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Abstract: Soil erosion is a global issue—with gully erosion recognized as one of the most important
forms of land degradation. The purpose of this study is to compare and contrast the outcomes of
four machine learning models, Classification and Regression (CART), eXtreme Gradient Boosting
(XGBoost), Random Forest (RF), and Support Vector Machine (SVM), used for mapping susceptibility
to soil gully erosion. The controlling factors of gully erosion in the Piraí Drainage Basin, Paraíba do
Sul Middle Valley were analysed by image interpretation in Google Earth and gully erosion samples
(n = 159) were used for modelling and spatial prediction. The XGBoost and RF models achieved
identical results for the area under the receiver operating characteristic curve (AUROC = 88.50%),
followed by the SVM and CART models, respectively (AUROC = 86.17%; AUROC = 85.11%). In all
models analysed, the importance of the main controlling factors predominated among Lineaments,
Land Use and Cover, Slope, Elevation and Rainfall, highlighting the need to understand the landscape.
The XGBoost model, considering a smaller number of false negatives in spatial prediction, was
considered the most appropriate, compared to the Random Forest model. It is noteworthy that the
XGBoost model made it possible to validate the hypothesis of the study area, for susceptibility to
gully erosion and identifying that 9.47% of the Piraí Drainage Basin is susceptible to gully erosion.
Furthermore, replicable methodologies are evidenced by their rapid applicability at different scales.

Keywords: gully erosion susceptibility; land degradation; machine learning; spatial modelling

1. Introduction

Soil erosion processes are influenced by precipitation (intensity and amount), slope
angle, land use and management, and soil properties. The clearance of vegetation, including
deforestation, and agricultural activities are determining factors for the occurrence of
soil erosion and surface runoff, induced by the rainfall regime [1]. Depending on the
specificity of the controlling factors, erosion can be categorized as sheet, rill and gully
erosion. However, in this research work we will only address gully erosion.

A gully can be defined as an erosive incision, in unconsolidated materials, resulting
from the concentration of water flows, following intense rains or ice melting. Furthermore,
gullies are erosive features with depths > 0.5 m and cannot be obliterated by agricultural
machinery [2]. Gully erosion has been recognized worldwide as one of the most important
forms of land degradation. It can be found in rural or urban areas.

In this sense, several national and international authors have drawn attention to this
type of erosive process, which in addition to causing effects in the place where they occur,
also, through surface and subsurface runoff, causes silting of water bodies and areas located
further downstream [3–5].
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The process in which a given landscape is established is dynamic, unstable, unre-
peatable and occurs in a portion of the geographic space [6]. In this sense, understanding
natural laws, the portion of geographic space and the history of formation of environmental
conditions are ways of understanding the landscape.

Agriculture and pasture are activities that can result in different forms of land degra-
dation, especially when these activities do not consider the limits imposed by the environ-
ments, with regard to gully erosion. As a consequence, in addition to the loss of land for
rural activities, there is an increase in river and reservoir silting [7,8].

Due to the complexity inherent in the occurrence of gullies, methods such as multi-
criteria decision analysis by Geographic Information Systems (GIS-MCDA) [9] and machine
learning [10] have become recurrent. GIS-MCDA can be understood as an approach that
contributes to decision-making, combining data and geospatial considerations, according to
their importance in understanding this issue [11]. However, the subjectivity implicit in GIS-
MCDA occurs mainly due to the attribution of weights to the analysis factors and results
that are often less accurate, in relation to the machine learning method [12]. Furthermore,
empirical models, usually due to the difficulty of dealing with multiple controlling factors,
cannot correctly estimate areas susceptible to erosion [10].

Process-based, or deterministic, models do not allow for their application on large
scales, especially due to their parameterization, which is fundamental as input data for
the established equation [13,14]. In turn, stochastic models model a given natural system,
through the distribution of probabilities across several variables and n values, producing
several probable solutions and enabling the assessment of uncertainty, carried out by the
modeler [14].

In this sense, due to the limitations for spatial modelling of models based on multi-
criteria decision analysis, due to their subjectivity and process-based or deterministic
models, due to their difficulty in applying on a large scale, we opted for the use of stochastic
models, for machine learning.

Machine learning is an empirical method that uses regression, or classification, and
is recommended for problem solving, where theoretical knowledge is not yet consoli-
dated [15] and for data analysis. In mapping gully erosion susceptibility, the machine
learning method provides satisfactory results, such as prediction and metrics for model
evaluation/validation [10,16].

Despite the importance of gully erosion, there has been minimal effort to develop
reliable models for its formation and evolution. Therefore, using measurements of width,
depth and length of gullies in the study area, together with the monitoring of several
geomorphological features, this research work aims at mapping the susceptibility to ero-
sion by gullies in Piraí drainage basin. In this sense, the purpose of the study was to
compare and contrast four machine learning models, Classification and Regression (CART),
eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Machine
(SVM) for gully erosion susceptibility mapping in the Piraí Drainage Basin, Paraíba do Sul
Middle Valley.

2. Materials and Methods
2.1. Study Area Characterization

The Piraí drainage basin, located in Rio de Janeiro State (Figure 1), intersects the
municipalities of Barra do Piraí, Engenheiro Paulo Frontin, Mendes, Piraí and Vassouras,
totalling 1019.87 km2. Furthermore, it is part of the context of the Depression of the Middle
Valley Paraíba do Sul, which plays an important role as a regional base level. In Paraíba
do Sul-Embu tectonic terrain, the Quirino complex stands out in this compartment, the
largest outcropping area, especially in the Shear Zone of Paraíba do Sul River, with NE–SW
direction. For example, reflected in the lineaments, concentrated downstream in the Piraí
drainage basin.
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Figure 1. Study area localization and gully erosion sites.

This condition has caused a depressed surface delimited by Mantiqueira and Mar
Mountain Ranges, due to the Cenozoic tectonics that originated the Southwest Brazil
Continental Rift [17,18].

A depression of the Middle Vale Paraíba do Sul is a hemigraben, close to the Man-
tiqueira mountain alignments (Front) and Mar Mountain reverse. It is characterized by
landforms of hilly domains, which may include low hills and landforms of hills and low
hills and gentle to medium slopes [19]. On the hilly domain, in the middle Paraíba do Sul
valley, as convex or convex–concave strands [18], active geomorphological processes occur,
which are observed by intense rills and gullies, relief inversion, drainage captures, and
structural concavities [20,21]. For the erosive or hydro-erosive process to occur, a slope
angle is necessary 3◦ [1].

In relation to the depression of Paraíba do Sul Middle Valley, where the Piraí Drainage
Basin is contained, Red–Yellow Oxisols, Red–Yellow Argisols, Yellow Oxisols, and Yellow
Argisols dominate on gentle slopes [22]. The occurrence of sub-humid tropical climate
domains, with annual rainfall averages between 1200 mm and 1800 mm [20] enabling the
development of humid soils [18,22]. Furthermore, the Atlantic Forest biome is predominant
and in the study area, isolated forest fragments refer to secondary formations, arising from
the abandonment of agricultural areas [23].

The settlement of Paraíba do Sul middle valley has been characterized by several
economic cycles, such as coffee growing and its subsequent replacement by dairy farming
in the XIXth century, promoting soil depletion and accelerated erosion on the slopes, due
to changes in the regional hydroclimatic dynamics [24]. Concavity’s structural control,
associated with the subsurface hydrological dynamics and soil use and management, favour
the occurrence of erosion processes [19].

2.2. Methodological Procedures
2.2.1. Gully Inventory Data

Soil samples (n = 234) from gullies (Figure 2) were acquired by the Geological Survey
of Brazil [25]. Although there are several classifications for gully measurements, it was
decided to adopt the following criteria: >0.5 m for depth and >0.5 m for width, usually
over 50 m long, with steep walls.



Land 2024, 13, 1665 4 of 21

Land 2024, 13, x FOR PEER REVIEW 4 of 22 
 

2.2. Methodological Procedures 
2.2.1. Gully Inventory Data 

Soil samples (n = 234) from gullies (Figure 2) were acquired by the Geological Survey 
of Brazil [25]. Although there are several classifications for gully measurements, it was 
decided to adopt the following criteria: >0.5 m for depth and >0.5 m for width, usually 
over 50 m long, with steep walls. 

The main reason is that this classification can be used for both tropical and temperate 
environments, as several authors have highlighted in their articles [1,4,5,7]. Thus, using 
Google Earth, width and depth were measured, using the criteria mentioned above. 
Among the 234 samples evaluated, 75 had georeferencing problems and, as such, were 
excluded, with only 159 samples being used, representative of the total amount of the 
sample setting, without the data exclusion. Subsequently, further samples were generated 
without the occurrence of gullies, resulting in 159 samples randomly [26] to balance the 
previous sample set, totaling 318 samples. 

In the present article, the samples referring to the non-occurrence of gullies were 
called non-eroded (0) and with occurrence, eroded (1) and divided between training (70%) 
and test (30%) samples, according to [10,16,26,27], for the predictive model of gully 
susceptibility. 

Cross-validation or K-fold was adopted to increase the robustness of the models, 
especially regarding the randomness of the training data [28] by arbitrarily dividing the 
training and/or validation data into K classes [29]. In this sense, the training data were 
stratified into 4 K-Folds to enable cross-validation of the models for susceptibility to 
erosion by gullies and can be subdivided, according to the research needs and adopted in 
several studies on natural risks [30]. 

  

Figure 2. Photos illustrating the occurrence of gully erosion in the study area. 

2.2.2. Multicollinearity in Controlling Factors for Gully Erosion 
This section is subdivided—it provides a concise and precise description of the 

experimental results, their interpretation, as well as the experimental conclusions that can 
be drawn. In studies for susceptibility mapping, it is necessary to consider 
multicollinearity in the controlling factors, as it may possibly influence the predictive 
model [10]. In the present research study, the following thresholds were adopted: Variable 
Inflation Factors (VIF) < 10 and TOL > 0.1, adopted by [16,27]. VIF can be understood as 
the inverse of TOL, which is the residue of the given variables in a given multivariate 
regression [10]. 

To prepare the controlling factors, referring to geomorphological and hydrological 
dynamics, the Forest and Building Removed Digital Elevation Model [31] was used, with 
a spatial resolution of 30 metres. For hydrological conditioning in the digital elevation 
model, in the calculation of land surface parameters, it was decided to apply the filling 
method to remove spurious or erroneous depressions [32]. In the analysis carried out by 

Figure 2. Photos illustrating the occurrence of gully erosion in the study area.

The main reason is that this classification can be used for both tropical and temperate
environments, as several authors have highlighted in their articles [1,4,5,7]. Thus, using
Google Earth, width and depth were measured, using the criteria mentioned above. Among
the 234 samples evaluated, 75 had georeferencing problems and, as such, were excluded,
with only 159 samples being used, representative of the total amount of the sample setting,
without the data exclusion. Subsequently, further samples were generated without the
occurrence of gullies, resulting in 159 samples randomly [26] to balance the previous sample
set, totaling 318 samples.

In the present article, the samples referring to the non-occurrence of gullies were called
non-eroded (0) and with occurrence, eroded (1) and divided between training (70%) and test
(30%) samples, according to [10,16,26,27], for the predictive model of gully susceptibility.

Cross-validation or K-fold was adopted to increase the robustness of the models,
especially regarding the randomness of the training data [28] by arbitrarily dividing the
training and/or validation data into K classes [29]. In this sense, the training data were
stratified into 4 K-Folds to enable cross-validation of the models for susceptibility to erosion
by gullies and can be subdivided, according to the research needs and adopted in several
studies on natural risks [30].

2.2.2. Multicollinearity in Controlling Factors for Gully Erosion

This section is subdivided—it provides a concise and precise description of the exper-
imental results, their interpretation, as well as the experimental conclusions that can be
drawn. In studies for susceptibility mapping, it is necessary to consider multicollinearity in
the controlling factors, as it may possibly influence the predictive model [10]. In the present
research study, the following thresholds were adopted: Variable Inflation Factors (VIF) < 10
and TOL > 0.1, adopted by [16,27]. VIF can be understood as the inverse of TOL, which is
the residue of the given variables in a given multivariate regression [10].

To prepare the controlling factors, referring to geomorphological and hydrological
dynamics, the Forest and Building Removed Digital Elevation Model [31] was used, with a
spatial resolution of 30 m. For hydrological conditioning in the digital elevation model, in
the calculation of land surface parameters, it was decided to apply the filling method to
remove spurious or erroneous depressions [32]. In the analysis carried out by [33], digital
elevation models, which undergo pre-processing, present more satisfactory results.

Geomorphometry is the science that aims to quantify and to analyse the earth’s
surface [34]. In the calculation of land surface parameters, such as dissection index, LS factor,
profile curvature, plan curvature, slope angle, topographic ruggedness index, topographic
wetness index [10], stream power index [16], and specific contribution area, the Whitebox
package in R was used.

Elevation (z) is a land surface parameter or fundamental raw material for calculating
various terrain attributes [35].

z= f(x, y) (1)
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where, z is elevation.
Dissection index is a modification referring to [36], which presupposes understanding

the relationship between Absolute and Local Relief to assess the degree of denudation
of landforms.

Dissection Index =
(z − zmin)

(zmax − zmin)
(2)

where, z is elevation, zmin is the minimum elevation in a given 3 × 3 moving window and
zmax is the maximum elevation in a given 3 × 3 moving window.

Local relief is the difference between the maximum and minimum elevations in a
given portion, and is a metric that can indicate the denudation of landforms [37,38].

Local Relief = zmax − zmin (3)

where, z is elevation, zmin is the minimum elevation in a given 3 × 3 moving window and
zmax is the maximum elevation in a given 3 × 3 moving window.

Plan Curvature is the measurement between the convergence and divergence of
flows on the surface and inside the soil, in which values < 0 are convergent and >0 are
divergent [39,40].

Plan Curvature =
q2r + 2pqs + p2t

(p2 + q1)
√

1 + p2 + q2
(4)

where, p is the derivative of z on the x–axis, q is the derivative of z on the y–axis, and s is
the second derivative of z on the x– and y–axes.

Profile Curvature is the measurement between the acceleration and deceleration of
flows on the surface and inside the soil, in which values < 0 are decelerated and >0,
accelerated [39,40].

Profile Curvature =
p2r + 2pqs + q2t

(p2 + q1)
√(

1 + p2 + q2
)

3
(5)

where, p is the derivative of z on the x–axis, q is the derivative of z on the y–axis, and s is
the second derivative of z on the x– and y–axes.

The relationship between the length (l) of the slope and its slope angle(s) is estimated,
as assumed by [41]. In which, in this equation, the conditions of erodibility and stability
are considered, in order to estimate such conditions in a more appropriate way.

Sediment Transport Index =
( a.

22.13

)0.4 ( s
0.0896

)1.3
(6)

where, a is the contribution area and s is the slope angle.
Slope angle or gradient of the terrain can be understood with the rate of change in

elevation, in the axes or co-ordinates of X and Y [42].

Slope Angle = arctan
√

p2 + q2 (7)

where, p is the derivative of z on the x–axis and q is the derivative of z on the y–axis.
Stream Power Index is the proportion or relationship between the contributing area

and the slope angle of the land. It refers to the potential for erosive flow and processes in the
landscape [40,43], where negative values correspond to areas with sediment accumulation
and positive values, and steeper slopes with a risk of erosion [44].

Stream Power Index = In (1 + a . tan(s)) (8)

where, a is the specific contribution area and s is the slope radians.
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Specific Catchment Area is the ratio of the contributing area over a portion of the
length of the orientation of a given slope [40].

Terrain Roughness Index, proposed by [45], aims to quantify the heterogeneity of the
terrain or relief units

Topographic Ruggedness Index = Y
[
∑(xij − x00)

2
] 1

2
(9)

where, p is the maximum elevation in a given 3 × 3 moving window and q is the minimum
elevation in a given moving window 3 × 3 and s.

The Topographic Wetness Index [46] presupposes understanding the spatial distribu-
tion of the effects of the Contribution Area, such as the hydrological response on the soils
and, therefore, on the landforms, and in which positive values estimate humid or saturated
areas and negative non-humid or unsaturated areas [47].

Topographic Wetness Index = In
[

a
tan(s)

]
(10)

where, a is the specific contribution area and s is the slope radians.
The literature, regarding gully susceptibility mapping, controlling factors (such as

lithology, rainfall, distance to highways, distance to rivers [10], land use and cover [26],
and soils [45]) have been addressed [10,48]. In this sense, for the present research work, a
geological and lineaments map was adopted at 1:400,000 scale [49], a land use and cover
map at 1:100,000 scale [50], and a soils map at 1:250,000 scale [22].

To calculate the distance to highways and the distance to rivers, vector data were used,
respectively from road sections and hydrography, at 1:25,000 scale [51]. In terms of rainfall,
WorldClim climate data [52], version 2.1, were used, which have 1 km2 spatial resolution,
with a historical series between 1970–2000, and the average rainfall was subsequently
calculated using map algebra. Subsequently, the data were resampled to a spatial resolution
of 30 metres, and the data in vector format were also converted to matrix format at the
same resolution. These procedures were carried out to make data resolutions compatible in
the predictive model.

It is important to emphasise that for replicability and reproducibility purposes, in the
dataset used, 11 controlling factors, such as the digital elevation model, which can calculate
the parameters of the earth’s surface and climate time series data (rainfall), are available
free of charge across the entire globe. More specific data can be replaced by radiometric
indices, as in vegetation and soil dynamics, therefore enabling the use of this methodology
for different contexts of landscape structures.

In studies for susceptibility mapping, it is necessary to consider multicollinearity in
the controlling factors, as it may possibly influence the predictive model [10]. In the present
research study, the following thresholds were adopted, VIF < 10 and TOL > 0.1, adopted
by [16,27], using the USDM package in R programming.

2.2.3. Thresholding in Controlling Factors for Gully Erosion

In order to structure the understanding of the specificities of the controlling factors in
the study area, descriptive statistics metrics were applied, such as mean, standard deviation,
minimum and maximum for continuous data and mode for discrete data, to identify the
thresholds controlling factors (geomorphological, hydrological, and others) and locations,
according to discrete and thematic data.

2.2.4. Machine Learning Models

Several studies such as [10,27,53–57] compare machine learning models for suscepti-
bility to erosion by gullies, aiming to identify the most appropriate one. However, there is
no consensus in the literature regarding in which situations a given model can be superim-
posed on another.
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In this sense, the choice of the eXtreme Gradient Boosting, Random Forest, and
Support Vector Machine models occur because they present the most satisfactory results
in the analyses. Although, the Classification and Regression Tree model, predecessor and
precursor of the Random Forest algorithm, known for some similarities, is rarely analysed
or compared, hence its choice.

Classification and Regression Tree

The Classification and Regression Tree is a decision tree algorithm, its main difference
being the possibility of using uncategorized variables, that is, not labelled but numerical and
is based on decision-making logic (If-else) and regression analysis [58,59]. The functionality
of this model is the creation of a given decision tree, with successive divisions in the training
data, that is recursive and with a predefined limit, which after this process performs the
appropriate labelling. Furthermore, the Classification and Regression Tree model is highly
sensitive to training data [59].

The cf hyperparameter refers to the complexity of the model. In optimizing the single
hyperparameter (cf), a sequence of values was used, using the grid search with four-fold-
cross-validation method. The choice to use the Classification and Regression Tree model
is due to a few comparative studies, with the exception of [53], which identified good
performance, compared to the General Linear Model (GLM).

eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is a machine learning model based on gra-
dient tree boosting that provides scalability and makes it possible to model complex
relationships [60]. Typically, a decision tree for classification establishes rules to affect the
separability and labelling of each instance, in this article for gully erosion, based on the
predisposing (controlling) factors in a decision structure [54]. However, eXtreme Gradient
Boosting produces a sequence of decision trees gradually and for each new tree constructed,
the correction of previous errors is sought, and thus progressively more accurate predic-
tions [54,55].

The hyperparameters, nrounds, the increase in iterations, max depth, the maximum
depth of the decision tree, eta, the model learning rate, gamma, the minimum loss re-
duction, colsample by tree, the proportion of column subsamples, min child weight, the
minimum sum of the instance weight and the subsample, and the percentage of the
sub-sample were optimized using a sequence of values through the grid search with a
four-fold-cross-validation method. Moreover, in several recent studies, the XGBoost model
has demonstrated excellent performance for gully erosion susceptibility [27,54–56], thus
highlighting its choice here.

Random Forest

The decision tree is a driving force for several applications, quickly, which presents
significantly accurate results [61]. The Random Forest machine learning algorithm is a
non-parametric and random classifier, which consists of classifiers structured in decision
trees. Attributes are randomly distributed and each decision tree sends its unit’s “vote” to
differentiate a class [62].

The Random Forest model uses the premise of classification and regression trees
(CART) to define each tree from a given sample and repeats k times to define the trees
through a random subgroup of variables, in this case the controlling factors for susceptibil-
ity and erosion by gullies at each node [13]. The Random Forest model was chosen as it
presents the most robust performance in gully erosion susceptibility models [10,53,56,57].
When using this model, the following hyperparameters were considered: mTry (2) which
is the number of predictors sampled for splitting at each node. In optimizing the hyper-
parameter, a sequence of values was used, using the grid search with a four-fold-cross-
validation method.

Hyperparameters such as ntree, referring to the number of decision trees and nodesize,
and the minimum size of terminal nodes were defined automatically, based on the definition
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of mTry. Furthermore, it is possible to identify the most significant contributions of the most
significant factors or variables in the model prediction. The Mean Decrease Gini calculates
the impurity of the data, the probability of occurrence in classification, and the labelling of
classes. Therefore, the Mean Decrease Gini is fundamental for identifying the importance
of variables and the higher the value obtained by the factor, the greater its contribution to
the predictive model and vice versa [62].

Support Vector Machine

The Support Vector Machine’s functionality is to identify the well-established limit
between two classes for subsequent classification [63]. Furthermore, it is a linear and
generalized classifier, and is a popularly adopted method for regression problems and can
be used for applications in data classifications [64].

In this model, the input data for training, labelled with a given label, fit into an
optimal separating hyperplane, maximizing the margins of the boundaries between the
two classes [27–64]. Among the hyperparameters of this model, sigma, which controls
the non-linearity of the hyperplane, and the regularization (cost) hyperparameter, are
fundamental to optimize the model and control overfitting [56]. To optimize the values of
the hyperparameters, a sequence of values was used, using the grid search with a four-fold-
cross-validation method. The Support Vector Machine model is promising for susceptibility
to erosion by gullies [27], as well as an indicator by [56] and therefore adopted in the
present study.

Machine Learning Models Implementation

The application of the Classification and Regression Tree, Random Forest, Support
Vector Machine, and eXtreme Gradient Boosting machine learning models were done in R
with the rpart, randomForest, e1071, and xgboost packages with the caret package.

For classification between the Non-Eroded (0) and Eroded (1) labels in the Machine
Learning Models, and after classification, a probability matrix was generated for the
recognition of spatial patterns of susceptibility to gully in R with terra package and after
using the Natural Jenks method. Natural breaking is an approach that groups similar data
and accentuates the differentiation between them [65].

2.2.5. Model Evaluations

Metrics for evaluating the predictive machine learning model, using a binary confusion
matrix, consider the relationship between true and false positives and negatives [66].
According to [66], defining true positives or negatives corresponds to the identical labelling
between the real and predicted classes. False positives correspond to the erroneous or
incorrect classification of the predicted classes, while in false negatives a class is wrongly
assigned for subsequent classification.

Among the most commonly used metrics in gully erosion susceptibility mapping,
accuracy, precision, recall, F1-Score, and ROC Curve stand out. Accuracy corresponds to the
degree of measurement between modelling and reality, precision refers to the proportion
between true positives and sums that were predicted as positive in the model. Recall is
similar to precision, however it only considers the sum of truly positive data, and the
F1-Score is the harmonic mean between precision and recall, that is, if the F1-Score has
higher values, the more robust the relationship is between the two metrics [67].

Accuracy =
TP − FN

TP + FP + TN + FN
(11)

where, TP = true positive, TN = true negative, FP = false positive, and FN = false negative

Precision =
TP

TP − FP
(12)
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where, TP = true positive and FP = false positive

Recall =
TP

TP − FN
(13)

where, TP = true positive and FN = false negative

F1-Score =
TP

TP − 1
2 (FP − FN)

(14)

where, TP = true positive, FP = false positive, and FN = false negative
The ROC Curve is defined as the relationship between sensitivity and specificity, where

the first is the proportion of positives classified correctly, and the second the proportion
of negatives classified correctly [67]. Metrics to evaluate its performance were done in
R with caret and pROC packages. For specificity, spatial patterns in gully occurrence in
susceptibility mapping addressed the Natural Jenks approach in ArcGIS 10.8 software.

2.2.6. Minimum Mapping Unit

Due to the multiplicity of data scales of the controlling factors and ensuring the
reliability of the proposed mapping scale, the procedure was carried out to identify the
most appropriate minimum mappable area. The minimum mapping unit is the smallest
feature that can be captured when imaging by remote sensing [68].

For this, the matrix cartographic generalization proposed by [69] was used, which
suggests the calculation between the ratio of the minimum mappable area (40 ha) referring
to the mapping scale, 1:250,000, and the size of the pixel area, 900 m2. We enabled the
appropriate choice of the movable window, in this case 5 × 5, as it is close to the result of
the number of pixels relative to the previously mentioned ratio, 27.7 pixels.

3. Results
3.1. Multicollinearity in Controlling Factors for Gully Erosion

In Table 1, analyses of the VIF and TOL statistical tests to identify correlations between
the controlling factors were performed. Among the 18 controlling factors, Dissection Index,
Local Relief, Topographic Ruggedness Index, and Sediment Transport Index presented
collinearity and were excluded. According to the data below on the controlling factors, no
significant correlation or connections were identified in the variables used to gully erosion
susceptibility mapping.

Table 1. Results of multicollinearity tests in controlling factors.

Controlling Factors VIF TOL

Elevation 4.7 0.21
Distance to Rivers 1.20 0.83
Distance to Roads 1.26 0.79

Land Use and Land Cover 1.17 0.85
Lineaments 1.3 0.77
Lithology 1.09 0.92

Plan Curvature 1.08 0.92
Profile Curvature 1.20 0.83

Rainfall 3.21 0.31
Slope 4.32 0.23

Specific Contributing Area 3.21 0.31
Stream Power Index 4.17 0.24

Soils 1.72 0.58
Topographic Wetness Index 2.74 0.36
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3.2. Thresholding in Controlling Factors for Gully Erosion

In Table 2, it is possible to understand how the predominance of gully erosion occurs
in the Piraí Drainage Basin, Paraíba do Sul Middle Valley, where, in the prerogative of
geomorphological and hydrological thresholds, the gullies stand out in a range with low
elevation, compared to the altimetric extension of 1572.88 m. In relation, the density of
lineaments has a considerable concentration of faults and fractures.

Table 2. Exploratory statistics of susceptibility thresholds for gully erosion in controlling factors.

Controlling Factors Mean Min Max Mode

Elevation 448.15 m 383.71 m 592.14 m -
Distance to Rivers - - - 0–100 m
Distance to Roads - - - 0–100 m

Land Use and Land Cover - - - Pasture
Lineaments 164,242.59 px/km2 0 px/km2 200,902.26 px/km2 -
Lithology - - - Rio Turvo Suite

Plan Curvature 0.0022 m−1 −0.0226 m−1 0.0255 m−1 -
Profile Curvature 0.0004 m−1 −0.0059◦/m 0.0043◦/m -

Rainfall 1205.48 mm 1172.38 mm 1272.87 mm -
Slope 22.63◦ 6.09◦ 33.07◦ -

Specific Contributing Area 45.05 m2/m 29.12 m2/m 232.96 m2/m -
Stream Power Index 18.46 3.11 108.22 -

Soils - - - Red–Yellow Argisols
Topographic Wetness Index 4.53 3.80 6.62 -

With the curvatures in profile and plan, it is possible to conceive that the predominance
of convex-convex or divergent slope shapes, according to equations 4 and 5 and the slope,
occurs in a range between low to medium slope and reference. In the flow power index, it
is clear that, due to the predominance of values, as indicated in the literature, they indicate
a greater risk to erosion, in this case susceptibility to erosion by gullying.

Through the specific contribution area that is directly related to the topographic
humidity index, it is possible to identify through the positive values of the index that are
located in humid or saturated areas.

It is possible to understand the occurrence of gullies, as approximately every 100 m
from a given gully there is a drainage or a highway. Furthermore, pasture predominates as
the main land use and cover, in favour of gullies. In relation to lithology and soils, the Rio
Turvo suite with Granitoids and Orthogneisses and Red–Yellow Argisols predominates.

3.3. Performance of Machine Learning Models

Table 2 and Figure 3 show the results regarding the metrics used to evaluate the four
predictive models for mapping susceptibility to gully erosion. To evaluate the performance
of the models, we chose to use five performance metrics—Accuracy, Precision, Recall,
F1-Score, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC).

The Classification and Regression Tree model obtained the least satisfactory result in
Accuracy (0.851) and AUC-ROC (85.11%) and in the other performance metrics compared,
and in the two classes Non-Eroded and Eroded (1). In this model, in the Eroded class, it
is Precision (0.836) and lower than Recall (0.873), indicating the model’s underestimation
of the occurrence of gullies and in the Non-Eroded class, the opposite situation occurs,
respectively Precision (0.866) and Recall (0.829), identifying the overestimation of the
non-occurrence of gullies in the study area.

The eXtreme Gradient Boosting (XGBoost) and Random Forest models achieved the
most robust results, referring to the five performance metrics adopted, however, each of
these models presents a peculiarity that is reflected in the underestimation or overestimation
of the occurrence of gullies, with identical values in Accuracy (0.882) and AUC-ROC
(88.30%), representing an excellent predictive capacity. By evaluating the metrics, it is
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possible to understand the performance of the model and it is clear that Precision in both
models, there is an underestimation of the occurrence for the emergence of gullies (Eroded),
respectively, XGBoost (0.860) and RF (0.875), and Recall XGBoost (0.914) and RF (0.893).
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These two values allow us to identify that, in the XGBoost model, the largest over-
estimation occurs in the Non-Eroded class, referring to Precision, XGBoost (0.909), RF
(0.891), Recall XGBoost (0.851), and RF (0.872). In the Support Vector Machine model, with
Accuracy (0.861) and AUC-ROC (86.17%), it presents the same behavior regarding the un-
derestimation of the occurrence of gully (Eroded), with Precision (0.826) and Recall (0.914)
of overestimation (Non-Eroded), and Precision (0.904) and Recall (0.808), being the model
with the highest underestimation and overestimation for the gully erosion susceptibility
model (Table 3).

Table 3. Comparison between performance metrics of machine learning models.

Performance Metrics

Model Accuracy Precision Recall F1-Score

CART
Non-Eroded

0.851
0.866 0.829 0.847

Eroded 0.836 0.873 0.854

XGBoost
Non-Eroded

0.882
0.909 0.851 0.879

Eroded 0.860 0.914 0.886

RF
Non-Eroded

0.882
0.891 0.872 0.881

Eroded 0.875 0.893 0.884

SVM
Non-Eroded

0.861
0.904 0.808 0.853

Eroded 0.826 0.914 0.868

3.4. Variables Importance

The contribution of the controlling factors to the Classification and Regression Tree
Model (Figure 4A) shows that, among 14 selected variables, only 11 were considered in the
predictive model, excluding Specific Contributing Area and Distance to Rivers and Soils.
In this case, the controlling factor Lineaments (64.22) was the most significant variable in
the model, while Land Use and Cover (46.24), Slope (41.10), Elevation (40.98), and Rainfall
(35.53), although significant, contributed moderately to highly in the modelling.
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Figure 4. (A) Variables’ importance for classification and regression tree model, respectively: linea-
ments = lineaments; lulc = land use and cover; slope = slope; elevation = elevation; rainfall = rainfall;
spi = stream power index; twi = topographic wetness index; lithology = lithology; profilecurv = profile
curvature; plancurv = plan curvature; distanceroads = distance to roads; sca = specific contributing
area; distancerivers = distance to rivers; soils = soils. (B) Variables importance for eXtreme gradient
boosting model; (C) Variables importance for random forest model and (D) Variables importance for
support vector machine model.

The controlling factors such as Stream Power Index (13.90), Topographic Wetness
Index (13.734), and Lithology (12.00) do not present significant values in contribution, but
they differ from the other controlling factors, showing a moderate to low contribution.
Profile Curvature (6.74), Plan Curvature (6.33), and Distance to Roads (1.52) were the least
significant controlling factors in the model.
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Regarding the eXtreme Gradient Boosting Model (Figure 4B), 14 selected variables
were considered in the predictive model and the controlling factor Lineaments (40.18)
demonstrated the greatest contribution in the modelling. Slope (17.92), Land Use and Land
Cover (11.08), Profile Curvature (8.56), Rainfall (5.87), and Elevation (5.60) contributed
moderately to highly in the modelling. Necessarily Lithology (3.21) and Distance to Roads
(2.91) highlight a moderate to low contribution, considering the situation of this model
and Stream Power Index (1.79), Plan Curvature (1.76), Topographic Wetness Index (0.59),
Distance to Rivers (0.31), Soils (0.18), and Specific Contributing Area (0.04) were the least
significant controlling factors in this predictive modelling.

The result regarding the contribution of the controlling factors to the Random Forest
prediction (Figure 4C) shows that the 14 selected variables were considered in the predic-
tive model. In this case, the controlling factor Lineaments was, again, the most relevant
controlling factor for the model (22.13). Factors such as Elevation (13.33), Rainfall (11.61),
Slope (11.26), and Land Use and Cover (11.16) in this model were considered as moderate
to high contributions.

Stream Power Index (8.08), Topographic Wetness Index (6.83), and Profile Curvature
(6.30) show a moderate to low contribution. Plan Curvature (5.38), Soils (4.25), Lithology
(4.08), Distance to Roads (2.98), Distance to Rivers (2.29), and Specific Contributing Area
were the least significant controlling factors in the predictive model.

In the Support Vector Machine Model (Figure 4D), the 14 selected variables were
considered in the predictive model and, again, the lineaments controlling factor made
the largest contribution (86.81), while Elevation (78.83), Slope (75.29), Land Use and Land
Cover (74.09), Soils (72.33), and Precipitation (71.18) were considered as moderate to
high contributions.

The controlling factors Topographic Wetness Index (69.34), Stream Power Index (67.12),
Profile Curvature (62.38), Distance to Roads (61.78), and Lithology (61.42) were considered
as moderate to low contributions. Distance to Rivers (57.38), Plan Curvature (55.02), and
Specific Contributing Area (51.38) were considered as moderate to low contributions.

Unlike the Classification and Regression Tree, eXtreme Gradient Boosting, and Ran-
dom Forest models, the importance or contribution of variables, in this case controlling
factors, is performed using the ROC Curve to identify which attribute is most significant
when modelling, contrary to the models previously mentioned, based on decision trees
that use the Accuracy metric.

Through this comparison, it is possible to identify that the Lineaments controlling
factor is the most significant attribute or variable in the four predictive models for suscepti-
bility to gully erosion. Furthermore, Specific Contributing Area and then Distance to Rivers
were the least significant controlling factors in the modelling process, showing a similarity
in this aspect.

The controlling factors with moderate to high contribution were concentrated between
Land Use and Cover, Slope, Elevation, and Rainfall, highlighting the importance in models
of susceptibility to erosion and gullies, except for eXtreme Gradient Boosting adding the
Profile Curvature factor and Support Vector Machine, the controlling factor soils. In the
moderate to low controlling factors, Stream Power Index and Topographic Index were
the attributes that made this contribution the most. The other controlling factors such as
Distance to Roads, Lithology, Profile Curvature, Plan Curvature, and Soils did not obtain a
clear pattern, depending on the model, occupying any extract for the contribution.

3.5. Gully Erosion Susceptibility Mapping

In recognizing the geospatial patterns of susceptibility classes (Figure 5), the Natural
Jenks method [65] was used to identify those areas most prone to gullying (Table 4). In the
very low and low susceptibility classes, the Classification and Regression Tree and Random
Forest models achieved similar results and diverged from the Support Vector Machine and
especially eXtreme Gradient results.
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Table 4. Area size and percentage of susceptibility to gully erosion.

Gully Erosion Susceptibility

Model Very Low Low Intermediate High Very High

CART
Percent (%) 43.31 35.03 4.89 8.11 9.16
Area (Km2) 441.68 357.23 49.92 82.68 93.47

XGBoost
Percent (%) 83.08 5.89 2.07 2.36 7.11
Area (Km2) 847.34 60.04 21.11 24.03 72.47

RF
Percent (%) 41.02 30.23 17.23 7.88 3.63
Area (Km2) 418.40 308.25 180.82 80.39 37.02

SVM
Percent (%) 61.83 22.13 4.62 3.71 8.21
Area (Km2) 630.58 225.72 47.11 37.83 83.75

In the classes of susceptibility to erosion by intermediate gullies, running the Random
Forest model, percentages were insignificant. The results referring to the high class again
indicate similarity between the Classification and Regression Tree and Random Forest
models, as well as with the eXtreme Gradient Boosting models. Considering the very high
susceptibility classes to gully erosion, except in the Random Forest model, they assumed
similar percentages.

4. Discussion
4.1. Multicollinearity in Controlling Factors for Gully Erosion

Among 18 controlling factors, Dissection Index, Local Relief, Topographic Ruggedness
Index, and Sediment Transport Index were the factors that showed the greatest multi-
collinearity, considering VIF < 10 and TOL > 0.1 [16,27]. It is possible to understand
that both the Topographic Ruggedness Index and Sediment Transport Index, in their for-
mulations, consider the slope, respectively, with a moving window and related to the
contribution area. Although Dissection Index and Local Relief do not use slope directly
or indirectly, spatially they have similar results. In this sense, the use of these controlling
factors could bias predictive modelling.

4.2. Performance of Machine Learning Models

Considering the comparison between the four models for susceptibility to gully ero-
sion, the Classification and Regression Tree model was the least satisfactory model, and
this is due to its sensitivity to the training data [59]. Although, the Support Vector Machine
model achieved formidable performance, it is not superior to eXtreme Gradient Boosting
and Random Forest, as indicated in studies by [27,56]. This analysis corroborates [10],
showing that the Classification and Regression Tree model, as it is more sensitive, re-
sults in predictions with reduced overall accuracy. Although the Support Vector Machine
model makes it possible to analyse complex and non-linear relationships [53], in general,
it performs more robust results with smaller datasets [59] and more sensitive to noisy
data, compared to the Random Forest model [62] and more interesting for susceptibility to
landslides and/or floods [10,53].

eXtreme Gradient Boosting and Random Forest model in relation to Accuracy and
AUC-ROC achieved identical, more robust and satisfactory results for susceptibility to
gully erosion, as identified by [27,54–56] for eXtreme Gradient Boosting and [10,53,56,57]
for Random Forest. In this sense, the present study is like the result obtained by [56] since,
based on k-fold cross validation (cv), the performances were identical between the Bagging
and Boosting strategies. The eXtreme Gradient Boosting and Random Forest models, unlike
the other models analysed, can deal with a large volume of data and complex relationships
between the data [10,53,60].

Based on the nature of the Precision and Recall metrics, the eXtreme Gradient Boosting
model is the most satisfactory model, although the Precision metric considers in its analysis
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the occurrence of false positives (fp), indicating that there is an overestimation for the
prediction in the eXtreme Gradient Boosting model, compared to the Random Forest model.
However, the Recall metric identifies that false negatives (fn) are lower in the eXtreme
Gradient Boosting model and higher in the Random Forest model, indicating that there
is a higher rate of true positives (tp) in the eXtreme Gradient Boosting model in relation
to the model Random Forest, analysing the Eroded class, that is, for real occurrences of
susceptibility to erosion by gullies.

For the Non-Eroded class, this scenario is the opposite, since Precision obtained
superior results in the eXtreme Gradient Boosting model and inferior results in the Random
Forest model, indicating the occurrence of a higher rate of false positives in the second
model mentioned. However, considering the Recall metric, the Random Forest model
presented a more robust performance to identify the non-occurrence of susceptibility to
gully erosion. In this sense, it is understood that, although the models have identical
performance metrics, as mentioned previously, the Random Forest model demonstrated
greater efficiency for identifying the Non-Eroded class and the eXtreme Gradient Boosting
model for the Eroded class.

Precision and recall are inversely proportional metrics [68], necessarily for susceptibil-
ity mapping, as in this case for erosion by gullies, it is understood that the identification
of the true positive rate or recall is fundamental. This makes it possible to identify real
occurrences of susceptibility. For these reasons, it is understood that the eXtreme Gra-
dient Boosting model was the most appropriate model to identify real occurrences of
susceptibility to erosion by gullies.

Furthermore, it is important to highlight that, due to the multiplicity of scales between
the different data used for the controlling factors and the diverse nature of geographic
data, they can cause uncertainty in the modelling, for example, digital elevation models,
climate time series data, and drainage network data. In this sense, the use of performance
metrics from machine learning models is essential to understand these limitations and
uncertainties, as well as choosing the Precision metrics and more specifically Recall, to
identify the most suitable model to be used.

As well as the sample set (n = 159), they may cause bias in the analyses. However,
the use of machine learning models such as eXtreme Gradient Boosting [60] and Random
Forest [61] make it possible to reduce bias and to provide more robust results, as indicated
in this research.

4.3. Thresholding in Controlling Factors for Gully Erosion

Several studies involving the mapping and/or models of susceptibility to erosion
by gullies have not been concerned with understanding the thresholds of the controlling
factors for erosion by gullies, rather only the importance of the controlling factors in
predictive modelling.

In relation to Elevation, although difficult to interpret, as it is absolute, it is understood
that due to the occurrence of gullies in the lower portions, it can be related to the hilly
domain [20,21]. In the profile and plan convex–convex curvatures, it is similar [19], which
presupposes a predominant convex slope form in profile and diverges considering the
concave plan form, thus, as a slope it is average, without establishing any certain threshold.

In the flow power index, specific contribution area, and topographic wetness index,
positive values represent humid areas or saturated areas, in which surface runoff predomi-
nates. In relation to the distance to rivers and highways, it is not possible to infer whether
there is a positive correlation between such distances and the occurrence of gullies. In
pasture, as the predominant use for the emergence of gullies, it refers to the various changes
in land use and cover over two centuries [24]. Concerning lineaments, lithology, and
soils, the Rio Turvo suite with Granitoids and Orthogneisses and Red–Yellow Argisols can
facilitate the occurrence of mechanical discontinuities, based on this conjunction of factors.
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4.4. Variables Importance

The four models for susceptibility to gully erosion, generally, present a predominance
over certain controlling factors, such as Lineaments, Land Use and Cover, Slope, Elevation,
and Rainfall, which are consistent with [24] on the acceleration of processes erosion in the
study area. This statement can be verified based on the presence of controlling factors such
as Land Use and Cover and Precipitation, relating hydroclimatic changes to the various
changes in land use and cover. Thus, Slope and Elevation, according to [20,21], highlight
the nature of the occurrence of gullies in hilly domains in the study area.

Among the four models for susceptibility to gully erosion, eXtreme Gradient Boosting
not only agrees with [21,24], but it is similar to the hypothesis developed by [19,20]. Since
the aforementioned model considers not only the structural aspect (Lineaments), such
as faults and fractures, like the other models, but also the identification of slope shapes
(Profile Curvature), which may or may not favour the emergence of gullies, with greater
importance in the configuration of the gully erosion susceptibility model. In this regard, it
is a more explanatory model and consistent with the literature on susceptibility to erosion
by gullies in the Piraí Basin Drainage, Paraíba do Sul Middle Valley.

Highlighting the robustness of the XGBoost model in relation to modelling, in relation
to complexity [60] and the importance of understanding natural laws, the portion of
geographic space and the history of formation of environmental conditions are ways
of understanding the landscape [6] to choose the controlling factors consistent with the
dynamicity of the landscape.

4.5. Gully Erosion Susceptibility Mapping

It is understood that the similarity noted between the Classification and Regression
Tree and Random Forest models for susceptibility to gully erosion in the very low, low, and
high classes arises from the Random Forest model using the very high gully assumption,
except the Random model Forest assumed similar percentages as the Classification and
Regression Tree model [13].

Susceptibility to gully erosion is predominant in the very low susceptibility class in
the four models analysed, while considering the combination of the high and very high
classes, it does not exceed 18%. Considering the eXtreme Gradient Boosting model as the
most appropriate, it is identified that 9.47% or 96.50 km2, depending on the high to very
high susceptibility classes.

5. Conclusions

eXtreme Gradient Boosting was the more appropriate, robust, and satisfactory model
to identify susceptibility to gully erosion in the Drainage Piraí Basin, Paraíba do Sul Middle
Valley, and this was identified as 9.47% or 96.50 km2, depending on the high to very high
susceptibility classes.

Considering the performance metrics for machine learning models, as well as the
importance variables, it was the one that most resembled the current hypothesis and was
consistent with the literature. Unlike physical models for the occurrence of gullies, they
can be implemented on a large scale. It is understood that studies for susceptibility to
erosion by gullies should not only be concerned with performance or performance metrics
for reliability, as well as to enable validation or not, by conceptual, empirical, physical, or
stochastic models.

In this sense, it is recommended that public policies be enacted to enable the construc-
tion of geospatial data for the constant monitoring of gully occurrences to enable even more
robust models, as well as discussions regarding areas that correspond to the percentage of
high to very high susceptibility for the prevention and recovery of these areas.

The premise of the methodology in this article makes it possible to understand the
spatial pattern of susceptibility to gully erosion, regardless of the landscape structure.
In this sense, with the possibility of accelerating erosion processes due to global climate
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change, truly replicable methodologies, as in this study, are evidenced by their rapid
applicability at different scales from the local to the global context.

In this sense, mapping susceptibility to erosion by gullies makes it possible to carry
out adequate land use management, anticipating problems related to management. Due
to the complexity and multiplicity of controlling factors, investigation into more specific
aspects of their dynamics can contribute to predictive modelling, such as soils’ physical and
chemical properties, and the inclusion of temporal variability in land use and land cover.

Still, due to the inconclusiveness of the literature on the most appropriate machine
learning model, further investigations and comparisons with hybrid and deep learning
models are needed, which have shown robust results.
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