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Abstract—Smart cities are increasingly challenged by popu-
lation growth and the environmental emissions of urban trans-
portation systems, necessitating sustainable urban planning to
improve public health, environmental quality, and overall ur-
ban livability. A notable aspect in this context is the under-
utilization of smart healthcare wearable devices or smart health-
care applications in urban transportation systems. This paper
proposes an innovative approach to address these challenges
effectively. We formulate a non-convex optimization problem
aimed at minimizing environmental emissions within transporta-
tion systems while considering resident health goals, travel time
constraints, and infrastructure limitations. To achieve this, we
employ deep reinforcement learning (DRL), which dynamically
selects the optimal traveling mode for residents. This approach
aims to optimize environmental outcomes while meeting in-
dividualized mobility needs. Moreover, our method integrates
smart healthcare technologies to capture real-time data and
predict optimal traveling modes. By incorporating real-world
health metrics into transportation planning, we enhance decision-
making processes and promote active transportation options,
contributing to healthier urban environments. Through extensive
simulations, we demonstrate the effectiveness of our approach in
optimizing traveling decisions and advancing sustainable urban
mobility practices. Our DRL-based solution effectively promotes
active travel, leading to a significant increase in health-related
metrics (like calories burned) and a substantial reduction in
gCO2 emissions. Up to 74% of journeys were made using active
transportation modes. Cycling is particularly popular, accounting
for up to 67% of journeys.

Index Terms—Intelligent Transport System, Edge-AI, Health-
care Devices, Environmental Impact, Active Transportation.

I. INTRODUCTION

The world population could grow to almost 11 billion
by the end of the twenty first century, a sharp rise from
7.9 billion in 2021 [1]. Among other public services, cities’
transportation systems face constant pressure from rapid pop-
ulation growth, necessitating sophisticated policies for climate
neutrality, urban resilience and sustainability. This includes
addressing social, health, and environmental emissions along-
side physical transport infrastructure. As urban populations
expand, cities must prioritize enhancing residents’ quality of
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life. Advanced technologies such as the Internet of Things
(IoT) and Information and Communication Technology (ICT)
are crucial in optimizing resource use, improving transport
efficiency, reducing congestion, and mitigating environmental
emissions to foster sustainable urban development [2], [3].
One important aspect of making cities’ transport systems
sustainable is enhancing residents’ quality of life, given the
widespread impact of sedentary lifestyles and poor dietary
habits leading to health issues like obesity, cardiovascular
diseases, and mental health disorders [4]. Cities face various
health risks such as traffic exposure, air pollution, noise, social
isolation, and limited access to healthy food. Additionally, the
dependence on private vehicles for daily trips is also among
a major factor leading to unhealthy lifestyles [5].

The health and well-being of urban citizens are central
to sustainable city planning, significantly influencing popu-
lation health. Current transport solutions typically focus on
optimizing traffic management without adequately considering
residents’ healthcare needs. Moreover, traditional approaches
like expanding road networks face challenges such as rising
land costs and spatial constraints. While AI-enabled traffic
management [6]–[8], connected vehicle systems [9], and elec-
tric vehicles [10], [11] offer partial solutions, urban designs
prioritizing vehicular traffic contribute to unhealthy environ-
ments, promoting sedentary behavior and higher obesity rates.
Thus, a novel solution that addresses both environmental
emissions and public health is urgently needed.

The integration of smart wearable healthcare devices (SWH)
and innovative mobile applications presents a significant op-
portunity for supporting healthier lifestyles and enhancing
smart urban planning. Despite their potential benefits, there
is currently an under-utilization of SWH devices and applica-
tions in urban transportation systems. These devices monitor
physical activity, promote healthier living, and provide real-
time health insights [12], [13]. By incorporating SWH de-
vices into smart cities’ transportation solutions, policymakers
can develop systems that encourage physical activity, reduce
pollution, and enhance overall well-being, thereby advancing
sustainable urban mobility practices.

One effective strategy involves integrating AI-driven mo-
bility solutions that promote active transportation modes as
integral parts of users’ lifestyles, complemented by leveraging
SWH devices. These initiatives collectively address urban
mobility challenges, environmental sustainability, and public
health concerns [14]. Educating residents about these benefits
can mitigate health risks linked to air pollution and enhance



overall well-being. With more than half of the global pop-
ulation residing in urban areas, adopting sustainable urban
mobility solutions is critical for maintaining livable, healthy,
and economically viable cities. Moreover, multimodal trans-
portation systems decrease reliance on private cars, reduce
carbon emissions, and support global efforts toward achieving
net-zero emissions [15]. Prioritizing walking, cycling, and
public transit also alleviates economic strains associated with
traffic congestion and vehicle emissions. However, the lack of
strong incentives currently hinders the widespread adoption of
these measures. Therefore, developing solutions that empower
each user to enhance their health and contribute to societal
well-being is essential for fostering sustainable cities. To
address the complex transportation challenges in smart cities,
we propose a solution that integrates AI, edge computing, and
SWH technologies. Our approach utilizes Deep Reinforcement
Learning (DRL) to enable adaptive decision-making in dy-
namic urban environments. The goal is to create a sustainable
transportation system that minimizes environmental emissions
while aligning with residents’ health goals and satisfaction
metrics such as comfort and travel time. Using a DRL-
based solution, our approach facilitates adaptive decision-
making in dynamic urban environments. The primary aim is
to establish a sustainable transportation system that minimizes
environmental emissions while meeting residents’ health goals
and satisfaction metrics, such as comfort and travel time. Our
model focuses on a single community where an edge server,
strategically positioned with roadside units, manages real-time
transport data efficiently [16], [17]. This edge server collects
and processes diverse metrics crucial for our DRL-based
solution, including real-time traffic conditions, environmental
emissions linked to different transport modes, SWH device
real-time data, and individual user preferences. By addressing
these factors comprehensively, our goal is to optimize route
planning strategies, encourage the adoption of sustainable
transportation modes, and enhance overall environmental sus-
tainability tailored to each user’s specific circumstances and
health status. Note that our DRL-based approach offers a
valuable tool for urban transportation planning by enabling
dynamic policy adjustments and rapid policy evaluation. By
leveraging real-time data from wearable health devices and
transportation sensors, we can optimize transportation systems
to reduce congestion, emissions, and promote physical activity.
This adaptive approach is particularly valuable in rapidly
evolving urban environments where timely policy responses
are essential. The DRL model is trained and implemented
on the edge server within the community area to ensure rapid
responsiveness and operational effectiveness. In summary, our
contributions include:

• We propose an innovative system model that formulates
a non-convex optimization problem tailored for efficient
traveling in smart cities, emphasizing residents’ trans-
portation mode choices and health goals. This approach
seeks to minimize environmental emissions from travel-
ing while prioritizing health objectives. Traditional meth-
ods for tackling these challenges often involve parameter
relaxation and iterative approaches to approximate near-

optimal solutions.
• To address this, we propose a DRL-based algorithm

designed to adapt to the dynamic aspects of the problem.
This includes variables such as time of day, capacity of
each mode, SWH device metrics, and adherence to user
satisfaction targets. The algorithm aims to intelligently
select the most suitable transportation mode that balances
health objectives and environmental emission reduction
goals effectively.

• Through extensive simulations, we ensure convergence
and significant promotion of active traveling modes via
the proposed solution, with up to 74% of journeys opting
for active modes. Additionally, Our solution excels in
reducing environmental emissions (gCO2), particularly
for shorter distances. Moreover, our approach prioritizes
choices that maximize health benefits, minimize environ-
mental emission, and ensure resident satisfaction. This
emphasis on health and sustainability is underscored by
the popularity of cycling, which accounts for up to 67%
of journeys in our simulations.

The remainder of this paper is structured as follows: Section II
provides a comprehensive review of the literature. Section III
outlines the system model. Our proposed solution is detailed
in Section IV. Section V, presents the analysis of numerical
results to validate our solution’s performance. Finally, Sec-
tion VI draws conclusions based on our findings.

II. LITERATURE REVIEW

This section provides a comprehensive review of the litera-
ture concerning active transportation modes and their impact
on smart city environments, focusing on methodologies and
technologies that assess their societal benefits. Numerous stud-
ies underscore the significance of active mobility in promoting
public health and environmental sustainability. For instance,
the work in [18] explores the health impacts of policies
promoting active travel, proposing health impact assessment
models to inform decision-making for healthier urban environ-
ments. Similarly, [19] analyzes policy scenarios in Southeast
Asian cities, demonstrating that integrated measures can effec-
tively reduce CO2 emissions and enhance public transportation
systems through active transportation, highlighting the role of
factors like transit accessibility and residential density in pro-
moting walking while reducing reliance on motorized trans-
port. In addition to the aforementioned studies, recent research
has increasingly focused on the importance of active transport
in various cities, particularly with newly implemented policies
aimed at enhancing environmental sustainability. For instance,
research modeling scenarios in Porto, Portugal in [20] reveals
significant reductions in disability-adjusted life years through
increased active transportation, alongside benefits in reducing
traffic injuries and air pollution, with cardiovascular diseases
showing substantial improvements. These findings underscore
active transportation’s potential to yield significant health
and economic benefits, emphasizing the need to integrate
health considerations into urban transport policy planning.
However, these studies have not utilized advanced health-
care technologies now available. In contrast, the authors in



[21] introduce a web-based application designed to promote
sustainable travel through persuasive tools that recommend
transport modes (walking, cycling, public transportation, car)
based on user feedback and sustainability factors. While these
studies provide valuable insights, they often overlook the
crucial aspect of promoting active transportation, such as
cycling or walking, which requires consideration of scenarios
that benefit overall smart city residents. Active transportation
may pose health risks if residents are exposed to adverse
environmental conditions, as highlighted in studies assessing
the combined impact of physical activity and exposure to
fine particulate matter (PM2.5) on all-cause mortality [22].
Indeed, while active transportation leads to significant annual
reductions in mortality rates, restrictions on active travel
during high PM2.5 days did not mitigate mortality risks
and could potentially worsen overall health, particularly in
heavily polluted cities. This underscores the importance of
revisiting guidelines discouraging active travel during periods
of high air pollution, highlighting the complex relationship
between physical activity benefits and health risks from air
pollution in shaping effective public health policies. Overall
these solutions highlight the importance of active transport
and demonstrate improved performance but they are often
tailored to specific cities, limiting their scalability and broader
applicability due to the exponential growth of data. Moreover,
these studies frequently overlook the potential benefits of
integrating modern solutions, such as machine learning per-
spectives and healthcare applications, into the transportation
sector to develop intelligent solutions adaptable across diverse
scenarios. We aim to explore how advanced technologies,
particularly machine learning, are leveraged to assess and
optimize the impact of active mobility on cities, bridging the
gap between academic research and practical urban planning.

Machine learning led approaches have recently gained pop-
ularity in the transportation community due to their abil-
ity to address numerous practical challenges. For instance,
researchers in [6] introduce a novel method that integrates
a two-stage Gaussian pseudo-spectral method with a deci-
sion tree algorithm to enhance unmanned vehicle parking
capabilities and trajectory planning speed, proving effective
for complex parking scenarios and laying the groundwork
for intelligent planning strategies tailored to various park-
ing environments. Similarly, another study by [7] presents
an approach to accelerate deep neural network-based tasks
in vehicular edge computing by partitioning and offloading
tasks among vehicles and roadside infrastructures, consider-
ing heterogeneous computation and communication capacities.
While these solutions are promising, they do not capture the
dynamic interactions inherent in transportation environments.
In transportation scenarios, capturing interactions with the
environment is crucial for designing a generalized solution that
can be adapted to various situations. Reinforcement learning
(RL) is particularly well-suited for this purpose as it inherently
learns by interacting with the environment and many studies
have applied RL in the transportation domain. For instance,
an RL-based solution was proposed in [8] that addresses the
challenge of optimizing service caching strategies in intelligent
cyber-physical transportation systems using cloud-edge com-

puting to improve cache hit rates. Similarly, another RL-based
solution was studied in [23] that optimizes train operations for
high speed railways. Another similar RL-based solution was
presented for dynamic traffic environments with time-varying
communication topologies to reduce collision rates [24]. In
[25], the authors propose a route recommendation system to
balance fuel consumption, travel time, and air quality. The
work in [26] employs RL to understand user preferences
in attraction recommendations. Other interesting RL-based
solutions within ITS are presented in [27]–[30].

These works present valuable machine learning-led so-
lutions that enhance transportation systems in smart cities.
However, most of these studies do not consider the impact
of multiple modes of transportation available in smart cities
or their impact on the sustainability of the transportation
system. To model a realistic urban transport system, it is
essential to include multiple modes of travel, such as walking
and cycling, which are not adequately addressed in current
models. Incorporating these modes can lead to a more practical
and comprehensive smart city urban mobility system and
support initiatives such as livable neighborhoods or 15-minute
cities [31]. For instance, in [32], authors compare different
transportation means to reduce travel times and emissions
using existing infrastructures. Additionally, multiple modes
of transportation can significantly lower costs and improve
passenger satisfaction, as explored in [33], [34].

In summary, while existing solutions have addressed various
aspects of transportation challenges in smart cities, they often
lack a model that represents a practical transport system
incorporating multiple modes of transportation with dynamic
requirements integrated with heath related applications or
SWH devices. There is a need for a system that can analyze
environmental impacts while utilizing advanced technologies
such as machine learning and modern healthcare applications
to align with user needs. By leveraging RL and other advanced
techniques, future ITS can promote healthier journeys through
walking and cycling, significantly reducing environmental
emissions and enhancing overall users’ health and well-being.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 presents our system model, depicting a smart city
transport system that includes a set of residents/users, denoted
by the set R, each connected to an SWH device representing
their current health status. These residents are traveling via
different transport modes, represented by the set T , each
characterized by distinct attributes, benefits, and limitations,
to capture the diverse mobility options available. The road
network is presented as a graph consisting of edges and
vertices, represented by sets E and V , which serve as the
foundational framework for our analysis.

Overall, we consider a comprehensive system model tailored
to address the complexities of smart city transport systems,
integrating health data to enhance user well-being. Our model
takes into account critical factors influencing transportation dy-
namics, such as time-varying traffic conditions, mode-specific
environmental emissions, health metrics collected from SWH



Fig. 1: Urban Transport System: Road Networks, Transport Modes, and Edge-Enabled Healthcare Devices.

devices, and user preferences. Implementing this solution re-
quires real-time or dynamic information within a specific area.
While such data could reside in a central cloud, we use edge
computing for local storage and processing. Edge computing
offers reduced latency and enhanced processing speed, making
it ideal for our needs. Accurate and up-to-date information can
be gathered through user sign-ins to a dedicated application
that tracks traveling modes, preferences, and health metrics,
or via sensors placed along routes or integrated into user
devices. This data is then transmitted to the edge server,
ensuring timely updates. Additionally, Ensuring the security
and privacy of user data is paramount. Edge AI allows for
the processing of sensitive health and location data closer to
the data source, reducing the risk of data breaches associated
with central cloud storage. Techniques such as data encryption
and secure access controls can be employed to safeguard the
information collected. Furthermore, privacy-preserving mecha-
nisms, such as differential privacy, are integrated to ensure that
individual user data remains confidential while still allowing
for aggregate data analysis. These measures are crucial for
maintaining user trust and compliance with data protection
regulations. Moreover, by leveraging blockchain technology,
we can provide privacy, self-verification, authentication, and
authorization of transactions, ensuring that citizen data is
handled securely at different administrative and geographical
levels. This approach ensures that participatory data is kept
and processed locally, enhancing privacy and providing an
economic approach for resource utilization in a distributed

environment [35]. Our approach can also incorporate addi-
tional security and privacy mechanisms without affecting its
performance, further enhancing the security and privacy of
residents. By addressing these factors, we aim to optimize
route planning strategies, encouraging users to choose modes
that align with their preferences and health status while also
reducing environmental emissions.

A. Road & Modes Modelling

In our work, we represent the road network as a graph
consisting of vertices V and edges V , Each edge e ∈ E
is characterized by a set of attributes at any time instant t,
represented by the tuple Rt

e = {l, cp, cl}. Here, l is the edge
length, cp is the capacity, and cl is the congestion level. These
attributes are numerical values or properties that describe the
edge’s characteristics at a given time. Geographic data, defined
by coordinates (latitude and longitude), provides the location
of each edge. Similarly, each vertex v ∈ V has a set of
attributes represented by Rt

v = {x, y, r, b}, where x and y
are the coordinates (latitude, longitude), r ∈ R is the set of
users present at time t, and b indicates whether the vertex is
a bus stop.

Next, we present the available transportation modes con-
sidered in this model. The available transportation modes are
denoted as T and include public transit1, walking, cycling, and
cars. Each mode m ∈ T is defined by attributes such as travel
speed sm, capacity cpm, and environmental emissions em in

1In this work, we only assume public busses as a public transport mode.



TABLE I: Summary of the key notations.

Notation Definition
R Set of residents/users
E Set of edges
V Set of vertices
T Set of transportation modes
l edge length
cp edge capacity
cl edge congestion level
b Set of bus stops
sm Travel speed of mode m
cpm Capacity of mode m
em Environmental emission of mode m
tr Travel time deadline for resident r

ghmin
r Minimum heart rate goal for resident r

ghmax
r Maximum heart rate goal for resident r
mr Available transport modes for resident r
hr(t) Heart rate for resident r at time instant t

αe
r,m(t) Mode m selection for edge e at time instant t
cr(t) Calorie count for resident r at time instant t
γ Tuning parameter to balance emission & calorie count

terms of emissions. These attributes are captured in the tuple
Rt

m = {spm, cpm, em}. Moreover, we assume that all modes
follow the same edges2, with each edge’s properties defined
by Rt

e. This modeling allows us to integrate various factors
on the road network and transport mode. Next, we elaborate
on how users are modeled within the system and specify their
requirements.

B. User Modelling

In our model, we represent residents by the set R, where
each resident r ∈ R has specific requirements and unique
characteristics. Each resident r is equipped with an SWH
device3. These devices can hold personal information, such
as weight, height, age, and fitness goals (e.g., taking a certain
number of steps or burning a specific number of calories).
Typically an SWH device4 can track factors, such as heart
rate, to monitor activities comprehensively, the number of
steps taken, and calories burned during an activity. We aim
to integrate mobility tasks with health goals, allowing users
to travel efficiently while meeting their health objectives.
Each resident’s requirements are represented by a tuple Rt

r =
{tr, ghmin

r , ghmax
r ,mr}, where tr represents the travel time

deadline, ghmin
r and ghmax

r indicate the minimum and max-
imum heart rate goal stemming from the SWH, respectively,
and mr represents the available transport modes at time instant
t, acknowledging that not all users may have access to every
mode. This tuple effectively captures the diverse needs and
preferences of urban travellers, considering travel time, and
health goals.

The selection of a traveling mode is influenced by numerous
external factors, including distance, time of day, weather

2In practical settings, each travel mode in smart cities would have different
edge properties. However, for simplicity, we have considered a uniform edge
in our model and will explore varying edge properties in future work.

3We can also use alternative technologies or gadgets such as a smartphone
application or smartwatches, capable of monitoring physical activity.

4Modern devices come equipped with numerous sensors, including those
for environmental impact measurements like air quality (PM2.5, PM10, NOx,
etc.). However, for this study, we only consider health-related metrics and will
include other environmental metrics in future work.

conditions, available infrastructure, and health metrics. These
factors define the constraints or preferences for utilizing dif-
ferent transportation options. For instance, walking may be
favored for short distances in pleasant weather, public transit
may be optimal during peak hours, and cycling might be
chosen for routes with dedicated bike lanes when the weather
is favorable. Since these factors are dynamic and can change
over time, decisions regarding the best mode of transport must
be made for each specific time slot t. We present this decision
by the following binary variable if a resident r chooses mode
m at time instant t for the edge e:

αe
r,m(t) =

{
1, if mode m selected for edge e,

0, otherwise.
(1)

In this context, the binary variable αe
r,m(t) for each mode

m ∈ M represents the selection or recommended preference
for mode m for edge e during a particular time slot t.

C. Problem Formulation

Our goal is to develop a transportation solution that meets
each user’s health and latency requirements while minimizing
environmental emissions for the collective benefit of society.
To achieve this, we formulate a problem focused on reducing
overall environmental emissions and maximizing the use of
sustainable transportation modes, all while fulfilling users’
health and time objectives. Our objective involves addressing
several constraints to reach this goal. First, we include a
constraint to ensure that each user selects no more than one
transportation mode during each time slot t, expressed as:∑

m∈T

∑
e∈E

αe
r,m(t) ≤ 1, ∀r ∈ R. (2)

Secondly, we include a mode availability constraint to ensure
that if mode m is not available to residents r at time t, it
cannot be selected. This constraint is crucial because certain
conditions, such as rain, may render cycling impractical, while
walking might be preferred for short distances, or cycling
might be optimal for routes with dedicated bike lanes in good
weather. We represent these constraints as follows:

αe
r,m(t) ≤ mr(t), ∀r ∈ R,∀m ∈M. (3)

To integrate real-time traffic data and environmental emis-
sions, we define additional constraints that take into account
congestion levels, health metrics, capacity, and required time
associated with different modes of transportation. For each
mode m ∈ T and edge e ∈ E , we introduce constraints to
incorporate these factors:

αe
r,m(t) ≤ 1− cle(t), (4)

ghmin
r (t) ≤ αe

r,m(t) · hr(t) ≤ ghmax
r (t),∀r ∈ R, (5)∑

m

∑
r

αe
r,m(t) ≤ cpe(t), (6)

∑
m

∑
t

αe
r,m(t) ≤ tr(t),∀r ∈ R, (7)

where cle(t) represents the congestion level on edge e at time
slot t, and hr(t) represents the instantaneous heart rate, as



recorded by the SHW monitors at time slot t. Additionally,
cpe is the capacity of the edge and tr is the time or latency
threshold associated with the user travel time. Then, the utility
function is formulated as follows:

Ur(t) =
∑
e

∑
m

∑
t

αe
r,m(t) · [γcr(t) + (1− γ)

1

em(t)
], (8)

where cr represents the instantaneous calorie count and γ rep-
resents the tuning parameter that balances between emission
and calorie count. By integrating these constraints and optimiz-
ing our utility function, which aims to minimize environmental
emissions and maximize the calorie count, our approach seeks
to provide sustainable and efficient transportation solutions
that involve considering real-time data, health metrics, and
various dynamic factors that influence mobility choices. For-
mally, by combining the aforementioned constraints and utility
function, we define our problem as follows:

max
α

lim sup
T→∞

1

T

T∑
t=0

R∑
r

Ur(t) (9a)

s.t. ∑
m∈T

∑
e∈E

αe
r,m(t) ≤ 1,∀r, (9b)

αe
r,m(t) ≤ mr(t), ∀r,m (9c)

αe
r,m(t) ≤ 1− cle(t), ∀e, (9d)

ghmin
r (t) ≤ αe

r,m(t) · hr(t) ≤ ghmax
r (t),∀r, ∀m, (9e)∑

m

∑
r

αe
r,m(t) ≤ cpe(t),∀e, (9f)∑

m

∑
t

αe
r,m(t) ≤ tr(t),∀r. (9g)

The optimization problem described in (9) is inherently
challenging due to its dynamic nature, which necessitates
continuous adjustments to account for changing conditions,
and the inclusion of binary decision variables [30], [36].
Traditional optimization techniques struggle with these com-
plexities, often resulting in exponential time complexity and
impractical computational demands. To overcome these chal-
lenges, we propose leveraging DRL. Unlike traditional meth-
ods, DRL is well-suited for dynamic environments, as it can
adapt and learn from real-time interactions. DRL agents excel
in efficiently navigating complex solution spaces, making
them ideal for such optimizing the problem (9). Therefore,
we have chosen a DRL based approach (Deep Q-Networks
(DQN)) due to their ability to handle complex decision spaces,
adapt to non-linear dynamics, and offer practical benefits like
computational efficiency and scalability. These algorithms are
well-suited for the dynamic and complex nature of urban
transportation systems and solving such problems as presented
in (9). In the following section, we introduce our solution.

IV. DRL-BASED SOLUTION APPROACH

This section outlines our approach to finding the optimal
transportation mode (α) that aligns with user preferences and
minimizes environmental emissions using a DRL agent. The
agent operates from a Road Side Unit (RSU), acting as an
edge server, collecting essential data such as the user’s current

location, remaining distance, travel time, health goals, and
congestion levels. This data constructs system states, guiding
the agent in selecting optimal actions (α∗) communicated to
users. However, learning the optimal policy for the RL agent
can be challenging, particularly when dealing with a vast
state space (as per (9)). Therefore, we utilize DRL to address
these challenges effectively [30]. In summary, our aim is to
aid commuter in a smart city to plan their daily journey to
work. Our DRL-based system can be used to determine the
most optimal route, not only considering the shortest path
but also factoring in real-time data from wearable devices
and environmental sensors. By incorporating health data, such
as heart rate and step count, the system can suggest routes
that promote physical activity, like cycling through a park.
Additionally, by considering real-time traffic and air quality
information, the system can minimize exposure to pollution
and traffic delays. This personalized approach ensures that
the recommended route is both efficient and conducive to the
user’s well-being.

To this end, we model our problem in (9) as a Markov
Decision Process (MDP), which involves defining the state
space, action space, transition probabilities, and the reward
function. This framework helps in modeling the problem
dynamics and devising an optimal decision-making strategy.
In our model, the state space, denoted by S , represents various
elements at a specific time t. Each state st ∈ S includes
the user’s current location up(t), the user’s residual deadline
Dr(t) = tr(t) − dr(t) (where dr(t) is the time consumed
during the travel), the capacity of the route cpe(t), the capacity
of the mode cpm(t), the congestion level cle(t), and health-
related parameters related to heart monitor hr(t) and calories
consumed cr(t). The state vector at time t is thus represented
by:st = {up(t), Dr(t), cpe(t), cpm(t), cle(t), cr(t), hr(t)}.

Next, the action space involves the agent selecting actions
at each time step, transitioning to the next state until reaching
the terminal state. Actions involve selecting the transportation
modes (α) for traveling. Formally, art = {α(t)}, represents a
specific action taken by a resident r at time t. The goal is to
find a satisfactory policy π : S → A that guides the agent’s
decision-making process, considering mode preferences. The
state transition probability defines the likelihood of moving
from one state to another based on the actions taken by the
agent. It captures the environment’s dynamics and determines
how the system evolves. The state transition probability is
given by: Pr{st+1|st,π(st)} which defines how the system
state st evolves to st+1 under the policy π. Finally, each of
these transitions results in a reward that provides feedback
to the agent about the quality of its actions. Formally, the
reward function R : S ∗ A → R, where R(s, a) determines
the immediate reward received for taking a specific action
in a given state at each time step. In our case, rewards
are designed to encourage sustainable transportation choices,
promote active transportation, and reduce environmental emis-
sions. The reward function balances the competing objectives
of minimizing emissions and maximizing health benefits. It is
a weighted sum of two components: one for emissions and
one for health benefits. The weights are dynamically adjusted
based on real-time data to prioritize either environmental



Algorithm 1 : DRL Algorithm for Sustainable Transportation

1: Initialize: Set of residents R, modes T , Edges E , Vertices
V attribute tuples for route Re and Rv , modes Rm,
residents Rr;

2: Hyperparameters: ζ, η, εt, ϵMax, ϵMin, ϵd ;
3: Replay Memory:Et;
4: Learning:
5: Set ϵ = ϵmax;
6: Reset;
7: t← 0;
8: repeat
9: Observe st ;

10: Select ϵ = Random(0,1);
11: if ϵ < εt then
12: Random action at selected;
13: else
14: at = argmaxa Q(st|a; θ);
15: at selected;
16: end if
17: Action at taken, Reward R(st, at) observed, and transit

to next state st+1;
18: Store transition (st, at, R(st, at), st+1) in buffer Et;
19: Randomly sample minibatch of size J from Et;
20: for (si, ai, Ri, s

′
i) ∈ Ẽ(t) do

21: a′i = argmaxa Q(s′i, a; θ) ;
22: Calculate loss L(θQ) via (12) ;
23: end for
24: Update ϵ periodically as follows:
25: t← t+ 1;
26: ϵ = ϵMin + (ϵMax − ϵMin)/ exp(−ϵdt);
27: until Satisfy stop criteria, ∀r ∈ R;
28: Output: Optimal policy π∗

sustainability or user well-being. This approach ensures that
our optimization model effectively addresses both objectives.
Specifically, rewards are directly proportional to our utility
Ur(t), reflecting the goal of minimizing environmental emis-
sions and maximizing the calorie count by active transporta-
tion. Additionally, a penalty p is subtracted from the reward
if the chosen action set fails to meet the time deadline.

Once the MDP is defined, the RL agent’s goal is to
find an optimal policy, denoted as π, which maximizes the
expected rewards from the initial state. In our problem,
this expected reward R represents the anticipated reduction
in environmental emissions and promotion of active travel
mode for a given state s, based on the action dictated by the
policy π(st) for each resident r. For each policy π, this is
represented by a state value function Vπ(s). Then the optimal
policy is found by maximizing this expected value across
all possible policies π to get the optimal state value Vπ∗(s).
In our problem, presented in (9), since we maximize the
utility function, then our reward is directly proportional to
this function.

Vπ∗(s) = argmax
π

[
Eπ

(
(1− ζ)

∆T∑
t=1

(ζ)t−1R(st,π(st)|s1
)]

.

(10)
Here, R(st,π(st)) represents the expected reward at time t
under policy π. The term (ζ)t−1 discounts future rewards,
and (1 − ζ) scales the immediate rewards. The objective is
to maximize the discounted sum of expected rewards over a
finite time horizon ∆T , exploring various policies π to find
the optimal policy π∗ that maximizes Vπ∗(s).

To find the optimal state-value function Vπ∗(s), we employ
Bellman’s optimality equation, focusing on maximizing the
action-value function Q(s, a) : S×A→ R. This approach re-
quires comprehensive network statistics for effective solutions.
We employ Q-learning in our approach, a model-free method
that addresses this by iterative update of the Q-function at each
time step t based on interactions with the environment: current
state, action, and subsequent state. Given the challenges of
updating the Q-tables directly for large problems, we adopt the
deep Q-network (DQN) approach. In DQN, the action-value
function Q(s, a) is approximated as Q(s, a) ≈ Q(s, a; θ),
where θ denotes neural network parameters updated at each
time epoch t. Formally, this is presented by:

Qt(s, a; θ)← Qt(s, a; θ) + λt

[
(1− ζ)Rt(s, a; θ)

+ ζmax
a∈A

Qt+1(s, a; θ)−Qt(s, a; θ)

]
,

(11)

where λt ∈ [0, 1] is a time-varying learning rate. With such
an approach we can solve the issue of requiring compre-
hensive network statistics, However, ensuring stable learning
remains a significant challenge in this approach. Stability in
learning is crucially managed through a replay buffer in our
approach. Replay buffer is a crucial component of our DQN-
based approach. The replay buffer stores past experiences,
which are randomly sampled during training to break temporal
correlations and improve learning stability. This technique
offers several benefits, including reduced variance in updates,
prevention of overfitting, and accelerated convergence [37]. By
leveraging the replay buffer, our model can more effectively
learn from diverse traffic scenarios and user behaviors, leading
to robust decision-making and policy optimization in urban
transportation systems. Then, we store transition represented
by a tuple (st, at, Et(st), st+1) post-epoch to make our
solution stable. Then, after each epoch t, the edge server
samples random experiences of a size Ẽ from the replay buffer
of size E to create a mini-batch of size J . This mini-batch is
then used to train the neural network and minimize the loss
function as follows:

L(θt) = EẼt

[
((1− ζ)Rt(s,a;θ)+

ζmax
a∈A

Qt+1(s,a;θ))−Qt+1(s,a;θt+1)

]2
.

(12)

Algo. 1 aims to optimize urban transportation systems by
leveraging DRL techniques. The goal is to find an optimal pol-
icy that balances environmental sustainability and user health.



The algorithm begins by initializing key parameters and neural
network weights, including the set of residents, modes of
transportation, edges, vertices, and attribute tuples for routes,
modes, and residents. Hyperparameters are also set to control
the learning process. A replay memory buffer is created to
store past experiences (lines 1-3). The learning phase then
commences. An exploration rate is initialized to encourage
exploration of different actions. The environment is reset to the
initial state, and the algorithm iterates through episodes, repre-
senting individual users’ journeys (lines 4-7). In each episode,
the algorithm starts by selecting the initial state s0 from the
environment and proceeds through epochs, representing users’
travel, and an action at is selected for the current state st using
an ϵ-greedy policy that balances exploration and exploitation.
The selected action is executed in the environment, resulting in
a reward and the transition to the next state. This experience
is stored in the replay memory (lines 8-18). Periodically, a
minibatch of experiences is randomly sampled from the replay
memory and for each experience, the best action a′i for the next
state s′i is determined. For each experience, the target Q-value
is calculated using the current policy, and the loss function
between the predicted and target Q-values is computed. The
neural network parameters are then updated using gradient
descent to minimize the loss (lines 19-23). The exploration rate
is gradually decreased over time to encourage exploitation of
the learned policy. This process continues until the stopping
criteria are met (lines 24-27). Note that the current state st
transitions to st+1 until stopping conditions are met, such as
all users completing their journeys or constraints like travel
time, health goals, or infrastructure capacities are violated
or exhausted. This iterative process converges to an optimal
policy that maximizes long-term rewards and promotes active
traveling while reducing environmental emissions for all users
r ∈ R. The final learned policy represents the optimal strategy
or policy (line 28).

Next, we discuss the practical implementation issues per-
taining to our algorithm. The time complexity grows quadrat-
ically with the number of states, and the space complexity
is influenced by the replay buffer size and number of hid-
den units. To address the potential issue of slow training
times, we propose a pre-training approach. The model can
be initially trained offline on a centralized server with a large
number of users, similar to the techniques described in [30].
This pre-trained model can then be adapted for smaller-scale
deployments with fewer users by setting extra parameters
related to states and actions to null. This approach can reduce
the complexity of the proposed approach and improve its
scalability.

V. SIMULATION RESULTS

In this section, we present the results from simulations eval-
uating the performance of our proposed DRL-based scheme.
We start by describing the simulation environment and then
proceed to analyze the scheme’s effectiveness.

The simulation covers a service area of up to 30 kilome-
ters, where an edge server collects and disseminates real-
time information for optimal route planning. Four different

TABLE II: Simulation Parameters

Parameter Value
Service Area 5 ∼ 20 km
Deadline (tr) 10 ∼ 30 min
Number of stops (vr) 10
Number of bus stops (vp) 5
Number of users (R) 20 ∼ 100
Mode emissions (em) gCO2 per
km

{Car: 160.61; Public Trans-
port: 82; Cycle: 21; Walk:
0}[32]

TABLE III: Hyper-parameters

Parameter Value
Learning Rate (γ) 10−3

Batch Size (Ẽt) 256
Memory Size (Et) 105

Discount Factor (ζ) 0.9
Epsilon Max (ϵmax) 1
Epsilon Decay (ϵd) 0.0995
Epsilon Minimum (ϵmin) 0.0001

(a) Normalized Rewards Across Training Epochs

(b) Normalized Loss Across Training Epochs

Fig. 2: Convergence Evaluation of the Proposed Scheme

travel modes are included, each with distinct attributes that
influence user decisions. Mode-specific paths consider factors
such as length, maximum capacity, and congestion level, all
of which affect travel times. Users are uniformly distributed
across random vertices using a Homogeneous Poisson Point
Process (HPPP) to ensure equitable distribution. Each user pro-
file includes origin and destination locations, available travel
modes, and health goals, particularly focusing on parameters
such as heart rate, age, weight, and height, along with travel
deadlines. Users also monitor calorie expenditure and heart



(a) Journey Completion Ratio. (b) Selected Modes. (c) Mean Calories Expenditure.

Fig. 3: System Performance: Journey Completion Ratio, Transport Modes, and Mean Calories Expenditure.

(a) Mean Distance. (b) Mean Travel Time. (c) Active vs Motorized Journeys.

Fig. 4: System Performance for Travel Modes.

rate using SWH devices5. Our approach utilizes key health
metrics like heart rate variability, step count, active minutes,
to estimate the calories burned and assess the health benefits
of different transportation modes as reflected in the reward
function. Moreover, we use the Metabolic Equivalent Task
(MET) method to estimate calorie expenditure based on these
metrics and individual factors. The MET method is used to
gauge physical activity intensity. MET values represent the
energy cost of various activities compared to resting oxygen
uptake. To calculate this, we need to determine the MET
values for walking and cycling modes as we have all the
other values such as weight. Randomly placed bus stops along
some vertices with defined maximum capacities are scattered
throughout the network. Buses are scheduled to service these
stops every minute, accommodating passengers heading to
various destinations with a capacity of 40 residents.

Table II presents our main simulation parameters. Similarly,
our DQN network architecture uses three fully connected
layers with Rectified Linear Unit (ReLU) activation functions
in the hidden layers, each containing 128 neurons. We use
Python 3.8 (Anaconda3) with TensorFlow 2.15 and PyTorch
2.4 to implement our DRL based algorithm. We numerically
evaluate the results on a physical device with the following
specifications: Intel(R) Core(TM) i5-4690 CPU 3.50 (GHz),
RAM 32.0(GB), GPU GTX 1060 3(GB). The main hyperpa-
rameters and values used for this simulation are presented in
Table III.

In this simulation study, we examined the convergence
of the proposed DRL-based scheme over 1600 epochs for
250 residents, each with unique characteristics. Residents’
origins and destinations were uniformly distributed within a

5We would assume this value would be sent to the edge server to track the
heart rate and calories for each user to identify the physical activity intensity.

30 km area, across a set of 10 vertices, with 5 designated
as bus stops. Each user had a random deadline between
10 to 30 minutes, connected to the edge server via SWH
devices. Fig. 2 shows the convergence of the reward and
loss functions, with convergence achieved after approximately
850 epochs. Initially, normalized rewards are low (Fig.2a)
due to the exploration phase. As episodes progress, policy
refinement occurs through network weight updates, reducing
the loss function (Fig.2b) and leading to more environmentally
and health-friendly traveling modes that meet user deadlines.
These results confirm the effectiveness of our approach in
achieving a stable policy.

Fig. 3 presents the system performance results, highlighting
residents who completed their journeys within deadlines while
meeting health requirements, the transport modes used, and
the average calories burned. This simulation maintains the
same parameters as previous ones but varies user deadlines
across three intervals between 10 and 30 minutes. Fig. 3a
shows that stricter deadlines (10 minutes) resulted in a lower
completion rate (33.33%), while more lenient deadlines (30
minutes) significantly increased successful journeys (82%).
With tight deadlines, the DRL agent prioritizes faster modes
to meet deadlines and avoid penalties. In contrast, looser
deadlines enable a more balanced approach, allowing the agent
to choose environmentally friendly options that still meet the
relaxed deadlines. For the same simulation, Fig. 3b examines
the transportation mode usage among residents who completed
their journeys. Cycling is the most popular option (67%),
likely due to its efficiency in meeting tighter deadlines. Public
transport follows as the second most used mode, emphasizing
the necessity of faster travel to adhere to deadlines. This trend
supports the earlier observation that strict deadlines prioritize
faster modes (cycling and public transport) over slower or less



(a) Mean Emissions.

(b) Mean Travel Time.

Fig. 5: System Performance for Number of Users and Mean Distance.

environmentally friendly options like walking or cars. Next,
Fig. 3c calculates the mean calories consumed by residents
engaging in active journeys, i.e., walking and cycling. We
estimated calories per minute using a basic formula, assuming
all residents are in the same age group and assigning random
weights between 60 and 85 kg. Travel time is calculated via
the speed of the mode and the distance between the origin
and destination for each resident. MET values for walking
ranged from 2.5 to 4 MET (from relaxed to brisk walking)
and cycling from 6.5 to 8 MET (based on different cycling
speeds associated with the mode cycling). While real data from
residents’ SWH devices would yield more accurate results,
the chosen MET values are well-established in research and
accurately predict calorie expenditure [38]. The results indicate
that, on average, cycling burns 266 kilocalories (kcal) and
walking burns 122 kcal. This higher calorie count for cycling
is due to its higher MET value and the preference for cycling
to meet deadline constraints encouraging a large number of

residents to choose this mode. Our approach promotes modes
that maximize calorie consumption and minimize environmen-
tal emissions, explaining the popularity of cycling (Fig. 3b).

Fig. 4 demonstrates the positive impact of our DRL-based
approach by analyzing mean travel distances, mean travel
times, and the distribution of active versus motorized journeys.
In Fig. 4a, the mean distances for each mode are: Walking
(2.31 km), Cycling (6.31 km), Public Transport (12.89 km),
and Car (25.32 km). These values show how deadlines and res-
idents’ requirements influence transport modes. Users choose
modes based on both distance and deadlines, optimizing
efficiency and sustainability. Walking and cycling are preferred
for shorter distances, promoting health and environmental
benefits. Fig. 4b provides insights into mean travel times
across different modes. The notable use of walking and cycling
suggests that our approach effectively promotes these active
modes over motorized options like public transport and cars.
This shift reduces reliance on motor vehicles, yielding multiple
benefits: decreased emissions, lower air and noise pollution,
and a cleaner, healthier urban environment. Next, Fig. 4c
quantifies the sustainability impact, showing that up to 74% of
journeys are categorized as active (walking and cycling). This
demonstrates the effectiveness of our scheme in encouraging
sustainable transportation choices, which alleviate strain on
road infrastructure and potentially reduce maintenance and
expansion costs. Overall, our approach aligns with the net-
zero initiative by promoting active and healthy travels, which
balance out the use of motorized transportation resulting in
reducing greenhouse gas emissions, and lowering the urban
carbon footprint. Encouraging walking and cycling for shorter
distances directly supports climate change mitigation and
sustainable transport systems.

Fig. 5 analyzes our proposed scheme’s performance across
varying user numbers and travel distances, evaluating mean
environmental emissions (gCO2) and mean travel time (min)
with user counts ranging from 10 to 50 and average distances
from 1 km to 10 km. Environmental emissions benchmarks are
from [32]. We compare our approach to two baselines: ”Car”
(all travel by car) and ”Bus” (all travel by public transport).
Fig. 5a shows that environmental emissions increase with
user numbers and travel distances. Our proposed approach
outperforms both baselines for lower user counts and shorter
distances by favoring modes with lower emissions as they
promote active modes of travel. However, as user numbers
and distances increase, the DRL agent sometimes opts for
faster modes like public transport or cars to meet the 30-minute
deadline, raising emissions. At 9 km and 50 users, there is a
significant shift towards public transport and cars, causing our
results to align more closely with the ”Bus” baseline. However,
our results remain significantly better than the ”Car” baseline,
as some users continue to choose cycling for these distances
if the travel time threshold allows. Next, Fig. 5b illustrates
mean travel time. Our approach, while not the fastest, ensures
all journeys meet the 30-minute deadline, with slightly longer
times often linked to walking and cycling, promoting active
lifestyles and sustainability. This strategy enhances the city’s
transportation system’s sustainability and supports the health
initiative.



VI. CONCLUSIONS

This paper introduces an innovative DRL-based approach to
urban transportation systems, designed to balance user health
and environmental sustainability. Our DRL method adeptly
addresses the dynamic nature of transportation systems by
learning an efficient DRL policy for this dynamic problem,
outperforming baseline scenarios focused solely on the fastest
travel times. Simulation results highlight the significant ad-
vantages of our proposed approach, demonstrating substantial
reductions in environmental emissions and promoting active
travel modes such as walking and cycling over motorized
modes whenever possible, enhancing the health and well-being
of residents, and encouraging a healthier lifestyle. In future
work, we plan to integrate additional healthcare and smart
wearable devices (SWH) to capture real-time data, allowing
us to predict the optimal travel modes for each journey. We
will also consider environmental metrics such as air quality
(PM2.5, PM10, NOx, etc.), which are monitored by modern
SWH devices, to further enhance our model’s environmental
impact assessment. Furthermore, we aim to explore multi-
modal solutions, enabling the combination of different trans-
port modes within a single trip. Additionally, while our current
model assumes a uniform edge computing environment for
simplicity, future work will address the varying properties of
different edges to reflect practical settings more accurately. We
also intend to apply our approach at the city level to address
practical considerations, helping us design more effective and
sustainable transportation solutions for residents.
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S. Sousa, “Health economic assessment of a shift to active transport,”
Environmental pollution, vol. 258, p. 113745, 2020.

[21] D. Esztergár-Kiss, Y. Shulha, A. Aba, and T. Tettamanti, “Promoting
sustainable mode choice for commuting supported by persuasive strate-
gies,” Sustainable Cities and Society, vol. 74, p. 103264, 2021.

[22] G. Giallouros, P. Kouis, S. I. Papatheodorou, J. Woodcock, and
M. Tainio, “The long-term impact of restricting cycling and walking
during high air pollution days on all-cause mortality: Health impact
assessment study,” Environment International, vol. 140, p. 105679, 2020.

[23] L. Zhang, L. H. U, M. Zhou, and F. Yang, “Elastic tracking operation
method for high-speed railway using deep reinforcement learning,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 3384–3391,
2024.

[24] D. Chen, M. R. Hajidavalloo, Z. Li, K. Chen, Y. Wang, L. Jiang,
and Y. Wang, “Deep multi-agent reinforcement learning for highway
on-ramp merging in mixed traffic,” IEEE Transactions on Intelligent
Transportation Systems, 2023.

[25] A. Sarker, H. Shen, and K. Kowsari, “A data-driven reinforcement
learning based multi-objective route recommendation system,” in 2020
IEEE 17th international conference on mobile ad hoc and sensor systems
(mass). IEEE, 2020, pp. 103–111.

[26] Z. Fu, L. Yu, and X. Niu, “Trace: Travel reinforcement recommendation
based on location-aware context extraction,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 16, no. 4, pp. 1–22,
2022.

[27] L. Chen, J. Cao, H. Tao, and J. Wu, “Trip reinforcement recommen-
dation with graph-based representation learning,” ACM Transactions on
Knowledge Discovery from Data, vol. 17, no. 4, pp. 1–20, 2023.

[28] S. A. Kazmi, S. Otoum, R. Hussain, and H. T. Mouftah, “A novel deep
reinforcement learning-based approach for task-offloading in vehicular
networks,” in 2021 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2021, pp. 1–6.

[29] K.-F. Chu and W. Guo, “Deep reinforcement learning of passenger
behavior in multimodal journey planning with proportional fairness,”
Neural Computing and Applications, vol. 35, no. 27, pp. 20 221–20 240,
2023.

[30] S. A. Kazmi and et al., “Computing on wheels: A deep reinforcement
learning-based approach,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 11, pp. 22 535–22 548, 2022.



[31] C. Moreno, Z. Allam, D. Chabaud, C. Gall, and F. Pratlong, “Introducing
the “15-minute city”: Sustainability, resilience and place identity in
future post-pandemic cities,” Smart cities, vol. 4, no. 1, pp. 93–111,
2021.

[32] G. Salazar, J. P. Silva, and B. Ribeiro, “Faster, cheaper, cleaner:
Assessing urban mobility,” in 2015 International Conference on Smart
Cities and Green ICT Systems (SMARTGREENS). IEEE, 2015, pp.
1–6.

[33] M. B. Hariz, D. Said, and H. T. Mouftah, “Mobility traffic model based
on combination of multiple transportation forms in the smart city,” in
2019 15th international wireless communications & mobile computing
conference (IWCMC). IEEE, 2019, pp. 14–19.

[34] A. Lorenz, N. Madeja, and C. Leyh, “A framework for assessing the
sustainability impact of intelligent transport systems in the smart city
context,” in 2023 18th Conference on Computer Science and Intelligence
Systems (FedCSIS). IEEE, 2023, pp. 161–169.

[35] Z. Khan, A. G. Abbasi, and Z. Pervez, “Blockchain and edge computing–
based architecture for participatory smart city applications,” Concur-
rency and Computation: Practice and Experience, vol. 32, no. 12, p.
e5566, 2020.

[36] S. M. A, N. H. Tran, W. Saad, Z. Han, T. M. Ho, T. Z. Oo, and
C. S. Hong, “Mode selection and resource allocation in device-to-device
communications: A matching game approach,” IEEE Transactions on
Mobile Computing, vol. 16, no. 11, pp. 3126–3141, November 2017.

[37] C. Zhang, Y. Meng, and V. Prasanna, “A framework for mapping drl
algorithms with prioritized replay buffer onto heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 6,
pp. 1816–1829, 2023.
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