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Abstract: Cyberattacks are rapidly evolving both in terms of techniques and frequency, from low-level
attacks through to sophisticated Advanced Persistent Threats (APTs). There is a need to consider how
testbed environments such as cyber ranges can be readily deployed to improve the examination of
attack characteristics, as well as the assessment of defences. Whilst cyber ranges are not new, they can
often be computationally expensive, require an extensive setup and configuration, or may not provide
full support for areas such as logging or ongoing learning. In this paper, we propose GoibhniUWE, a
container-based cyber range that provides a flexible platform for investigating the full lifecycle of a
cyberattack. Adopting a modular approach, users can seamlessly switch out existing, containerised
vulnerable services and deploying multiple different services at once, allowing for the creation of
complex and realistic deployments. The range is fully instrumented with logging capabilities from
a variety of sources including Intrusion Detection Systems (IDSs), service logging, and network
traffic captures. To demonstrate the effectiveness of our approach, we deploy the GoibhniUWE range
under multiple conditions to simulate various vulnerable environments, reporting on and comparing
key metrics such as CPU and memory usage. We simulate complex attacks which span multiple
services and networks, with logging at multiple levels, modelling an Advanced Persistent Threat
(APT) and their associated Tactics, Techniques, and Procedures (TTPs). We find that even under
continuous, active, and targeted deployment, GoibhniUWE averaged a CPU usage of less than 50%,
in an environment using four single-core processors, and memory usage of less than 4.5 GB.

Keywords: containerisation; cyber range; vulnerability analysis; traffic analysis

1. Introduction

As cyber threats continue to evolve, having adaptive and scalable experimentation
platforms that are both reliable and realistic is crucial for successful research and educa-
tion on the nature of these threats. Given the nature of experiments when it comes to
offensive and defensive cyber security assessment, it is not feasible to conduct such work
on real-world production systems. At the other end of the spectrum, there may well be
characteristics that we wish to study or examine that cannot be fully satisfied with a small
scale set up such as a single Virtual Machine (VM) running a set of vulnerable applications.
This has given rise to the idea of a ‘cyber range’, and much like the concept of a shooting
range to practice and hone a skill, the cyber range sets out to provide a similar platform for
refining cyber security skills in controlled scenarios before doing so in a live environment.

In recent years, much focus has been concentrated around the creation of VMs for
providing suitable cyber security exercises. This has been popularised further by the
introduction of cloud services such as TryHackMe and HackTheBox for deploying VMs.
Cloud providers such as Azure and AWS also allow for the creation of multiple machines
to be networked together; however, this comes at a cost and is not trivial to configure.
A notable project was developed by Chris Long, Senior Security Analyst of Netflix, who
developed the open-source project, DetectionLab [1]. This provides a set of VMs that are
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pre-configured with connectivity and vulnerable appliances, as well as having built-in
defensive tools, such as Security Information and Event Management (SIEM) monitoring,
using tools like Splunk and the Threat Hunting plug-ins for this. Whilst this works well
to deploy four VMs, this can be a time-consuming and resource-intensive deployment,
requiring at least 16 GB of RAM and 55 GB of free hard disk space to run locally. This
platform is no longer supported, highlighting the issues around ongoing support and
maintenance for such systems. A similar example is the Splunk Attack Range [2], which
is set up to utilise multiple server instances (VMs) and provides red team tooling such as
Atomic Red [3] and logging support through Splunk. While this provides support for local
deployment, it is resource-intensive and seems to be targeted at cloud-based deployments,
with multiple open issues for local deployment, some of which are over 12 months old as
of writing [4].

In our work, we propose GoibhniUWE (pronouncedgo-bin-you-ee), a platform that
extends the concept of a cyber range to offer a much more modular and scalable approach
using containerisation. Our system facilitates a modular methodology where multiple
vulnerable services can be run as part of a single deployment that may span across multiple
networks, allowing users to create larger, more complex attack scenarios using real-world
vulnerabilities. We utilise an existing open-source (OS) resource Vulhub [5], which allows
users to practice against services that are vulnerable to a range of vulnerabilities from
misconfiguration to high-impact CVEs such as log4j [6]. Furthermore, the introduction of
containerisation enables researchers and practitioners to study additional infrastructure
concepts such as container segregation and escape. These challenges are increasingly
significant in the latest computing paradigms and move the focus away from the security
of individual workstations or VMs. Importantly, we provide logging at multiple levels,
enabling end users to observe common indicators of different attacks in real time; facilitating
ongoing, layered learning throughout; and allowing for the simple provision of datasets
made up from multiple logging sources.

2. Technical Background

In this section, we introduce some of the key virtualisation concepts discussed.

2.1. Virtual Machines

Virtual Machines (VMs) are a way of packaging and deploying an entire “machine”,
which can easily be shared or used by others. This form of virtualisation comes with a
complete Operating System (OS), including the kernel. As such, it can be fairly resource-
intensive, requiring significant storage. However, this allows a VM to run a completely
different OS to the host machine, as it is using its own (virtualised) kernel, and provides
robust isolation from the host machine. This has made VMs a perfect candidate for use
cases such as malware sandboxes [7]. However, the storage requirements for VMs limit
how many instances can be run on a single server and they can also incur slower boot times
and a more complex configuration and management, especially at a large scale [8].

2.2. Containerisation

Containers are a more lightweight form of virtualisation, with a focus on the appli-
cation layer. A container will contain an application and all the required libraries and
packages to run that application. Additional packages and utilities are often missing to
reduce “bloat”, and it does not include OS-level components, such as the kernel, utilising
the host OS. This weakens the isolation between the container and the host machine and
introduces a co-dependency, with containers needing to run on the target OS they were
built for. However, they have lower storage requirements, faster startup times, and are easy
to manage at a large scale [8]. These factors have increased their usage, with a recent report
by Statista showing that “ in 2021, 96 percent of respondents from a global survey state
were using container technology” [9].
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3. Related Works

We address the existing work on the research and development of cyber range techniques.

3.1. VM-Based Cyber Ranges

In [10], Yamin and Katt created a software-based cyber range which aims to provide
realistic cyberthreat scenarios in cyber security education settings. Designed to support
both red and blue team scenarios, the proposed approach allows for the creation of attacker
and defender agents. The vulnerability injector module is responsible for adding three types
of vulnerabilities (software, services, and configurations) into the simulated infrastructure.
Whilst the tool provides a useful learning platform, there are some limitations, such as
the non-standard integration with existing Common Vulnerabilities and Exposures (CVE)
frameworks for the use of vulnerability injection. Furthermore, the platform is designed
on the concept of a Capture The Flag (CTF) challenge; therefore, it does not have the same
emphasis on logging and monitoring that a real-world environment would rely upon.

The AIT cyber range developed by Leitner et al. [11] adopts a similar approach in cyber
range development. AIT uses OpenStack for managing the computing platform, while
Terraform is used to manage the provisioning of the underlying infrastructure. GameMaker,
a Scenario Engine, is used to define the cyber range scenarios and manage its flow. While the
modular approach of the range allows for scalability and ease of deployment, the scenario
engine is limited to defining non-technical aspects of the cyber scenario.

Vykopal et al. [12] adopt a similar approach in the implementation of two cyber
ranges, namely KYPO CRP (Cyber Range Platform) and Cyber Sandbox Creator (CSC).
While both use the same network topology and the underlying learning analytics stack,
KYO CRP is designed to run on the cloud, while CSC is designed to run on the students’
laptops. The use of open-source technologies (e.g., OpenStack and VirtualBox) allows for
ease of deployment.

Beuran et al. [13] also adopted a cloud-based approach to cyber range develop-
ment in demonstrating their Cybersecurity Training and Operation Network Environ-
ment (CyTrONE) cyber security training framework. Building upon the Cyber Range
Instantiation System (CyRIS) [14], it consists of modules to manage resource creation and
provisioning for the Virtual Machines (VMs) with content creation managed by the frame-
work’s Content Installation module. While CyTrONE is able to cater for up to 600 students,
it is primarily aimed at providing training and thus is limited in executing the entire
lifecycle of a sophisticated attack.

3.2. Container-Based and Hybrid Cyber Ranges

In [15], Oh et al. present a Raspberry Pi cyber range as a low-cost approach to
cyber security education. They use Docker Swarm to provide a cluster-based container
platform across four connected Raspberry Pi 3 devices. However, they then focus on the
use of the Damn Vulnerable Web Application (DVWA) as a containerised application that
could be used for teaching with this platform. This lacks the red/blue team investigation,
and as previous platforms have also shown, it puts the focus on cyber ranges more as
a CTF platform, rather than as a logging and monitoring platform akin to real-world
security operations.

Nakata and Otsuka [16] investigate the use of container-based cyber ranges and
compare resource usage between their system CyExec* and hypervisor or host-based ap-
proaches. Overall, their container-based cyber ranges used half as much memory and
1/60th of the storage, while still being able to reproduce 99% of vulnerabilities. Their sce-
nario deployment included randomisation but was built on a singular default scenario with
a Metaspolitable2 [17] target server. Though some logging was provided via SNORT [18], it
does not easily facilitate complex attack scenarios or extensive logging by default, making
the design and testing of complex attack scenarios a more manual process.

In the work of Chouliaras et al. [19], the authors present their cyber range platform
(UNIWA) based on Docker using Infrastructure as Code (IaC) methodology. UNIWA itself
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consists of six core modules and uses both VMs and containers as part of the complete
system architecture. While scenarios can be created and configured dynamically, the plat-
form itself has a number of pre-requisites, including multiple OpenStack APIs. Testing was
conducted on systems with 32 GB and 16 GB of dedicated RAM and it still showed delays
during scenario deployment when it was stress-tested. The tested scenarios themselves
made no mention of logging or IDS deployment which could be utilised by students for
the analysis or identification of attacks.

3.3. Frameworks and Quverview

In [20], the authors propose the Cyber Range Design Framework (CRDF), which aims
to provide a set of standards for the deployment of cyber ranges. They highlight identified
weaknesses in existing cyber range designs and implementations, which the proposed
CRDF seeks to address. These include (amongst others) the need for ongoing, layered
learning and the consideration of “workspace requirements” for on-demand learning
and deployment.

In a similar work, Ukwandu et al. review existing cyber ranges and test beds, pro-
viding a breakdown of the underlying technologies used, the intended use case(s) or
environments, and a taxonomy for cyber ranges [21]. Within their review, they highlight
the benefits of container-based cyber range platforms, including their flexibility, scalability,
and portability.

Many of the cyber range deployments previously mentioned are relatively resource-
intensive, particularly in terms of the usage and number of VMs. This presents a potential
challenge when deploying in memory-constrained environments or those without a stable
and reliable connection to cloud-hosted resources. Additionally, there are considerations
around setup complexity, with some ranges using multiple existing IaC platforms, which
themselves may have hardware and software requirements, making them unsuitable for
local deployments. Many are also largely focused on a CTF-style approach, with limited
attention given to real-time logging and monitoring of the attacks or scenarios. We con-
tend that the logging and monitoring aspects of the cyber range are essential to provide
both an educational experience for students and a sophisticated experimental platform
for researchers, akin to real-world deployment. In this paper, we present our cyber range,
GoibhniUWE, which aims to address identified issues surrounding logging and lightweight
deployment. Furthermore, it aligns with the proposed CRDF framework [20] to provide a
platform that enables on-demand, layered learning within an academic context. By leverag-
ing existing open-source (OS) resources such as Vulhub [5] we aim to meet the requirement
for ongoing learning, with new vulnerable environments being regularly added by the OS
community. These can be utilised to provide attack scenarios or targets, based on real-world
CVEs or common misconfigurations, with minimal setup required by the end user, while
still allowing for full customisation of the deployment itself. At the time of writing, there
were over 350 CVEs covering 41 Common Weakness Enumerations (CWEs), with over
150 additional, misconfigured vulnerable environments (categorised as Misc withing Goib-
hniUWE) present within Vulhub [5], totalling over 500 vulnerable environments which
could be deployed using GoibhniUWE. A full list of the CWEs represented can be found in
Appendix A.

4. Design of the GoibhniUWE Cyber Range

The idea behind the development of the GoibhniUWE cyber range is to provide a
containerised environment which can be used for both education and research purposes.
The design principles behind its development are supported by the following requirements:

* Rl1—Minimal deployment: The cyber range should deploy and run with minimal
resource overhead.

* R2—Modular: The cyber range should support the ability to easily swap out different
vulnerable services depending on the desired scenario.
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*  R3—Real-time: The cyber range should support real-time monitoring and logging
from multiple sources.

®  R4—Scalability: The cyber range should support the ability to scale up the infrastruc-
ture as required by the deployed scenario.

These requirements also underpin our proposed solution to issues highlighted as part
of the CRDF [20]; the consideration of “workspace requirements” for on-demand learning
and deployment (R1); and the need for ongoing, layered learning (R2-R4).

Figure 1 provides a high-level graphical overview of the GoibhniUWE cyber range.
The use of containers as an alternative to VMs in the implementation of our cyber range
allows for quicker deployment, with minimal performance overhead (R1). Different vul-
nerable services can be selected through the User Interface (UI), and these will be deployed
using Docker (through a Python API). These vulnerable services are then run as containers,
with networking and IP assignment managed by GoibhniUWE. This allows for ease of
scaling (R4) of the range to add other functionalities, such as internal services, which
require pivoting from the initial access point or target OS to access them.

HOST MACHINE |Attack,"'l'l'l3 e
CONTAINER NETWORK
=
~ |Vulnerable B | Parrot OS
Service(s) | AttackBox
= | Random :
Log Aggregation | Traffic :
Viewed El_as:icsae.'-:n L :
via browser -€— Filebeat :
XXXX5601 Packetbeat :
Suricata
Kibana i |
Network —_— :
traffic Target OS(s) Wl ool AutoAttack
Save to .pcap
O

Figure 1. Container-based architecture of GoibhniUWE.

Designed to facilitate the analysis of various attacks and Tactics, Techniques, and Proce-
dures (TTPs), our container-based cyber range is composed of multiple containers. The At-
tackBox runs Parrot OS, a Linux-based distribution that is designed for penetration testing
and that comes pre-loaded with multiple, relevant tools, such as Nmap, msfvenom, etc.
This is used to simulate an engagement by a malicious actor.

Vulnerable services are launched separately and will vary depending on the target
architecture desired. These can consist of single to multiple services which are positioned
throughout the target network, with the option to have these set up to mimic external or
internal services. End users can set up process monitoring on a specific “target” container.
This can be a default Ubuntu or Alpine OS or one of the selected vulnerable container
instances (R2).

Auxiliary containers can also be launched as part of the scenario setup and deployment.
For example, a RandomTraffic container that will generate random traffic targeted at a
provided list of endpoints (or single running service) and an AutoAttack container which
runs automated scans against vulnerable service(s) can be utilised, adding additional
“malicious” traffic to the captured logging. These containers add a degree of “realism”
to scenarios and provide noise to captured logging which can be useful when using the
generated logging in support of research (such as input to Machine Learning (ML), Deep
Learning (DL), or Artificial Intelligence (Al) tooling), as well as for educational purposes.
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Logging is conducted at multiple points to ensure maximum coverage of actions taken.
Network traffic is captured using tcpdump, which is deployed on the host, and Packetbeat
is deployed as a container. A Suricata container configured with default rules is used
as an Intrusion Detection System (IDS). Container logs are captured using Filebeat and,
along with the Suricata logs, are fed into a containerised Elasticsearch instance. The log
aggregation simulates a Security Information and Event Management (SIEM) system and
is fed into a Kibana container, which provides a dashboard for real-time monitoring and
analysis, which can be accessed on the host machine. Logging can be turned on or off, and
different elements of the logging can be run depending on the end user’s requirements;
for example, container logging via Filebeat can be run without Packetbeat, Suricata, or
tcpdump (R2, R3).

All traffic from the host machine is altered to appear as if it originated from the
AttackBox in the saved pcaps. This allows a simulated attack to use web browsers and
other Ul tools that would not be available to the AttackBox container, without introducing
further complexity and while avoiding a “secondary” attacking IP and ensures consistency
of events within the traffic capture. In this way, traffic capture can be used for post-event
analysis or even as part of wider academic research on attack scenarios.

The entire architecture is deployed using a Ul created and launched from a single
Python script, using the Django web application framework. This manages the creation
of the container network, if it does not already exist; deployment of various containers
as required for the target architecture; and the management of logging components and
logging aggregation (R1).

Vulnerable services can be deployed across two Docker networks labelled “external”
and “internal”, with at least one container having access to both networks in each deploy-
ment. This allows for the creation of complex attack scenarios that would require an attack
to move between networks. Figure 2 shows an example infrastructure diagram that is
generated within the Ul as part of the environment setup. This particular example shows
the creation of a multi-network setup and highlights the information made available to
end users at the point of deployment. This diagram is dynamically generated and changes
to match the deployment configuration, and it can be saved as a .png file to be used as
a reference point with the associated logging data. Vulnerable containers can also have
ports exposed via the localhost, allowing for attacks to originate from outside the hosting
machine (instead of using the provided AttackBox container) and the use of GoibhniUWE
as part of a CTF-style deployment.

Container Range Environment Setup

couchdblCVE-2022-24706 - couchdb:172.29.0.102

attackbox:172.28.0.157
°

fjenkins/CVE-2024-23897 - jenkins:172.29.0.103
o

random_traffic:172.28.0.15
L]

. Connected containers indicate they have drect network access

Figure 2. GoibhniUWE Ul infrastructure diagram.

These vulnerable services are pre-populated using the Vulhub [5] repository and are
mapped against their associated CWE [22]; these CWEs are presented for users to select
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from in the first instance, via the UI, as shown in Figure 3. Once a CWE has been selected,
the user can see a list of services and the associated CVEs, as shown in Figure 4. This
allows a user to easily create an attack environment or scenario that fits their requirements.
By utilising an existing repository of vulnerable services, the cyber range facilitates ongoing
learning, allowing users to create scenarios using a growing number of vulnerable services.

GoibhniUWE

All containers are taken from vulhub
Please select from the following - All vulnerabilitiy mappings are done using CWE
Update vulnhub resources and CVE to CWE mappings - Warning this can take a long time

We recommend using Single Service containers if you are unsure or just starting. Using Multiple Service containers may
require some debugging in places due to pre-existing setup specifics

CWE-116-Improper Encoding or Escaping of Output

CWE-/9:Improper Neutralization of Input During Web Page Generation [ Cross-site SCpuing’)
CWE-82%:Inclusion of Functionality from Untrusted Control Sphere

CWE-835:Loop with Unreachable Exit Condition ('Infinite Loop')

CWE-B62:Missing Authorization

CWE-863:Incorrect Authorization

CWE-88:Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection’)
CWE-B:Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)
CWE-917:Improper Neutralization of Special Elements used in an Expression Language Statement (‘Expression Language Injection’)
CWE-918:Server-Side Request Forgery (SSRF)

CWE-91:XML Injection (aka Blind XPath Injection)

CWE-94:improper Control of Generation of Code (‘Code Injection’)

Misc

Multiple Services

Single Services

All

Figure 3. GoibhniUWE Ul initial Vulhub categorisation selection.

CWE-1188:Insecure Default Initialization of Resource

The following CVEs can be deployed - Please note some deployments may require manual configuration.

All containers are taken from vulnhub

couchdb - CVE-2022-24T06 ipython/PIL-CVE-2017-8291
electron - CVE-2018-15685 fjenkins/CVE-2024-23897
spring - CVE-2017-4971 fcouchdb/CVE-2022-24706

Select Remove

Currently selected vulnerabilities

Figure 4. GoibhniUWE UI CVE and service selection.

We also include options to modify the deployments and allow for attackers to practice
container escapes, such as through mounted folders, default root user permissions, or by
making the container itself privileged (or any combination of all three). To facilitate analysis
and training in the detection of such escape methods, process monitoring of the “target”
instance can also be enabled.

5. Experimentation

To provide a comparative analysis against existing cyber ranges, GoibhniUWE was
deployed within a Ubuntu 20.04 (Long-Term Support) VMware VM. The VM was set to run
using 8 GB of memory with four single-core processors to provide a running environment
that could be widely utilised, setting a low barrier of entry for the use of our cyber range
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and addressing considerations of “workspace requirements” for on-demand learning and
deployment [20].

We follow the work of Nakata and Otsuka [16] to establish a baseline comparison for
our experimentation. In their work, they proposed the CyExec* platform and compared
this against SecGen [23], another VM-based container range designed to generate randomly
insecure environments. In their experimentation, Nakata and Otsuka ran between 1 and
10 simultaneous instances of container-, host-, and hypervisor-based cyber ranges, high-
lighting the effectiveness of the container-based cyber range [16]. The metrics they used for
performance were startup time, memory usage, CPU usage, and storage usage. We focus
on the first three metrics in our experimentation and results. As GoibhniUWE uses existing
OS containers and is reliant on Vulhub GitHub [5], elements of storage are beyond our
control; however, it is worth noting that the core files and scripts, not including resources
downloaded from Vulhub, total less than 39MB.

Metrics for the CPU and memory usage were collected by using the “sysstat” func-
tionality, which was run on a poll every 10 s and re-directed to a logging file. We ran
GoibhniUWE under multiple conditions and recorded CPU and memory usage during
startup, platform usage, and shutdown. The tested conditions were as follows:

* T1 (10 containers—no pull or logging): 9 vulnerable service containers with the
required AttackBox running. All container images were on the host system.

* T2 (10 containers—pull and full logging): 4 vulnerable service containers with the
required AttackBox and full logging. All container images were downloaded during
scenario deployment.

* T3 (10 containers—full logging and random traffic): 3 vulnerable service containers
with the required AttackBox, RandomTraffic and full logging. All container images
were on the host system.

* T4 (16 containers—full logging): 10 vulnerable service containers with the required
AttackBox and full logging. All container images were on the host system.

* T5 (12 containers—CTF): 11 vulnerable services and the required AttackBox. No
logging and all container images were on the host system. The CTF ran for 8 h, and
the deployed services were being targeted by up to 12 external attackers at a time.

All conditions except the CTF were run five times, and the reported CPU, memory,
and startup time results were averaged across all five runs. In all conditions, the deploy-
ment was actively used, with vulnerable services targeted/exploited; moreover, where
appropriate, the SIEM was checked, and the logs were analysed.

During one run of the T3 scenarios, we also captured stats around logging. We queried
the indices’ stat endpoints every 10 s to obtain the total number of indexed documents
and looked at the increment between each query. The T3 scenario was based around
an existing APT (Earth Lucsa [24]), creating a scenario that allowed for the use of their
known TTPs, as laid out in Table 1. The services were deployed on both “external” and
“internal” networks, with the Python Flask server running on the “external” network and
both CouchDB and Jenkins running on the “internal” network, as shown in Figure 5. This
was completed to mimic realistic infrastructure deployment and allow for the collection
of complex, APT-level, attack data that span multiple networks, including random web
traffic for noise. The modular nature of GoibhniUWE allows for the creation of multiple
such deployment instances, which can all be tailored to different attack complexities or
specific APT groups and their associated TTPs. For the purposes of this work, we illustrate
how a complex APT scenario can easily be replicated using the GoibhniUWE platform.
The nature of the logging data from this example and similar APT-focused deployments
are part of ongoing research into intelligent threat detection and responsiveness.
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Table 1. MITRE ATT&CK TTP and Action Mapping—Earth Lusca.

MITRE ATT&CK TTP Action Target

Active Scanning: Vulnerability

Scanning-T1595.002 Use of Nmap, dirb, and Nikto Python Flask server
Exploit Public-Facing Reverse shell via crafted Python Flask server
Application-T1190 upload (Ghostscript)
Compromise

Use of compromised Flask
server to launch further
reconnaissance and attacks

Infrastructure-T1584 &
Remote System
Discovery-T1018

Internal services (CouchDB
and Jenkins)

Command and Scripting

Interpreter: Python-Port Crafted Python scripts for

. o CouchDB (CVE-2022-24706)
port scanning and exploitation

scanning-T1059.006
Scenario T3 — Earth Lusca
HOST MACHINE Attack [ TTP  woveeeess =
CONTAINER INTERNALNET\_NORK Incident flow / TTPs utilised
NETWOR K{S :l 1. Enumeration / Service discovery — T1046
t 1 Jenkins § STTR : 2. Vulnerability scanning - T1595.002
: 3. Reverse shell via crafted upload - T1130
4. Compromise Infrastructure - T1584
5. Service discovery (wiz Python) - T1013
6 i 6. Exploit [via Python) - T1059.006
1 CouchDB [ssssias *CouchDB [CVE-2022-24708)
| | EXTERNAL NETWORK B G
i —_— Random
| || Python Flask Web Traffic !
Server :
Log Aggregation !
Viewed | 8 : BBIeE i |
via browser | Elasticsearch : 1-3 )
XXX X:5601 1| Filebeat | }
{| | Packetbeat | | Parrotos Random !
Network i ]| Suricata AttackBox Traffic :
traffic i Kibana . 1 i
Save to _pcap i

Figure 5. Overview of T3—based on known TTPs of APT Earth Lusca.

6. Results and Discussion

Table 2 shows the results of running GoibhniUWE under the different experimental
conditions. The highest average CPU load was below 50%, and the memory usage never
exceeded 5.1 GB, which is the highest reported memory usage for CyExec* [16]. The differ-
ent scenarios showcase the ability to support a large number of containers, complete with
logging (T4, 16 containers including active logging) and a long-running (T5 ran for 8 h),
continually targeted use, with attacks from multiple machines. Importantly, GoibhniUWE
remained stable throughout, highlighting stability and flexibility in deployment scenarios,
with all deployed containers remaining active and in use throughout all scenarios.

Table 2. Sysstat logs and startup times per scenario.

Scenario CPU Usage (%) Memory Usage (GB) Startup Time
T1 11.34 3.18 19s
T2 29.87 3.21 11m34s
T3 27.64 3.28 5m43s
T4 28.96 5.06 5m48s

T5 45.66 422 20s
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The startup time, while lower than the peak startup for comparable ranges (such as
times reported in [16]) is, on average, significantly higher when utilising the full logging
capability. Without this, the startup time is consistent with that of CyExec*.

Table 3 shows the results from the log aggregation stats, gathered during the running
of a T3 scenario. This shows that during the T3 scenario, the Elasticsearch stack was
ingesting an average of 642 logs every 10 s. At its highest point(s), the Elasticsearch stack
was handling 1000 s of logs, while at its lowest, it was still handling around 3 logs a second.
This highlights the significant amount of logging data captured and available when using
GoibhniUWE with full logging, not accounting for the independent network traffic capture.
Due to preset limitations and configuration within the deployed Elasticsearch stack, this
logging can be carried out while still maintaining low computational usage.

Table 3. Log aggregation stats (logs ingested every 10 s)—based on T3.

Logging Source and Average Min Max
Index

Filebeat 118 10 3122

Packetbeat 524 26 9169

One issue that we found with comparing our work to the experimentation carried out
by Nakata and Otsuka [16] is that the hardware used is not discussed. Therefore, while we
have results which indicate CPU usage as a percentage, it is unclear what this is of (4, 8,
12 processors?). We have mapped these percentages to our minimal running environment
to provide a baseline comparison that does not unfairly represent CyEexc* itself.

Figures 6 and 7 show the CPU and memory usage comparison between CyExec*,
SecGen, and GoibhniUWE. The CPU and memory usage for both CyExec* and SecGen
were taken from [16] and are based on their reporting of running “10 scenarios”, which is
the highest reporting point in the study and was mapped to our running environment, as
discussed above. Figure 6a shows a box plot for the different experimental conditions that
GoibhniUWE was run under. The highest reporting point for this comparison (Figure 6a)
includes CPU usage during a fresh pull of all images used and full logging for completeness
of reporting (12). Even when running 10 vulnerable services with full logging (a total of
16 container instances-T4), the CPU usage was less than 7% higher than the 10 “scenarios”
reported for CyExec*, and memory usage was the same for both. We have chosen to run
this many container instances so that our reporting can be equated to having 10 scenarios
(vulnerable instances) as a reporting point, while also using the full logging which is a key
feature of the GoibhniUWE platform. This provides a comparison point which shows there

is a minimal resource consumption increase for an arguably higher workload within the
GoibhniUWE platform.

CPU Usage (%) Memory Usage (GB)

90 Labels Labels

m CyExec* ® CyExec*
80 = SecGen = SecGen

@ GoibhniUWE = GoibhniUWE

30
4
: -
2
0 0
CyExec* SecGen GoibhniUWE CyExec*

SecGen GoibhniUWE

(a) CPU usage: T1-T3 on GoibhniUWE. (b) Memory usage: T1-T3 on GoibhniUWE.

Figure 6. CPU usage (a) and memory usage (b) comparison—with 10 “scenarios” on CyExec* and
SecGen and 10 containers on GoibhniUWE.
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An additional comparison with the Splunk Attack Range [2], a VM-based cyber range
with a focus on logging and “detection development” as a comparison point for a cyber
range with a similar focus on logging as GoibhniUWE, was planned. However, attempting
to run this under the same conditions as GoibhniUWE proved unsuccessful, with the
host VM crashing on two consecutive attempts. To resolve this, the CPU and memory
allocation for the VM were increased to eight processors and 12 GB. Even under these
conditions, the Splunk Attack Range could only be run under minimal conditions (no
Windows Server). At this stage, it was apparent that the significant computational resource
required for deploying the Splunk Attack Range negated the rationale for a comparison
with our lightweight container-based configuration.

Our experimentation shows that we have met the initial design and system require-
ments laid out for GoibhniUWE:

¢ Rl1—Minimal deployment: Even during continuous active usage, the deployment
averaged less than 50% CPU usage and 5.1GB of memory.

*  R2—Modular: Running conditions and deployments can be easily altered in a repeat-
able fashion.

*  R3—Real-time: Real-time monitoring and logging from multiple sources could be
enabled and utilised.

®  R4—Scalability: The number of vulnerable services could be increased, and deploy-
ments could be actively targeted by multiple external attackers.

90 Labels Labels
u CyExec* u CyExec*
a0 u SecGen ® SecGen
= GoibhniUWE = GoibhniUWE

4

20

10 3
0

0
CyExec* SecGen GoibhniUWE CyExec* SecGen

GoibhniUWE

(a) CPU usage: T4 on GoibhniUWE. (b) Memory usage: T4 on GoibhniUWE.

Figure 7. CPU usage (a) and memory usage (b) comparison—with 10 “scenarios” on CyExec* and
SecGen, and 16 containers on GoibhniUWE.

Limitations

While the cyber range has demonstrable applications and helps to meet current gaps
in modular, behavioural analysis for end-to-end engagement research, there are still some
areas which can be improved upon and will be the subject of further work:

*  Host OS. Currently, GoibhniUWE is limited to deployment on Linux-based hosts and,
therefore, Linux-based target architectures. The use of containerisation should make
the transition to Windows and MacOS hosts relatively straightforward; however, this
has not been fully explored to date.

*  Manual engagements and attack modelling. While the setup of the target environment
and container architecture itself is automated, the role of the attacker is a manual
process which is carried out by the end user. Though this does offer a degree of
flexibility for experienced users, it does leave a gap in the ranges offering, as some
VM-based cyber ranges do provide automated attacks (or simulations) through tools
such as AtomicRedTeam [3].

¢ Log exporting. Currently, the traffic capture and IDS logs are saved locally to the host
machine (IDS logs are also consumed by the Elastic stack). However, the collated Elas-
tic logging, which includes all container logs and IDS logging, needs to be manually
exported via elasticdump [25].
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7. Conclusions and Further Work

In this paper, we presented GoibhniUWE, a modular container-based cyber range
which is designed for the behavioural analysis of end-to-end engagements. By including
multiple sources of monitoring and logging within the range itself, system logs, service
logs, network captures, IDSs, and running processes, we can provide real-time analysis (via
the Elastic stack) and data that can be easily exported and investigated in-depth after an
engagement has been modelled.

The modular nature of the range allows end users to easily change out vulnerable
services, modifying or removing services within the target deployment. These changes
can be made prior to the setup of a target architecture or even during the live modelling of
an engagement.

We have kept the GoibhniUWE system lightweight, able to handle 1000 s of logs a
second during engagement modelling, with a minimal impact on computational usage,
with a deployment running 16 container instances and full logging averaging 28.96% CPU
usage (in a 4 single-core processor environment). Even with a continuously active, a multi-
scenario (11 vulnerable services) CTF deployment run over 8 h GoibhniUWE averaged a
CPU usage score of less than 50% and less than 4.5 GB of memory.

Our modular approach, using existing OS vulnerable services, with a minimal re-
source deployment helps GoibhniUWE address issues highlighted in a recent Cyber Range
Design Framework (CRDF) [20], namely the need for ongoing, layered learning and the
consideration of “workspace requirements” for on-demand learning and deployment.

GoibhniUWE also has demonstrable research use cases, having already been utilised
to model complex, APT-level attacks spanning multiple services and networks. Due to
inbuilt logging within the platform, the data generated from these attack scenarios can be
used to create synthetic datasets to help further research within intelligent threat detection
and responsiveness.

We have made GoibhniUWE available as an open-source project to help facilitate
further research in this area, as well as to serve as an educational tool for community
use. All relevant material, including the GoibhniUWE cyber range itself, can be found at
https:/ / github.com/uwe-cyber/GoibhniUWE (accessed on 23 August 2024).
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Appendix A. CWEs Available via Vulhub and GoibiniUWE

Table A1. CWEs available.

CWE

CWE-19: Data Processing Errors

CWE-20: Improper Input Validation

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (Path Traversal)
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream
Component (Injection)

CWE-78: Improper Neutralization of Special Elements used in an OS Command (OS Command
Injection)

CWE-79: Improper Neutralization of Input During Web Page Generation (Cross-site Scripting)
CWE-88: Improper Neutralization of Argument Delimiters in a Command (Argument Injection)
CWE-89: Improper Neutralization of Special Elements used in an SQL. Command (SQL Injection)
CWE-91: XML Injection (aka Blind XPath Injection)

CWE-94: Improper Control of Generation of Code (Code Injection)

CWE-116: Improper Encoding or Escaping of Output

CWE-125: Out-of-bound Reads

CWE-184: Incomplete List of Disallowed Inputs

CWE-190: Integer Overflow or Wraparound

CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

CWE-269: Improper Privilege Management

CWE-276: Incorrect Default Permissions

CWE-284: Improper Access Control

CWE-287: Improper Authentication

CWE-288: Authentication Bypass Using an Alternate Path or Channel

CWE-290: Authentication Bypass by Spoofing

CWE-306: Missing Authentication for Critical Function

CWE-307: Improper Restriction of Excessive Authentication Attempts

CWE-319: Cleartext Transmission of Sensitive Information

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (Race
Condition)

CWE-384: Session Fixation

CWE-434: Unrestricted Upload of File with Dangerous Type

CWE-502: Deserialization of Untrusted Data

CWE-502: Deserialization of Untrusted Data

CWE-552: Files or Directories Accessible to External Parties

CWE-601: URL Redirection to Untrusted Site (Open Redirect)

CWE-611: Improper Restriction of XML External Entity Reference

CWE-704: Incorrect Type Conversion or Cast

CWE-755: Improper Handling of Exceptional Conditions

CWE-787: Out-of-bound Writes

CWE-829: Inclusion of Functionality from Untrusted Control Sphere

CWE-835: Loop with Unreachable Exit Condition (Infinite Loop)

CWE-862: Missing Authorization

CWE-863: Incorrect Authorization

CWE-917: Improper Neutralization of Special Elements used in an Expression Language
Statement (Expression Language Injection)

CWE-918: Server-Side Request Forgery (SSRF)

CWE-1188: Insecure Default Initialization of Resources
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