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Key Points

• GLUT1 knockout does
not impair erythroid
differentiation and
minimally affects
reticulocyte membrane
composition.

• Metabolic adaptation
facilitates reticulocyte
tolerance of GLUT1
absence.
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ain.pdf by guest on 23 O
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The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte

membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor)

transport. It is widely recognized as a key protein for red cell structure, function, and

metabolism. Previous reports highlighted the importance of GLUT1 activity within these

uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity

needed to avoid irreversible damage from oxidative stress in humans. However, studies of

glucose transporter roles in erythroid cells are complicated by species-specific differences

between humans and mice. Here, using CRISPR–mediated gene editing of immortalized

erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed

human erythroid cells completely deficient in expression of GLUT1. We show that absence

of GLUT1 does not impede human erythroblast proliferation, differentiation, or

enucleation. This work demonstrates, to our knowledge, for the first time, generation of

enucleated human reticulocytes lacking GLUT1. The GLUT1–deficient reticulocytes possess

no tangible alterations to membrane composition or deformability in reticulocytes.

Metabolomic analyses of GLUT1–deficient reticulocytes reveal hallmarks of reduced glucose

import, downregulated metabolic processes and upregulated AMP-activated protein kinase

signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic

fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable

metabolic changes in GLUT1–deficient reticulocytes, the absence of developmental

phenotype, detectable proteomic compensation, or impaired deformability

comprehensively alters our understanding of the role of GLUT1 in red blood cell structure,

function, and metabolism. It also provides cell biological evidence supporting clinical

consensus that reduced GLUT1 expression does not cause anemia in GLUT1–deficiency

syndrome.
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study.

MassIVE. The MassIVE identifier is
tly through the link https://massive.ucsd.
88082fec2b43b2952a16535b013127;
re available at the National Institutes of

Health Common Fund’s National Metabolomics Data Repository website, the
Metabolomics Workbench, https://www.metabolomicsworkbench.org for which it has
been assigned study ID ST003108. The data can be accessed directly via its Project
DOI: https://doi.org/10.21228/M84428.

The full-text version of this article contains a data supplement.

© 2024 by The American Society of Hematology. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction

Glucose is an essential source of energy, sustaining life across
multiple organisms. Glucose transport in vertebrates is assured by
the SLC2 (GLUT) family, with GLUT1, encoded by the SLC2A1
gene, as the first characterized glucose transporter.1 Of all the cell
lineages within the human body, human erythrocytes express the
highest levels of the GLUT1 transporter, with ~200 000 copies per
cell, accounting for 10% of the total membrane protein mass of the
erythrocyte.2

Within the red blood cell (RBC) membrane, GLUT1 is located in
the junctional multiprotein complex, in which it associates with the
underlying spectrin cytoskeleton via cytoskeletal adapter proteins
such as dematin and adducin.3,4 GLUT1 also interacts with sto-
matin,5 a membrane-associated protein that binds to cholesterol
and is involved in membrane scaffolding,6 and GLUT1 1 is pro-
posed to associate with band 3 (anion exchanger 1) via its
C-terminal domain.

GLUT1 transports glucose into erythroid cells, providing a source
of energy for adenosine triphosphate (ATP) generation either
through the Krebs cycle during erythropoiesis or via maintaining
glycolysis in the mature RBCs after the loss of mitochondria that
occurs during terminal differentiation.7 Characteristic features of
RBCs such as their extensive capacity for deformation during
capillary transit, influenced by ATP-dependent phosphorylation,
calcium, and cell volume homeostasis, are intrinsically linked to the
metabolic status of the erythrocyte, and therefore governed by the
availability of glucose.8,9 Somewhat paradoxically, although RBCs
are exclusively reliant upon anaerobic glycolysis to meet their
energetic requirements, glucose transport decreases during
erythropoiesis (despite increased expression of GLUT1), because
of a shift to the transport of the vitamin C precursor dehy-
droascorbic acid (DHA) favored in humans and other primates that
lack the ability to synthesize the potent antioxidant ascorbic acid
(vitamin C).10 The alteration in GLUT1 transport substrate selec-
tivity is driven by the association of stomatin.10

The complete absence of GLUT1 in humans has not been reported
and is presumed to be embryonically lethal. GLUT1 deficiency
syndrome (G1DS) is a neurodevelopmental disorder that results
from haploinsuffiency for GLUT1 due to specific mutations in the
SLC2A1 gene. This leads to impaired glucose transport into the
brain and RBCs,11 manifesting as a range of neurological symp-
toms, including epilepsy, developmental delay, and movement
disorders.12-14 The neurological disease can be modeled in mice
by introducing heterozygous GLUT1 mutations,15 but because
GLUT1 is only expressed in erythrocytes during the murine peri-
natal period and is rapidly replaced by GLUT4 in adult mouse
erythrocytes, the impact of haploinsufficiency of GLUT1 on RBCs
cannot be fully modeled in mice. Interestingly, despite the
perceived pivotal role of GLUT1 in RBC function, patients with
G1DS typically do not exhibit any hematological phenotypes arising
from the deficiency of this protein.16 The exact reason for this “lack
of RBC phenotype” remains unclear and represents an intriguing
area of investigation.

In this study we exploit CRISPR–mediated gene editing of both
immortalized erythroblasts and adult hematopoietic stem cells,
generating novel GLUT1 knockout (KO) erythroid cells to establish
8 OCTOBER 2024 • VOLUME 8, NUMBER 19
the impact of total loss of GLUT1 on RBC formation, membrane
protein composition and stability, and metabolism. Surprisingly, we
show that absence of GLUT1 is well tolerated by differentiating
erythroblasts, with no impairment of proliferation, enucleation, or
tangible alterations to resulting reticulocyte membrane composition
or deformability, challenging prevailing dogma surrounding the
necessity of this abundant protein for RBC development, structure,
and function.
Materials and methods

Source material

All human blood source material was provided with written
informed consent for research use given in accordance with the
Declaration of Helsinki (National Health Service Blood and Trans-
plant [NHSBT], Filton, Bristol). The research into the mechanisms
of erythropoiesis was reviewed and approved by the Bristol Uni-
versity research ethics committee (no. 12/SW/0199).

Antibodies

See supplemental Methods for a detailed list of antibodies and
reagents used.

CD34+ and BEL-A culture

CD34+ cells were isolated, expanded, and differentiated as previ-
ously described17 and further detailed in supplemental Methods.

BEL-A (Bristol erythroid line–adult) cells were cultured as previously
described.18,19 For expansion, cells were seeded at 0.5 × 105 to 1 ×
105 cells per mL in expansion medium, consisting of StemSpan
serum-free expansion medium (Stem Cell Technologies) supple-
mented with 50 ng/mL stem cell factor (SCF; R&D Systems), 3 U/
mL erythropoietin (EPO, Neocormon), 1 μM dexamethasone (Sigma-
Aldrich), and 1 μg/mL doxycycline (Clontech). Cells were incubated
at 37◦C, 5% CO2, with complete medium changes every 48 to 72
hours. BEL-A differentiation protocol was performed as described by
King et al.20 Briefly, cells were seeded at 1.5 × 105 cells per mL in
primary differentiation medium supplemented with 1 ng/mL
interleukin-3 (R&D Systems), 10 ng/mL SCF, and 1 μg/mL doxycy-
cline. After 2 days, cells were reseeded at 3 × 105 cells per mL in
fresh medium. On day 4, cells were reseeded at 5 × 105 cells per
mL in fresh medium without doxycycline. On day 7, cells were
transferred to tertiary medium (no SCF, interleukin-3, or doxycycline)
at 1 × 106 cells per mL. Another complete media change was
performed on day 9. Cells were analyzed on day 10 or 11.

CRISPR editing of cells

BEL-A cells were nucleofected using a 4-dimensional nucleofector
system with 20 μL of Nucleocuvette Strip (Lonza) in combination
with the P3 primary cell buffer kit (Lonza). Per sample, 2 × 105 cells
were transfected with preincubated 18 pmol of CRISPR-
associated protein 9 (Cas9; TrueCut Cas9 Protein version,
Thermo Fisher) and 45 pmol of either SLC2A1 targeting single-
guide RNA (sgRNA; 5′-GGATGCTCTCCCCATAGCGG, Syn-
thego) or nontargeting (NT) control (Negative Control Scrambled
sgRNA#1, Synthego), using program DZ-100. For CD34+ isolated
cells, nucleofection was performed on day 3 after isolation, in
which 5 × 105 cells were nucleofected with 50 pmol of Cas9 and
125 pmol of sgRNA using electroporation program EO-100.
GLUT1 IS DISPENSABLE FOR IN VITRO HUMAN ERYTHROPOIESIS 5167
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Flow cytometry and fluorescence-activated cell

sorting

For flow cytometry, cells were fixed (1% paraformaldehyde,
0.0075% glutaraldehyde) to prevent antibody agglutination, except
for assays using GLUT1 receptor binding domain (RBD;
GLUT1.RBD). Samples were labeled with primary antibodies in
PBSAG comprising phosphate-buffered saline (PBS) with 1%
weight per volume (w/v) glucose and 0.5% (w/v) bovine serum
albumin (BSA) supplemented with extra 1% (w/v) BSA for
30 minutes, in the dark. METAFORA’s GLUT1.RBD was incubated
at 37◦C, and all remaining antibodies incubated at 4◦C. Cells were
washed twice with PBSAG and, if required, incubated with
appropriate secondary antibody under the same conditions as
described for primary antibody. Cells were washed twice with
PBSAG and analyzed on a Miltenyi MACSQuant 10 flow cytom-
eter. Data were analyzed using FlowJo version 10.7 (FlowJo).
Reticulocytes were identified by gating on the Hoechst-negative
population.

Cells were sorted using a BD Influx Cell Sorter (BD Biosciences).
BEL-A CRISPR–edited populations were single-cell sorted based
on viability (DRAQ7 negativity). Primary GLUT1 KO cultures were
sorted on days 6 or 7 of differentiation using DRAQ7 and the
enhanced green fluorescent protein (eGFP) fused GLUT1.RBD to
purify the negative population with a gate based on NT guide
control cells.

Osmotic fragility assays

Filtered reticulocytes (1 × 105 to 2 × 105 cells per well) were
incubated in decreasing NaCl concentrations (0.9%-0%) for
10 minutes at 37◦C. Lysis was stopped by adding 4× volume of
PBSAG. Live cells, considered as having a normal forward scatter/
side scatter profile as defined by the 0.9% NaCl control, were
counted by flow cytometry using the MACSQuant10.21

Automated rheoscopy

A total of 1 × 106 cells were diluted in 200 μL of a poly-
vinylpyrrolidone solution (viscosity, 28.1 mPa/s; Mechatronics
Instruments). Cell deformability distributions were assessed in an
automated rheoscope and cell analyzer according to previously
published protocols.22 At least 2000 valid cells per sample were
analyzed.

Lipid peroxidation

The assay was performed on prefiltered CD34+ cell–derived
reticulocytes, in culturing media, using Hoechst stain to identify
reticulocytes. C11-Bodipy (10 μM from a dimethyl sulfoxide stock,
Invitrogen) was used as a fluorescent lipid peroxidation reporter
molecule. Oxidation was induced by cumene-hydroperoxide
(25 μM from an ethanol stock, Sigma). Ethanol was used as a
vehicle control. The 3 reagents were added simultaneously and
incubated for 30 minutes at 37◦C. Samples were washed 3× with
PBSAG and lipid peroxidation was measured on an MACS-
Quant10 (488 nm).

Proteomics, metabolomics, and lipidomics

Samples were extracted and treated as extensively reported
in supplemental Methods, which also includes details of the data-
base searches and protein identification after proteomics mass
5168 MARTINS FREIRE et al
spectrometry. Proteomics23 and metabolomics analyses were
performed as previously described.24 Total lipids were extracted as
previously described.25
Results

To explore the impact of complete loss of GLUT1 on human
erythroid cells, CRISPR–mediated gene editing of the BEL-A cell
line was first exploited to generate GLUT1 knockdown (KD) and
KO erythroblast cell lines; disruptive monoallelic or biallelic muta-
tions, respectively, were identified in clonal lines (Figure 1A;
supplemental Figure 1). GLUT1 expression on expanding cells was
measured by flow cytometry using a GLUT1–specific viral
RBD.26,27 Figure 1B confirms a complete loss of expression in
BEL-A KO cells, whereas the KD had no overall reduction of
GLUT1 when compared with unedited BEL-A (control [Ctrl]). Real-
time quantitative polymerase chain reaction (supplemental
Figure 2) revealed a 70% increase in GLUT1 messenger RNA
(mRNA) on the KD cells, and a 90% decrease for the KO cells.
RNA levels of an alternative glucose transporter, GLUT3, previously
reported to be expressed in erythroblasts were significantly upre-
gulated in GLUT1-KO (eightfold upregulation) and KD (2.6-fold
increase).

Because GLUT1 expression increases drastically during erythroid
differentiation,28 the ability of GLUT1-KO erythroblasts to undergo
terminal erythroid differentiation and enucleation was assessed
through monitoring of band 3 and α4-integrin (CD49d).29

Figure 1C and supplemental Figure 3 illustrate the ability of both
GLUT1-KD and GLUT1-KO cells lines to differentiate producing
the same cascading pattern as the BEL-A Ctrl cells. GLUT1
expression was assessed on both differentiating erythroblasts and
enucleated reticulocytes (Figure 1D-E). Although there was no
observed reduction in expression at the erythroblast stage, the
heterozygous GLUT1 mutation produced reticulocytes with a
49.2% decrease in surface GLUT1. May-Grünwald and Giemsa–
stained cytospins of expanding erythroblasts and reticulocytes
(Figure 1F) did not identify discernible cellular morphological dif-
ferences arising from GLUT1 deficiency or absence. Figure 1G
illustrates no reductions in surface expression of prominent mem-
brane proteins compared with that of Ctrl cells. Complete absence
or reduction of GLUT1 was confirmed by immunoblotting and
further validated through proteomics (supplemental Figure 4).
Reported GLUT1 interacting proteins adducin-α and atomatin were
unaltered in expression (Figure 1H). GLUT4 was detected through
proteomics despite its low abundance, with no increased expres-
sion in either GLUT1-KD or GLUT1-KO cells. Conversely, GLUT3
was absent in the proteomic data.

To determine whether compensation for GLUT1 absence is enabled
by prolonged expansion of the BEL-A cell line, CRISPR KO was
performed on cultured primary hematopoietic progenitors nucleo-
fected 3 days after isolation, as indicated (Figure 2A). Cells were
cultured for 21 days and GLUT1 expression assessed by flow
cytometry throughout differentiation (Figure 2B). Note that 48 hours
after nucleofection (day 5) it is already possible to discriminate
between NT controls and GLUT1–targeted populations with a clear
negative comprising ~75% of the total cells discernible on day 6.

GLUT1 expression was measured on Hoechst stain–negative
reticulocytes present at days 14 and 21 with the same
8 OCTOBER 2024 • VOLUME 8, NUMBER 19
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proportion (75%) of cells shown to be GLUT1 negative as on day
6. Of note, assessment of the GLUT1–positive population within
the CRISPR–edited samples reveals a decreased GLUT1
expression when compared with the matched NT control, signifying
a KD population. It is noteworthy that cells from all 3 donors
enucleated and from day 6 of erythroid differentiation maintained a
stable GLUT1–negative population, indicating no competitive
disadvantage in erythroblast expansion resulting from absence of
GLUT1.

We performed a replicate assay of the CRISPR KO (Figure 2C-G),
resulting in an average of 62% GLUT1–negative population across
3 donors. Here, within the GLUT1–positive population, expression
of GLUT1 is comparable with that on the matched NT controls. By
colabeling day-21 prefiltration samples with anti-GLUT1.RBD and
Hoechst it was possible to compare enucleation of GLUT1–posi-
tive and –negative populations within GLUT1–targeted cultures, as
well as with the NT controls (Figure 2E). There is no significant
difference between the 3 populations, demonstrating that the
absence of GLUT1 does not adversely affect the membrane
remodeling and cytoskeletal changes required for nucleus extru-
sion. To assess the effect of GLUT1 absence on physical mem-
brane properties of reticulocytes, day-21 cultures were filtered
using a 5-μm filter with the GLUT1–negative cells of each KO-
targeted donor assessed before and after filtration to establish
differential ability to pass through the filter (Figure 2F). No signifi-
cant difference in proportion of GLUT1–negative cells before and
after filtration was observed (66.5% ± 2.6% vs 62.3% ± 0.6%),
indicating that absence of GLUT1 does not affect reticulocyte
capacity to traverse 5-μm pores.

To further investigate the properties of GLUT1–negative reticulo-
cytes, additional KOs were performed and enriched for using
fluorescence-activated cell sorting. As previously illustrated for the
BEL-A GLUT1 KO, no substantial differences were identified in
terminal erythroid differentiation per CD49d/band 3 labeling
(Figure 3A; supplemental Figure 5), nor did cell morphology
change between CD34+ NT and GLUT1-KO populations
(Figure 3B). The mRNA levels from day-7 cells were analyzed by
real-time quantitative polymerase chain reaction (supplemental
Figure 6) revealing a 61.3% ± 8.8% (standard deviation)
decrease in GLUT1 transcripts in the GLUT1-KO population when
compared with matched NT controls. Of note is the significant
1.57 ± 0.38 (standard deviation)–fold increase in GLUT3 mRNA in
the KO group. Expression of surface membrane proteins was
analyzed by flow cytometry, with the median fluorescence intensity
averaged for the NT controls (Figure 3C). Complete absence of
Figure 1 (continued) GLUT1 KO line, and a heterozygotic 16-bp deletion on the KD line

staining in BEL-A erythroblasts (B) and derived reticulocytes (D) from Ctrl (green), GLUT1

Cells were stained with anti-GLUT1 eGFP conjugate. (C) Flow cytometry analysis of cell s

primary antibody used in conjunction with an immunoglobulin G1 (IgG1) APC secondary

Hoechst as a nuclear DNA stain. (E) Bar graph illustrates the percentage GLUT1 expression

expression of Ctrl BEL-A from the median fluorescence intensity (n = 4). Individual data poin

May-Grünwald and Giemsa–stained cytospins depicting expanding BEL-A erythroblasts (da

original magnification. Scale bars, 20 μm, shown for each image. (G) Bar graphs illustrate

lines (n = 3). Reticulocytes were identified based on Hoechst stain negativity. Data are no

fluorescence intensity (n = 3). Individual data points are shown. Error bars indicate standar

0 of differentiation and reticulocytes filtered after 10-day protocol, incubated with antibodi

(GAPDH; loading control). Multiple Mann-Whitney U tests were used to test for difference
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GLUT1 surface expression was confirmed, and no alterations in
expression of most major erythrocyte membrane proteins as indi-
cated was observed. Within the NT controls, the expression of
BCAM (basal cell adhesion molecule, or Lutheran blood group
protein30) exhibits considerable variability because of a well-
established donor-variable dual population of Lu-presenting cells
(supplemental Figure 7). However, even considering this variability,
there remains a statistically significant reduction in BCAM
expression in the GLUT1-KO compared with the matched NT
cultures. Also, significantly reduced, albeit mildly, are CD47, Rh,
and RhAG (components of the Rh subcomplex).

Expression of various cell surface nutrient transporters was also
measured, using RBDs that function as specific ligands of solute
carrier (SLC) nutrient transporters.31 Among these, the sodium-
dependent multivitamin transporter (SMVT; product of the
SLC5A6 gene) is the only protein significantly increased in
the GLUT1-KO samples using available reagents. Data on the
remaining nutrient transporters can be seen in supplemental
Figure 8. Reticulocyte maturity as assessed by CD7132 (trans-
ferrin receptor) levels varied between cultures but was not
consistently or significantly altered by the absence of GLUT1
(Figure 3D).

To provide a global overview of alterations to protein expression,
matched NT-control and GLUT1-KO reticulocytes (n = 3) were
subjected to proteomic analysis (Figure 4). Deficiency of GLUT1
was confirmed in GLUT1 KO, with a 26-fold change decrease in
the GLUT1-KO reticulocytes compared to NT-controls (Figure 4B;
P < .001). GLUT3 and GLUT4 were detected despite their low
abundance but showed no increased expression in the KOs
(supplemental Figure 9). No specific vitamin C or DHA transporters
were identified, nor was SMVT detected in the data set. Proteins
known to interact with GLUT1, α- and β-adducin, dematin, and
stomatin, show no significant alteration in expression in the KO
samples. CD47, Rh (RhD and RhCE), RhAG, and BCAM also
show no significant changes in total protein content despite the
reduction observed in surface levels. However, gene ontology
enrichment analysis revealed a highly significant enrichment of
glycolysis-associated proteins (P < 1010), with downregulation
of the entire glycolytic pathway, and conversely an upregulation of
AMP-activated protein kinase signaling– and autophagy-
associated proteins, promoting catabolic pathways to generate
more ATP.

In vivo, RBCs remain in circulation for up to 120 days, being
continuously exposed to shear stress and repeated elastic
, both in the vicinity of the cutting site (red line). Flow cytometry histogram of GLUT1

KD (blue), and GLUT1 KO (orange) cell lines compared with no-stain control (red).

urface marker expression during differentiation. Cells were colabeled with anti-band3

and anti–α4-integrin FITC conjugate. For day 11, reticulocytes were identified using

on reticulocytes derived from indicated cell lines. Data are normalized to endogenous

ts are shown. Error bars indicate standard error of mean. (F) Representative images of

y 0) and corresponding filtered reticulocytes after 10 day differentiation protocol; 40×

expression of various membrane proteins on reticulocytes derived from indicated cell

rmalized to endogenous expression of Ctrl BEL-A and represents the median

d error of mean. (H) Western blots of lysates obtained from indicated cell lines at day

es to α-adducin, GLUT1, stomatin, and glyceraldehyde-3-phosphate dehydrogenase

s between groups. *P < .05. Error bars indicate standard deviation.
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followed by CD34+ magnetic separation. Cells are then nucleofected on day 3 with NT or GLUT1–specific sgRNAs. (B) Flow cytometry histograms show GLUT1 expression of 3

donors and nucleofected with NT or SLC2A1 targeting sgRNAs on days 5, 6, 14, and 21 of differentiation. For days 14 and 21, Hoechst stain was used to identify the

reticulocytes. Cells were stained with anti–GLUT1 FITC conjugate (n = 3) or a no-stain control (black). (C) Day-21 filtered reticulocytes stained with anti–GLUT1 FITC conjugate

(n = 3) or a no-stain control (black). (D) Percentage of GLUT1–negative population on GLUT1–targeted KO (n = 3) on days 6, 14, and 21 of differentiation. (E) Percentage of

reticulocytes (Hoechst stain negative) at day 21 of differentiation on NT control and negative and positive GLUT1 populations of the GLUT1–targeted KO. (F) Percentage of

GLUT1–negative population on GLUT1–targeted KO on reticulocytes before and after filtration. (G) Bar graph illustrates GLUT1 expression on reticulocytes from NT and

GLUT1–negative and –positive populations of the GLUT1–targeted KO. Data represent the median fluorescence intensity (n = 3). Individual data points are shown. Multiple

Mann-Whitney U tests were used to test for differences between groups. *P < .05. Error bars indicate standard deviation.

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/8/19/5166/2245574/blooda_adv-2024-012743-m

ain.pdf by guest on 23 O
ctober 2024
deformations. Given the varied potential contributions to RBC
stability that arise from GLUT1 influence on membrane-cytoskeletal
connectivity, solute transport, and metabolism, we used a variety of
8 OCTOBER 2024 • VOLUME 8, NUMBER 19
in vitro techniques designed to dissect the effects of absence of
GLUT1 in reticulocytes. Osmotic fragility assays summarized in
Figure 3E illustrate increased hemolysis compared with control
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Figure 3. Properties of CD34+ GLUT1-KO–derived reticulocytes. (A) Waterfall plot indicating progression of control and GLUT1-KO–transfected cultures of single donor

CD34+ differentiation. Cells were colabeled with anti-band3 primary antibody used in conjunction with an IgG1 APC secondary and anti–α4-integrin FITC conjugate. For day 20,

reticulocytes were identified using Hoechst stain as a nuclear DNA stain. (B) Representative cytospins of the same culture were obtained on day 20 after leukofiltration. 40×

original magnification. Scale bars, 20 μm, shown for each image. (C) Bar graphs indicate the expression of various membrane proteins on reticulocytes derived from NT or GLUT1-

KO primary cultures (n = 6, for SMVT n = 3, with 2 technical repeats each). Significance was assessed by multiple Mann-Whitney U tests with a false discovery rate of 1% to

account for multiple comparisons. “*” shows q < .01 and “nd” shows q > .01. (D) Anti-transferrin receptor (CD71) labeling of on reticulocytes (n = 6, open or filled dots indicate 2

separate cultures, each with 3 donors). For both, reticulocytes were leukofiltered on day 20. Data are normalized to each donor-matched NT control and represents the median

fluorescence intensity. (E) Osmotic resistance analysis calculated based on viable cell counts (flow cytometer) after incubation with decreasing concentrations of NaCl (n = 3, 2

technical replicates, “∘” P ≤ .0021). (F) Deformability and (G) cell area (μm2) were measured under shear stress by automated rheoscope cell analyzer (n = 3, N > 2000 cells),

which elongates cells and measures length over width as deformability parameter. Shaded region represents the standard deviation. (H) Quantitative analysis of lipid peroxidation

detected by a shift in the fluorescence signal after treatment with 25 mM cumene hydroperoxide. Data normalized to each donor-matched NT control (n = 3, 3 technical

replicates). (I) Bar graph quantifying P falciparum reticulocyte invasion efficiency. Invasion was assessed by flow cytometry using a SYBR-green DNA stain (3 separate parasitemia
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cells, evident at 0.45% NaCl and maintained at lower NaCl levels,
indicative of a higher osmotic fragility on GLUT1-KO cells and
suggestive of a potential defect in volume homeostasis or ion
balance.

GLUT1, via association with adducin and dematin, is reported to
provide a site of vertical attachment between membrane and
cytoskeleton in RBCs.5 To investigate cell deformability and
membrane stability, cells were subjected to automated rheoscope
and cell analyzer.22 Figure 3F-G indicate no differences in cross
sectional area or capacity to undergo deformation (elongation
index) arising from the absence of GLUT1, illustrating no detect-
able reductions in deformability.

In addition to its role in glucose transport, GLUT1 also acts as a
transporter of DHA, which gets converted into ascorbic acid in the
cytoplasm, a potent antioxidant.33 Using C11-Bodipy as a lipid
peroxidation sensor we measured reactive oxygen species
response using cumene hydroperoxide as an oxidizing agent.
Although Figure 3H shows a small increase in lipid peroxidation
(P = .0726) in the KO population, the range of individual data
points precludes it from reaching statistical significance. As an
additional assay to exploit the generation of this novel GLUT1 KO
cell resource, reticulocytes were subjected to invasion assays with
the malaria parasite Plasmodium falciparum. Interestingly, despite
the abundance of GLUT1 within the reticulocyte/erythrocyte
membrane, absence of GLUT1 did not impair the ability of reticu-
locytes to support invasion by P falciparum, with no significant
differences in invasion efficiency of GLUT1 KO compared with NT
control reticulocytes (Figure 3I), indicating that GLUT1 is not
exploited as an essential receptor for merozoite invasion.

The apparent absence of phenotype arising from the loss of such
an upregulated and abundantly expressed protein within the
erythroid lineage was surprising. To further explore potential dis-
tinctions that arise from the absence of GLUT1, the samples
already tested for proteomic differences were also investigated to
uncover metabolomic and lipidomic disparities (Figures 4 and 5).
Interestingly, metabolomics analyses revealed that GLUT1-KO
reticulocytes do compensate for a decrease in glucose uptake,
as inferred by a significantly lower steady state levels of glucose
and by upregulating glucose catabolism downstream of
hexose phosphate. Figure 4D summarizes the metabolomic and
proteomic alterations observed in the GLUT1-KO cells. Indeed, in
GLUT1-KO cells, we detected significant elevation in the levels of
fructose bisphosphate, glyceraldehyde 3-phosphate, 2,3-
bisphosphoglycerate, phosphoglycerate (2 and 3 isomers), and
phosphoenolpyruvate. However, despite net significant increases
in lactate, decreases in pyruvate were observed, suggestive of
altered pyruvate to lactate ratios, perhaps because of decreased
nicotinamide adenine dinucleotide (NAD) + hydrogen (NADH)
dependent methemoglobin reductase activity, which could
outcompete lactate dehydrogenase for the same cofactor. Despite
higher levels of virtually all glycolytic intermediates, especially at the
payoff steps of glycolysis, no significant changes were observed
Figure 3 (continued) percentages, 3 technical replicates) and data were normalized per

independent cultures, each of 3 donors with panels A-B presenting representative data from

94% and panels C-D combined data from all 6 donors. A nonparametric Mann-Whitney U t

between groups when not specifically mentioned, *P < .05, **P < .01, and ***P < .001. E
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between the 2 groups, suggesting that, in the absence of pertur-
bation, increased glycolytic fluxes may compensate for decrease
glucose uptake in the KO reticulocytes. Interestingly, elevation in
polyols such as sorbitol, which can enter glycolysis at the fructose
bisphosphate level, are suggestive of alternative sugar substrates
that could contribute to compensating for the partially ablated
glucose uptake.

Despite these adaptations, markers of oxidant stress were
observed in the GLUT1-KO group, even in the absence of
perturbation. For example, KO cells showed significantly lower
levels of reduced glutathione, with near significant (P = .06)
elevation in oxidized to reduced glutathione ratios (supplemental
Figure 10), suggestive of a rewiring of glucose consumption
mainly through glycolysis, perhaps via the reduction of glucose
oxidation via the pentose phosphate, a key pathway for the gen-
eration of the reducing equivalent reduced NAD phosphate, which
is directly or indirectly involved in virtually all antioxidant reactions in
the mature erythrocyte.

Finally, and most evidently, L-carnitine and all acyl-carnitines were
found to increase in the KO reticulocytes (Figure 5A). In mature
RBCs this class of metabolites is associated with lipid membrane
damage repair via the Lands cycle,34,35 represented in Figure 5B.
Lipidomics results indicated significant decreases in the levels of
cholesteryl-esters, diacylglycerols, ceramides, and all phospho-
lipids (phosphatidylcholine [PC], phosphatidylethanolamine [PE],
phosphatidylinositol [PI], phosphatidylserine [PS], phosphatidyl-
glycerol [PG], and phosphatidic acid [PA]) in the KO group, except
for triacylglycerols, free fatty acids, and monohexosylceramides
(supplemental Figure 11). Most importantly, elevation in all lyso-
phospholipids (significant for lysophosphatidylethanolamine,
borderline significant for lysophosphatidylserines and lysophos-
phatidylcholine, as seen in Figure 5C-E) are suggestive of
increased phospholipase activity upon activation of the Lands cycle
for the repair of damaged lipids in the KO group.

Discussion

As 1 of the most abundantly expressed proteins within the eryth-
rocyte membrane, GLUT1 is widely assumed to play a crucial role
in the development, structure, and function of the RBC. However,
suitable erythroid models to study the effect of lack of GLUT1 in
humans is lacking. Mouse models are inappropriate owing to the
absence of GLUT1 in the adult mouse erythrocyte2 and, to date, in
human erythroid cells only a 60% KD has been achieved,36 levels
that mimic the naturally occurring G1DS,27 a disease that is
hematological symptomless despite presentation of neurological
phenotypes. Here, we demonstrate the ability to generate
completely GLUT1–deficient erythroid cells that successfully
complete terminal differentiation to generate enucleated reticulo-
cytes unexpectedly deficient in phenotype, rewriting our under-
standing of the essentiality of this protein in human erythroid
biology. RBC structural integrity and capacity for deformation arise
from vertical protein associations between integral membrane
matched-donor (n = 3) NT control. This figure comprises data obtained from 2

cultures with fluorescence-activated cell sorted GLUT1-KO purity of 99%; panels E-I

est or Kruskal-Wallis test with Bonferroni correction were used to test for differences

rror bars indicate standard deviation.
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differentiated into reticulocytes; 10 million filtered reticulocytes were needed for comprehensive analyses of the proteome, metabolome, and lipidome. (B) Box plot comparing

GLUT1 protein level between NT and GLUT1-KO reticulocytes as maximum label-free quantification (MaxLFQ) protein-level intensities. Box plot analysis (mean ± minimum to

maximum with standard deviation) was performed by RStudio, and significance was calculated upon false discovery rate correction (***P < .001). (C-D) Hierarchical clustering of

the top 50 t test significant proteins (C) and metabolites (D) between NT and GLUT1-KO CD34+-derived reticulocytes. (E) Schematic representation of glycolysis, the polyol

pathway, and the glutathione redox cycle in which proteins and metabolites are color-coded by log2 (fold change) of GLUT1-KO reticulocytes in relation to NT control. The 10

steps of glycolysis are represented, with glucose and lactate both reduced in the KO whereas the remaining intermediate products increased. All involved enzymes are decreased

(HK, hexokinase; GPI, glucose-6-phosphate isomerase; PFK1, phosphofructokinase-1; TPI1, triosephosphate isomerase; BPGM, biphosphoglycerate mutase; PGK,

phosphoglycerate kinase; PGAM, phosphoglycerate mutase; PK, pyruvate kinase; and LDHA, lactate dehydrogenase A). There is an imbalance in the glutathione cycle, as a
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proteins and the underlying spectrin-based cytoskeleton, mediated
via an array of cytoskeletal adapter proteins. It would not be
unreasonable to hypothesize that loss of GLUT1, a protein that
accounts for ~10% of the protein component of the RBC mem-
brane,37 would confer disruption to membrane integrity. Surpris-
ingly, however, there were no reductions in reported GLUT1–
associating proteins, nor any other detectable membrane or cyto-
skeletal protein were observed (aside from a mild reduction in Rh
subcomplex components). Furthermore, neither deformability, as
assessed through rheoscopy, nor ability to support invasion by P
Figure 4 (continued) glutathione peroxidase 1 (GPX1). The hexose monophosphate (HM

maintain glutathione in its reduced form. An increase in polyols (such as sorbitol and mannit

dehydrogenase (SORD) and ketohexokinase (KHK). G6PD, glucose-6-phosphate dehydro

Created with BioRender.
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falciparum was found to be altered in GLUT1-KO reticulocytes. No
significant compensatory upregulation of membrane proteins that
could be anticipated to occupy vacant binding sites or residency
within the plasma membrane was observed through proteomics,
indicating that GLUT1 does not play a direct role in maintenance of
the structural integrity of the RBC via its protein–protein
interactions.

Metabolomic studies revealed that GLUT1-KO reticulocytes exhibit
hallmarks indicative of reduced glucose import with downregulated
P) shunt is upregulated as a source of reduced NAD phosphate (NADPH), needed to

ol) was also detected, which can be converted into fructose-1,6-phosphate by sorbitol

genase; PGLS, 6-phosphogluconolactonase; GSR, glutathione-disulfide reductase.
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metabolic processes and upregulated adenosine monophosphate
(AMP)-activated protein kinase signaling, consistent with reduced
glucose content. Surprisingly, the absence of GLUT1 does not
present an obvious impediment to erythroblast terminal differenti-
ation or enucleation; this may reflect initial compensation of
glucose import mediated via GLUT3, which has been previously
demonstrated to be expressed in the early stages of differentiation
before loss and replacement by GLUT1,28 and is corroborated by
the SLC2A3 transcriptional upregulation detected in the expand-
ing erythroblasts of GLUT1-KO BEL-A and primary cells. Although
increased activity of alternative glucose transporters expressed at
residual levels cannot be excluded, no upregulation of GLUT3 or
GLUT4 in differentiated reticulocytes was detected by proteomics,
nor increased abundance of mitochondria to maximize energy
output, as inferred from comparable levels of mitochondrial pro-
teins via proteomics between NT and GLUT1-KO cells. Thus, our
data show, to our knowledge, for the first time, that GLUT1 is not
required for erythroid cells to obtain sufficient glucose to drive
terminal differentiation.

Although GLUT1 is among the proteins most upregulated during
erythropoiesis, seminal work from Oburoglu et al36 reported a
lack of erythropoiesis defects when blocking glucose catabolism
in early progenitors, and Montel-Hagen et al10 demonstrated
that glucose transport actually decreases during the latter
stages of erythroid differentiation, replaced instead by transport
of DHA, an oxidized form of ascorbic acid in a switch regulated
by stomatin association. Absence of GLUT1 is therefore pre-
dicted to also affect intracellular antioxidant levels and redox
balance. Interestingly, contrastingly to the unaltered deform-
ability, increased osmotic fragility of GLUT1-KO reticulocytes
compared with unedited controls was detected, mimicking a
phenotype observed in RBCs of mice with reduced ascorbic
acid intake.38,39 Metabolomics also revealed a depletion of the
glutathione pool. These changes were accompanied by the
maintenance of total ATP levels with increased steady state
levels of glycolysis intermediates downstream to fructose
bisphosphate, elevation in the levels of alternative sugar sub-
strates like sorbitol, and decrease in the levels of pentose
phosphate pathway metabolites.

Absence of GLUT1–mediated DHA transport likely adds pressure
to the remaining cellular antioxidant defense mechanisms while
trying to maintain redox balance, as suggested by the borderline
(P = .07) decreases in DHA in the KO cells. Of note, in a back-
ground of minimal detectable compensatory alterations, we did
observe increased expression of the SMVT, which catalyzes the
uptake of α-lipoic acid (a potent antioxidant), pantothenic acid
(vitamin B5, precursor to coenzyme A that participates in heme
synthesis40 and the Lands cycle), and biotin41 in primary GLUT1-
KO reticulocytes. Our data indicate a mild and potentially partially
compensated defect in antioxidant capacity of GLUT1-KO
reticulocytes.

Altogether, these results indicate that, although nonlethal in
the absence of perturbations, the GLUT1-KO mutation introduces
a strain to RBC antioxidant metabolism by forcing glycolytic
metabolism through the Embden-Meyerhof Parnas pathway at
the expense of antioxidant pathways such as the hexose
monophosphate shunt. Interestingly, these metabolic alterations
were accompanied by elevation in acyl-carnitine pools,
5176 MARTINS FREIRE et al
lysophospholipids, and odd-chain fatty acids derived from
α-oxidation of longer-chain polyunsaturated fatty acids, despite
decreases in several classes of lipids. These lipidomics data are
suggestive of increased oxidant stress to the RBC membrane
fraction, consistent with the activation of the Lands cycle and an
increased susceptibility to osmotic fragility, similar to that observed
for RBCs from patients suffering from chronic42 or acute kidney
disease,43,44 sickle cell disease, and hypoxia.45

In vivo circulating RBCs are highly exposed to oxidative stress with
repetitive nature of erythrocyte function hard to replicate in vitro,
such as the accumulation of reactive oxygen species and conse-
quent repetitive deformability decreases. Although experimentally
impractical to explore, we recognize that as reticulocytes derived
through in vitro culture, the full effects of complete GLUT1 defi-
ciency subject to the rigors of in vivo circulation and in the absence
of residual mitochondria (loss of which is induced by circulation)
may not be evident. We predict that GLUT1 KO will most likely
exhibit a reduced in vivo circulatory half-life as a consequence of
increased osmotic fragility, altered energy metabolism, and dis-
rupted redox balance observed here.

These data substantially extend our understanding of the role
glucose transport and metabolism play in erythropoiesis and
redefines the importance of GLUT1 in RBC membrane structure.
Furthermore, for many years, the absence of hematological
phenotype associated with reduced GLUT1 expression in G1DS
has remained unexplained, attributed to the remaining copies of the
transporter still present. In generating completely deficient GLUT1
erythroid cells that demonstrate no apparent defects in expansion,
enucleation, or structural phenotypes, we now provide cell bio-
logical evidence that supports the clinical consensus that a
reduction in GLUT1 abundance in RBCs does not cause anemia in
G1DS.
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