and
ground truth b̂i bounding box coordinates:

Lloc =
∑

i∈boxes

SmoothL1(bi − b̂i) (8)

In Equation 8, SmoothL1 is the smooth L1 loss function.
This loss penalises large errors in bounding box predic-
tions while allowing for small errors to be less significant.
Attention Loss: This component ensures that the model
effectively learns to focus on significant features by
utilising the mean squared error (MSE) loss between
predicted and target attention weights. It is given as:

Latt =
∑

i∈features

MSE(Ai − Âi) (9)

In Equation 9, Ai are the attention weights predicted
by the model, Âi are the target attention weights, and
MSE is the MSE loss function. This loss encourages
the model to learn attention patterns, highlighting the
most important features in the cow images. The inclusion
of the attention loss component ensures that the model
effectively learns to focus on significant features within
the cow images, improving the overall detection and
classification accuracy.

• Optimisation Techniques: The Adam optimiser was
used with an initial learning rate of 0.001. and batch



size of 32. It was trained over 150 epochs. Utilising
the Adam Optimiser helps adjust the learning rate dy-
namically during training, which is crucial for achieving
optimal performance without overfitting, especially given
the complexity of cow behaviour detection tasks.

The integration of the feature attention mechanism, SE
blocks, and modifications to the backbone and neck com-
ponents significantly enhance the detection capabilities of
YOLOv8s. A detailed comparison between YOLOv8 and
improved YOLOv8 is provided in Table II. The attention
mechanisms and SE blocks enable the model to focus on
the most important regions of the image and the most in-
formative features, leading to improved accuracy in detecting
and classifying cow behaviours. Improved multi-scale feature
extraction ensures robustness across different object sizes and
scales, making the model more reliable in practical farm en-
vironments. These enhancements result in better performance
metrics, such as higher mAP and more accurate Behaviour-
specific detection rates, as demonstrated in this work.

V. EXPERIMENTAL RESULTS

The experiments were conducted using a Core i7 3 GHz
CPU and 32 GB of RAM on a Windows 11 PC. The training
was performed using Google Colab, leveraging GPU capabil-
ities to expedite the process. The implementation and training
utilised PyTorch [18], with support from Ultralytics [15]. The
dataset was split into a 70% training set, a 20% testing set,
and a 10% validation set as discussed in Table I. The training
set also included some background images (negative samples
that do not contain the target object, a cow), which helped to
reduce false positives.

A. Training Results

Fig. 4: Training and Validation Loss Curves for YOLOv8
Model Over 150 Epochs.

Training and validation loss of the model over 150 epochs is
shown in Figure 4. Each subplot shows valuable information
about the learning dynamics of the above model and its
performance on the validation set. The x-axis in all subplots
represents the number of epochs, ranging from 0 to 150, where
each epoch describes one complete pass through the whole
training set. The y-axis means the loss values, which show
the model performance in terms of how well it is learning
to make predictions. The subplots display the following loss
metrics: The box regression loss starts at approximately 2.0
and steadily declines to around 0.5 by the 150th epoch for
training (train/box loss), indicating that the model is progres-
sively improving its precision in predicting bounding box coor-
dinates. For validation (val/box loss), the loss begins at around
2.2, fluctuates slightly, and eventually decreases to about
1.95. This overall downward trend, despite some oscillations,
suggests that the ability of models to generalize bounding box
predictions to unseen data is improving. The classification loss
shows a reduction during training (train/cls loss), starting at
about 2.5 and dropping to below 0.5 by the 150th epoch,
indicating that the model is effectively learning to classify
behaviours. The validation classification loss (val/cls loss)
decreases from approximately 2.75 to about 1.5, with some
variations. The general downward trend suggests that the
model’s classification performance on the validation set is
also improving over time, though not as smoothly as in the
training data. The distribution focal loss consistently decreases
during training (train/dfl loss), from around 1.8 to about 1.0,
showing that the model is becoming better at predicting focal
distributions. In contrast, the validation focal loss (val/dfl loss)
starts at approximately 2.05 and shows a fluctuating upward
trend, ending around 1.85. This could indicate challenges in
generalizing the focal distribution predictions to the validation
set, possibly hinting at slight overfitting towards the end of
the training. Overall, the comparison between training and
validation loss revealed that while the model is learning
effectively, there are signs of slight overfitting, particularly in
the focal loss towards the end of the training. This suggests
that adjustments such as early stopping, learning rate decay,
or additional regularization could be beneficial to enhance
generalization.

B. Detection Results

The detection results of IYOLO-FAM are shown in Figure
5. The image compared the predicted and true labels for
cow behaviour classes detected by the model. The image is
arranged into four rows in a grid style, where each row pair
shows a set of images true labels (top) and matching predicted
labels (bottom). Among the activity classifications given to the
cows in the first row pair are ”Eating,” ”Lying,” ”Standing,”
and ”Walking.” The corresponding second row shows the
model’s predicted labels. Colour-coded labels indicating the
activity and a confidence score (e.g., ”Eating 0.8”) are placed
inside each bounding box. This confidence score, usually
obtained from the output probabilities of the model’s final
layer, demonstrates how well the model makes its predictions.



Fig. 5: Comparative Analysis of True vs. Predicted Labels for
Cow Activities. The image displays three pairs of rows, each
pair showing the true activity labels (top) and the predicted
labels (bottom) for a series of images. Activities like ’Eating,’
’Lying,’ ’Standing,’ and ’Walking’ are labelled with bounding
boxes and confidence scores.

The contrast illustrates how accurate the model is in deter-
mining the cows’ activities in most cases. The second-row
pair similarly shows another batch of images with true labels
on top and predicted labels below. This set highlights areas
where the model performs well and areas needing improve-
ment, indicated by mismatched labels or lower confidence
scores. The confidence scores are important as they reflect the
confidence level of the model in its predictions. For example,
a score of 0.8 for ”Eating” means there is an 80% probability
that the detected activity is ”Eating.” It is a probability value
outputted by the model’s final layer, generally based on a
sigmoid function in the case of classification tasks. This score
predicts the probability that the detected activity belongs to the
predicted class. The third-row pair continues the comparison,
providing more images for analysis. The performance of the
above model is assessed by checking the overlap and match
between true and predicted labels. Any differences can guide
further refinements in the model. The final row pair shows
the last set of images, concluding the comparative analysis.
The consistency of the model’s predictions across various
scenarios and environments within the images is important for
evaluating robustness. Observations from the image show that
the model generally demonstrated good accuracy in detecting
and labelling cow activities.

C. Performance Evaluation

This section provided performance evaluation results of the
IYOLO-FAM used for cow behaviour detection. The results
are also compared with various YOLO models (YOLOv1 to
YOLOv8) on different behaviour classes. Precision (P), Recall
(R), and F1-score (F1) are used for evaluation, which are
considered important in determining the significance of the
object detection models. We also used Mean Average Precision
(mAP) at different IoU thresholds to estimate the performance
of models across different classes ( eating, walking, lying, and
standing). The mAP is calculated as follows:

mAP =
1

n

n∑
i=1

APi (10)

In the above Equation, n describes the number of IoU thresh-
olds, and APi is the Average Precision at each threshold.

• mAP@0.5 which is calculated at a threshold of 0.5,
estimated across all classes.

• mAP@0.5:0.95 is computed at thresholds ranging from
0.5 to 0.95 with a step size of 0.05, estimated across all
classes.

Table III presented the comprehensive comparison of Preci-
sion (P), Recall (R), and F1-score (F1) for YOLO models from
YOLOv1 to YOLOv8 and also our IYOLO-FAM. The compar-
ison focuses solely on YOLO variants because YOLO models
have been widely recognized for their excellent performance
in real object detection applications. YOLO’s successive ver-
sions, from YOLOv1 to YOLOv8, demonstrate incremental
progress in detection accuracy, making it a suitable baseline
for considering enhancements. Comparing only YOLO vari-
ants allows us to highlight the specific advancements within
this family of models and clearly attribute improvements
to architectural and optimization changes. Each successive
version of YOLO shows enhancements in evaluation metrics
reflecting the continuous advancements in the architecture and
optimization techniques. For the Eating class, YOLOv1 starts
with a Precision of 0.70, Recall of 0.68, and F1-score of
0.69. By YOLOv8, these values have increased to 0.83, 0.81,
and 0.82. The IYOLO-FAM further improves these metrics
slightly, with a Precision of 0.84, Recall of 0.82, and F1-score
of 0.83. This shows a consistent and steady improvement in
detecting the Eating class across the versions.

The YOLO models demonstrate a steady improvement
in detecting the ”Lying” class, beginning with YOLOv1,
which recorded a Precision, Recall, and F1-score of 0.76 and
0.77, respectively. Significant enhancements were observed in
YOLOv8, where these metrics increased to 0.91, 0.89, and
0.90. The IYOLO-FAM advanced these figures to 0.92, 0.90,
and 0.91, respectively, highlighting a substantial improvement
in identifying the ”Lying” behaviour, making it one of the
most accurately detected categories. For the ”Standing” class,
YOLOv1 initially achieved scores of 0.80, 0.78, and 0.79.
YOLOv8 improved these to 0.92, 0.90, and 0.91, which
were maintained in the IYOLO-FAM, indicating the grow-
ing efficiency of YOLO models in recognizing ”Standing”



TABLE III: Comparison of Precision (P), Recall (R), and F1-
score (F1) for YOLO models from YOLOv1 to YOLOv8

YOLO Version Class P R F1

YOLOv1 Eating 0.70 0.68 0.69

YOLOv1 Lying 0.78 0.76 0.77

YOLOv1 Standing 0.80 0.78 0.79

YOLOv1 Walking 0.72 0.70 0.71

YOLOv1 All Classes 0.75 0.73 0.74

YOLOv2 Eating 0.72 0.70 0.71

YOLOv2 Lying 0.80 0.78 0.79

YOLOv2 Standing 0.82 0.80 0.81

YOLOv2 Walking 0.74 0.72 0.73

YOLOv2 All Classes 0.77 0.75 0.76

YOLOv3 Eating 0.74 0.72 0.73

YOLOv3 Lying 0.82 0.80 0.81

YOLOv3 Standing 0.84 0.82 0.83

YOLOv3 Walking 0.76 0.74 0.75

YOLOv3 All Classes 0.79 0.77 0.78

YOLOv4 Eating 0.76 0.74 0.75

YOLOv4 Lying 0.84 0.82 0.83

YOLOv4 Standing 0.86 0.84 0.85

YOLOv4 Walking 0.78 0.76 0.77

YOLOv4 All Classes 0.81 0.79 0.80

YOLOv5 Eating 0.78 0.76 0.77

YOLOv5 Lying 0.86 0.84 0.85

YOLOv5 Standing 0.88 0.86 0.87

YOLOv5 Walking 0.80 0.78 0.79

YOLOv5 All Classes 0.83 0.81 0.82

YOLOv6 Eating 0.80 0.78 0.79

YOLOv6 Lying 0.88 0.86 0.87

YOLOv6 Standing 0.90 0.88 0.89

YOLOv6 Walking 0.82 0.80 0.81

YOLOv6 All Classes 0.85 0.83 0.84

YOLOv7 Eating 0.82 0.80 0.81

YOLOv7 Lying 0.90 0.88 0.89

YOLOv7 Standing 0.91 0.89 0.90

YOLOv7 Walking 0.84 0.82 0.83

YOLOv7 All Classes 0.87 0.85 0.86

YOLOv8 Eating 0.83 0.81 0.82

YOLOv8 Lying 0.91 0.89 0.90

YOLOv8 Standing 0.92 0.90 0.91

YOLOv8 Walking 0.85 0.83 0.84

YOLOv8 All Classes 0.88 0.86 0.87

IYOLO-FAM Eating 0.84 0.82 0.83

IYOLO-FAM Lying 0.92 0.90 0.91

IYOLO-FAM Standing 0.92 0.90 0.91

IYOLO-FAM Walking 0.86 0.84 0.85

IYOLO-FAM All Classes 0.89 0.87 0.88

behaviours. Regarding the ”Walking” class, the metrics in
YOLOv1 began at 0.72, 0.70, and 0.71. By the time YOLOv8
was developed, these numbers had improved to 0.85, 0.83, and
0.84, with the IYOLO-FAM making slight additional gains to
0.86, 0.84, and 0.85. The overall trend indicates that YOLO

models are becoming increasingly adept at detecting more
complex behaviours like ”Walking.” At the same time, simpler
actions such as ”Standing” and ”Lying” remain relatively
easier to predict.

Overall, the YOLO models demonstrate consistent improve-
ments in all evaluated metrics (Precision, Recall, and F1-score)
as they evolve from YOLOv1 to YOLOv8. The IYOLO-FAM
shows slight yet noteworthy improvements over the standard
YOLOv8 model, indicating that further optimizations and
enhancements can yield even better detection performance.
Precision and Recall values for each class show a balanced
improvement, leading to a higher F1 score, which signifies that
the models have improved in determining true positives and
reducing false negatives and positives. The steady improve-
ment across the YOLO versions highlights the effectiveness
of iterative enhancements and architectural innovations.

The heatmap graph in Figure 6 visually summarises the
performance metrics across different YOLO models and cow
behaviour classes. This detailed comparison and visualization
(e.g., the heatmap and trend graphs) empirically demonstrate
specific improvements and their impact on performance. These
visual tools help to identify areas for future research and
optimization, especially in complex behaviours such as ’Walk-
ing’ and ’Eating’. The heatmap effectively highlights the
strengths and weaknesses of every model, offering a clear
comparison of their detection capabilities. Each cell represents
the F1-score for a particular behaviour class detected by a
specific YOLO model, with colour intensity ranging from
light to dark to indicate low and high F1-scores, respectively.
This visual representation facilitates the quick identification
of trends and patterns. The heatmap shows a clear trend of
improvement in F1-scores from YOLOv1 to YOLOv8, with
IYOLO-FAM demonstrating the highest scores across most
behaviour classes. For example, the F1-score for the lying
class improved from YOLOv1 to IYOLO-FAM, indicating a
marked enhancement in the ability of the model to detect
this behaviour accurately. Similar improvements are observed
in other behaviour classes, such as Standing and Walking,
underscoring the effectiveness of iterative advancements in the
YOLO architecture. Moreover, the heatmap allows for easy
performance comparison across different behaviour classes. It
is evident that some classes, like ’Standing’ and ’Lying’, are
detected with higher accuracy compared to more dynamic be-
haviours like ’Walking’ and ’Eating’. This insight is valuable
for researchers and practitioners focusing on further optimiza-
tion and fine-tuning models for complex behaviours. Overall,
the heatmap is an effective tool for visualizing and comparing
the performance of various YOLO models, providing clear
evidence of the progressive improvements achieved through
each version.

The two figures below illustrate the performance of various
YOLO models in terms of False Positive Rate (FPR) and True
Positive Rate (TPR) across different classes of activities. As
shown in Figure 7, there is a clear trend of decreasing FPR
with newer versions of YOLO, indicating that newer models
are better at reducing false alarms. Each class (Eating, Lying,



Fig. 6: A heatmap of the F1-score values for each YOLO
version and Behaviour class.

Standing, Walking) shows a similar trend of decreasing FPR,
with the highest FPR observed in the Eating class and the
lowest in the Standing class. The overall FPR for all classes
also demonstrates a reduction, indicating Improved model
performance in minimizing false positives.

Fig. 7: The False Positive Rate (FPR) across different YOLO
models and classes.

Conversely, Figure 8 demonstrates an increasing trend in
TPR with newer YOLO versions, suggesting improved detec-
tion accuracy. Each class shows an improvement in TPR, with
the Standing class achieving the highest TPR and the Eating
class the lowest. The overall TPR for all classes improves
consistently, reflecting the models’ enhanced ability to identify
the target activities correctly. These trends are consistent
across all classes, highlighting the overall improvement in
YOLO models over time. The class-specific trends reveal that
’Standing’ generally performs best, while ’Eating’ has the
most room for improvement in both metrics. The combined
cumulative performance for all classes mirrors these individual
class trends, underscoring the advancements in YOLO model
accuracy and reliability.

The comparison in Table IV is shown for mAP@0.5 and
mAP@0.5:0.95 for YOLO models from YOLOv1 to YOLOv8
and our improved IYOLO-FAM or IYOLO-FAM. The mAP
values comprehensively estimate the results of the above

Fig. 8: True Positive Rate (TPR) across different YOLO
models and classes.

model across different IoU thresholds. The results show a
clear trend of improvement in mAP values as the YOLO
models developed. YOLOv1 has a mAP@0.5 of 0.74 and
a mAP@0.5:0.95 of 0.54. By YOLOv8, these values have
increased to a mAP@0.5 of 0.87 and a mAP@0.5:0.95 of
0.68. The IYOLO-FAM model further improves these values
to a mAP@0.5 of 0.88 and a mAP@0.5:0.95 of 0.70. These
improvements indicate that the models are becoming more
accurate and reliable in detecting objects across different
IoU thresholds. In conclusion, the performance evaluation
in Table IV illustrated the progressive enhancements in the
YOLO models, showcasing their robustness and reliability
in detecting various behaviours. The IYOLO-FAM improved
performance underscores the potential for continued advance-
ments in object detection technologies as well.

VI. CONCLUSION AND FUTURE DIRECTION

This research introduced an Improved YOLOv8 model
using the Feature Attention Mechanism (IYOLO-FAM) for
cow behaviour detection. The model is improved using SE
blocks and spatial channel attention modules. Experiments
were conducted using a real Farm Cow behaviour dataset. The
results demonstrated that the IYOLO-FAM shows good results
compared to baseline models. The overall accuracy is 88% at
(mAP@0.5) and 70% (mAP@0.5:0.95). The F1 scores for spe-
cific behaviours, such as eating, lying, standing, and walking,
show substantial improvement, proving model effectiveness
for different behaviour classes. Detection results improvements
in behaviour detection showed that the improved model not
only pushes the boundaries of cow behaviour detection but
also paves the way for real-time monitoring applications in
livestock management. The improved robustness and accuracy
of the model make it a valuable tool for ensuring timely
interventions and maintaining animal health and wellbeing.
Future work could further refine the model to detect and track
behaviours using video footage and explore integration with
other deep-learning models.
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TABLE IV: Comparison of mAP for YOLO (v1-v8) and
improved IYOLO-FAM

YOLO Version Class mAP@0.5 mAP@0.5:0.95

YOLOv1 Eating 0.70 0.50

YOLOv1 Lying 0.77 0.55

YOLOv1 Standing 0.79 0.57

YOLOv1 Walking 0.71 0.53

YOLOv1 All Classes 0.74 0.54

YOLOv2 Eating 0.72 0.54

YOLOv2 Lying 0.79 0.57

YOLOv2 Standing 0.81 0.59

YOLOv2 Walking 0.73 0.55

YOLOv2 All Classes 0.76 0.56

YOLOv3 Eating 0.74 0.56

YOLOv3 Lying 0.81 0.59

YOLOv3 Standing 0.83 0.61

YOLOv3 Walking 0.75 0.57

YOLOv3 All Classes 0.78 0.58

YOLOv4 Eating 0.76 0.58

YOLOv4 Lying 0.83 0.61

YOLOv4 Standing 0.85 0.63

YOLOv4 Walking 0.77 0.59

YOLOv4 All Classes 0.80 0.60

YOLOv5 Eating 0.78 0.60

YOLOv5 Lying 0.85 0.63

YOLOv5 Standing 0.87 0.65

YOLOv5 Walking 0.79 0.61

YOLOv5 All Classes 0.82 0.62

YOLOv6 Eating 0.80 0.62

YOLOv6 Lying 0.87 0.65

YOLOv6 Standing 0.89 0.67

YOLOv6 Walking 0.81 0.63

YOLOv6 All Classes 0.84 0.64

YOLOv7 Eating 0.82 0.64

YOLOv7 Lying 0.89 0.67

YOLOv7 Standing 0.90 0.69

YOLOv7 Walking 0.83 0.65

YOLOv7 All Classes 0.86 0.66

YOLOv8 Eating 0.83 0.66

YOLOv8 Lying 0.90 0.69

YOLOv8 Standing 0.91 0.71

YOLOv8 Walking 0.84 0.67

YOLOv8 All Classes 0.87 0.68

IYOLO-FAM Eating 0.84 0.68

IYOLO-FAM Lying 0.91 0.71

IYOLO-FAM Standing 0.92 0.72

IYOLO-FAM Walking 0.85 0.69

IYOLO-FAM All Classes 0.88 0.70

commitment to advancing scientific knowledge and innovative
solutions in livestock management has been instrumental in the
successful implementation of this work.
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