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Abstract— Despite the significant advances made by Artificial 

Intelligence (AI) models in enhancing medical diagnostics and 

prognostics, their opacity poses a hurdle to widespread clinical 
adoption. In this regard, Explainable AI (XAI) aims to demystify 

these complex models, such as neural networks, by revealing the 

reasoning behind predictions. However, a notable gap exists in 

enabling non-experts to verify these explanations, necessitating 
human-in-the-loop evaluation. This paper introduces a systematic 

protocol, including a novel "consistency" metric, to evaluate the 

SHAP-based explanations of XAI, comparing them against the 
clinical knowledge of expert clinicians. We demonstrate how this 

metric could facilitate both global and feature-specific analyses, 

operating at the level of individual instances, and thus enhancing 
AI transparency. It is conceived that the implications of this work 

may extend beyond the medical context, offering a standardized 

methodology that could potentially improve the interpretability 

and acceptance of AI systems in diverse domains.  
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I. INTRODUCTION 

emerged as powerful and precise methodologies for the 
development of computer-aided diagnostic systems, 
revolutionizing the approach to patient care and clinical 
decision-making. Despite their proven effectiveness, the 
underlying mechanisms of AI/ML algorithms are frequently 
intricate and opaque, making them challenging for users to 
interpret. This complexity poses a significant barrier, 
particularly in healthcare settings where decisions directly affect 
human lives. In such critical domains, the demand for 
transparency and understandability in the algorithmic outputs 
becomes paramount. Ensuring that these outputs are 
comprehensible not only to the technical community but also to 
end-users, including clinicians and patients, is crucial for 
fostering trust and facilitating the integration of AI/ML solutions 
into healthcare practices. Transparent AI/ML systems empower 
users by providing insight into the decision-making process, 
thereby enhancing their confidence in leveraging these 
technologies for diagnostic and therapeutic purposes. 

Explainable AI (XAI) has been developed as a crucial 
response to the opacity of AI/ML models, which are often 
criticized for their "black box" nature. XAI encompasses 
methodologies that enable the generation of insights into the 
underlying factors influencing the predictions made by these 

models [1]. The primary objective of XAI is to enhance the 
transparency, accountability, and reliability of AI systems, 
making them more approachable, equitable, interactive, and 
informative [2]. Such explanations are crafted to be 
comprehensible to the intended audience within the healthcare 
sector, including both clinicians and patients, thereby bridging 
the gap between complex AI decision-making processes and 
practical clinical applications. The significance of XAI is 
particularly pronounced in healthcare, a sector characterized by 
stringent regulatory standards. For instance, the General Data 
Protection Regulation (GDPR) by the European Union 
mandates that patients are entitled to receive clear explanations 
regarding the automated decisions affecting their care. This 
regulatory context underscores the necessity for XAI in ensuring 
that AI-driven healthcare solutions are not only advanced and 
efficient but also aligned with legal and ethical standards, 
promoting a transparent and patient-centric approach to medical 
care [3]. 

A central ambition of Explainable AI (XAI) is to bolster the 
trust in AI technologies, especially in sectors that are either 
stringently regulated or demand high levels of precision, such as 
healthcare. Achieving trustworthy AI involves adhering to 
several key principles, including human agency and oversight, 
system robustness, privacy and data governance, transparency, 
fairness and non-discrimination, and accountability [4]. XAI 
systems rely on the transparency principle that advocates for the 
decisions made by an AI system to be understood and traced by 
human beings. This transparency is critical, as it allows domain 
experts and stakeholders to review and affirm the decisions 
suggested by AI, ensuring these decisions are clear, justifiable, 
and in line with expected outcomes. 

However, the challenge often arises in the capacity of non-
experts users to assess the accuracy of these explanations, 
highlighting the importance of establishing universally 
recognized metrics within the field. This necessity arises from 
certain fundamental characteristics of explanations that require 
assessment, such as the sensitivity of the explanation to 
variations in input, the precision with which the explanation 
identifies the most critical features, the veracity of 
counterfactual explanations, and the fairness of the model. Each 
of these aspects plays a crucial role in evaluating the 
effectiveness and reliability of explanations provided by AI 
systems, ensuring they are robust, equitable, and accurately 
reflective of the underlying decision-making process.  
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Furthermore, the influence of users on the assessment of 
XAI systems is significant, shaping the methodology for 
evaluation. This perspective is highlighted by Doshi-Velez et al. 
through the introduction of a three-tiered framework for 
evaluation, encompassing application-grounded, human-
grounded, and functionally-grounded approaches [5]. Numerous 
metrics and methodologies, though not initially designed for the 
assessment of XAI within the healthcare context, have proven to 
be highly applicable to the medical field. Nevertheless, there are 
occasions when a more tailored, domain-specific evaluation of 
XAI models becomes crucial. This is largely due to the 
specialized knowledge that medical experts possess regarding 
specific use cases, which may not be readily apparent to 
computer scientists. Consequently, incorporating healthcare 
professionals into the evaluation phase of XAI systems can 
significantly enhance the quality and relevance of the outcomes. 
Their expert insights can ensure that the models are not only 
technically proficient but also clinically pertinent, aligning more 
closely with the practical needs and complexities of the 
healthcare domain [6]. 

Due to this identified gap, different metrics are emerging in 
the scientific community to approach better the XAI explanation 
to the final users. Pietilä and Moreno-Sanchez propose a 
taxonomy where metrics are categorized into different classes 
based on the domain target as well as the involvement of non-
experts users in the validation of the metric. More granular 
classes are also proposed aligned with the aim of the metric, 
including robustness, faithfulness, fairness, understandability, 
contrastivity or sparsity [7]. 

The main objective of this paper is to propose an assessment 
metric designed to validate the explanations provided by a 
medical XAI system. This validation is achieved by comparing 
the system's explanations to the expert clinical knowledge of 
clinicians, who represent the potential users of the system's 
decision-making outputs. We seek to contribute to the ongoing 
efforts of developing metrics embracing the human-in-the-loop 
approach to validate XAI explanations in the healthcare domain. 

II. MATERIAL AND METHODS 

A. 3P-U System 

The Amiens Picardy University Hospital has developed a 
model of “Prediction of the Patient Pathway in Emergency 
Department” (3P-U) to predict the patient outcomes based on 
triage data [8, 14]. The predictive model using the structured 
data is based on a Neural Network (NN), which is considered as 
a black-box generating technique [9].  In cases of missing data, 
imputation was implemented using the "physiological value" for 
bio-variables and the mode value for administrative variables, as 
outlined in Table 1. It is crucial to emphasize that, particularly 
in emergency medicine, the absence of certain data points does 
not necessarily indicate a deliberate error; instead, they are 
categorized as "Data Not Collected Purposely" (DNPC) [10]. 

Despite its application in the COVID strategy [11] to 
improve unit organization, the individual acceptance of 3P-U for 
optimizing patient pathways remains limited. A local survey 
identified the primary reason for this skepticism as the perceived 
lack of explainability in the predictions. In response, we aimed 
to enhance the 3P-U's interpretability by developing an XAI 

model, in a currently under-review article. Factors indicating a 
lower likelihood of admission included younger age, limb 
trauma presentation, FRENCH [12] level 4 or 5 classification, 
arrival in a personal vehicle, and a normal heart rate. However, 
physicians are keen to ascertain whether the automatically 
generated explanation aligns with what an expert could derive 
from their clinical knowledge. 

Table 1. Description of the 3P-U Dataset 

Patient Records 319,460 

Years of Inclusion 2018 to 2023 

9 Categorical 
Variables 

Arrival, Gender, Origin Arrival 
Modality, Accompaniers, Family Status, 
Waiting Modality,  Reason for 
Encounter, Circumstances 

17 Numerical 
Variables 

Age, Oxygen Flow, Heart Rate, 
Respiration Rate, Systolic Blood 
Pressure, Diastolic Blood Pressure, Pain 
Scale, Temperature, Oxygen Saturation, 
Capillary Blood Glucose, Capillary 
Blood Hemoglobin, Bladder volume, 
Capillary Blood Ketones, Breath Test of 
Alcohol, Nurse Triage Scale 

 

B. Shapley Additive Values (SHAP) 

SHAP (SHapley Additive exPlanations) represents a 
prominent framework in the realm of interpretability, aimed at 
elucidating the output of complex machine learning models. 
This framework, a key aspect of Explainable Artificial 
Intelligence (XAI), was introduced by Lundberg et al. and offers 
a comprehensive method to dissect the influence of individual 
features on the predictions made by models. SHAP values 
facilitate a granular understanding of how each feature 
contributes to specific predictions, shedding light on the 
rationale behind a model's decisions for individual data points. 
Additionally, SHAP provides an overarching analysis of a 
model's behaviour by aggregating the impact of features across 
all predictions, which is instrumental in uncovering broad 
patterns and insights within the dataset. Beyond offering insights 
into model behaviour, SHAP values are crucial for comparing 
and evaluating models based on how their predictions are 
influenced by different features, thus playing a significant role 
in model selection and refinement. 

The foundation for calculating SHAP values is based on 
game theory's Shapley value formula, which ensures an 
equitable and mathematically sound attribution of contributions 
among all input features. The Shapley value is calculated as 
follows: 

𝑆𝐻𝐴𝑃 𝑣𝑎𝑙𝑢𝑒 = ∑
|𝑆|! (|𝑁| −|𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]

𝑆∈𝑁\{𝑖}

 

In this formula, N is the set of all features, S is a subset 
excluding the feature 'i' for which the SHAP value is calculated. 
f(S) is the model's output with only features in S, and f(S ∪ {i}) 
is the output when feature 'i' is added to S. This approach 
precisely allocates prediction output among input features, 
revealing their relative importance in the model's decision-
making [13]. 

  



Figure 1. Protocol in four steps: (1) Scoring by physicians: 1A with 

XAI, 1B by physicians (2) Global consistency (3) Feature-wise 

consistency (4) Dot plot for visual comparison: 4A generated with 

physicians’ scores, and 4B by XAI. 

 

C. Consistency Metric 

We aim to establish a quantitative metric, referred to as 
"consistency," to measure the disparity between explanations 
provided by clinicians and the 3P-U system. Our assessment 
specifically centres on cases where 3P-U aligns with the final 
medical decision, such as instances resulting in the admission of 
patients to the emergency unit. 

On one hand, we request physicians to distribute a total of 
100 points across the set of features identified by 3P-U as 

significant for an individual explanation. This distribution 
involves evaluating whether each feature value positively or 
negatively contributes to the likelihood of admission, as 
depicted in Figure 1-1A. On the other hand, we generate 
instance explanations represented by SHAP values arranged in 
a "waterfall" format (Figure 1-1B). The y-axis encompasses all 
the relevant features influencing the prediction. The SHAP 
values for each feature are then added to the base SHAP value, 
with red indicating a positive contribution to the probability of 
admission and blue indicating a negative contribution. 

To facilitate a direct comparison, we normalize the SHAP 
values to the same range (100 points) as the physician's 
explanation using Equation 1. At this stage, we have established 
two datasets: one consisting of the scaled SHAP values, and the 
other reflecting the physician's expertise. 



∑ ⬚ 𝑎𝑏𝑠(𝑆𝐻𝐴𝑃𝑣𝑎𝑙𝑢𝑒𝑠)
⬚
⇔ 100 𝑝𝑜𝑖𝑛𝑡𝑠 (1) 

D. Integral Assessment of Explanations 

To evaluate the overall consistency of the XAI explanation 
for an individual prediction, we conduct a paired-student test 
comparing scores assigned by physicians and the XAI on pairs 
of instances-features (Figure 1-2). At this stage, we globally 
compare the distribution of scores provided by XAI and 
physicians. If the test reveals no significant difference, we 
cannot reject the null hypothesis that the explanation from XAI 
is essentially the same as the physician's (and we can conclude 
here). However, if the test indicates a significant difference 
between the two groups (p < 0.05), rejecting the null hypothesis, 
we proceed to assess consistency for each feature considered in 
the explanation. 

E. Feature-Based Assessment of Explanations 

If a statistically significant difference emerges between the 
explanations provided by the 3P-U system and clinical experts 
concerning an individual instance prediction, we proceed to 
scrutinize the consistency of each feature included in the 
explanation. To evaluate the feature-wise consistency of the 
XAI explanation, we conduct a paired-Student test for each 
feature, comparing the distribution of explanation points given 
by the 3P-U system (scaled SHAP values) and those provided 
by physicians (Figure 1-3). Similar to the assessment of global 
consistency for an individual instance, for features where the test 
reveals no significant difference (thus unable to reject the null 
hypothesis), we can assert that the explanation generated by the 
XAI technique applied to 3P-U for these features is significantly 
consistent with the physician explanations, and vice versa. 
Significant differences will highlight features contributing to the 
disparities between the two global explanations. 

F. Comparative Analysis of XAI and Clinical Perspectives 

The global XAI explanation is visually depicted through a 
beeswarm plot, where all features are listed on the y-axis. The 
feature's contribution to the probability of admission is given 
along the x-axis, with negative contributions on the left and 
positive contributions on the right. Additionally, the feature's 
value is color-coded, ranging from low (blue) to high (red). For 
example, a higher age (in red) corresponds to an increased 
probability of admission (on the right), while arriving with 
personal mode (also in red) negatively contributes (on the left) 
to the probability of admission (Figure 1-4B). 

III. DISCUSSION 

The proposed protocol aims to evaluate the accuracy of XAI 
in comparison to medical expertise and address the fundamental 
question: Does the XAI explanation align with physicians' 
explanations? A prospective study is scheduled at Amiens 
Picardy University Hospital, where the XAI results will be 
compared with explanations from multiple physicians across 
different centers. However, several questions remain open 
within this protocol including: 

• How many clinicians are required? We anticipate 
involving at least eleven physicians from a minimum 
of two centers, representing an ambitious goal. 

• How many cases should each clinician assess to 
identify differences effectively? We aim for each 
physician to evaluate a minimum of twenty cases, also 
considered an ambitious target. 

• How can a consensus among multiple clinicians be 
reached for a single case? Our plan involves utilizing 
the average score for each feature in every case. 

• In the event of misalignment between XAI and 
physicians' explanations, is it feasible to incorporate 
this knowledge into a unified explainability model? 

IV. CONCLUSIONS 

In this study, we outlined the preliminary stages of a 
systematic approach for evaluating the alignment between XAI-
based insights and those offered by medical professionals. The 
prospective study at Amiens Picardy University Hospital will 
aim to rigorously assess the XAI's capacity to provide 
explanations comparable to expert medical knowledge. 

The potential of our work lies in bridging the gap between 
XAI and medical expertise. By emphasizing the need for 
refining XAI systems, we strive to enhance decision support in 
healthcare. As our study progresses, we remain committed to 
refining our protocol and contributing valuable insights to the 
evolving landscape of XAI in medicine. 

Beyond its immediate medical application, the proposed 
protocol could have broader implications. It can contribute to the 
understanding of XAI’s interpretability, acting as a foundational 
step in bridging the gap between AI and expert knowledge 
across diverse domains. 
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