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Abstract

Bismuth telluride (Bi2Te3) and its alloys are among the best thermoelectric mate-

rials at room temperature. Bi14Te13S8, a material with a similar crystal structure,

contains sulphur that can potentially improve thermoelectric performance through

widening band gap and reduced lattice thermal conductivity. This compound forms in

sulphur added Bi2Te3 alloys. Here, polycrystalline iodine-doped Bi14Te13S8 sample is
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investigated; an optimum iodine concentration of 1 at. % resulted in the power factor

of 3.5 mW2m−1K−1 at room temperature. Iodine doping reduced the lattice ther-

mal conductivity for more than 30% by enhancing phonon scattering. An improved

thermoelectric figure of merit zT of ∼0.29 at 520 K was obtained for 1-1.5 at% iodine

doped Bi14Te13S8. First-principles calculations indicate that Bi14Te13S8 has a larger

band gap compared to bismuth telluride, which allows for a reduction in the bipolar

effect, however, a lower effective mass reduced the thermopower for a similar carrier

concentration. This study demonstrates that tuned iodine doping can effectively op-

timise the thermoelectric performance of Bi14Te13S8, highlighting its contribution in

multiphase sulphur alloyed Bi2Te3-based materials.

Introduction

Thermoelectric Bi2Te3 and its alloys with sulphur have been the focus of extensive re-

search;1–6 we have shown the alloying of Bi2Te3 with Bi2S3 introduces a secondary phase of

Bi14Te13S8 in the matrix of Bi2Te3,
7 however, the thermoelectric properties of Bi14Te13S8 have

not been intensely studied.8 Sulphur is a non-toxic and abundant, relative to tellurium and

therefore, the thermoelectric properties of its compounds are of the interest of researchers.9

Previous works referred to Bi14Te13S8 as Bi2Te2S and its electronic transport properties have

been studied by several research groups.10–13 Bi14Te13S8 has a layered rhombohedral crystal

structure similar to Bi2Te3, with alternating layers of Bi-Te and Bi-S bonds along the c-axis,

allowing for lower values of thermal conductivity.11 Researchers have also explored alloying

the material with antimony, widely used in Bi2Te3-based materials,14–16 to achieve even lower

values of thermal conductivity while maintaining high carrier mobility.17

In this structure, some of Te atoms are replaced with lighter, more electronegative S atoms,

widens the band gap compared to Bi2Te3, potentially allowing for a higher thermopower.
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The wider band gap of Bi14Te13S8 compared to Bi2Te3 allows for reduction of the bipolar

effect which deteriorates the performance of this compound at temperatures higher than 400

K,6,18,19 due to a reduction in thermopower. Several efforts have been made to suppress

the effect of minority charges in Bi2Te3-based compounds by tuning the carrier concen-

tration20,21 and enlarging the band gap.22–24 Record high values of zT have been achieved

through alloying Bi2Te3 with Sb25 and Se.26,27 However, the necessity for higher performance

for temperatures over 500 K still persists.28

Similar to Bi2S3-based compounds,29,30 high resistivity values present an obstacle for achiev-

ing higher values of figure-of-merit for Bi14Te13S8,
11,31 creating a need to study the effects of

carrier concentration tuning in this material.

In this work, we synthesise polycrystalline iodine doped Bi14Te13S8 samples to investigate the

effect of iodine on the electronic transport properties of this compound. The optimum con-

centration of iodine is determined to maximise the power factor through controlled changes

in carrier concentration while suppressing harmful minority carrier conduction.

Experimental details

Synthesis

A set of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and 0.02) samples were synthesised

by direct reaction of stoichiometric amounts of high purity Bi (99.999%, Alfa Aesar), Te

(99.999%, Alfa Aesar) shots, dried S (99.99%, Alfa Aesar) powder, and BiI3 (99.999%, Alfa

Aesar Puratronic®) powder in vacuum sealed quartz tubes in an inert atmosphere glove

box. The tubes were homogenised at 850 ◦C for 16 h, quenched in cold water, and annealed

at 450 ◦C for 72 h. The obtained ingots were hand-ground into fine powders in an agate

mortar and pestle inside an inert atmosphere glove box. The powders were then loaded
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into a graphite die and sintered under vacuum to produce 11 mm diameter rods using spark

plasma sintering (Dr. Sinter-1080 SPS system, Fuji-SPS, Japan) at 400 ◦C and an axial

pressure of 50 MPa for 5 min. The relative density of the sintered samples, calculated from

the weight and dimensions of the rods, was ≥99% for all the samples.

Materials characterisation

Phase purity and crystal structure of the sintered samples were characterised by X-ray diffrac-

tion (XRD) using a PANalytical X’Pert PRO X-ray diffractometer with Cu-Kα1 radiation

(λ = 1.54059 Å, 40 kV, 40 mA). Rietveld refinements were performed on the acquired diffrac-

tion patterns using the GSAS-II software.32

The electronic transport properties of the sintered samples were investigated in the par-

allel direction to the sintering pressure by cutting ∼ 2 × 2 × 8 mm3 bars from the sintered

rods, parallel to the sintering direction. The measurements were carried out from room

temperature to 520 K under a helium atmosphere using a Linseis LSR-3 apparatus.

The thermal transport properties of the samples were investigated parallel to the sinter-

ing pressure by cutting out a disc with a diameter and thickness of approximately 10 mm

and 1.5 mm, respectively, from the sintered rods. The thermal conductivities (κ) were cal-

culated using the thermal diffusivity (D), specific heat capacity (cp), and density (d) of the

samples, κ = D · cp · d. The thermal diffusivity was measured using a Netzsch LFA-467

Hyperflash® instrument. The specific heat capacity was measured using a PerkinElmer-

DSC 8000 differential scanning calorimeter in compliance with the sapphire standard ASTM

E1269-11(2018) test.33

The disc-shaped samples were also used to measure carrier concentration and electronic

mobility using the van der Pauw technique with an ECOPIA HMS 3000 Hall measurement
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system.

Electronic structure calculation

DFT calculations were employed to qualitatively study the electronic band structure of

the pristine sample. The PBE and GGA exchange-correlation functionals were used.34

Monkhorst-Pack procedure was used to generate 10 × 10 × 10 k-points for the Brillouin

zone.35 The plane wave/pseudopotential approach was employed, with a kinetic energy cut-

off of 45 Ry for the wavefunctions and 360 Ry for the electron density. The crystal structure

used was that of the Rietveld refined pristine sample.

Results and discussion

Structural and phase analysis

Figure 1 shows the XRD patterns of all samples analysed. The diffraction patterns confirm

the existence of a single rhombohedral phase of Bi14Te13S8 crystal belonging to the space

group R3̄ (PDF Card - 04-009-4602). The enlarged view of the main diffraction peak is

shown in the inset, where it can be seen that the peak slight shifted with the dopant addition.

The lattice parameters for each sample were determined using Rietveld refinement of the

XRD patterns (Table 1). As shown in Figure 2, the lattice parameters exhibit variation

with the presence of the dopant, where a = b parameters show an overall decline, while the c

parameter fluctuates with the dopant concentration. These changes in the lattice parameters

can be attributed to the differences in ionic radii of S2– (0.184 nm), Te2– (0.221 nm), and I1–

(0.22 nm).36 Similar behaviour was observed in iodine-doped Bi2Te3, albeit to a lesser extent

due to the relatively similar radii of Te2– and I1–.37,38 Nevertheless, the obtained values are

consistent with literature-reported values of a = b = 1.1269 nm and c = 1.1129 nm.39

It is worth noting that all samples exhibited a preferred orientation in the {006} lattice plane,
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Figure 1: X-ray diffraction patterns of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and
0.02) in the range of 5◦ to 108◦. The inset shows the enlarged view of the main diffraction
peak.

Table 1: Refined lattice parameters of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and
0.02)

x a = b (Å) c (Å)

0 11.2198 29.6539
0.005 11.2174 29.6318
0.01 11.2210 29.6279
0.015 11.2140 29.6473
0.02 11.2128 29.6494

as illustrated in Figure 3. This was also observed in samples of Bi2Te2–xS1–x
8 and it is likely

due to the preferred crystal growth in the basal plane parallel to the ingot growth direction40

that might be enhanced by the sintering process.41,42 Much like Bi2Te3, Bi14Te13S8 exhibits

three covalently bonded quintuple layers of
[
Te(1)/S(1) − Bi − S(2) − Bi − Te(1)/S(1)

]
sheets

stacked along the c-axis.43 These layers interact weakly through van der Waals interactions.39

Here, the superscripts (1) and (2) were used to distinguish the two types of atomic bonding,

where (1) denotes a weak van der Waals attraction and (2) denotes a covalent bonding. Note

that this crystal structure has been erroneously referred to as ”Bi2Te2S” in some works.10,44

Pauling39 realised that the ”Bi2Te2S” crystal structure was unlikely to be stable at this
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Figure 2: Variation of lattice parameters a = b and c with the dopant concentration x.

stoichiometry due to a substantial strain localised on the internal sulphur layer within the

stacking sequence. This strain is due to the considerable difference in ionic radii between S

and Te, which would result in a large size mismatch between the hexagonal, closely packed

S and Te layers. To relieve this strain and stabilise the structure, formula of Bi14Te13S8 was

suggested in which S only occupies the Te(1) sites in the Bi2Te3 structure.45

Figure 3: Crystal structure of Bi14Te13S8 and {006} crystal plane.
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Band structure analysis

The calculated electronic band structure of Bi14Te13S8 using the refined lattice parameters

for the original sample as described in Table 1 is shown in Figure 4. The band structure

shows that this is a direct band gap semiconductor, with the conduction band minimum and

the valence band maximum centred around the Γ point in reciprocal space.

The obtained band gap for Bi14Te13S8 is about 0.14 eV. However, it is well known that

traditional DFT calculations, such as PBE (used in this work), underestimate the value of

the band gap46–50 with the errors mainly due to: (1) self-interaction errors due to interactions

of an electron with itself in the Coulomb repulsion term of the density functional;49,51 and

(2) the Kohn-Sham eigenvalues, which stem from using the differences of the ground state

energies of the Kohn-Sham system as the band gap.52,53

The value calculated here is smaller than those presented in the Open Quantum Materials

(∼0.5 eV),54 JARVIS-DFT (∼0.36 eV),55 and Materials Project (∼0.55 eV)56 databases,

and it also differs from previous works, of ∼0.34 eV57 using PBE + spin-orbit coupling, and

of ∼0.68 eV using hybrid functionals + spin-orbit coupling.57 However, the overall trend

points out that Bi14Te13S8 is a narrow band semiconductor with a larger band gap compared

to Bi2Te3, in agreement with the fact that the higher electronegativity of S (compared to

Te) should reduce the valence band maximum of the material.45 The increased band gap can

help to reduce the contribution of the bipolar effect in this material,58 potentially allowing

higher values of zT at high temperatures.59

Figure 4: Band structure of Bi14Te13S8.

Transport properties analysis and figure of merit zT

The temperature dependent thermopower and electrical resistivity of all samples are shown

in Figures 5(a) and 5(b). All samples show a negative value for the thermopower, indicating

n-type semiconductor behaviour. At room temperature, the values of the thermopower
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vary between ∼-130 µV K−1 for the undoped sample to ∼-44 µV K−1 for the heavily doped

sample with x = 0.02. The thermopower for the pristine sample showed an upward trend

at higher temperatures, likely due to with the presence of the bipolar effect usually seen in

narrow band gap semiconductors.60–62,62 The enhanced carrier concentration of the doped

samples suppressed the contribution of minority carriers and a linear relationship between

temperature and thermopower was observed as described by Mott’s rule.63

The electrical resistivity showed an inverse trend relative to the thermopower with the highest

value of about 5.8 mΩ cm for the undoped sample and the lowest value of about 1.2 mΩ cm

for the heavily doped sample with x = 0.02. All samples exhibited a metallic behaviour,

with the electrical resistivity increasing with temperature. In particular, the thermopower

and electrical resistivity showed similar values for the samples with x = 0.005, x = 0.01, and

x = 0.015.
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Figure 5: Temperature dependence of the (a) thermopower and (b) electrical resistivity of
Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and 0.02) from 300 and 520 K.

The choice of iodine as a dopant in Bi2Te3 is typically effective, leading to noticeable changes

in electrical resistivity due to controlled variations in carrier concentration,38,64–66 given to

the similarity in radii of Te2– and I1–. However, in the case of Bi2S3 it was observed that

iodine was not as successful as a dopant.67
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In this set of samples, both Te and S are present, and both have been accounted for substi-

tution with I. Assuming that the changes are caused by the incorporation of I at the sites of

both Te and S, the carrier concentration would be governed by the following defect chemistry

reaction the incorporation of I at the sites of both Te and S, the carrier concentration would

be governed by the following defect chemistry defect reaction

Bi14Te13–1.85x
3
S8–1.15x

3
Ix

(
1.85

x

3
ITe + 1.85

x

3
e’
)

+
(

1.15
x

3
IS + 1.15

x

3
e’
)
. (1)

Equation 1 predicts that the incorporation of high concentrations, x, of iodine will increase

the carrier concentration in Bi14Te13S8. To test this hypothesis, room temperature Hall effect

measurements were conducted on samples with varying iodine doping concentrations. The

results, summarised in Table 2, reveal that while carrier mobility (µH) decreases monoton-

ically with increasing iodine concentration from a maximum of 75.24 cm2 V−1 s−1 at x = 0

to a minimum of 22.29 cm2 V−1 s−1 at x = 0.02, the dependence of carrier concentration

on iodine doping is more complex. Specifically, the carrier concentration remains relatively

constant for x = 0.005, 0.01, and 0.015 before increasing significantly at x = 0.02.

Table 2: Room-temperature Hall carrier concentration (nH) and Hall mobility (µH) of
Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and 0.02)

x nH (× 1019 cm−3) µH (cm2 V−1 s−1)

0 −1.41 75.24
0.005 −5.3 68.50
0.01 −5.47 68.22
0.015 −5 64.68
0.02 −22.8 22.29

The trends in electrical resistivity (see Figure 5(b)) further illustrate the effect of doping on

the carrier concentration. The resistivity ρ shows a significant decrease from its maximum

value for the undoped sample, maintaining similar values of ∼1.7 mΩ cm for 0.05 ≤ x ≤ 0.015

before dropping to its minimum at x = 0.02.

Similarly, given the inverse relationship between carrier concentration and thermopower α,
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the undoped sample has the largest thermopower magnitude due to its lowest carrier concen-

tration, whereas the x = 0.02 sample has the smallest thermopower magnitude corresponding

to its highest carrier density. Since the samples with x = 0.005, 0.01, and 0.015 have com-

parable carrier concentrations, they have shown similar thermopower values of -80 ∼ -70

µV K−1. Overall, the transport data confirm the existence of a critical iodine doping range

between 0.015 ¡ x ¡ 0.02. A similiar behaviour was observed for iodine doped Bi2S3.
67

At room temperature and with similar carrier concentrations, the thermopower value for

Bi2Te3 (∼-238 µV K−1 at nH = 1 1019 cm−3 is larger than the one presented here, which

indicates that this compound has a lower effective mass than Bi2Te3. However, thermopower

value of Bi2S3 (∼-320 µV K−1 at lower carrier concentrations of nH = 0.45 1019 cm−3) suggests

a similar effective mass for this sample and Bi2S3.

To understand the influence of the band structure on the thermopower, the single parabolic

band model (SPB) was used to analyse the measured transport and carrier concentration

data. The SPB model is described by the following set of equations

α = ±kB
e

(
2F1(η)

F0(η)
− η

)
, (2a)

n =
(2m∗kBT )3/2

2π2h̄3 F1/2 (η) , (2b)

where e is the elementary charge, kB is the Boltzmann constant, η = EF

kBT
is the reduced

Fermi level, h̄ is the reduced Planck constant, m∗ is the density of states effective mass, and

Fj(η) is the Fermi-Dirac integral for an index j and is defined as

Fj(η) :=

∫ ∞

0

εj

exp(ε− η) + 1
dε, (3)

where ε = E
kBT

is the reduced energy.
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The fitted density of states effective mass was found to be m∗ ≈ 0.65m0, where m0 is the

electron rest mass. The measured thermopower and carrier concentrations follow the trend

predicted by the SPB model, as shown in the Pisarenko plot in Figure 6. Understandably, the

relatively low effective mass of Bi14Te13S8 compared to Bi2Te3 (m∗ ≈ 1.06m0
68,69) can explain

the low thermopower values observed even at lower carrier concentrations as predicted by

Mott’s rule.

For comparison, data from pristine Bi2Te3 samples5,6,68 and Bi2S3 samples,6,29,70,71 and sam-

ples of similar composition to that used in this work of chlorine doped Bi2Te1.93S1.07–yCly and

Bi2Te1.83S1.17
8 was added to the plot. As can be seen from the Pisarenko plot, Bi14Te13S8

closely follows the band structure of both Bi2S3 and similar compositions of Bi2Te1.93S1.07–yCly

and Bi2Te1.83S1.17.

Figure 6: The Pisarenko plot (thermopower versus Hall carrier concentration) at room
temperature of Bi2(Te1.857S1.142)1–xIx. The dashed line represents the calculated values
from the SPB model using the fitted effective mass. Data from Bi2Te3,

5,6,68 Bi2S3,
6,29,70,71

Bi2Te1.93S1.07–yCly and Bi2Te1.83S1.17
8 are included for comparison.

Figure 7 shows the power factor (PF ) values for all samples. Despite the reduced electrical

resistivity, the reduced thermopower at higher doping concentrations resulted in similar,
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modest power factor values of approximately 2.8 mW m−2 K−1 for the undoped, x = 0.005,

and x = 0.015 samples. The heavily doped x = 0.02 sample exhibited the lowest power

factor of ∼1.5 mW m−2 K−1, while x = 0.01 gave the optimum PF of ∼3.5 mW m−2 K−1.
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Figure 7: Temperature dependence of the power factor of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005,
0.01, 0.015, and 0.02) from 300 and 520 K.

To understand the heat transport mechanisms existent in the material, high temperature

measurements of the specific heat capacity of pristine Bi14Te13S8 were conducted and are

exhibited in Figure 8. At this temperature range of 300 ∼ 500 K, the specific heat capacity

has values very close to those predicted by the Dulong-Petit law72 with a linear trend (cp =

0.16500(8) + 1.769(19) × 10−5T J g−1 K−1). At this temperature range, the specific heat

capacity can be fitted using the Debye model,73 which leads to a Debye temperature of θD =

190.0(2.3) K and an average speed of sound of v = 2001(24) m s−1. It is worth noticing

that due to the non-availability of lower temperature measurements to fit the specific heat

capacity, these values can only be understood as approximations.

The thermal conductivity (κ) as a function of the temperature is shown Figure 9(a) and it

increases with the presence of the dopant. The electronic contribution to thermal conductiv-
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K. The dotted green line represents the Dulong-Petit limit for the material and the dashed
red line represents a linear fit of the data.

ity, i.e., the electronic thermal conductivity κe, was determined from the Wiedemann-Franz

law63 and shown in Figure 9(b). The Lorenz number was evaluated using the SPB model as

follows

L =

(
kB
e

)2
3F0(η)F2(η) − 4F1(η)2

F0(η)2
. (4)

As expected, with the increase in electrical conductivity with the dopant addition, the elec-

tronic thermal conductivity also increased for the doped samples. The lattice thermal con-

ductivity was estimated from κl = κ− κe and plotted in Figure 9(c). With the presence of

the dopant, the lattice thermal conductivity was reduced and has already been seen in liter-

ature.74–78 The heavily doped sample showed higher values than the moderately doped x =

0.015 (as seen e.g. in67,79) and this may be due to clustering of the dopant atoms leading to

a decrease in scattering centres for phonons and an increase in lattice thermal conductivity.

At room temperature, the maximum value of κl was observed for the undoped sample with

∼ 0.69 W m−1 K−1 and a minimum of ∼0.47 W m−1 K−1 for the sample with x = 0.015

(Figure 9(c)). The values exhibited by this material are in the lower range of the ones

observed for telluride compounds,80 as can be seen in the violin plot shown in Figure 9(d).
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(a) (b)

(c) (d)

Figure 9: Temperature dependence of the (a) thermal conductivity, (b) electronic thermal
conductivity, and (c) lattice thermal conductivity of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01,
0.015, and 0.02) between 300 to 520 K; (d) violin plot of lattice thermal conductivity data
of literature data80 compared with this work, all values are at room temperature.

Figure of merit zT

The figure of merit, zT, for the samples can be observed in Figure 10. The samples with x =

0.01 and 0.015 achieved a maximum value zT of ∼0.289 at 520 K. The presence of dopants

resulted in a shift to the higher value of zT towards higher temperatures. The increase in the

figure of merit was mainly due to the optimised power factor and a sharp reduction in the

lattice thermal conductivity compared to the undoped sample. The values of zT observed
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here are higher than the ones seem for pristine Bi2Te3
5 and Bi2S3

29 but lower than ones

observed for sulphur-alloyed Bi2Te3
8,81 as can be seen in Figure ??.

Figure 10: Figure of merit zT of Bi2(Te1.857S1.142)1–xIx (x = 0, 0.005, 0.01, 0.015, and 0.02)
between 300 to 520 K.

Conclusions

This work presents an investigation of iodine doped Bi14Te13S8for thermoelectric applications.

The intrinsic properties of Bi14Te13S8, including its layered crystal structure, larger band gap,

and intrinsically low thermal conductivity, make this compound a promising alternative to

conventional Bi2Te3.

An optimised power factor around 3.5 mW2 m−1 K−1 was achieved for a sample doped with

1 at. % iodine. Further, the lattice thermal conductivity is reduced by over 30% with iodine

addition due to increased phonon scattering with the dopant presence. Samples doped with

1-1.5 at. iodine exhibit maximum zT values of ∼0.29 at 520 K, a noticeable improvement

over undoped Bi14Te13S8. This study demonstrates that iodine doping can effectively tune the
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electrical and thermal properties of Bi14Te13S8 to boost its thermoelectric performance. Our

results highlight the contribution of Bi14Te13S8 to the thermoelectric properties of multiphase

materials.
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