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Abstract
Many bias mitigation methods have been developed for addressing fairness issues in machine learning.
We have found that using linear mixup alone, a data augmentation technique, for bias mitigation, can
still retain biases present in dataset labels. Research presented in this paper aims to address this issue by
proposing a novel pre-processing strategy in which both an existing mixup method and our new bias
mitigation algorithm can be utilized to improve the generation of labels of augmented samples, hence
being proximity aware. Specifically, we propose ProxiMix which keeps both pairwise and proximity
relationships for fairer data augmentation. We have conducted thorough experiments with three datasets,
threeMLmodels, and different hyperparameters settings. Our experimental results show the effectiveness
of ProxiMix from both fairness of predictions and fairness of recourse perspectives.
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1. Introduction

Machine learning has been used as an effective decision-making aid in more and more fields.
However, concerns have been raised about the potential unjust or biased predictions by models,
which can harm individual and societal values [1]. Most popularMLmodels are considered black-
box, making it difficult to understand their internal decision-making processes. To address this
issue, there is a growing focus on achieving fair and trustworthy ML by developing explainable
and interpretable techniques [2, 3, 4], auditing models to detect hidden bias [5, 6], as well as
mitigating the spotted bias [7, 8].

Among various mitigation methods, mixup-based methods have attracted increasing attention
from the community. Mixup [9] is a data augmentation method that linearly interpolates two
samples to generate synthesized data for model generalization. Some research investigates
the combination of mixup with subgroup analysis for addressing fairness issues in datasets,
applying it as an augmentation strategy in preprocessing [10] or a loss regularization term
in training [11]. However, one limitation of Mixup is that if the original labels in the dataset
are biased, this bias can persist in the labels of mixed samples. The generated data labels can
introduce additional bias to models.
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To bridge the research gap, in this work, we propose ProxiMix to address the issue of biased
labels in pre-processing for bias mitigation. Motivated by the relabeling the discrimination
method [12], which assigns labels to instances based on their K-nearest neighbors to ensure
that similar individuals have similar labels, our proposed approach adds proximity samples for
re-auditing mixed labels to mitigate potential bias in mixup. The intuition is that compared
with focusing on pairwise labels, considering the labels of proximity samples as latent label
relationships can reduce the probability of generating biased labels. We have conducted ex-
periments to compare the existing pairwise mixup with the proposed proximity-aware mixup
on multiple models and datasets. The results show that our ProxiMix achieves higher fairness,
particularly when the original labels in the dataset are highly biased.

Our main contributions can be summarised as follows: (1) We propose a new bias mitigation
algorithm to address the label bias retainment issue in the current mixup method; (2) Subgroup
preference analysis: we explore how different subgroups perform during the sampling process;
(3) Trade-off analysis: we explore the tradeoff between using our proximity-based strategy
and the traditional mixup; (4) Validation: we validate the effectiveness of our method using
prediction-based metrics and the cost of counterfactual explanations from an XAI perspective.

2. Related Work

The fairness problem can be divided into individual and group levels. Individual fairness
measures the bias by checking if similar predictions can be made for similar individuals. Group
fairness compares the treatments of fairness in unprivileged and privileged groups. Fairness
is achieved when the treatments are equal between groups. Prediction-based fairness and
recourse-based fairness are two perspectives for evaluating model fairness. In this paper, we
focus on group fairness in machine learning.

Fairness of Prediction Outcomes Most fairness metrics are based on predicted outcomes.
Demographic Parity (DP) [13] based metrics use predicted outcomes to assess whether different
demographic groups are equally favored by the model. It aims at having equal proportions of
positive outcomes across subgroups. The DP difference between groups is called Statistical
Parity Difference (SP), and DP ratio between groups is called Disparate Impact (DI). In addition to
depending on predictions only, there are some fairness metrics [14] that consider both predicted
and actual outcomes. Equality of Opportunity (EO) measures the True Positive Rate (TPR) of
subgroups. Equalized odds (Eodds) compares both True Positive Rate (TPR) and False Positive
Rate (FPR) of each groups.
Fairness of Recourse Another recent research trend is to apply Explainable Artificial

Intelligence (XAI) methods to address fairness issues. One of the key components in this area
is counterfactual explanation (CE), sometimes also called as algorithm recourse. CE focuses
on explaining why a particular outcome occurred instead of an alternative plausible outcome.
[15, 16]. Recourse refers to identifying the closest counterfactuals that could alter the result
with minimal feature changes. Several algorithms have been developed to generate such
counterfactual explanations for machine learning models [17, 18, 19]. The concept of fairness
of recourse are proposed by [20] and defined as the disparity of the mean cost to achieve the
desirable recourse among the unprivileged subgroups. [6, 21] propose metrics based on the cost



of counterfactual explanation to measure fairness performance across subgroups. Predictive
Counterfactual Fairness (PreCoF) [22] utilises CEs to detect the underlying patterns for the
discrimination in the model.
Bias Mitigation Methods Bias mitigation methods can be categorized into three stages:

pre-processing, in-processing, and post-processing [8, 23]. Pre-processing mitigations aim
to reduce bias by modifying and creating a fairer training dataset [24, 25, 26]. In-processing
mitigation occurs during training by adding regularization terms and constraints to models
[11, 27]. Mitigations in the post-processing stage like calibration are applied after a model has
been successfully trained [21, 28]. Both pre-processing and post-processing-based methods are
model-agnostic as they occur before and after the model training.

Over-sampling in the pre-processing stage refers to changing the distribution of the training
dataset by adding more samples. Duplicating instances of the unprivileged group is one
straightforward strategy [29, 30]. [31, 32] generate synthetic samples around the unprivileged
group to mitigate bias. MixSG [10] takes both the privileged and unprivileged groups into
consideration when synthesizing new data using mixup, but the potential bias in generated
labels has not been discussed yet.

3. Preliminaries and Problem Statement

Notations Given the dataset 𝐷 = {(𝑋 , 𝑌 , 𝑍)}𝑁𝑖=1 with 𝑁 samples, where 𝑋 is a set of features
space, and each feature 𝑥 in 𝑋 has a set of values in 𝑑𝑥𝑖 , label 𝑌 ∈ 𝒴 ∶= {0, 1}, and a sensitive
attribute 𝑍 ∈ 𝒵 ∶= {0, 1}. The dataset is divided into training set 𝐷𝑡𝑟𝑎𝑖𝑛 and test set 𝐷𝑡𝑒𝑠𝑡. We use
𝐷𝑡𝑟𝑎𝑖𝑛 to fit a classifier model 𝑓 ∶ 𝑋 → 𝑌 and 𝐷𝑡𝑒𝑠𝑡 to assess the model’s prediction and fairness
performance. Fairness is measured by the model’s performance on the difference between
subgroups identified by 𝑍. We define the unprivileged/minority group when Z=0, and Z=1 is
the privileged/majority group.
Mixup Strategy in Fairness Mixup [9] is a data augmentation technique that involves

blending pairs of samples to create new synthetic training examples. The premise of mixup is
that linear combinations of features will result in the same linear combinations of target labels.
Thus, mixup applies stochastic linear combinations to samples 𝑆0(𝑥0, 𝑦0), 𝑆1(𝑥1, 𝑦1) to generate
a new sample ̃𝑆(�̃� , ̃𝑦), with random parameters 𝜆 drawn from a Beta distribution.

�̃� = 𝜆 ∗ 𝑥0 + (1 − 𝜆) ∗ 𝑥1, where 𝑥0, 𝑥1 are input vectors (1)

̃𝑦 = 𝜆 ∗ 𝑦0 + (1 − 𝜆) ∗ 𝑦1, where 𝑦0, 𝑦1 are target labels (2)

To address fairness concerns, previous research has explored the practice of sampling 𝑆0 and
𝑆1 from different subgroups, applying this step to both pre-processing stage like mixSG [10]
and in-processing stage like fairMixup [11] as bias mitigation methods.
Bias Persist After Mixup The premise of mixup lies in the linear relationship between

features and labels. The challenge here is if the original labels in the dataset are biased, the
labels of mixed samples can retain this bias. The newly generated biased samples can impact
the fairness of the trained model.



Table 1
Simplified Sample Examples of Individual Income Prediction

Sample Gender Capital Gain Capital Loss Occupation Age Income
M1 Male 8200 0 Officer 34 >50K (1)
M2 Male 7800 -100 Officer 35 >50K (1)
F1 Female 7800 -200 Sales 23 <=50K (0)
F2 Female 8200 0 Officer 34 <=50K (0)

Here is a toy example. Table 1 presents simplified instances of individual income predictions
by the ML model. The predicted label 𝑌 indicates whether an individual is high-income (> 50𝐾)
or low-income (≤ 50𝐾). The features 𝑋 used for prediction include 𝐴𝑔𝑒, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, 𝐺𝑒𝑛𝑑𝑒𝑟,
𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐺𝑎𝑖𝑛, and 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐿𝑜𝑠𝑠. 𝐺𝑒𝑛𝑑𝑒r is considered as the sensitive attribute 𝑍, dividing the data
into subgroups. Here, we consider the female subgroup as unprivileged.

The table shows individual features of male samples (𝑀1 and 𝑀2) and the female sample (𝐹2)
are remarkably similar (Officer with similar 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐺𝑎𝑖𝑛 and 𝐴𝑔𝑒), but with different income
labels. This shows initial bias that female and male groups are treated unequally.

We follow the mixSG method to select one sample from one subgroup and another from
the other subgroup to generate (�̃� , ̃𝑦). Assume we have chosen one sample 𝐹2 from the female
subgroup, 𝐹2 will be randomly paired with either 𝑀1 or 𝑀2 from the male subgroup. If the
mixture ratio 𝜆 of the female sample 𝐹2 is over 50%, we say the mixed sample 𝑆𝐹𝑀 is female.
Otherwise, 𝑆𝐹𝑀 is male.

When the random 𝜆 = 0.8, 𝑆𝐹𝑀 will be a female sample. And the label 𝑦𝐹𝑀 of the mixed female
sample will primarily depend on the label from female 𝐹2, meaning that both combinations of 𝐹2
with 𝑀1 or 𝑀2 will have a high probability of low income (≤ 50𝐾). Though individual features
of high-income men (M1 and M2) and low-income women (F2) are remarkably similar (Officer
with similar capital gain and age), mixed label still indicates a tendency toward lower incomes
for female. If 𝜆 = 0.2, the mixed sample will be most depend on the label from the male sample
and the generated sample becomes male with high income. The labels of mixed samples are
heavily influenced by gender. Considering the initial bias in the dataset, new samples generated
by mixup can deepen gender bias against unprivileged groups, causing the model to be more
likely to predict male samples as high-income and female samples as low-income under similar
conditions.

4. Methodology and Experiment Design

To address the issue of possible biased label for mix-up, we proposed a method called ProxiMix
for improvments. It synthesizes 𝐷new = {(𝑋 , 𝑌 , 𝑍)}𝐾𝑗=1 from 𝐷𝑡𝑟𝑎𝑖𝑛 with the consideration of both
pairwise and proximity samples, to reduce dataset bias. Fitting the model with fairer dataset
𝐷′
𝑡𝑟𝑎𝑖𝑛 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷new is expected to improve its fairness performance.
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Figure 1: A comparison between proximity-based mixup and linear mixup. The red circle represents
𝑆0, the blue triangle represents 𝑆1, the purple diamonds represent the proximity set 𝐷𝑝, and the black
square indicates the samples after mixing up. Here, we consider the particular case for case three where
labels of most proximity samples are opposite to 𝑆1. The mixing ratio is set to 0.5.

4.1. ProxiMix Algorithm

The Importance of Proximity Awareness Given a sample 𝑆0 from group 𝐷train(𝑍 = 0),
and another sample 𝑆1 from 𝐷train(𝑍 = 1), the proximity samples set of 𝑆1 is defined as 𝐷𝑝 =
{𝑆𝑝0 , 𝑆𝑝1 , ..., 𝑆𝑝𝑚}. The label value of each sample can be either 0 or 1. We illustrate three cases
when mixing up two samples 𝑆0 and 𝑆1: (1) Case 1: Labels of 𝑆0, 𝑆1 and all of their proximity
samples are the same. (2) Case 2: Labels of 𝑆0 and 𝑆1 are the same, but there exist different
labels among proximity samples 𝐷𝑝. (3) Case 3: Labels of 𝑆0 and 𝑆1 are different. Figure 1
presents these three cases.

In Case 1, linear mixing and proximity yield the same results because there are no impurities
between the two samples. In Case 2, both samples 𝑆0 and 𝑆1 have the same label. This implies
that direct mixing will result in all labels becoming 0 regardless of the mixing ratio. This
approach ignores the samples from 1 in between and can potentially introduce bias when
predicting subgroups with the 1 label. In Case 3, the mixed label depends on the mixing rate
when using mixup directly. Specifically, the mixed label becomes 1 when the mixing rate
exceeds 0.5. However, we can see in the example that the majority of the proximity samples 𝐷𝑝
between 0 and 1 belong to 0. It suggests that the probability of being classified as 0 should be
higher. Considering the proportion of proximity labels can enhance the probability of being
classified as 0.



ProxiMix Algorithm Design ProxiMix consists of two parts: we first introduce proximity-
based mixed label 𝑌𝑠𝑖𝑚 and then combine 𝑌𝑠𝑖𝑚 with 𝑌𝜆 from the existing mixup [10] using
d-adjusted balancing degree.

As discussed above, the current mixup approach does not account for potential biases in
labels. Our proposal aims to determine the mixed label by considering the proportions of labels
in proximity samples. Specifically, when mixing two samples, 𝑆0 and 𝑆1, we calculate their
Euclidean distance with their one-hot encoded features1, denoted as 𝑃𝑑𝑖𝑠 = ||𝑥0−𝑥1||, to measure
their proximity. Then, we select all the samples that are within the 𝑃𝑑𝑖𝑠 distance from 𝑆0 to form
a potential proximity samples set ProxiSet. The final mixed label for 𝑆0 and 𝑆1 is assigned based
on the label with the larger proportion within the 𝑆0 ∪ 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡.

Let’s look back at the toy example: 𝑁𝑒𝑤𝑆𝑒𝑡 = {𝐹2,𝑀1,𝑀2} when we want to mix 𝐹2 with
either 𝑀1 or 𝑀2. Two-thirds of the labels in the 𝑁𝑒𝑤𝑆𝑒𝑡 is high income, so that the proximity-
based mixed 𝑌𝑠𝑖𝑚 is high income.

We combine our proximity-based 𝑌𝑆𝑖𝑚 with 𝑌𝜆 from the current mixup to form the new
definition of mixed �̃�, achieved by calculating 𝑑 ∗ 𝑌𝜆 + (1 − 𝑑) ∗ 𝑌𝑆𝑖𝑚, where 𝑑 is a balancing
degree between 0 and 1. The algorithm pseudocode is described in Algorithm 1.

Algorithm 1 ProxiMix Algorithm
Input 𝑆0(𝑥0, 𝑦0, 𝑧0) ∼ 𝐷train(𝑍 = 0), 𝑆1(𝑥1, 𝑦1, 𝑧1) ∼ 𝐷train(𝑍 = 1)
procedure ProxiMix(𝑆0, 𝑆1, 𝐷train, 𝑑)

procedure Proximity-Based-Mixed(𝑆0, 𝑆1, 𝐷train)
𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 = [] .
𝑃𝑑𝑖𝑠 = ||𝑥0 − 𝑥1||
for each sample 𝑆𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in 𝐷train(𝑍 = 1) do

𝑃𝑐𝑢𝑟 = ||𝑥𝑖 − 𝑥0||
if 𝑃𝑐𝑢𝑟 ≤ 𝑃𝑑𝑖𝑠 then

Add 𝑆𝑖 to 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡.
end if

end for
𝑁𝑒𝑤𝑆𝑒𝑡 = 𝑆0 ∪ 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡
𝑌𝑆𝑖𝑚 = 𝐿𝑎𝑏𝑒𝑙_𝐶𝑜𝑢𝑛𝑡𝑠(𝑌 ∈ 𝑁 𝑒𝑤𝑆𝑒𝑡)/𝑠𝑖𝑧𝑒(𝑁 𝑒𝑤𝑆𝑒𝑡)

end procedure
procedure Lambda-Based-Mix(𝑆0, 𝑆1)

𝜆 = Beta(𝛼, 𝛼)
𝑌𝜆 = 𝜆 ∗ 𝑦0 + (1 − 𝜆) ∗ 𝑦1

end procedure
�̃� = 𝑑 ∗ 𝑌𝜆 + (1 − 𝑑) ∗ 𝑌𝑆𝑖𝑚, 𝑑 ∈ [0, 1]
Return �̃�

end procedure

1scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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Figure 2: An Example of ProxiMix with Balancing 𝑑 = [1, 0.8, 0.5, 0.2, 0], 𝜆 = 0.5

Fig. 2 shows an example of how ProxiMix works. Samples are categorized into two subgroups,
green and blue, based on their colors. The shape of each sample represents its label: circles
for label 0, and plus-signs for label 1. Specifically, the green circle (𝑆0) and the blue plus-sign
(𝑆1) are two samples selected for ProxiMix. The new label of the mixed samples changes with
different values of the balancing parameter 𝑑. The varying shades of blue samples represent
the impact degree of 𝑌𝑠𝑖𝑚, while the thickness of the red lines between 𝑆0 and 𝑆1 represents
the strength of 𝑌𝜆. The black line indicates no consideration for 𝑌𝜆. For 𝑑 = 1, it employs the
original mixup 𝑌𝜆; for 𝑑 = 0, it utilizes our proximity-based 𝑌𝑆𝑖𝑚 exclusively; and it combines
the two for values in between. We will discuss how different 𝑑 impact the model performance
in Section 5.2.

Accelerating Calculation of ProxiMix in Practice Our core idea is to introduce proximity
samples’ label set 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 as a reference when performing label mixup. To enhance computa-
tional efficiency, we find 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 first in practice. Our implementation is as follows: (1) Given
a randomly selected sample 𝑆0 from 𝐷𝑡𝑟𝑎𝑖𝑛(𝑍 = 𝑧), we first find its 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 from 𝐷𝑡𝑟𝑎𝑖𝑛(𝑍 = ¬𝑧).
𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 contains 𝐾 samples that are proximal to 𝑆0; (2) Then, we treat each sample in 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡
as 𝑆1 and sequentially mix it with 𝑆0, following the ‘furthest-first’ rule. It means the mixing
begins with the sample in 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡 that is furthest from 𝑆0. After each mix, we remove the used
sample from 𝑃𝑟𝑜𝑥𝑖𝑆𝑒𝑡; (3) Repeat this process 𝐾/𝑀 times until the desired 𝑀 new samples are
generated. The generated samples are merged to 𝐷𝑡𝑟𝑎𝑖𝑛 as training samples for classification
model.

4.2. Experiment Setting

Fig. 3 presents the overall workflow of our experiment. The parameter balancing degree 𝑑 in our
mixup algorithm is tested with values ranging from 0 to 1, in increments of 0.1. The proximity
samples for each round are set to 25. we consider proximity when there are at least 5 neighbors
to ensure credibility. The mixing ratio 𝜆 is randomly generated from the Beta(1,1) distribution.

Datasets The experiment is conducted on three datasets for classification problems: (1) Adult
income dataset [33]: predicting whether a person’s annual income exceeds 50K (high/low-
income); (2) Law school dataset [34]: predicting whether a person’s in law school will fail/pass
the exam; (3) Credit default dataset [35]: predicting whether a person’s credit payment will be
on-time/overdue.

Models Three models including logistic regression (LogReg), decision trees (DT) and multi-
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Figure 3: The Experiment Workflow

layer perceptron (MLP) are tested. All implementations are based on scikit-learn2. Themaximum
depth is 7 in the decision tree. We use a three-layer MLP with 128 neurons in the ith hidden
layer, ‘rule’ as the activation function, and a maximum of 1500 iterations. The random seed is
set to 42 for reproducible results.
Metrics Prediction performance metrics are based on True Positive (TP), False Positive

(FP),False Negative (FN),True Negative (TN) in the confusion matrix. The equations of Precision,
Recall, and F1-score are as follows. Recall is also called True Positive Rate.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

; 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

; 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

The following equations calculate the True Positive Rate (TPR) and False Positive Rate (FPR)
in the subgroup where the sensitive attribute 𝑍 = 𝑧.

𝑇𝑃𝑅𝑧 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 𝐹𝑃𝑅𝑧 =

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

𝑤ℎ𝑒𝑟𝑒(𝐷(𝑍 = 𝑧)) (4)

Fairness performance is evaluated by Demographic Parity (DP) and Equalized Odds (Eodds)
between subgroups3. We define the label for the unprivileged group as 𝑧0 and for the privileged
group as 𝑧1. Their difference and ratio between 𝐷𝑃𝑧0 and 𝐷𝑃𝑧1 are noted as Δ𝐷𝑃, 𝐷𝑃%.

𝐷𝑃𝑧0 = P (𝑓 (𝑥) = 1 ∣ 𝑍 = 𝑧0) ; 𝐷𝑃𝑍1 = P (𝑓 (𝑥) = 1 ∣ 𝑍 = 𝑧1) (5)

Δ𝐷𝑃 = 𝐷𝑃𝑧1 − 𝐷𝑃𝑧0 ; 𝐷𝑃% =
𝐷𝑃𝑧0
𝐷𝑃𝑧1

(6)

Eodds difference Δ𝐸𝑜𝑑𝑑𝑠 is defined as the greater one of 𝑇𝑃𝑅 and 𝐹𝑃𝑅 across subgroups, and
eodds ratio 𝐸𝑜𝑑𝑑𝑠% is the smaller metrics of TPR and FPR ratio.

Δ𝐸𝑜𝑑𝑑𝑠 = 𝑀𝑎𝑥(𝑇𝑃𝑅𝑧1 − 𝑇𝑃𝑅𝑧0 , 𝐹𝑃𝑅𝑧1 − 𝐹𝑃𝑅𝑧0) (7)

𝐸𝑜𝑑𝑑𝑠% = 𝑀𝑖𝑛 (
𝑇𝑃𝑅𝑧0
𝑇𝑃𝑅𝑧1

,
𝐹𝑃𝑅𝑧0
𝐹𝑃𝑅𝑧1

) (8)

Counterfactual explanation cost [21] is also assessed across subgroups to examine fairness
from an XAI perspective. Given a classification model 𝑓, the counterfactual explanation of
a sample 𝑑𝑠 ∈ 𝐷 can be denoted as 𝑑𝑐𝑓 = 𝐶𝐹(𝑑𝑠, 𝑓 ). The cost of a counterfactual explanation

2scikit-learn.org/
3fairlearn.org/

scikit-learn.org/
fairlearn.org/


Table 2
Four different subgroup combinations for sampling in Adult, Law, Credit datasets

C1 (z,y) C2 (z,y) C3 (z,y) C4 (z,y)
Adult female, low-income female, high-income male, low-income male, high-income
Law female, failed female, passed male, failed male, passed
Credit female, on-time female, overdue male, on-time male, overdue

C1’( ̄𝑦) C1’( ̄𝑦) C3’( ̄𝑦) C3’( ̄𝑦)
Adult male group male group female group female group
Law male group male group female group female group
Credit male group male group female group female group

is the distance between 𝑑𝑠 and 𝑑𝑐𝑓. In this way, we can compute the counterfactual cost for
each sample in dataset 𝐷. The average costs of counterfactuals across different groups can be
considered as a measure of fairness: with the cost gap between groups (e.g., females and males)
increasing, the model’s unfairness also grows. Our evaluation follows the implementation of
counterfactual explanation cost package4, and specifically, we opt counterfactual explanations
cost without constraints as metrics.

5. Results

In section 5.1, we fix the balancing degree 𝑑 of ProxiMix and examined the impact of different
sampling modes for subgroups on the outcomes. In section 5.2, we fix the sampling mode and
explore the impact of different balancing degrees 𝑑 on the results. To ensure the consistency
of findings, Section 5.3 assesses the effectiveness of ProxiMix from the counterfactual cost
perspective.

5.1. Sampling Mode Preferences in ProxiMix with Fixed Balancing Degree

ProxiMix is built on the mixup concept, which involves continuously selecting and mixing two
samples to generate new data. To identify which combinations of samples had a more positive
impact on the model’s performance, we divide the dataset into different subgroups and sample
from them.

There are four subgroups with considerations on both labels and values of a single sensitive
feature in 𝑍. The first sample selected from each group 𝐷𝑡𝑟𝑎𝑖𝑛(𝑌 = 𝑦, 𝑍 = 𝑧) is notated as 𝐶1, 𝐶3,
the second sample selected from the subgroup 𝐷𝑡𝑟𝑎𝑖𝑛(𝑌 = ̄𝑦) which has the opposite sensitive
label is notated as 𝐶1′,𝐶2′,𝐶3′,𝐶4′, respectively. In Table 2, 𝐶1 is sampled from <female, low-
income> subgroup in the Adult dataset, from the <female, failed> subgroup in Law dataset,
and from the <female, on-time> subgroup from the Credit dataset respectively. 𝐶1′ refers to
the sample selected from the male group in the adult, law and credit datasets. All sampling
combinations are listed in Table 2. We denote the sample derived from ProxiMix with different
sampling combination modes as 𝐶𝑖 ⊙ 𝐶𝑗, where 𝐶𝑖 ∈ {𝐶1, 𝐶2, 𝐶3, 𝐶4}, 𝐶𝑗 ∈ {𝐶1′, 𝐶3′}.

Table 3 presents models performance using ProxiMix under four sampling combinations
𝐶𝑖 ⊙ 𝐶𝑗 and compares it with performance without any augmentation (baseline).

4github.com/HammerLabML/ModelAgnosticGroupFairnessCounterfactuals/

github.com/HammerLabML/ModelAgnosticGroupFairnessCounterfactuals/


Table 3
Prediction (F1 score) and Fairness (DP%) Performance Comparison across Different Sampling Subgroups
in Adult and Law School Datasets (𝑑=0.5, LogReg stands for logistic regression, and DT represents the
decision tree.

Dataset Adult Income Law School
Model LogReg DT LogReg DT

F1 Score DP% F1 Score DP% F1 Score DP% F1 Score DP%
Baseline 0.7791 0.2892 0.7782 0.2847 0.6408 0.9856 0.6146 0.9935
𝐶1 ⊙ 𝐶1′ 0.7758 0.2439 0.7749 0.2792 0.6680 0.9261 0.6336 0.9831
𝐶2 ⊙ 𝐶1′ 0.7820 0.4730 0.7729 0.3698 0.6279 0.9948 0.6428 0.9925
𝐶3 ⊙ 𝐶3′ 0.7705 0.2625 0.7721 0.2971 0.6696 0.9619 0.6309 0.9837
𝐶4 ⊙ 𝐶3′ 0.7884 0.2889 0.7780 0.2988 0.6251 0.9840 0.6369 0.9921

In the adult dataset, we found that different subgroup sampling combinations have different
impacts on ProxiMix performance. The 𝐶2⊙𝐶1′ (augmenting high-income female) significantly
improves the fairness performance of both decision tree and logistic regression models. In
contrast, 𝐶1 ⊙ 𝐶1′(augmenting low-income female) degrades the fairness of both models,
suggesting it introduces extra bias to the underrepresented group. This implies that focusing
on underrepresented labels in the unprivileged group when generating samples (such as high
income) can greatly improve fairness performance.

In the Law dataset, nearly all mixup methods enhance model prediction performance, but
only marginally improve fairness. This is because fairness performance DP% without any
augmentation already exceeds 90%, indicating the minimal bias in the model. Therefore, the
improvement potential is limited.

Overall, ProxiMix enhances fairness when a model displays significant bias. Also, the choice
of the subgroup for sampling during mixup is important: some enhance fairness, while others
can even worsen it.

5.2. The Impact of Balancing Degree in ProxiMix

In the above section we have discussed the different sampling strategies with a balanced mixup
(𝑑 = 0.5). This section explores how different 𝑑 in ProxiMix can impact model performance.
Here, we fix strategy 𝐶𝑖 ⊙ 𝐶𝑗 while changing balance degree 𝑑.

Fig. 4 illustrates the impact of data augmentation onmodel fairness in the Credit dataset, under
𝐶1 ⊙ 𝐶1′ and 𝐶3 ⊙ 𝐶3′ strategies, with different degree 𝑑. The trend shows most combinations
positively affect a model fairness, with an optimal 𝑑 that maximizes fairness improvements. The
best performance is achieved at d=0.7 for the 𝐶1 ⊙ 𝐶1′ strategy, while for 𝐶3 ⊙ 𝐶3′, the optimal
performance is reached at d=0.2.

Similar patterns are observed in the adult dataset (Fig.5): the impact of different values of 𝑑
on the model also shows a trend. Specifically, data generated with the 𝐶2 ⊙ 𝐶2′ strategy shows
the better improvement in model fairness when 𝑑 ranges from 0.2 to 0.5.

We noticed the best fairness DP% and Eodds% occurs at 𝑑 = 1 under 𝐶4⊙𝐶3′. However, both
TPR of female and male groups decline when 𝑑 exceeds 0.5. [36] mentions a similar scenario
and suggests to consider both relative and absolute values in fairness performance. To have
a further investigation of their performance in absolute values, Table 4 presents the model’s
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Figure 4: The fairness performance changes under different balancing degree 𝑑 in Credit Default dataset
under MLP model (fTPR: TPR in female group, mTPF: TPR in male group, 𝑑 = [0, 0.2, 0.5, 0.7, 0.8, 1], refer
to Appendix B.1 for detailed results)
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Figure 5: The fairness performance changes under different balancing degree 𝑑 in the Adult dataset
under MLP model (fTPR: TPR in female group, mTPF: TPR in male group, d = [0, 0.2, 0.5, 0.7, 0.8, 1], refer
to Appendix B.2 for detailed results)

Table 4
Subgroup-Level Performance Comparison on the Adult Dataset using 𝐶4 ⊙ 𝐶3′ Sample (F-score refers
performance on whole dataset, mF-score presents the F-score in male group, fF-score is the F-score in
female group)

F1 score mF1 score fF1 score mTPR fTPR DP% Eodds%
Baseline 0.7003 0.6895 0.6833 0.4038 0.2831 0.2464 0.1730
d=0 0.7976 0.7851 0.7898 0.7046 0.5368 0.2637 0.1822
d=0.2 0.7857 0.7719 0.7776 0.7579 0.6158 0.3188 0.2821
d=0.5 0.7841 0.7717 0.7804 0.6523 0.5368 0.3052 0.2499
d=0.7 0.7651 0.7531 0.7633 0.5527 0.4596 0.3041 0.2420
d=0.8 0.7529 0.7421 0.7453 0.5135 0.4118 0.2946 0.2381
d=1 0.7198 0.7132 0.6927 0.4619 0.3548 0.3558 0.4471

performance across different subgroups. We can see the model trained with data augmentation
in the 0 to 0.5 range, although having lower fairness metrics compared to 𝑑 = 1, shows an
absolute improvement in model performance. Therefore, we conclude the optimal balancing 𝑑
for 𝐶4 ⊙ 𝐶3′ strategy is 0.2.



Table 5
Counterfactual explanations cost comparison on the Adult dataset with Decision Tree across female(F)
and male(M) subgroups with different balancing degree 𝑑 = [0, 0.5, 1].

Strategy Baseline 𝐶1 ⊙ 𝐶1′ 𝐶2 ⊙ 𝐶1′ 𝐶3 ⊙ 𝐶3′ 𝐶4 ⊙ 𝐶3′
𝑑 N/A 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

𝑀𝑎𝑣𝑔 1.0049 1.5920 1.2988 1.2401 0.4484 0.7440 0.7817 1.1813 1.2762 1.1320 1.0904 0.5551 0.8681
𝑀𝑠𝑡𝑑 0.7893 1.1671 1.1786 1.1822 0.5500 0.4778 0.9267 1.2770 1.0981 1.1641 0.9260 0.8140 1.2145
𝐹𝑎𝑣𝑔 1.0550 1.6986 1.3794 1.3447 0.4291 0.7738 0.7821 1.2001 1.3633 1.1906 1.0666 0.5221 0.7813
𝐹𝑠𝑡𝑑 0.8887 1.3167 1.2271 1.3758 0.5715 0.5184 1.0165 1.5087 1.3018 1.2127 0.9648 0.7750 1.1617
Δavg 0.0500 0.1066 0.0806 0.1047 0.0193 0.0298 0.0004 0.0187 0.0871 0.0586 0.0238 0.0330 0.0868
Δ std 0.0994 0.1497 0.0485 0.1936 0.0215 0.0406 0.0899 0.2317 0.2036 0.0486 0.0387 0.0391 0.0528

Table 6
Counterfactual Explanations cost comparison on Law dataset with Decision Tree across female(F) and
male(M) subgroups with different balancing degree 𝑑

Strategy Baseline 𝐶1 ⊙ 𝐶1′ 𝐶2 ⊙ 𝐶1′ 𝐶3 ⊙ 𝐶3′ 𝐶4 ⊙ 𝐶3′
𝑑 N/A 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

𝑀𝑎𝑣𝑔 0.8671 0.8168 0.7392 0.9506 1.2589 0.7909 0.8026 0.8089 0.8415 0.6298 1.0218 0.8243 0.6968
𝑀𝑠𝑡𝑑 0.9075 0.7896 0.8382 0.9877 1.2913 0.8120 0.8901 0.8039 0.9753 0.6942 1.0415 0.9347 0.6902
𝐹𝑎𝑣𝑔 0.9289 0.9444 0.8134 1.0363 1.4756 0.8351 0.8688 0.9384 0.9278 0.7033 1.1637 0.8763 0.6768
𝐹𝑠𝑡𝑑 0.9929 0.9233 0.8645 1.0259 1.5175 0.8293 0.9724 0.9269 1.0245 0.7914 1.1162 1.0108 0.6904
Δavg 0.0618 0.1276 0.0742 0.0857 0.2167 0.0442 0.0662 0.1295 0.0863 0.0735 0.1419 0.0519 0.0200
Δ std 0.0854 0.1336 0.0263 0.0382 0.2262 0.0173 0.0823 0.1230 0.0492 0.0971 0.0747 0.0761 0.0001

5.3. Counterfactual Cost across Different Groups

We now evaluate the effectiveness of our algorithm from the XAI perspective, and the results
are consistent with the above observations. First, we calculate the average (avg) and standard
deviation (std) of the counterfactual cost across female (F) and male (M) subgroups. Then, we
compare the cost gaps between the two groups. A smaller gap indicates fairer counterfactual
explanations within different groups. In the Adult dataset, 𝐶2 ⊙ 𝐶1′ remains to show more
significant bias mitigation performance. In the Law school dataset, as we have disscussed above,
the improvment is limited because the bias in the original dataset is not significant.

6. Conclusion

This paper proposes a new debiasing algorithm called ProxiMix. It extends the mixup technique
by considering labels from proximity samples in the subgroup to mitigate potential bias in the
preprocessing stage. Our experiments evaluated the performance of ProxiMix with different
sampling combinations and balancing degrees. The results prove that adding proximity-based
labels improves fairness performance, and there exists optimal balancing degree for achieving the
most significant enhancement. These observations were further supported by the experimental
results on the cost comparison of counterfactual explanations. In future work, we plan to extent
ProxiMix to multi-class tasks and consider intersectional fairness.
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A. Appendices: Dataset Description

A.1. Adult Income Dataset

The Adult Income dataset is also known as the Census Income dataset. Its documentation 5

provides a detailed description of 14 features in the dataset. We omitted some features, such as
‘fnlwgt’, and the final features we used after data cleaning are as follows.

Table 7
The Adult Dataset Descriptions

Feature Name Value Type Description
Sex (sensitive features) Categories Gender of the persom, eg. Male, Female

Workclass Categories Type of employment, eg. Private, Self-employed
Age Continuous Age of the person

Education Categories Highest level of education, eg. Bachelors, Some-college
Education-num Continuous Education level of the person
Marital-Status Categories Marital status of the persom, eg. Single, Married
Occupation Categories Occupation of the persom, eg. Tech-support, Sales
Relationship Categories Role in the family, eg. Not-in-family, Own-child
Capital-Gain Continuous Capital gains of the persom
Capital-Loss Continuous Capital loss of the persom

Hours-Per-Week Continuous Hours worked per week
Race Categories Race of the person, eg. White, Other

Salary (ground truth Y) Categories Whether annual income exceeds 50𝐾

5https://www.cs.toronto.edu/~delve/data/adult/adultDetail.html

https://www.cs.toronto.edu/~delve/data/adult/adultDetail.html


A.2. Law School Dataset

The Law School dataset contains admission records for law schools. We followed the description
provided in [37] and the data cleaning pipeline in [21], extracting the following features for the
experiment.

Table 8
The Law School Dataset Descriptions

Feature Name Value Types Description
gender (sensitive feature) Categories Gender

race Categories Race
decile1 Continuous The decile in the school given his grades in Year 1
decile3 Continuous The decile in the school given his grades in Year 3
lsat Continuous LSAT score
ugpa Continuous Undergraduate GPA.
zfygpa Continuous The first year Law school GPA
zgpa Continuous The cumulative law school GPA.

fulltime Categories Work full-time or part-time
fam_inc Continuous Family income

pass_bar (ground truth Y) Categories Whether passed the bar exam.

A.3. Credit Default Dataset

The Credit Default dataset, also known as the credit card clients dataset, explores default
payments on credit cards. Followings are the features and descriptions.

Table 9
The Credit Default Dataset Descriptions

Attribute Value Types Description
SEX(sensitive feature) Categories Gender

EDUCATION Categories Highest education
AGE Continuous Age

LIMIT_BAL Continuous Amount of given credit
PAY_i (𝑖 ∈ {1, 2, 3, 4, 5, 6}) Continuous Repayment status for 𝑖th month

BILL_AMT_i (𝑖 ∈ {1, 2, 3, 4, 5, 6}) Continuous Amount of bill statement for 𝑖th month
PAY_AMT_i (𝑖 ∈ {1, 2, 3, 4, 5, 6}) Continuous Amount of previous payment for 𝑖th month

Default_Payment(ground truth Y) Categories Whether default payment or not next month

B. Appendices: Results



B.1. ProxiMix in Credit Default Dataset with MLP model

Table 10
The prediction and fairness performance under different balancing degree 𝑑 in Credit Default dataset
with MLP model (Acc: accuracy, F1: F1-score, m: performance in male subgroup, f: performance in
female subgroup)

d Strategy Acc. F1 Δ𝐷𝑃 DP% Δ𝐸𝑜𝑑𝑑𝑠 Eodds% mF1 mTPR mFPR fF1 fTPR fFPR
d=0 𝐶1 ⊙ 𝐶1′ 0.7829 0.5075 0.0170 0.5885 0.0278 0.5263 0.5131 0.0953 0.0243 0.5022 0.0675 0.0128
d=0.2 𝐶1 ⊙ 𝐶1′ 0.7802 0.4906 0.0147 0.5625 0.0259 0.5318 0.4964 0.0741 0.0210 0.4853 0.0482 0.0112
d=0.5 𝐶1 ⊙ 𝐶1′ 0.7708 0.5217 0.0119 0.8156 0.0239 0.8082 0.5266 0.1247 0.0453 0.5174 0.1008 0.0396
d=0.7 𝐶1 ⊙ 𝐶1′ 0.6877 0.5393 0.0181 0.9171 0.0205 0.8994 0.5404 0.2600 0.1817 0.5386 0.2805 0.2020
d=0.8 𝐶1 ⊙ 𝐶1′ 0.7574 0.5922 0.0303 0.8111 0.0289 0.7643 0.5853 0.2812 0.1227 0.5963 0.2673 0.0938
d=1 𝐶1 ⊙ 𝐶1′ 0.7569 0.6006 0.0446 0.7523 0.0463 0.6712 0.5880 0.3059 0.1408 0.6087 0.2901 0.0945

Baseline 0.7781 0.5076 0.0233 0.5485 0.0352 0.5000 0.5147 0.1035 0.0354 0.5008 0.0684 0.0177
d=0 𝐶2 ⊙ 𝐶1′ 0.5277 0.5013 0.0623 0.8937 0.0661 0.8807 0.4884 0.6894 0.5540 0.5083 0.6599 0.4879
d=0.2 𝐶2 ⊙ 𝐶1′ 0.4959 0.4775 0.0358 0.9408 0.0477 0.9177 0.5026 0.6894 0.5319 0.4611 0.7020 0.5796
d=0.5 𝐶2 ⊙ 𝐶1′ 0.5599 0.5262 0.0080 0.9844 0.0145 0.9695 0.5376 0.6565 0.4604 0.5185 0.6670 0.4749
d=0.7 𝐶2 ⊙ 𝐶1′ 0.6998 0.6079 0.0333 0.8942 0.0306 0.8816 0.6032 0.4941 0.2588 0.6105 0.4829 0.2281
d=0.8 𝐶2 ⊙ 𝐶1′ 0.7047 0.5520 0.0134 0.9332 0.0173 0.9037 0.5542 0.2659 0.1622 0.5504 0.2787 0.1795
d=1 𝐶2 ⊙ 𝐶1′ 0.6466 0.5563 0.0200 0.9410 0.0179 0.9416 0.5559 0.4471 0.3063 0.5560 0.4382 0.2884

Baseline 0.7781 0.5076 0.0233 0.5485 0.0352 0.5000 0.5147 0.1035 0.0354 0.5008 0.0684 0.0177
d=0 𝐶3 ⊙ 𝐶3′ 0.7757 0.4847 0.0114 0.6661 0.0194 0.6794 0.4877 0.0659 0.0243 0.4816 0.0465 0.0165
d=0.2 𝐶3 ⊙ 𝐶3′ 0.4284 0.4192 0.0322 0.9516 0.0460 0.9305 0.4478 0.6882 0.6156 0.4004 0.6784 0.6615
d=0.5 𝐶3 ⊙ 𝐶3′ 0.6440 0.5691 0.0495 0.8736 0.0492 0.8589 0.5618 0.5282 0.3491 0.5730 0.5022 0.2998
d=0.7 𝐶3 ⊙ 𝐶3′ 0.7641 0.5974 0.0371 0.7649 0.0389 0.6761 0.5849 0.2776 0.1202 0.6057 0.2691 0.0812
d=0.8 𝐶3 ⊙ 𝐶3′ 0.7203 0.5889 0.0339 0.8551 0.0352 0.8203 0.5795 0.3541 0.1961 0.5947 0.3471 0.1608
d=1 𝐶3 ⊙ 𝐶3′ 0.7822 0.4988 0.0179 0.5233 0.0225 0.3886 0.5013 0.0812 0.0240 0.4958 0.0587 0.0093

Baseline 0.7781 0.5076 0.0233 0.5485 0.0352 0.5000 0.5147 0.1035 0.0354 0.5008 0.0684 0.0177
d=0 𝐶4 ⊙ 𝐶3′ 0.7749 0.5701 0.0379 0.6603 0.0361 0.5572 0.5650 0.2071 0.0815 0.5724 0.1797 0.0454
d=0.2 𝐶4 ⊙ 𝐶3′ 0.7747 0.5970 0.0460 0.6773 0.0460 0.6061 0.5961 0.2765 0.1006 0.5960 0.2305 0.0610
d=0.5 𝐶4 ⊙ 𝐶3′ 0.7844 0.5997 0.0310 0.7378 0.0330 0.6813 0.6002 0.2565 0.0748 0.5982 0.2235 0.0510
d=0.7 𝐶4 ⊙ 𝐶3′ 0.2873 0.2741 0.0112 0.9878 0.0149 0.9835 0.2935 0.9518 0.8931 0.2614 0.9571 0.9081
d=0.8 𝐶4 ⊙ 𝐶3′ 0.7806 0.5457 0.0302 0.6129 0.0344 0.5211 0.5482 0.1588 0.0527 0.5424 0.1245 0.0275
d=1 𝐶4 ⊙ 𝐶3′ 0.7824 0.4918 0.0166 0.4915 0.0259 0.3813 0.4970 0.0741 0.0195 0.4868 0.0482 0.0074

Baseline 0.7781 0.5076 0.0233 0.5485 0.0352 0.5000 0.5147 0.1035 0.0354 0.5008 0.0684 0.0177



B.2. ProxiMix in Adult Income Dataset with MLP model

Table 11
The prediction and fairness performance under different balancing degree 𝑑 in the Adult dataset with
MLP model (Acc: accuracy, F1: F1-score, m: performance in male subgroup, f: performance in female
subgroup)

d Strategy F1 Δ𝐷𝑃 DP% Δ𝐸𝑜𝑑𝑑𝑠 Eodds% mF1 mTPR mFPR fF1 fTPR fFPR
d=0 𝐶1 ⊙ 𝐶1′ 0.7302 0.1653 0.1935 0.2128 0.1240 0.7238 0.4922 0.0793 0.6818 0.2794 0.0098
d=0.2 𝐶1 ⊙ 𝐶1′ 0.7834 0.1942 0.2905 0.1565 0.2571 0.7747 0.6455 0.1112 0.7618 0.4890 0.0286
d=0.5 𝐶1 ⊙ 𝐶1′ 0.7431 0.1427 0.2532 0.1374 0.1759 0.7342 0.4885 0.0611 0.7222 0.3511 0.0107
d=0.7 𝐶1 ⊙ 𝐶1′ 0.7823 0.1814 0.2864 0.1349 0.2291 0.7723 0.6165 0.0958 0.7693 0.4816 0.0220
d=0.8 𝐶1 ⊙ 𝐶1′ 0.7731 0.1637 0.2554 0.1547 0.1768 0.7652 0.5628 0.0698 0.7499 0.4081 0.0123
d=1 𝐶1 ⊙ 𝐶1′ 0.7723 0.2026 0.2385 0.1920 0.1635 0.7622 0.6185 0.1119 0.7492 0.4265 0.0183

Baseline 0.7003 0.1238 0.2464 0.1207 0.1730 0.6895 0.4038 0.0595 0.6833 0.2831 0.0103
d=0 𝐶2 ⊙ 𝐶1′ 0.7806 0.1325 0.4847 0.0398 0.5979 0.7711 0.6188 0.0991 0.7801 0.6507 0.0592
d=0.2 𝐶2 ⊙ 𝐶1′ 0.7901 0.1442 0.4729 0.0450 0.5785 0.7819 0.6550 0.1067 0.7843 0.6728 0.0617
d=0.5 𝐶2 ⊙ 𝐶1′ 0.7834 0.1402 0.4906 0.0392 0.6437 0.7787 0.6529 0.1101 0.7641 0.6507 0.0709
d=0.7 𝐶2 ⊙ 𝐶1′ 0.7886 0.1689 0.3773 0.0658 0.4007 0.7795 0.6485 0.1061 0.7793 0.5827 0.0425
d=0.8 𝐶2 ⊙ 𝐶1′ 0.7924 0.1902 0.3832 0.0804 0.4046 0.7837 0.7046 0.1351 0.7787 0.6287 0.0547
d=1 𝐶2 ⊙ 𝐶1′ 0.7891 0.1800 0.3846 0.0744 0.4011 0.7793 0.6769 0.1243 0.7809 0.6158 0.0499

Baseline 0.7003 0.1238 0.2464 0.1207 0.1730 0.6895 0.4038 0.0595 0.6833 0.2831 0.0103
d=0 𝐶3 ⊙ 𝐶3′ 0.7832 0.1997 0.3582 0.1149 0.3713 0.7747 0.6958 0.1429 0.7631 0.5809 0.0531
d=0.2 𝐶3 ⊙ 𝐶3′ 0.7626 0.1339 0.3412 0.0676 0.3369 0.7520 0.5253 0.0624 0.7597 0.4577 0.0210
d=0.5 𝐶3 ⊙ 𝐶3′ 0.7729 0.1646 0.2658 0.1466 0.1975 0.7645 0.5675 0.0741 0.7525 0.4210 0.0146
d=0.7 𝐶3 ⊙ 𝐶3′ 0.7911 0.2052 0.2884 0.1493 0.2360 0.7806 0.6732 0.1202 0.7775 0.5239 0.0284
d=0.8 𝐶3 ⊙ 𝐶3′ 0.7763 0.1912 0.2167 0.2198 0.1373 0.7700 0.6003 0.0883 0.7359 0.3805 0.0121
d=1 𝐶3 ⊙ 𝐶3′ 0.7573 0.1410 0.2634 0.1346 0.1936 0.7496 0.5078 0.0531 0.7350 0.3732 0.0103

Baseline 0.7003 0.1238 0.2464 0.1207 0.1730 0.6895 0.4038 0.0595 0.6833 0.2831 0.0103
d=0 𝐶4 ⊙ 𝐶3′ 0.7976 0.2260 0.2637 0.1678 0.1822 0.7851 0.7046 0.1330 0.7898 0.5368 0.0242
d=0.2 𝐶4 ⊙ 𝐶3′ 0.7857 0.2447 0.3188 0.1421 0.2821 0.7719 0.7579 0.1848 0.7776 0.6158 0.0521
d=0.5 𝐶4 ⊙ 𝐶3′ 0.7841 0.1958 0.3052 0.1155 0.2499 0.7717 0.6523 0.1199 0.7804 0.5368 0.0300
d=0.7 𝐶4 ⊙ 𝐶3′ 0.7651 0.1559 0.3041 0.0931 0.2420 0.7531 0.5527 0.0803 0.7633 0.4596 0.0194
d=0.8 𝐶4 ⊙ 𝐶3′ 0.7529 0.1437 0.2946 0.1017 0.2381 0.7421 0.5135 0.0682 0.7453 0.4118 0.0162
d=1 𝐶4 ⊙ 𝐶3′ 0.7198 0.1226 0.3558 0.1071 0.4471 0.7132 0.4619 0.0716 0.6927 0.3548 0.0320

Baseline 0.7003 0.1238 0.2464 0.1207 0.1730 0.6895 0.4038 0.0595 0.6833 0.2831 0.0103
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