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Abstract: Floods often cause significant damage to transportation infrastructure such as roads, rail-
ways, and bridges. This study identifies several topographic, environmental, and hydrological factors
(slope, elevation, rainfall, land use and cover, distance from rivers, geology, topographic wetness in-
dex, and drainage density) influencing the safety of the railway infrastructure and uses multi-criteria
analysis (MCA) alongside an analytical hierarchy process (AHP) to produce flood susceptibility
maps within a geographic information system (GIS). The proposed methodology was applied to
the catchment area of a railway track in southern Italy that was heavily affected by a destructive
flood that occurred in the autumn of 2015. Two susceptibility maps were obtained, one based on
static geophysical factors and another including triggering rainfall (dynamic). The results showed
that large portions of the railway line are in a very highly susceptible zone. The flood susceptibility
maps were found to be in good agreement with the post-disaster flood-induced infrastructural
damage recorded along the railway, whilst the official inundation maps from competent authorities
fail to supply information about flooding occurring along secondary tributaries and from direct
rainfall. The reliable identification of sites susceptible to floods and damage may provide railway
and environmental authorities with useful information for preparing disaster management action
plans, risk analysis, and targeted infrastructure maintenance/monitoring programs, improving the
resilience capacity of the railway network. The proposed approach may offer railway authorities a
cost-effective strategy for rapidly screening flood susceptibility at regional/national levels and could
also be applied to other types of linear transport infrastructures.

Keywords: transport infrastructure; flood susceptibility; geographic information system (GIS);
multi-criteria analysis (MCA); analytical hierarchy process (AHP); flood mapping; railway management;
railway damage

1. Introduction

Rail infrastructure networks are critical transport arteries that sustain mobility in
contemporary society, underpinning economic and social well-being [1,2]. In recent years,
climate change has led to an increased frequency and severity of extreme weather events [3],
which have adversely affected railway infrastructure and its associated operations [4]. For
example, intense precipitation has caused direct damage to the functioning of electrical
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systems, destabilized railway embankments, and triggered geohydrological hazards (i.e.,
landslides and floods) that have destroyed physical assets (i.e., tracks, tunnels, bridges)
and, concomitantly, disrupted rail services and traffic flows [2,5–7].

Vulnerabilities to climate change increase the socio-economic costs and reduce the
reliability of railway transportation [8,9]. Throughout Europe, and most notably across
Italy, geohydrological hazards (i.e., landslides and floods) are widespread phenomena
that constitute a detrimental influence on the built environment and transportation infras-
tructure [10–14]. Ref. [10] estimate that ~15% of the Italian railway network is exposed
to landslides and ~24% to floods. Uncertainty in these estimates arises because of the
extensive nature of the network and the cost of undertaking a comprehensive assessment.
Past analysis has been mainly confined to major rivers and the most critical sections [10,15].
A cost-effective approach to screening hazards of this nature is therefore a critical need.

Flooding can derive from various sources including intense and/or persistent rainfall,
high river flows, and coastal storms [16]. Fluvial (or riverine) flooding occurs when river
water levels rise and overflow onto their adjacent floodplains [17]. Pluvial (or surface)
flooding arises from rain-induced overland flow, resulting in local accumulations of water
before the runoff enters any river or drainage facility or when it cannot enter these systems
due to reduced capacity or blockage [18,19]. Flash floods combine both pluvial and fluvial
elements, typically impact small steep watersheds, and are characterized by rapid flow
velocities that may lead to debris flows, significant sediment transport, and erosion [19].
Railway–river intersections, or locations where culverts and ditches are obstructed by
debris and sediment material, are therefore vulnerable points for railway network infras-
tructure. The inundation of railway tracks due to water flow can result in issues such as
washing away of ballast, slope instability, and embankment breaches [7]. Water-induced
damage on rail infrastructure can necessitate extensive and expensive repair work and
involve temporary redirecting of trains in the case of link disruption, a scenario more pro-
nounced in rail systems when compared to competing road networks due to their complex
interconnected nature and poor flexibility [9,20].

Rail (and environmental) authorities require methodologies that enable rapid spatial
assessment of the flood hazards that affect railway infrastructure. This would allow rail
authorities to avoid critical areas during the planning and construction of new infrastructure
and to adjust technical standards and maintenance practices for existing lines in areas
susceptible to geohydrological hazards.

This research is the result of a collaboration with Ferrovie dello Stato Italiane (FSI) [21],
the parent company of the Italian national railway infrastructure manager Rete Ferroviaria
Italiana (RFI), who have faced issues with extreme precipitation and associated impacts
causing damage and destruction of their rail infrastructure network in the recent past. The
purpose of the study was to develop and validate a procedure to support the identification
and zonation of rail infrastructure that may be susceptible to flooding, so rail authorities
can take pro-active steps to minimize future floods’ negative impacts.

Background

Flood hazard is defined as the probability of a flood event of a certain frequency and
magnitude at a particular location in space and time [22,23]. Aligned with this concept,
flood susceptibility is defined as the propensity of an area to suffer from flooding based
on local territorial conditions, estimating “where” future flood events are likely to occur
without accounting for “how frequently” such events may occur [24,25].

Flood hazard analysis and mapping (as key components of flood risk assessment)
are traditionally performed using hydrologic and/or hydraulic–hydrodynamic models
that, for a certain hydrological scenario, simulate flood inundation extent, flow depth,
and velocity by numerically solving the flow equations in one-dimensional (1D) or two-
dimensional (2D) settings [17,26–29]. These models provide accurate flood predictions, but
they generally require large amounts of high-quality data, including high-resolution digital
elevation models, design rainfall and river discharges, land use information for roughness
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parameters, and river network geometry, and may involve extensive pre-processing and
time-consuming calculations. Consequently, detailed flood hazard evaluations at the local
scale are not always feasible due to the extensive resources needed and are generally limited
to the river stretches detected in preliminary screening stages [30] and to a limited number
of flood scenarios, each one characterized by its magnitude and probability of occurrence.
Additionally, while the generation of fluvial flood hazard maps along large rivers is an
institutionalized standard practice, the mapping of non-fluvial floods is still limited [17,26].

Considering these issues, a successful and efficient approach (especially in large-scale
or data-scarce situations) could be to produce a flood susceptibility analysis that relies on
the identification of flood-prone areas based on territorial intrinsic influencing factors, both
natural and anthropogenic, without considering the temporal probability of occurrence of
the specific flood events [25,31].

Geographical information systems (GISs) are well-suited to collating and analyzing
relevant spatial data, including topographical, hydrological, geomorphological, climatic,
and environmental considerations, to support reliable flood susceptibility mapping [32].
Flood susceptibility classifications exploiting the potential of GISs include statistical meth-
ods, multi-criteria analysis (MCA), and machine learning techniques [32–36]. GIS-based
MCA techniques have been successfully employed to analyze complex spatial problems in
many fields [37] and have been increasingly applied to identify areas potentially subject to
flooding [31,38–45]. According to a recent review [46], the analytical hierarchy process (AHP)
is the most popular method in flood-related MCA applications as it is considered a robust
technique for assessing the spatial distribution of flood-prone areas when it is combined with
GIS [47]. The AHP-GIS approach has been widely used to identify areas susceptible to flooding
in urban environments [22,38,48–50], small catchments [42,51–54], cultural heritage sites [55],
large river basins [39,56–58], and at district [59] and regional scales [41,60,61].

Studies implementing GIS-based multi-criteria analysis for flood susceptibility mapping
along railway infrastructure are still limited. Ref. [62] identified flood-prone areas along the
Al-Shamal railway line in Saudi Arabia by implementing an AHP-GIS approach and consid-
ering eight flood-influencing criteria (flow accumulation, distance from the stream network,
hydrological soil group, slope, rainfall intensity, land use/land cover, drainage density, and rain-
fall runoff speed). However, the factor of rainfall runoff speed was derived through numerical
simulations with the hydrologic–hydrodynamic HEC-RAS software, so in effect, the AHP-GIS
approach was still dependent on traditional flood inundation simulation software.

The purpose of the present study is to develop and validate a screening procedure
to support national and local authorities in the identification and zonation of rail infras-
tructure that may be susceptible to flood events, highlighting the most critical locations to
prioritize future targeted investments of more detailed analysis. The work combines a GIS
environment with an MCA technique, namely the analytic hierarchy process (AHP), and
it is based on dynamic (rainfall) and static (slope, elevation, land use and cover, distance
from rivers, geology, topographic wetness index, and drainage density) flood-influencing
factors. The methodology has been applied in the catchment area encompassing a railway
track in southern Italy to support the rapid identification and zonation of rail infrastruc-
ture susceptible to flooding. The rest of this paper is structured as follows: Section 2
presents an overview of the study area and the characteristics of the autumn 2015 flood
event that severely affected the rail track. Section 3 presents a comprehensive overview
of the methodology, the selected factors, and the data used. The relative importance of
the factors was evaluated by using the AHP method. In Section 4, uncertainty is assessed
through a sensitivity analysis of the factors. The results are presented in Section 5. Flood-
induced infrastructural damages along the railroad and official flood inundation maps from
competent authorities were used for validating the flood susceptibility zonation. Finally,
conclusions are drawn in Section 6.
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2. Case Study

The Napoli–Bari railway (~320.6 km) is one of the most important passenger and
freight railway lines in southern Italy and, as such, it is essential this rail route remains
open. However, on occasions, the route is forced to close due to natural disasters such as
flooding and landslides. For instance, in October 2015 (14 October 2015 to 15 October 2015)
part of the track in the central sector of the province of Benevento of the Campania region
(Figure 1) was severely damaged by the devastating effects of an extreme rainfall event
that made the route impassable. Figure 1 shows a map of the catchment encompassing the
considered track and the surrounding cities, with a total area of 230.33 km2. The drainage
network of the area is dominated by the western lower segment of the Calore Irpino River
that flows at the base of the northern slope of Mount Camposauro (1390 m a.s.l.) and
crosses the Telesina Valley (50–150 m a.s.l.). The Napoli–Bari railway line runs almost
parallel to the Calore River. The drainage network comprises several streams, known for
occasional torrential flows.

The climate of the area is typical of the Mediterranean, with a mean annual rain-
fall of ~1150 mm [63], where November is the rainiest month and July/August are the
driest [63,64]. Notably, [65] analyzed changes in precipitation patterns over the past two
decades in the Campania region and found significant evidence of increased autumnal
daily precipitation in the Telesina Valley.
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Figure 1. Study area in southern Italy with topographic elevations, drainage network, main settlements,
and railway line.

The extreme downpours in October 2015 led to exceptional rainfalls, with 415.4 mm in
24 h registered at the rain gauge of Paupisi in the province of Benevento [66]. This meteoro-
logical event produced multiple “knock-on” effects across the territory, such as river flooding,
runoff soil erosion, hillslope processes (debris and earth flows), and landslides [67–69]. Occur-
rences of hydraulic instability may have been exacerbated by inadequate gully maintenance,
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resulting in vegetation obstruction within the channels [68]. It is important to note that the
Benevento area has experienced several hazardous events with similar characteristics in
the past [67].

Intense precipitation and the subsequent flooding caused widespread damage to the
railway line and led to six days of service disruption. Damage resulted primarily from:
(i) overflowing of the Calore River, (ii) interaction with surface runoff, and (iii) significant
sediment transport, resulting in overflow, erosion, and debris accumulation at the inter-
section between the railway line and the secondary right-bank Calore River tributaries.
The consequences of these phenomena included instability of retaining walls and railway
embankments, obstruction of drainage facilities, and debris material accumulation adjacent
to crossing structures (culverts and bridges). In most cases, the recorded damage could
not be attributed to a single mechanism but rather a combination of multiple geohydraulic
factors. Figure 2 shows the approximate location and typology of the damage recorded
along the railway after the storm, provided by the railway company. The main damage
caused by the event is summarized in Table 1.
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Figure 2. Photographic evidence of the aftermath and a map showing the position of the water-related
infrastructure damage along the railway line: (a) obstruction of crossing structures (culvert/bridge),
(b) clogging of drainage ditches by debris material, (c) instability/collapse of retaining walls—masonry
damage, (d) failure of embankment caused by erosion, (e) overtopping of the line by water/mud from
upstream. The photos are courtesy of Rete Ferroviaria Italiana (RFI).

Table 1. A summary of the main damage caused by the intense rainfall event of October 2015, plus a
description of each of the damage types.

Type of Damage Description of the Damage

Obstruction of crossing structures (culvert/bridge)

At railway–stream intersections, sediment and debris
carried by the flow accumulated, leading to the

obstruction of crossing structures’ clearances and the
failure of drainage facilities with corresponding

potential infrastructural damage.
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Table 1. Cont.

Type of Damage Description of the Damage

Instability/collapse of retaining walls—masonry
damage

This type of damage affected the area where the
railway line passes through the town of Ponte, with
buildings flanking the line structures. Instabilities
and collapses of retaining walls occurred due to

issues related to increased water pressures as well as
flow-related erosive phenomena.

Clogging of drainage ditches
Sediment and debris materials transported by overland
flow or coming from the secondary tributaries led to

the obstruction of several drainage facilities.

Failure of embankment caused by erosion
The overflow of the Calore River and tributary creek
breached the railway embankment and caused the

washing away of ballast.

Overtopping by water/mud from upstream
Masses of mud and water traveling down the slopes
due to overland flow or coming from the secondary

tributaries obscured several railway segments.

3. Methodology

In this section, we present a six-stage stepwise process for creating flood susceptibility
maps and define the contributing flood-influencing factors.

3.1. Methodology Flowchart

We apply a GIS-based multi-criteria approach for the flood susceptibility assessment
of the railway track described in Section 2. The AHP was selected as the factors’ weighting
method within the framework of MCA. The numerical codes used in this work were in
the open-source GIS environment QGIS (version 3.28.3), to create, process, and analyze
geospatial data, and the Microsoft Excel (version 2408) spreadsheet environment for the
AHP application. The study is based on the following main six stages (Figure 3):

- The data required for the analysis were collected from various sources and pre-
processed in GIS.

- Several flood-influencing factors (FIFs) covering hydrological, geomorphological,
environmental, topographical, and meteorological conditions, based on the actual
characteristics of the study area, were selected. Input data for each factor were re-
sampled in the GIS environment as raster data with 10 m spatial resolution, resulting
in 4,306,822 cells (2194 columns, 1963 rows), and reprojected in the reference system
WGS 84/UTM zone 32 N. We classify the FIFs into seven static flood-conditioning fac-
tors (FCFs: elevation, slope, topographic wetness index, distance to streams, drainage
density, land use/land cover and geology) and one dynamic flood-triggering factor
(FTF, October 2015 rainfall). Due to the diverse nature of each factor, all the thematic
maps were reclassified on a scale from 1 to 5 (rating score), where 1 refers to a very low
(or negligible) level of influence/susceptibility to flooding and 5 to a very high level.
The approach of setting a priori the number of susceptibility classes is also employed
in similar studies for identifying flood-prone areas [38,42,56,60,70–73].

- The AHP technique was employed to determine the relative weights of the flood-
influencing factors.

- The thematic map layers were superposed in GIS using the weights calculated with the
AHP technique. A flood susceptibility condition map (FSC) was created by combining
the seven FCFs with their weights, and a flood susceptibility assessment map (FSA)
was obtained by combining the seven FCFs and the one FTF (rainfall) with their
weights. The pixel value of each output map (FSi) was obtained using the following
equation (weighted linear combination, WLC, [74]):

FSi =
n

∑
j=1

rij · wj (1)
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where n is the number of factors, rij is the rating score (from 1 to 5) of the j-th factor at each
grid cell i, and wj is the weight of the j-th factor calculated with the AHP method.

- A sensitivity analysis was applied to both the FSC and FSA maps to evaluate the influence
of uncertainties of the input factors’ weights on the derived flood susceptibility maps.

- To validate the flood susceptibility zonation method, historical flood-related dam-
age sites on the railway infrastructure from the railway company and official flood
inundation maps from the competent authorities were used.
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3.2. Flood-Influencing Factors (FIFs)

The primary challenge for any flood susceptibility assessment is to identify a set of
appropriate influencing factors based on the actual geomorphological and hydrological
conditions of the study area [60]. To avoid unreliable weights dominated by one predomi-
nant factor, it is generally recommended to consider at least six conditioning factors in the
evaluation of areas susceptible to flooding [38,60]. These factors were selected based on an
extensive literature review [31,38,39,41,42,44,45,49–55,58,60,70,72].

For all the numerical factors (except distance from the drainage network), the Jenks
natural breaks classification method [75] was applied (with appropriate Python code) to
establish different flood susceptibility levels [41,42,44,70,71]. The qualitative parameters of
land use/land cover and geologic formations were classified according to the characteristics
of the study area [63].

Although not exhaustive, the cited factors offer a comprehensive representation of the
major influential variables that may impact flood occurrence within the study area. In the
following, we provide an overview of source data and processing related to the selected FIFs.

3.2.1. Elevation (E)

Topographic elevation is commonly used in assessing flood-prone areas, as lowland
regions are generally more susceptible to floods [39,43]. The high level of susceptibility
connected to lowlands arises from the natural flow of water from higher to lower elevation
points. For each cell, the elevation values were obtained from the digital elevation model
(DEM). A freely accessible DEM with a spatial resolution of 10 m, produced by the National
Institute of Geophysics and Vulcanology (INGV) for the whole Italian territory, was down-
loaded from https://tinitaly.pi.ingv.it/ in February 2023 [76]. The elevation of the study
area varies from 47 m a.s.l. to 1385 m a.s.l. and was divided into five classes (Figure 4a and
Table 2): the lowest elevation class was allocated a value of 5 (very high susceptibility to
flooding) and a score of 1 (very low susceptibility) was attributed to the highest elevation
category. The elevation map (Figure 4a) shows that the highest susceptibility scores are in
the flat area characterizing the Low Calore River alluvial floodplain.

https://tinitaly.pi.ingv.it/
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to Streams.

Table 2. Reclassification of the selected Flood-Influencing Factors.

Factor [Unit] Classification
Susceptibility Level

Descriptive Form Score

Elevation (E), [m a.s.l.]

47–225 Very high 5

225–415 High 4

415–644 Medium 3

644–919 Low 2

919–1385 Very low 1
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Table 2. Cont.

Factor [Unit] Classification
Susceptibility Level

Descriptive Form Score

Slope (S), [◦]

0–6.6 Very high 5

6.6–12.4 High 4

12.4–20 Medium 3

20–30.7 Low 2

30.7–70.8 Very low 1

Rainfall (C2DR), [mm]

305.1–415.4 Very high 5

252.7–305.1 High 4

214.4–252.7 Medium 3

165–214.4 Low 2

77.5–165 Very low 1

Land use land cover (LULC)

Urban areas Very high 5

Sparse urban areas High 4

Agricultural land Medium 3

Grassland and shrub Low 2

Forest Very low 1

Distance to streams (DS), [m]

1st–2nd-order streams

0–25 Very high 5

25–50 High 4

50–100 Medium 3

100–150 Low 2

>150 Very low 1

3rd-order streams

0–50 Very high 5

50–100 High 4

100–150 Medium 3

150–200 Low 2

>200 Very low 1

4th-order streams

0–100 Very high 5

100–200 High 4

200–300 Medium 3

300–400 Low 2

>400 Very low 1

5th-order streams

0–100 Very high 5

100–300 High 4

300–500 Medium 3

500–700 Low 2

>700 Very low 1

Topographic wetness
index (TWI), [-]

12.47–23.62 Very high 5

9.00–12.47 High 4

7.01–9.00 Medium 3

5.56–7.01 Low 2

1.75–5.56 Very low 1
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Table 2. Cont.

Factor [Unit] Classification
Susceptibility Level

Descriptive Form Score

Geology (G)

Clay Very high 5

Sandstone and
arenaceous marl High 4

Marl and calcareous marl Medium 3

Alluvial Low 2

Limestone Very low 1

Drainage density (DD),
[km/km2]

2.37–3.64 Very high 5

1.82–2.37 High 4

1.31–1.82 Medium 3

0.75–1.31 Low 2

0–0.75 Very low 1

3.2.2. Slope Angle (S)

Slope, defined as the tangent of the angle β between the Earth’s surface and a horizon-
tal reference [77], plays a fundamental role in hydrology and geomorphology. It influences
the movement of water and materials under gravity, impacting various processes such as
soil water content, erosion, geomorphic evolution, and flood dynamics [33,78]. In simpli-
fied terms, for a given flow rate at a specific point, a decrease in the local slope will lead to
an increase in water depth (and a corresponding decrease in flow velocity), and vice versa.
Consequently, areas with gentle slopes are prone to water accumulation and stagnation,
making them susceptible to flooding. For each cell, the slope angle was derived from the
DEM using the slope function available in QGIS. The study area, a steeply sloping terrain
where the slope angle ranges from 0◦ to 70.8◦, was divided into five classes (Figure 4b and
Table 2): the lowest slope category was allocated a score of 5 (very high susceptibility), while
the highest slope category was given a value of 1 (very low susceptibility to flooding). From
Figure 4b we note that the southern part of the catchment is dominated by the steep slopes of
Mount Camposauro, while the central part is dominated by the flat Calore River floodplain.

3.2.3. Topographic Wetness Index (TWI)

The topographic wetness index (TWI) represents the potential for water to accumulate
at any point within the drainage basin and to move downslope driven by gravitational
forces [78]. It is computed with the TWI algorithm from SAGA Next Gen in QGIS as
ln(a/tanβ), where a is the upslope area draining through a certain point per unit contour
length (m2 m−1) and tanβ is the local slope where β is expressed in radians [79–81]. The
catchment area a represents the upstream drainage area per unit contour length expected to
supply water to the pixel for which the TWI calculation is made. Since rainfall direction is
assumed approximately vertical, the catchment area a is proportional to the flow rate passing
through a point. Regions with large contributing drainage areas and gentle slopes will exhibit
high TWI values, whereas small areas with steep slopes will correspond to low TWI values. In
the study area, the TWI varies from 5.56 to 23.62 and was divided into five classes (Figure 4c
and Table 2), with the highest values given the highest susceptibility score.

3.2.4. Distance to Streams (DS)

In addition to overland flows, river overflows play a pivotal role in triggering flood
events, typically originating from the riverbed and extending into the surrounding areas.
Thus, the proximity to rivers and streams significantly influences the susceptibility to flood-
ing during such hazardous events. The river network map for the study area was retrieved
from the National Summary Database (Database di Sintesi Nazionale, DBSN), freely down-
loaded (upon registration) from the Italian Military Geographic Institute (IGM) website
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(https://www.igmi.org/it/dbsn-database-di-sintesi-nazionale, accessed on 4 April 2023).
The streams were classified using Strahler’s order system [82]. The main watercourse of
the drainage network (the Calore River) is a fifth-order stream in the context of the study
area. The distance to rivers was computed in QGIS using the Euclidean distance to the
closest channel stream. Classes were created around first- and second-order streams at
distances of 25, 50, 100, and 150 m, third-order streams at distances of 50, 100, 150, and
200 m, fourth-order streams at distances of 100, 200, 300, and 400 m, and fifth-order streams
at distances of 100, 300, 500, and 700 m. The highest flood susceptibility score was assigned
to the areas closest to the drainage network (Figure 4d and Table 2).

3.2.5. Drainage Density (DD)

Drainage density is defined as the ratio of the total length of drainage channels per
basin area [38,83]. Impermeable soils produce higher runoff which causes more pronounced
soil erosion and an increase in drainage density [60]. The line density module in QGIS was
applied. Figure 5a shows the drainage density map of the study area, obtained from the
river network, which varies from 2.37–3.64 km/km2 (very high susceptibility to flooding)
to 0–0.75 km/km2 (very low susceptibility), as reported in Table 2.
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3.2.6. Geology (G)

The geology of an area may significantly affect flooding occurrences. Porous forma-
tions, such as coarse sand and aggregates, facilitate rainwater infiltration, while imperme-
able deposits consisting of marl and clays promote surface runoff. Permeable formations
are often connected to alluvial sediments in lowlands, allowing the floodplain delineation.
The geological formations in the study area were derived from the Italian geology map,
freely downloaded from the National Geoportal (https://gn.mase.gov.it/portale/home,
accessed on 20 June 2023). The soil types present in the study area are clay, sandstone and
arenaceous marl, marl and calcareous marl, alluvial deposits, and limestone (Figure 5b and
Table 2). Clay soils are characterized by very low permeability and so they constitute zones
of very high susceptibility to flooding, while limestone soils, usually characterized by high
permeability rates, have low susceptibility.

3.2.7. Land Use Land Cover (LULC)

The extent and nature of land use and land cover can influence the vegetation density,
which in turn regulates both precipitation absorption and surface runoff rates. Consequently,
dense vegetation areas may mitigate the flood hazard, while barren and sparsely vegetated
areas may experience increased surface runoff and may be more susceptible to flooding.

The Corine land cover database (European Environmental Agency—EEA,
http://www.eea.europa.eu, accessed on 21 June 2023) was used to identify the land uses of
the considered catchment area. The land use/land cover types present in the study area are
urban areas, sparse urban areas, agricultural lands (mostly dominated by vineyards and
olive groves, [63]), grasslands and shrubs, and forests (mainly concentrated on the steepest
slopes, [63]) (Figure 5c and Table 2). The highest susceptibility score was assigned to the
urban areas.

3.2.8. Cumulative Two-Day Rainfall (C2DR)

In this study, rainfall was considered a dynamic triggering factor for flooding (flood-
triggering factor, FTF) instead of a static conditioning factor [22]. Generally, high-intensity
and long-duration rainfall correlates with increased overland flow and water runoff, affect-
ing the magnitude of flooding phenomena.

For the historical event of autumn 2015, cumulative two-day rainfall (C2DR) was
derived from the sub-hourly precipitation records of 30 hydrometeorological stations
located inside and near the catchment area (21 stations managed by the regional Civil
Protection Department—7 of which are auxiliary stations not used for civil protection
activities—and 9 stations managed by the Regional Agrometeorological Service) from
October 14th (20:00 h) to 15th (13:00 h), 2015. The inverse distance weighted (IDW) function
in QGIS was used to determine the spatial distribution of rainfall. The rainfall spatial
distribution varies from 77.5 mm to 305.1 mm and is divided into five classes (Figure 5d
and Table 2). The greatest susceptibility was attributed to the highest precipitation class.
The precipitation map (Figure 5d) shows that the highest precipitation values are mainly
concentrated in the central and southern areas of the domain.

3.3. Calculation of Weights

A flood susceptibility condition (FSC) map was created by combining the seven FCFs
with their weights, and a flood susceptibility assessment (FSA) map was obtained by
combining the seven FCFs and the one FTF (rainfall) with their weights. According to
the factors’ relevance for the occurrence of flood phenomena, the weight values were
determined with the analytic hierarchy process (AHP).

The AHP is a multi-criteria method that has been widely employed in various decision-
making applications [84]. The procedure estimates criteria weights through pairwise
comparisons using numerical importance scales [85,86], offering a structured approach for
evaluating and integrating the effects of various factors within the framework of natural
hazard and risk management [87].

https://gn.mase.gov.it/portale/home
http://www.eea.europa.eu
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The application of the procedure involved five experts who were part of the study
(three from the academy and two from the railway industry). The most relevant factors
to include in the analysis were derived from the literature and discussed during group
settings, adding relevant factors that were first neglected or removing irrelevant ones.
Pairwise judgments were administered through surveys and interviews during online
group sessions, using a scale of relative importance between factors [85] that ranges from
one (equal importance) to nine (extreme importance). During the first step, pairwise
judgments were expressed among the seven FCFs. The correspondent pairwise comparison
matrix obtained from the experts’ opinions was normalized with the principal eigenvector
method, obtaining the relative weights of the seven factors (see Table 3, third column), and
subsequently evaluated for consistency. This process is described in Appendix A.

During the second step, eight factors (the seven FCFs plus the triggering rainfall) were
considered: the pairwise judgments from the previous step were retained and the experts
were called to express their opinions on the importance of the triggering rainfall. Again,
the correspondent pairwise comparison matrix was normalized and tested for consistency.
Table 3 (fourth column) shows, for each factor, the final relative weight, which represents its
expected contribution to the occurrence of flood phenomena in the considered research area.

During the first step, slope and distance to streams emerged as the most significant
factors for flood occurrence, while geology and LULC were considered the least influential
(Table 3, third column). In the second step, the rainfall spatial distribution was the most
influential factor (Table 3, fourth column) for the construction of the flood susceptibility
assessment map. The weights assigned to the various factors are not fixed and may be
reviewed and updated regularly.

Table 3. Factors used in flood susceptibility mapping and their corresponding weights, as determined
by the Analytical Hierarchy Process (AHP).

Flood-Influencing Factor
Weights of

Factors (Using AHP)

Condition Map Assessment Map

Triggering factor Rainfall (C2DR) - 0.219

Conditioning
factor

Slope (S) 0.255 0.201

Distance to streams (DS) 0.255 0.201

Topographic wetness index (TWI) 0.151 0.116

Elevation (E) 0.151 0.116

Drainage density (DD) 0.092 0.069

Geology (G) 0.058 0.045

Land use land cover (LULC) 0.039 0.031

4. Map Interpolation and Sensitivity Analysis

The proposed methodology integrates the selected flood-influencing factors through a
linear combination, considering the relative weights calculated with the AHP method
(Section 3.3 and Appendix A). This process entails overlaying the thematic maps of
Figures 4 and 5 with different weights in QGIS through the weighted linear combination
(WLC) of Equation (1) (using the Raster Calculator).

A flood susceptibility condition map (FSC) was created by combining in QGIS the
seven flood-conditioning factors with their weights (Table 3, third column):

FSC = 0.255 × [Slope] + 0.255 × [Distance f romstreams] + 0.151 × [TWI] + 0.151 × [Elevation]+

+0.092 × [DrainageDensity] + 0.058 × [Geology] + 0.039 × [LandUseLandCover]
(2)
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and a flood susceptibility assessment (FSA) map was obtained by combining the seven
flood-conditioning factors and the one flood-triggering factor (rainfall) with their weights
(Table 3, fourth column):

FSA = 0.219 × [Rain f all] + 0.201 × [Slope] + 0.201 × [Distance f romstreams] + 0.116 × [TWI]+

+0.116 × [Elevation] + 0.069 × [DrainageDensity] + 0.045 × [Geology]+

+0.031 × [LandUseLandCover]

(3)

These maps provide the spatial variability of flood susceptibility within the entire
study area. Finally, flood-prone areas were split into five susceptibility classes (“very low”,
“low”, “moderate”, “high”, and “very high”) using the Jenks breaks classification (with a
custom Python script).

Sensitivity Analysis

Variability of the selected factors may introduce biases into the susceptibility assess-
ment process. An investigation was conducted to examine the impact of uncertainty in the
assigned factor weights on the flood susceptibility assessment. At each cell grid, the error
∆εi produced by the uncertainties ∆wj of the weighting coefficient values wj is [49,50,88,89]:

∆εi =

√√√√ n

∑
j=1

(
∆wj · rij

)2 (4)

where n is the number of factors and rij is the rating score (from 1 to 5) of the j-th factor
at each grid cell i. The factor weights wj used for the basic FSC map (see Table 3) were
altered by 20% with respect to their original values. The changes in weight values (∆wj) of
every factor are: 0.051 for slope, 0.051 for distance to streams, 0.0301 for TWI, 0.0301 for
elevation, 0.0183 for drainage density, 0.0117 for geology, 0.0078 for LULC. This procedure
led to the creation of a map (representing the error ∆εi at each grid cell) that was added
and subtracted from the basic FSC map to represent two extreme scenarios of maximum
and minimum values (FSCmax and FSCmin, respectively). The same procedure was repeated
for the basic FSA map—with the changes in weight values of 0.0437 for rainfall, 0.0402
for slope, 0.0402 for distance to streams, 0.0233 for TWI, 0.0233 for elevation, 0.0139 for
drainage density, 0.0091 for geology, 0.0063 for LULC—obtaining two extreme scenarios
of maximum and minimum values (FSAmax and FSAmin, respectively). Thus, a total of six
maps were obtained.

5. Results and Discussion

This section presents the findings of investigations into spatial variations of flood
susceptibility across the study area and subsequent validation.

5.1. Spatial Variation of Flood Susceptibility at Basin Level

The spatial distribution of the flood susceptibility obtained with the AHP weights and
WLC method implemented in QGIS has been created (Figures 6 and 7). Susceptibility was
split into five classes (“very low/negligible”, “low”, “moderate”, “high”, and “very high”)
using the Jenks breaks classification method (with a custom Python script).

Figure 6a illustrates the basic FSC map along with the upper (FSCmax, Figure 6b) and
lower (FSCmin, Figure 6c) values, derived by accounting for the uncertainty in the factors’
weights (see Section 4). The basic FSC map reflects the influence of the seven static FCFs
(elevation, slope, topographic wetness index, distance to streams, drainage density, land
use/land cover and geology) on the occurrence of flood phenomena in the study area, and
the two additional maps (FSCmax and FSCmin) account for the uncertainties in the weights
of the adopted factors.
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Figure 6a shows that the flood-prone areas (with “high” and “very high” flood suscep-
tibility) are mainly located in the low-lying Calore River floodplain and along its tributary
streams. As also reported by several studies [41,43,44], the most susceptible areas to flood
generally present a common pattern of very low altitude, low slope angle, high drainage
density, and proximity to streams. The junctions of low-order streams with the main
watercourse represent areas with “very high” flood susceptibility. In contrast, the suscep-
tibility is “negligible” in the higher-elevation and steeper slope zones at the foot of the
Mt. Camposauro northern face (southern part of the domain). These areas, which are
entirely covered by forests and grasslands, are characterized by very low to moderate
drainage density values, and low TWI values, and mainly comprise limestone formations
(with high permeability). Similarly, the northern part of the domain is characterized by
higher elevation and moderate/low slope degree areas with established vegetation cover
and permeable geological formations and consequently flood susceptibility ranges from
“very low” to “moderate”.

Figure 7a illustrates the basic FSA map for the storm event together with the upper
(FSAmax, Figure 7b) and lower (FSAmin, Figure 7c) scenarios, derived by considering uncer-
tainty in factor weightings (see Sec. 4). The basic FSA map reflects the combined effect of
the seven FCFs and the one FTF (cumulative two-day rainfall) on the flooding event that
occurred in the study area.

The FSA map shows those areas located along the main watercourse and its tributary
streams expected to have “high” and “very high” flood susceptibility due to the combina-
tion of intense precipitation with low-lying topography, gentle slope, high drainage density,
and proximity to streams. In particular, the regions with the highest susceptibility are
mainly concentrated in the central part of the study area (encompassing the Low Calore
River floodplain, the regions along its low-order tributaries, and the slopes above rivers
and rivulets), which is most affected by high-intensity rainfall. This agrees with the gen-
eral picture of the effects produced on the territory by the extreme meteorological event,
i.e., fluvial flooding, and hillslope processes (soil erosion, debris flow, earth flow) [68]. In
contrast, in the northern part of the catchment, large areas are characterized by “negligible”
susceptibility because of scarce intensity precipitation combined with higher altitude, mod-
erate to low slope angle, low drainage density, extensive vegetation cover, and permeable
geological formations.

In both flood susceptibility zonation maps, “very high” and “high” susceptibility zones
mostly cover the areas along and near the rivers [43]. The highest flood potential regions also
cover the areas along the streams’ junctions, proving that the drainage density is an important
contributor to flooding. On the other hand, the lowest flood potential areas are distributed in
the more elevated and steeper areas from where the runoff water rapidly propagates to the
low-lying regions encompassing the Low Calore River alluvial floodplain [41].

The percentages of the susceptibility classes, concerning the entire catchment area,
are given in Table 4. Notably, the basic FSC map classifies about 66.5% of the study area
with “very high” to “moderate” flood susceptibility and 33.6% as comprising “low” and
“very low” susceptibility zones. This implies that a large proportion of the catchment is
susceptible to flooding as a function of the region’s intrinsic characteristics. Similarly, the
basic FSA map classifies about 64.8% of the study area with “very high” to “moderate”
flood susceptibility levels and 35% as “low” and “very low” susceptibility zones (Table 4).
This implies that considering the event rainfall does not increase the percentage area of the
highest susceptibility, but rather leads to a spatial redistribution of susceptibility classes
within the catchment area.

From Table 4 it is observed that, regarding the FSCmax map showing the upper sus-
ceptibility values relative to the basic FSC map, the spatial extent of the “moderate” and
“negligible” susceptibility classes has decreased, the extent of the “high” and “very high”
susceptibility zones has increased, while the percentage area of “low” susceptibility has
remained unchanged. For the FSCmin map showing the extreme scenario of minimum
susceptibility values, the areas of “moderate” and “low” susceptibility classes have de-
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creased, the extent of the “high” and “very high” susceptibility zones has increased, while
the percentage area of “very low” susceptibility has remained constant. Therefore, both the
FSCmax and FSCmin maps are characterized by an increase in the “high” and “very high”
susceptibility zones and a decrease in the “moderate” susceptibility zones relative to the
basic FSC map (Table 4). Compared with the basic FSA map, the spatial extent of the
“high” and “very high” susceptibility classes in the FSAmax map has decreased, while the
extent of the “negligible”, “low”, and “moderate” classes has increased. For the FSAmin
map, the areas of the “low”, “moderate”, “high”, and “very high” classes have decreased,
whereas only the spatial extent of the “negligible” susceptibility has increased. The FSAmax
and FSAmin maps share a decrease in “high” and “very high” zones and an increase in
“very low” susceptibility zones, relative to the basic FSA map. In summary, the four addi-
tional maps that account for the uncertainty in the factors’ weights (FSCmax and FSCmin,
and FSAmax and FSAmin) present no significant differences in the spatial distribution of
susceptibility relative to the basic FSC map and FSA map, respectively, demonstrating the
robustness of scoring and the model outcomes.
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Figure 7. Map illustrating the Flood Susceptibility Assessment (FSA) for the 14th–15th October 2015 storm
event (a) along with the upper (FSAmax) (b) and lower (FSAmin) values (c), obtained by accounting for
the uncertainty in the factors’ weights.

Table 4. Percentages representing the area of each flood susceptibility class with respect to the study
area for the three Flood Susceptibility Condition (FSC) maps of Figure 6 and for the three Flood
Susceptibility Assessment (FSA) maps of Figure 7.

Flood Susceptibility FSC (%) FSCmax (%) FSCmin (%) FSA (%) FSAmax (%) FSAmin (%)

Very High 13.9 14.2 14.1 12.5 12.1 12.4

High 22.6 22.8 23.2 23.3 22.2 23

Medium 30 29.7 29.2 29 29.5 28.8

Low 20 20 19.9 22.6 23.6 22.3

Very Low 13.6 13.2 13.6 12.5 12.7 13.7

Figure 8 shows the spatial distribution of the absolute difference between the FSC map
of Figure 6a and the FSA map of Figure 7a for the study area. The main difference between
the two maps (red) can be found in the southern part of the study area, at the foot of the
Mt. Camposauro northern slope, due to the strong influence exerted by the rainfall intensity
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(as flood-triggering factor) in the FSA map of Figure 7a. The southern part of the catchment
is mainly classified with a “very low” susceptibility (blue) in the FSC map (Figure 6a),
while large portions with “low” susceptibility (green) appear, for the same area, in the FSA
map (Figure 7a).
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5.2. Impact of Factors on the Flood Susceptibility Distribution

Figure 9 illustrates the percentage distribution of the influence/susceptibility levels
(low, very low, medium, high, very high) of the eight factors (that contributed to con-
structing the flood susceptibility maps, the FSC map of Figure 6a and the FSA map of
Figure 7a) across different regions of the domain. Specifically, two regions were considered
(Figure 9a): (i) the floodplain, which was further divided into the left (Floodplain L) and
right (Floodplain R) zones, and (ii) a portion of the hillslope located immediately north of
the floodplain (Hillslope). On the x-axis, the influencing factors are ordered from left to right
according to the importance assigned to them by the experts, based on the weights determined
using the AHP method (Table 3). The inspection of the figure shows the variable impact of the
different factors in the regions considered. Clearly, the higher the percentage of “high” and
“very high” influence/susceptibility levels, the greater the impact of a single factor on the flood
susceptibility of a specific area (regardless of the AHP weights assigned to the various factors).

In the left part of the floodplain (Figure 9b), the highest rainfall exerts a dominant
influence, along with very gentle slopes, low elevation, and high drainage density. There
is also a notable influence from the short distance to streams and the high TWI driven by
the large upstream drainage area and gentle slopes. In conclusion, the flood susceptibility
of this floodplain area is primarily determined by its geomorphology, characterized by
very low elevations, flat terrain, a large upstream drainage area, the dominance of the
Calore River, and a dense network of secondary tributaries on the right hydraulic side. The
autumn 2015 storm event negatively impacted the already highly susceptible context.

Conversely, in the right part of the floodplain (Figure 9c), the drainage network density
is higher than in the left part (due to the presence of numerous secondary tributaries on
both the right and left hydraulic sides of the main watercourse), and geology plays a
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more significant role, as the more impermeable clay and sandy formations have markedly
increased. Land use and land cover (LULC) also have a greater influence on overall flood
susceptibility, due to the presence of urbanized and/or industrial impervious areas. For
this reason, the right part of the floodplain is also highly susceptible to flooding due to its
geomorphology, and the presence of highly impermeable geological formations further
contributes to this susceptibility. The rainfall event considered has also negatively impacted
this area, already highly susceptible to flooding.

The situation differs, however, in the hillslope area located immediately north of the
floodplain (Figure 9d). Here, the highest rainfall has limited importance, close distance to
streams and high drainage density continue to exert some influence, while the influence
of geology on flood susceptibility increases significantly due to the extensive presence
of highly impermeable geological formations. In conclusion, flood susceptibility of the
hillslope region is primarily concentrated in areas along the low-order tributaries of the
main Calore River, being influenced by the presence of impermeable geological formations.
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Figure 9. Percentage distribution of the susceptibility/influence levels (low, very low, medium, high,
very high) for the eight Flood-Influencing Factors, concurring with the construction of the Flood
Susceptibility Condition map (FSC) of Figure 6a and the Flood Susceptibility Assessment map (FSA)
of Figure 7a, over different regions (a): (b) left and (c) right part of the floodplain, and (d) hillslope
area located north of the floodplain.

5.3. Validation of the Methodology

Validation ensures that the procedure requirements are fulfilled [90,91]. Figure 10
shows the spatial distribution of flood susceptibility in the area surrounding the railway
track, derived from the basic FSC map of Figure 6a (Figure 10a,b) and the basic FSA map of
Figure 7a (Figure 10c,d), respectively. Figure 10 also shows the approximate position of
22 flood-related damage sites recorded along the railway infrastructure after the October 2015
storm event, which are marked with circular points and numbered from 1 to 22 (see
Section 2 and Figure 2). To verify the flood susceptibility zonation model, the two outcome
maps developed (the FSC map of Figure 10a,b and the FSA map of Figure 10c,d), were
compared against the flood-related damage sites along the railway. As shown in Figure 10b
and Table 5, 21 disasters (numbers 1 to 5 and 7 to 22) occurred in the areas of “very high”
susceptibility, while disaster number 6 occurred in the “high” susceptibility area. According
to the FSA susceptibility zonation (Figure 10d and Table 5), 21 disasters (numbers 1 to 18
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and 20–22) occurred in the areas of “very high” susceptibility, while disaster number 19
occurred in the “high” susceptibility area. The sensitivity analysis shows that weighting
uncertainty does not impact this outcome. All flood-induced damage was found to occur in
the “very high” or “high” susceptibility zone (Table 5), demonstrating a close relationship
between modeled and real-world hazards. This also suggests that the flood susceptibil-
ity condition (FSC) map (exclusively based on static factors) is as suitable as the flood
susceptibility assessment (FSA) map, which includes the dynamic aspect of event rainfall.

The flood susceptibility zonation model was verified by comparison with the inun-
dation maps available from the relevant authorities. In Italy, seven River Basin District
Authorities (RBDAs) produce flood inundation hazard maps according to the European
Floods Directive 2007/60/EC [92]. These maps delineate the areas that could be potentially
affected by riverine flood events for three different hazardous scenarios: (i) low probability
hazard (LPH) for rare events (with return period, also called recurrence interval, ranging
in the interval T = 200–500 years), (ii) medium probability hazard (MPH) for frequent
events (with T = 100–200 years), and (iii) high probability hazard (HPH) for very frequent
events (with T = 20–50 years). The maps from different basin authorities were merged into
one map covering Italy by the Italian Institute for Environmental Protection and Research
(ISPRA). The national coverage map was last updated in 2021 [13] and is freely available
from the ISPRA website (https://idrogeo.isprambiente.it/app/page/open-data, accessed
on 17 November 2022) in vector polygon format.

In many areas of the Italian peninsula, official flood hazard maps are absent or incom-
plete since low-order streams are generally omitted [15], and non-fluvial flood phenomena
like pluvial/surface flooding are not properly accounted for. Figure 10 shows the overlap
between the official fluvial flood hazard map with MPH (with T = 100 years) and the railway
track. In the study area, the official flood inundation extent for the MPH was determined
by the competent authority using a combination of numerical hydraulic simulations of the
Calore River overflow, which were available before the autumn 2015 event, and surveys
that included multiple in situ assessments conducted by technicians to document the areas
affected by the Calore River overflow during the autumn 2015 storm event (the details
are available from the RBDA website: https://www.distrettoappenninomeridionale.it/,
accessed on 17 November 2022).

The official fluvial flood hazard map does not perfectly overlap in the GIS environment
with the locations of the damage to the railway infrastructure (Figure 10 and Table 5). This
is partly expected since the official flood hazard map does not directly account for the
overflows of low-order Calore River tributaries and surface runoff water processes on
hillslopes. Therefore, disasters 3–6 (related to the clogging of drainage facilities) and
disasters 13–22 (related to the obscuring of railway segments), both attributed to sediment
and debris materials transported by overland flow and secondary tributaries, could not be
adequately anticipated from the official fluvial flood hazard map despite the updates made
based on post-event surveys following the autumn 2015 storm event.

The proposed flood susceptibility zonation can identify not only the segments of
railway infrastructure intersecting with flood-prone areas but also potential infrastructural
damage sources, attributed to the effect of direct rainfall, which are currently not incor-
porated into the official flood hazard maps from the RBDAs. Further, the modeled flood
susceptibility zonation shows a significant correspondence between the flood-prone areas
and the spatial occurrence of flood-related incidents on the railway. Thus, the validation
process substantiates the reliability and accuracy of the generated maps. The FSC map
proves to be sufficiently accurate for identifying areas susceptible to flood along the rail-
way compared to the FSA map, despite not accounting for the precipitation within the
watershed during the considered event.

https://idrogeo.isprambiente.it/app/page/open-data
https://www.distrettoappenninomeridionale.it/
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In the GIS environment, a circle with a radius of 50 m was drawn around each damage
site, and the percentage of influence/susceptibility level for each factor was evaluated
relative to these circular areas. Figures 11 and 12 illustrate the percentage distribution
of influence/susceptibility levels (low, very low, medium, high, very high) of the eight
flood-influencing factors across the 22 recorded damage sites (x-axis). By analyzing the
figures, it is evident that all damage occurred in areas with the lowest elevation and slope.
Most of the damage also appears to have been influenced by the high drainage network
density and proximity to streams. The damage most influenced by rainfall occurred west
of the town of Ponte (Figure 11a, damage sites 1–6), while that most affected by geology
was located within and to the east of the town (Figure 12c, damage sites 8–22).
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Table 5. Distribution of flood-related damage: comparison with the official fluvial flood hazard map
and the flood susceptibility maps produced in this study. The symbol x means no intersection.

Intersection with

Damage # Damage Type Official Flood
Inundation Map

Flood Susceptibility
Condition
(FSC) Map

Flood Susceptibility
Assessment
(FSA) Map

1–2 Obstruction of crossing structures x ✓Very high ✓Very high

3–5 Obstruction of drainage ditches x ✓Very high ✓Very high

6 Obstruction of drainage ditches x ✓ High ✓Very high

7–10 Wall collapse/instability x ✓Very high ✓Very high

11–12 Failure of embankment caused by erosion x ✓Very high ✓Very high

13–18 Overtopping by water/mud from upstream x ✓Very high ✓Very high

19 Overtopping by water/mud from upstream x ✓Very high ✓ High

20–22 Overtopping by water/mud from upstream x ✓Very high ✓Very high

5.4. Limitations and Future Research Directions

The proposed methodology provides a comprehensive framework for identifying
areas and rail infrastructure that may be susceptible to flood events. However, potential
limitations should be considered:

- The inherent subjectivity in expert assessments within the analytic hierarchy process
(AHP) can lead to biases in the weighting of criteria, even though pairwise compar-
isons are used to promote consistency. The influence of this bias can be assessed with
sensitivity analysis conducted on weights.

- The accuracy and resolution of the input data could introduce uncertainties, particularly
in regions with complex topography or diverse land cover. Depending on the scope of
the susceptibility map, different scales could be required for different applications.

- The present application considers the rainfall forcing from the 2015 autumn event only.
There is the potential to include present climate (rainfalls with different durations and
intensity) and future projections where available.

- The extent and nature of present land use and land cover (LULC) do not account
for historical modifications or predict future changes. Future developments of the
territory should be included if the corresponding information is available.

Considering these limitations, future research could broaden the analysis by integrat-
ing additional factors, including socio-economic aspects and the physical vulnerability
of the infrastructure. The procedure could also account for the spatial variability of rain-
fall over extended time periods, potentially incorporating future changes due to climate
change. Additionally, the methodology could be adopted for application to other types of
transportation infrastructure networks, particularly roads, and at broader scales, such as
regional or national levels.

6. Conclusions

This study has considered a GIS-based multi-criteria approach (based on catchment
descriptors and rainfall forcing) to create rapid prediction maps of flooding-susceptible
areas along railway lines. The importance of the study stems from a gap in implementing
GIS-based MCA techniques for flood susceptibility mapping along rail infrastructure that
consider multiple flood sources (e.g., heavy rainfall and river flooding). The procedure,
which could also be applied to other types of linear transport infrastructures in flood-prone
regions, has been demonstrated using a case-study rail track in southern Italy that was
affected by a destructive flood in the autumn of 2015.

Two susceptibility maps were produced, with one excluding the 2015 event rainfall
forcing. The findings highlight that large portions of the case-study railway intersect with
areas characterized by high flood susceptibility, based on the physical characteristics of
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the region. The most critical zones cover the areas close to and along the main river, its
low-order tributaries, and the streams’ junctions. The inclusion of rainfall as a triggering
factor leads to a redistribution of the highest-flood-susceptibility areas, mainly concentrated
in the central part of the catchment.

The flood susceptibility maps correlate well with recorded post-event flood-related
damage along the railway, whilst the official fluvial flood inundation maps fail to supply
information about flooding occurring along secondary tributaries and from direct rainfall.
The proposed zonation highlighted the importance of secondary tributaries and rivulets in
flood occurrence in the study area, underscoring their necessity for inclusion in flood hazard
assessments from railway and environmental authorities. This provides a worthy insight into
the correlation between flood sources and railway damage, prompting the adjournment of the
official flood inundation maps that do not consider the effect of pluvial/surface flooding.

From the validation, the flood map excluding triggering rainfall is sufficiently accurate
for identifying flood-prone areas along the rail route. This may have important practical
implications since the construction of this map relies on a small set of readily available data.

The main limit of the proposed methodology is that the outcome, i.e., the zonation of
the flood susceptibility areas, is dependent on expert judgements and, thus, could suffer
from sensitivity to changes (i) in the selection of the factors and (ii) in the weights assigned
to the adopted factors. Despite their subjectivity, the obtained flood susceptibility maps
may provide railway (and environmental) authorities with the reliable spatial distribution
of flood-critical locations for limiting infrastructural damage and service disruptions. This
information could be used to prioritize future targeted investments of more detailed anal-
ysis, to carry out targeted preventive measures (maintenance of drainage pipes, culverts,
and ditches susceptible to debris clogging and maintenance of gullies to avoid obstruction
from vegetation), and to implement flooding early warning systems by individuating ap-
propriate locations for the deployment of real-time rainfall gauge stations. The study also
reinforces the importance of promptly recording infrastructural damage data to improve
the analysis of hazard–impact relations on the railway in the post-disaster phase.

The proposed methodology may offer railway authorities a cost-effective strategy for
protecting infrastructure assets in the long term, aiding in decision making and maintaining
operational rail routes. This is crucial for minimizing operational risk and mitigating the
socio-economic impacts of flooding at regional and national levels.
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Appendix A. Analytical Hierarchy Process (AHP)

Appendix A.1. Development of the Pairwise Comparison Matrix

Let us consider a finite set of criteria C = {C1, C2, . . ., Cn}, with n ≥ 2, that need to be
ranked with reference to a certain goal. The paired comparison in terms of the relative
importance of the criterion Ci over Cj is undertaken by the experts/raters using the semantic
scale of Table A1 and is converted into a numerical integer value aij > 0 (i, j = 1, . . ., n).

Table A1. Saaty’s comparative scale [85].

Intensity of Importance Values for
Reciprocal Scale Definition

1 1 Equal importance

2 1/2 Equal to moderate importance

3 1/3 Moderate importance

4 1/4 Moderate to strong importance

5 1/5 Strong importance

6 1/6 Strong to very strong importance

7 1/7 Very strong importance

8 1/8 Very to extremely strong importance

9 1/9 Extreme importance

The relative importance of the criterion Cj over Ci is defined as its reciprocal. As a
result of the pairwise comparison, a (n × n) positive reciprocal matrix A is created using
the values aij (i, j = 1, . . ., n):

A =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . . . . . . . . . . . . . .

an1 an2 an3 . . . ann


, aii = 1, aji =

1
aij

, aij ̸= 0. (A1)

Tables A2 and A3 show the pairwise comparison matrix derived from the experts’
judgment for the first case in which only the seven flood-conditioning factors are considered
(n = 7) and the second case in which the seven flood-conditioning factors and the one
flood-triggering factor are considered (n = 8), respectively. After developing the pairwise
comparison matrix, it is possible to calculate the factors’ weights.

Table A2. Pairwise comparison matrix: the seven Flood-Conditioning Factors are considered as
criteria (n = 7).

Pairwise Comparison Matrix

Factor S DS TWI E DD G LULC

Slope (S) 1 1 2 2 3 4 5

Distance from streams (DS) 1 1 2 2 3 4 5

Topographic wetness index (TWI) 1/2 1/2 1 1 2 3 4

Elevation (E) 1/2 1/2 1 1 2 3 4
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Table A2. Cont.

Pairwise Comparison Matrix

Factor S DS TWI E DD G LULC

Drainage density (DD) 1/3 1/3 1/2 1/2 1 2 3

Geology (G) 1/4 1/4 1/3 1/3 1/2 1 2

Land use land cover (LULC) 1/5 1/5 1/4 1/4 1/3 1/2 1

Column sum 3.78 3.78 7.08 7.08 11.83 17.5 24

Table A3. Pairwise comparison matrix: the seven Flood-Conditioning Factors and the one Flood-
Triggering Factor are considered as criteria (n = 8).

Pairwise Comparison Matrix

Factor C2DR S DS TWI E DD G LULC

Rainfall (C2DR) 1 1 1 2 2 4 5 6

Slope (S) 1 1 1 2 2 3 4 5

Distance from streams (DS) 1 1 1 2 2 3 4 5

Topographic wetness index (TWI) 1/2 1/2 1/2 1 1 2 3 4

Elevation (E) 1/2 1/2 1/2 1 1 2 3 4

Drainage density (DD) 1/4 1/3 1/3 1/2 1/2 1 2 3

Geology (G) 1/5 1/4 1/4 1/3 1/3 1/2 1 2

Land use land cover (LULC) 1/6 1/5 1/5 1/4 1/4 1/3 1/2 1

Column sum 4.62 4.78 4.78 9.08 9.08 15.83 22.5 30

Appendix A.2. Normalized Pairwise Comparison Matrix and Computation of the Criteria Weights

The priority ranking vector, i.e., the vector of weights, w = (w1, w2, . . ., wn)T, with

w1 > 0, . . ., wn > 0 and
n
∑

i=1
wi = 1, can be estimated by means of the principal eigenvector

method [93] solving the following equation:

Aw = λmaxw, (A2)

where λmax is the largest eigenvalue in modulus of the matrix A. An easy way to approxi-
mate the priority vector w is to [93,94]:

- sum the values in each column of the judgement matrix A (obtaining the column total,
as shown in Tables A2 and A3, respectively),

- divide each element of the matrix A by its column total (obtaining the so-called
normalized pairwise comparison matrix),

- average over each row of the resulting normalized pairwise comparison matrix
(i.e., divide the sum of the normalized elements of each row by the number of
criteria n), thus obtaining an estimate of the criteria weights.

Tables A4 and A5 show the normalized pairwise comparison matrix and the overall
relative weights of criteria for the first case in which only the seven flood-conditioning
factors are considered (n = 7) and the second case in which the seven flood-conditioning
factors and the one flood-triggering factor are considered (n = 8), respectively.
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Table A4. Normalized pairwise comparison matrix and relative weights of criteria. The seven
Flood-Conditioning Factors are considered as criteria (n = 7).

Normalized Pairwise Comparison Matrix

Factor S DS TWI E DD G LULC Weight

Slope (S) 0.26 0.26 0.28 0.28 0.25 0.23 0.21 0.25

Distance from streams (DS) 0.26 0.26 0.28 0.28 0.25 0.23 0.21 0.25

Topographic wetness index (TWI) 0.13 0.13 0.14 0.14 0.17 0.17 0.17 0.15

Elevation (E) 0.13 0.13 0.14 0.14 0.17 0.17 0.17 0.15

Drainage density (DD) 0.09 0.09 0.07 0.07 0.08 0.11 0.13 0.09

Geology (G) 0.07 0.07 0.05 0.05 0.04 0.06 0.08 0.06

Land use land cover (LULC) 0.05 0.05 0.04 0.04 0.03 0.03 0.04 0.04

Table A5. Normalized pairwise comparison matrix and relative weights of criteria. The seven
Flood-Conditioning Factors and the one Flood-Triggering Factor are considered as criteria (n = 8).

Normalized Pairwise Comparison Matrix

Factor C2DR S DS TWI E DD G LULC Weight

Rainfall (C2DR) 0.22 0.21 0.21 0.22 0.22 0.25 0.22 0.20 0.22

Slope (S) 0.22 0.21 0.21 0.22 0.22 0.19 0.18 0.17 0.20

Distance from streams (DS) 0.22 0.21 0.21 0.22 0.22 0.19 0.18 0.17 0.20

Topographic wetness index (TWI) 0.11 0.10 0.10 0.11 0.11 0.13 0.13 0.13 0.12

Elevation (E) 0.11 0.10 0.10 0.11 0.11 0.13 0.13 0.13 0.12

Drainage density (DD) 0.05 0.07 0.07 0.06 0.06 0.06 0.09 0.10 0.07

Geology (G) 0.04 0.05 0.05 0.04 0.04 0.03 0.04 0.07 0.05

Land use land cover (LULC) 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.03 0.03

Appendix A.3. Consistency Test

Since the AHP method may exhibit inconsistencies in determining the values for
the judgment matrix, it is crucial to assess the level of inconsistency by calculating the
consistency ratio (CR), which should be less than 0.1 (otherwise, value judgments must be
revised). The CR is evaluated as

CR =
CI
RI

, (A3)

where CI is the consistency index and RI is the random index, whose values are contained
in Table A6 [93].

Table A6. Random index RI [93].

n 3 4 5 6 7 8 9

RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45

The consistency index CI is determined using the following equation:

CI =
λmax − n

n − 1
, (A4)

where n is the number of criteria and λmax is the largest eigenvalue derived from the
pairwise comparison matrix. Having obtained the vector of weights w, it is possible to
estimate λmax using Equation (A2) by [93,94]:

- computing the product Aw (obtaining the so-called weighted sum vector),
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- dividing the resulting weighted sum vector by w (obtaining the so-called consistency vector),
- averaging the elements of the consistency vector (i.e., dividing the sum of the elements of

the consistency vector by the number of criteria n), thus obtaining an estimate of λmax.

Finally, this estimate of λmax can be used to calculate CI by means of Equation (A4).
Table A7 shows the consistency check results for the first case in which only the seven
flood-conditioning factors are considered (n = 7) and the second case in which the seven
flood-conditioning factors and the one flood-triggering factor are considered, respectively
(n = 8). For both cases the comparison matrix can be accepted since CR < 0.1.

Table A7. Results of the consistency test for the pairwise comparison matrix of Tables A2 and A3, respectively.

n λmax CI RI CR Consistency

7 7.09 0.015 1.32 0.011 CR < 0.1 (Yes)

8 8.09 0.013 1.41 0.009 CR < 0.1 (Yes)
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