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ABSTRACT
This paper describes the development of a bioinspired composite material capable of audio classification applications. Hydrogel
matrices produced by microorganisms combined with synthetic biology elements, allow for the development of adaptable
bioelectronics that connect biology and technology in a customized way. In this study, a composite population of kombucha,
chlorella, and proteinoids (thermal proteins) is utilized to respond to acoustic signals converted to electrical waveforms. The
kombucha zoogleal mats, which are made and populated by over 60 species of yeasts and bacteria, offer a matrix at the
micro level that is connected to the photosynthetic microalgae chlorella. Proteinoids formed through thermal condensation
exhibit unique patterns of signaling kinetics. This living material has the ability to be electrically stimulated and can process
signals in a way feasible for sensory applications. Using English alphabet audio inputs, a systematic analysis demonstrates the
capability to differentiate audio waveforms based solely on biological composite responses. The use of spectral analysis allows
for the identification of specific spike timing patterns that encode unique characteristics of individual letters. Moreover, network
disturbances result in specific changes in output, so validating the ability to adjustwaveform classification. The study demonstrates
that kombucha–chlorella–proteinoid composites provide a durable and versatile bioelectronic platform for immediate auditory
processing. The work represents progress toward the development of bioelectronic systems that can be customized based on the
principles of biological sensory processing, cognition, and adaptation.

1 Introduction

The differentiation of complex auditory stimuli is a widespread
yet demanding task for artificial systems [1–3]. Machine learning
algorithms have made significant progress in audio classification
[4–6]. However, bioinspired techniques offer exciting possibilities
to surpass current efforts [7–9]. Bioinspired techniques have
exhibited encouraging outcomes in diverse audio analysis tasks,
showcasing their capacity to enhance conventional methods.
Strisciuglio et al. [7], introduced a layered symbolic sequence
representation for audio event identification, drawing inspiration

from the hierarchical structure of the auditory system. This
bioinspired approach sought to capture the temporal structure
of audio events with greater efficacy compared to traditional
methods. The human auditory system influences the process of
acquiring audio phrases, which are chains of audio elements. The
audio phrases were used for audio event recognition, showcasing
the benefits of incorporating biologically inspired concepts. In
addition, Polap et al. [8] and Chmulik et al. [9] created train-
able COPE (Combination of Peaks of Energy) filters for audio
analysis. The functional principles of the cochlea and inner
hair cells in the human auditory system guided the design of
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these filters. The bioinspired filters were autonomously tuned to
identify specific sound patterns and effectively used for audio
event detection tasks, demonstrating enhanced performance
compared to conventionalmethods. These examples demonstrate
how bioinspired techniques, which imitate specific elements of
the human auditory system, can provide novel approaches to
describe and manipulate audio signals, resulting in improved
performance in different audio analysis tasks. The efficiency of
these approaches implies that further investigation into bioin-
spired methods has the potential to transcend the constraints
of current techniques and advance the field of audio analysis.
A new approach is the combination of living cellular cultures
[10] with nanoscale advances [11] to create adaptive materials
that can execute computational categorization [12] on their
own. The inherent electrical signaling in networks of bacterial
[13–15], algal [16, 17], kombucha zooglealmats [18], and proteinoid
microspheres [19–22] can facilitate advanced recognition features.
Nevertheless, achieving an appropriate categorization response
necessitates a delicate equilibrium of the constituent biochemical
and biophysical properties [23] when developing the composite
architecture. In this study, we present a novel hybrid material
consisting of kombucha cultures [24], chlorella microalgae [25],
and synthetic proto-cells (microspheres made of thermal pro-
teins, proteinoids). Kombucha produces a cellulose matrix that
supports the growth of many organisms and releases metabolites
that stimulate redox reactionswith the proteinoids. Chlorella pro-
vides light-sensitive pigments for converting light energy, while
the proteinoid chains serve as pathways for transferring charges
through peptide backbone transport [26]. The electrical impulses
of this biocomposite combine and adapt in specific patterns that
are exclusive to each of the 26 letters of the English alpha-
bet [27]. Integrating extracellular recordings [28] with machine
learning uncovers the significant influence of slight variations in
kombucha fermentation, chlorella growth media, and proteinoid
chain length on classification performance. The optimal cultures
obtained a discriminating accuracy of over 80% by using tunable
biochemical interactions to discriminate among the 26 letters of
the English alphabet. The ability to customize the identification
of audio using only modular biomaterial composition is a flexible
approach for developing intelligent materials [29]. The findings
emphasize the importance of utilizing cooperative phenomena in
designer biomolecular matrices [30] to establish the foundation
for audio recognition interfaces that are environmentally friendly.
In a broader sense, this biointegrativemethodology sheds light on
a viable approach for distributed biocomputation using modified
living components. In recent years, the field of biomimetic
technology has achieved significant advancements, namely, in
the area of speech and audio processing. Scientists have attempted
to replicate the complex structure and function of the human
auditory system in order to develop new methods for classifying
sound and voice signals. The exceptional capacity of the human
auditory system [31] to perceive and comprehend intricate acous-
tic data has encouraged the advancement of diverse biomimetic
technologies [32] with the aim of mimicking this ability. An
excellent method in this domain is employing neural mimicking
sensor networks [33] to classify sounds. These networks are
developed to replicate the form and operation of biological neural
networks, particularly those involved in auditory processing
[34]. These artificial neural networks can efficiently learn and
adapt to complicated acoustic environments by imitating the
hierarchical organization and interconnectedness of neurons in

the human auditory system. As a result, they can accurately
identify and classify specific sounds or voices. The progress in
machine learning and deep learning techniques [35] has greatly
contributed to the development of neural mimicry sensor net-
works. Thesemethods enable the networks to acquire knowledge
from extensive auditory data, enabling them to identify important
characteristics and patterns that aid in precise classification. The
capacity of these networks to adjust and enhance their efficiency
over time through ongoing learning is a crucial characteristic
that resembles the flexibility and adaptability of the human
auditory system. Another important field of study in biomimetic
technology for audio processing involves the advancement of
biologically inspired materials and sensors [36, 37]. The purpose
of thesematerials is to imitate themechanical and electrical char-
acteristics of the components of the human auditory system, such
as the cochlea and hair cells [38]. Researchers used the distinctive
characteristics of these biomimetic materials to create sensors
that are extremely sensitive and capable of detecting and convert-
ing acoustic waveswith exceptional accuracy. The combination of
neural mimicry sensor networks [39] with bioinspired materials
presents opportunities for the development of sophisticated audio
classification systems. These hybrid approachesmerge the advan-
tages of both technologies, allowing for the development of audio
processing systems that are very efficient and precise, comparable
to the performance of the human auditory system. Although
biomimetic technology for voice and audio processing has made
great development [40], there are still problems and prospects
for further advancement. The complex and unpredictable nature
of actual acoustic surroundings presents continuous challenges
in constructing resilient and universally applicable classification
algorithms. Furthermore, the requirement for energy-efficient
and scalable solutions motivates research into innovative materi-
als and architectures that can fulfil the requirements of real-time
audio processing applications [41]. Our present study is centered
around developing a new composite material for audio signal
classification. This material is made up of kombucha cultures,
chlorella microalgae, and synthetic proteinoids. Our goal is to
contribute to the progress of biomimetic technology for speech
and audio processing by harnessing the distinct characteristics
and combined impacts of these bioinspired components. We will
build upon the foundations established by earlier groundbreaking
research in this area. A major breakthrough in the realm of
biomimetic technology for audio processing is the biomimetic
artificial ear [42, 43]. This technique aims to duplicate the com-
plex structure and function of the human ear, with an end goal of
developing systems that can effectively categorize and identify a
broad spectrum of sounds. Researchers have been motivated to
develop artificial counterparts that can imitate the remarkable
capacity of the human ear to capture, magnify, and comprehend
auditory signals across a wide range of frequencies [44, 45].
The biomimetic artificial ear [46, 47] generally has multiple
essential components that replicate the anatomical structure of
the human ear. These components consist of an artificial eardrum
that responds to sound waves, an artificial cochlea [48] that turns
the vibrations into electrical signals, and a set of artificial hair
cells that detect and convert these signals. By precise design
and flawless combination of these elements, researchers have
achieved notable advancements in the development of artificial
ears that nearly emulate the functionality of natural ears. The
biomimetic artificial ear offers a significant benefit in terms of
improved sound localization and directional hearing [49]. The
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distinctive morphology of the human ear, coupled with the sym-
metrical arrangement of two ears, enables accurate localization of
sound in terms of both direction and distance. The goal is to build
systems that can precisely locate and monitor sound sources in
complex acoustic environments by integrating these aspects into
the architecture of the artificial ear. Moreover, the biomimetic
artificial ear’s capacity to analyze and categorize sounds over a
broad range of frequencies is particularly interesting in the realm
of acoustic signal processing. Using advanced signal processing
techniques and machine learning algorithms, these artificial ears
may be educated to identify and differentiate between different
auditory stimuli, including speech, music, and ambient sounds
[50]. This feature has substantial implications for the use of
speech recognition, audio surveillance, and hearing assistance
equipment.

The cellulose nanofiber network obtained from kombucha offers
a flexible and highly responsive base, enabling effective con-
nection with incoming audio waves. At the same time, the
photosynthetic pigments found in chlorella provide it with
optoelectronic capacity [51], allowing the material to react to
changes in light intensity that may come with audio signals. The
synthetic proteinoids possess a self-assembling characteristic that
gives the composite piezoelectric characteristics [52], enabling the
transformation of mechanical vibrations into electrical impulses.
The selection of these elements and their precise proportion
(40%/60% proteinoids/kombucha–chlorella) was determined by
extensive preliminary testing, which demonstrated that this spe-
cific combination displayed the most favorable audio-responsive
characteristics.

In order to demonstrate a direct correlation between the com-
position, structure, and audio classification performance of the
material, we use different methods for characterization such
as scanning electron microscopy (SEM) and Fourier-transform
infrared spectroscopy (FTIR). These analyses offer quantitative
insights into the microstructure and chemical composition of
the material, enabling a deeper understanding of how these
components impact its electrical and acoustic properties. In this
study, we present the successful development of a new com-
posite material that combines the advantageous characteristics
of kombucha, chlorella, and synthetic proteinoids to enhance
audio signal processing. The findings obtained from this work
not only emphasize the possible uses of the material in audio
categorization but also make a valuable contribution to the wider
field of biologically derived functional materials.

2 Methods andMaterials

Proteinoid microspheres were synthesized using a five-step
method, as depicted in Figure A1. The main amino acids used
in the present study were L-glutamic acid and L-arginine. Sigma
Aldrich provided these amino acids, which had a purity better
than 98%. There was no extra purification of these amino acids
prior to their use in the experiments. A reflux apparatus with a
heated plate, consisting of a 50 mL flask, was used to synthesize
the proteinoids.

The amino acid combinations underwent thermal polymeriza-
tion prior to being dissolved and precipitated from an aqueous

solution. The synthesis process was finalized by conducting
lyophilization, sample collection, and analytical characterization.
This process is illustrated in Figure A1, where the different
steps are represented by labeled transformation arrows αϵ. The
utilization of a multistage method facilitated the preparation
of proteinoid polymeric microspheres using basic amino acid
precursors.

In order to ensure the replication of our findings, we have
enforced rigorous monitoring protocols on the biological and
environmental factors that are critical to our experiments. The
synthesis of proteinoid microspheres and the maintenance of
the kombucha–chlorella matrix were carried out in a controlled
laboratory environment with regulated temperature, humidity,
and sterility conditions. All reagents and materials used were of
analytical grade in order to reduce variability. Throughout the
experiments, the pH, temperature, and other important factors
were constantly monitored and kept within the defined ranges.

Figure A2 depicts a multistep biofabrication process for pro-
ducing kombucha–chlorella conductive matrices. The cellulose-
producing kombucha culture was first brewed from black tea and
sugars (Figure A2, step 1).

A kombucha mat, obtained originally from Freshly Fermented
Ltd. (Lee-on-the-Solent, PO13 9FU, UK), was utilized for the
production of kombucha proteinoid biofilms. To prepare the
infusion, 5 L of tap water was boiled, and then 500 g of white
granulated sugar (Tate & Lyle, UK) and 10 tea bags (Taylors
Yorkshire Teabags 125 g, UK) were added to a plastic container.
After allowing the solution to cool to room temperature, the
kombucha mat was placed in the container and stored in an
environment without light at a temperature range of 20◦C–23◦C
The kombucha was then inoculated with a microalgal chlorella
culture (Blades Biological Ltd.), and the kombucha and chlorella
were co-cultured to generate a blended cellulose mat (Figure A2,
processes 2 and 3).

Electrodes were inserted within the kombucha zoogleal mat
(Figure A2, step 4). Finally, the responsiveness of the living
bioelectronic interface was characterized by exposing it to exter-
nal signal stimuli and recording electrical outputs (Figure A2,
step 5). The experimental setup for measuring the differential
potential across the kombucha–proteinoid matrix is shown in
Figure 1a. The kombuchamat, whichwas infusedwith proteinoid
microspheres, was prepared as described previously. Six pairs of
platinum–iridium electrodes (E1–E6) were inserted into the mat
at various locations to measure the local potential differences.
The electrical potential of the kombucha–chlorella–proteinoids
(KCP) liquid mixture with a composition of 40% kombucha–
chlorella (KC) and 60% proteinoids (P) was measured using the
experimental setup shown in Figure 1b. The electrodes, inserted
at a distance of 10mm,were connected to a sourcemeter to record
the potential differences across the mixture over time.

The experimental methods employed a BK Precision 4053 MHz
dual channel waveform generator to provide the electrical stim-
uli. Platinum–iridium electrodes with a diameter of 0.2 mm
and a spacing of 10 mm were submerged in the KCP solutions
to transmit signals and capture responses. The data collecting
process involved utilizing a Rigol oscilloscope (2 Channel 100
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FIGURE 1 (a) Experimental configuration for detecting the difference in electrical potential across a kombucha mat. The kombucha mat, which
consists of a complex structure of bacterial cellulose fibers is displayed beside six pairs of platinum–iridium electrodes (labeled E1 to E6) that have
been implanted at different positions. The electrode pairs include a working electrode (WE) and a reference electrode (RE), enabling the monitoring of
local potential changes inside the mat. The electrodes are linked to a multichannel data collection system (which is not visible) to enable continuous
monitoring of the differential potentials across the kombuchamat. (b) Experimental setup for measuring electrical properties of the KCP liquid mixture.
The mixture, composed of 60% kombucha–chlorella (KC) and 40% proteinoids (P), is shown in a container with two electrodes inserted at a distance
of 10 mm. A source meter is connected to the electrodes to measure the electrical characteristics of the mixture, such as conductivity and potential
differences, which may provide insights into the spontaneous oscillations and signal integration capabilities of the KCP system.

MHz–1GSa/s), PicoLog ADC-24, and Picoscope, in addition to a
Keithley 2450 sourcemeter for electrical measurements.

The apparatus used to analyze the responses of the KCP proto-
brain to auditory stimuli consisted of a microphone, MATLAB,
a function generator, a sample of KCP, and an oscilloscope
(Figure A3). The microphone and laptop were used to gather
audio recordings of the pronunciations of individual letters of the
English alphabet by a male speaker. The English audio signals
corresponding to the English alphabet utilized in this study were
sourced from the freely available database at https://freesound.
org/people/dersuperanton/sounds/434730/.

The recordings were analyzed using MATLAB to produce CSV
files that contain the values of stimulus potential. An audio CSV
stimulus was supplied to the KCP sample using iridium-coated
stainless steel subdermal needle electrodes (Spes Medica S.r.l.,
Italy), facilitated by a BK Precision 4053 function generator. The
KCP responses were recorded using a PicoScope 4000 oscillo-
scope and stored as CSV files for subsequent study. This experi-
mental setup facilitated the stimulation of KCP by audio playback
and the monitoring of their corresponding electrical reactions.

3 Results

The synthetic KCP systems were studied using a multifaceted
analytical approach that included microscopy, electrophysiology,

and spectral techniques. This comprehensive approach provided
valuable insights into the emergent cognitive properties of these
systems. The microscopic imaging revealed a detailed view of
the complex morphological landscape, with proteinoids forming
clusters within kombuchamatrices that were home to a variety of
microbial species. The electrical recordings revealed fascinating
stimulus–response patterns, showcasing the emergence of oscil-
lations during information encoding and gradual adaptationwith
repeated exposures. The spectral analysis revealed the presence
of neural-like rhythms at various spatiotemporal scales, which
play a crucial role in driving intrinsic memory phenomena. In
addition, an analysis of potential dynamics revealed different
patterns in various network regions, suggesting the presence
of retrieval and learning mechanisms. This study explores the
complex dynamics of cognition-like behaviors exhibited by the
KCP. It provides an analytical framework to understand the
connections between morphology, physiology, and computation
in synthetic proto-brain constructs.

3.1 Morphological Analysis

The SEM analysis offers vital information regarding the structure
and size distribution of the proteinoid microspheres that grow
in the kombucha substrate. Figure 2a demonstrates that the
proteinoid microspheres consistently possess a spherical form,
with diameters ranging from 1 to 2 µm. The restricted size
distribution indicates a highly controlled production process,
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FIGURE 2 (a) Scanning electron micrograph of proteinoid micro-
spheres grown in a kombucha substrate. The microspheres exhibit a
spherical morphology with diameters ranging from 1 to 2 µm. The image
was acquired using an accelerating voltage of 10.00 kV, a spot size of
3.0, and a magnification of 2469×. Scale bar represents 10 µm. (b) High-
magnification scanning electron micrograph of proteinoid microspheres
formed in a kombucha medium. The microspheres display a smooth,
uniform surface morphology, indicative of a well-defined structure. We
obtained the image using an accelerating voltage of 10.3070 kV, a spot size
of 3.0, and a magnification of 8861. Scale bar represents 4 µm.

which may be affected by the distinct chemical composition and
physical features of the kombucha media. The SEM image at
high magnification (Figure 2b) displays the uniform harmonious
surface structure of proteinoid microspheres. The presence of
a smooth and uniform surface on the microspheres suggests
that they have a stable and clearly defined structure, making
them suitable for potential uses in drug delivery or as functional
biomaterials. The presence of diverse organic substances, like
as polysaccharides and organic acids, in the kombucha sub-
strate is responsible for the formation of uniform proteinoid
microspheres. These compounds may serve as templating agents
or stabilizers during the self-assembly process. The complex
composition and mildly acidic pH of the kombucha medium
may possibly contribute to the growth and stability of the micro-

spheres. The SEM discoveries align with earlier findings about
the development of proteinoid microspheres in various natural
or artificial matrices, as mentioned in [53]. Nevertheless, using
kombucha as a growing medium for proteinoid microspheres is
an innovative method, and the distinctive characteristics of this
fermented tea may provide significant advantages in terms of
controlling microsphere size, stability, and activity. Additional
research on the precise interactions between the components of
kombucha and the proteinoid precursors could yield significant
knowledge about the fundamental processes involved in micro-
sphere fabrication. This knowledge could then be used to develop
customized proteinoid-based materials for a wide range of uses.

Figure A5 showcases the various morphologies observed in the
synthesized proteinoid microspheres, as determined through
optical microscopy techniques. The Keyence optical imaging dis-
played spherical particles of varying sizes, with a mean diameter
of 0.95 µm and a wide range from 0.28 to 14.89 µm (Figure A5a,b).
Automated measurement of size parameters was made possible
through thresholding analysis (Figure A5c). Furthermore, the
textural details of the microspheres were accentuated by the
angled lighting, revealing both smooth and irregular surfaces
(Figure A5d). The results presented here show the ability to
create proteinoid microspheres of specific sizes and intricate
shapes using the thermal polymerization process. Additional
investigation into the factors that impact size, shape, and surface
patterns will provide a better understanding of the self-assembly
mechanisms in these biomolecular materials.

The proteinoids displayed intricate self-organized network
nanostructures, as depicted in Figure A6 through high-
resolution SEM imaging. Figure A6 reveals the presence of
a proto-brain-like structure within the kombucha–proteinoid
matrix. The SEM image shows an intricate network of elongated,
spherical structures that are interconnected, forming a complex
architectural arrangement. These structures have an average
diameter of approximately 50 nm and exhibit a relatively smooth
surface morphology. The proteinoids have the remarkable ability
to spontaneously create a network of consistent nanospheres,
showcasing their impressive biomimetic assembly and patterning
capabilities. The quantitative image analysis revealed an average
nearest neighbor distance of 60 nm between spheres, suggesting
a well-coordinated spacing within the network. In addition, the
fractal analysis uncovered a fractal dimension of 1.7, indicating a
structured and ordered architecture rather than a random one.
The results presented here demonstrate the ability of proteinoids
to create complex biomolecular networks that closely resemble
natural neural systems in terms of their controlled nano- to
mesoscale morphology.

The KCP exhibit a complex morphological landscape, as depicted
in Figure 3 throughmicroscopic examination. Figure 3 showcases
the presence of proteinoid regions clustered together and
dispersed within a crystalline matrix formed by kombucha and
calcium carbonate, as revealed by Keyence imaging. In addition,
the KCP structures were found to have Turbatrix aceti nematodes
[54] living within them. The nematodes in question have the
potential to enhance electrical signaling between proteinoids that
are far apart by affecting ion mobility through their locomotion.
Their integration implies that a variety of microbial species
within the KCP collective may contribute to the development
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FIGURE 3 The kombucha–chlorella–proteinoid (KCP) growth morphology in supersaturated solutions of sparingly soluble salts. At 250×
magnification, an optical microscopy image was captured using a Keyence VHX-7000 microscope. The scale bar measures 250 µm. Proteinoids are seen
as orange clustered patches scattered throughout the crystalline matrix created by kombucha and calcium carbonate (CaCO3) salt. The KCP structure is
inhabited by Turbatrix aceti nematodes (vinegar eels). The existence of these bacteria within the proto-brain assembly shows that they have the potential
to transmit information and integrate sensory input. Through locomotor effects on ionmobility, the nematodesmay promote electrical signaling between
distant proteinoids as they move and communicate through the KCP matrix. This indicates how a diverse range of microbial species within the KCP
might contribute emergent cognitive features based on interaction (locomotory, mechanical), and conductive properties.

of cognitive functions through conductive, mechanical, and
interactive properties. Additional research is needed to better
understand how the intricate organization of cells contributes
to the overall dynamics of KCP proto-brains. The research
uncovers notable disparities in the dynamics of “learning”
and “remembering” within the KCP system. During the
process of “learning,” the persistence spectrum exhibits greater
power across all frequencies in comparison to “remembering,”
displaying a more uniformly distributed profile. This suggests
intricate and diverse action in order to store new information.

Figure A4 displays the FT-IR spectra of freshly formed and
aged kombucha cellulose mats, offering information about their
chemical composition and any changes in their structure as over
time. The fresh kombucha cellulose mat’s spectra (black line)
shows clear absorption bands at 407.96, 417.79, 448.79, and 487.24
cm−1. These bands correspond to the stretching and bending
vibrations of the cellulose backbone. The peak at 3284.59 cm−1

is mostly caused by the stretching vibration of hydroxyl groups
in the cellulose network. The fingerprint region (1500–500 cm−1)
of the cellulose mat indicates a consistent chemical composition.
On the other hand, the spectrum of the kombucha cellulose mat,
which has been growing for 5 months, shows noticeable shifts.
The peak at 417.01 cm−1, which indicates the cellulose backbone,
remains prominent. However, new peaks appear at 1031.69 and
1314.78 cm−1, which correspond to the stretching vibrations of
glycosidic linkages and the bending vibrations of cellulose’s
C─H bonds, respectively. The presence of a peak at 1622.36
cm−1 indicates the existence of water molecules or the carbonyl
group of lignin, whereas the peak at 2922.55 cm−1 corresponds
to the stretching vibration of aliphatic compounds’ C─H bonds.
The spectrum shifts observed indicate the complex and varied
chemical composition that forms in the kombucha cellulose
mat as it ages. The FT-IR investigation of the cellulose mats in
different growth phases of kombucha yields significant insights
into their chemical composition and structural development.
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The newly formed cellulose mat of the kombucha shows a
consistent, even, and uniform structure, which is apparent from
the clear fingerprint region observed in the FT-IR spectrum.
As the kombucha cellulose mat ages, it experiences notable
alterations, leading to a more complex and diverse chemical
structure. These findings emphasize the constant evolution of the
kombucha cellulose matrix and the significance of taking into
account the aging process while analyzing and replicating the
system.

In our prior research [55], we have already examined the pro-
teinoids using FT-IR analysis. The proteinoids’ FT-IR spectrum
displays distinct peaks, such as the amide I and amide II bands,
which indicate the structure of the peptide backbone. The amide
I band, seen at a wavenumber of 1943 cm−1, arises from the
stretching vibrations of the C═O and C─N bonds within the
peptide group. The amide II band, which occurs at a wavenumber
of 1635 cm−1, is associatedwith the bending vibrations of theN─H
bond in the peptide linkage.

Hollow microspheres are a commonly seen characteristic of
proteinoid assemblies, as the formation and disintegration of the
shell happen at the same time. Our experimental observations
revealed that the introduction of an inert electrolyte, specifically
KNO3 at a concentration of 0.065 mol/L, led to the creation
of larger, empty microspheres. The stabilizing effect of the
electrolyte on the microsphere structure is the reason behind
this phenomenon, as documented in prior research [56, 57].
Additionally, anothermethod to stimulate the formation of empty
microspheres involves a volatile substance, like chloroform, in
the synthesis procedure. The formation of hollow proteinoid
microspheres was seen in [58] through the evaporation of the
volatile material. In our study, the rapid cooling and freeze-
drying of the microspheres after their formation may have
contributed to the preservation of their homogeneous and spher-
ical morphology. The introduction of this method most likely
prevented the collapse of the hollow structures, leading to the
observed consistency of the microspheres depicted in Figure 2.
Additionally, the internal structure of these rapidly cooled and
freeze-dried proteinoid microspheres could be better understood
through the application of advanced imaging techniques, such as
cryoelectron microscopy.

3.2 Response to Electrical Waveforms Derived
From Sounds

Understanding the relationship between speech sounds and their
electrical acoustic representations can help in areas such as
audio processing and speech recognition. The recorded acoustic
waveforms corresponding to pronunciations of each letter are
shown in Figure 4. Clear visual differences can be observed
between the signals representing different phonemes.

Gaining knowledge about theway novel biomaterials process and
convert external signals offers valuable understanding of their
information processing characteristics. The electrical activity
recorded from the KCP in Channel C displayed distinct responses
to the applied input oscillations, as depicted in Figure 5. The
input signal exhibited significant amplitude fluctuations, but
the KCP signal closely mirrored the waveform pattern with a

FIGURE 4 Acoustic signals representing phonetic sounds of
English letters. The waveform plot displays the temporal variation of
the electrical potential (measured in volts) in audio recordings. The
recordings feature a native English speaker speaking the 26 letters
of the alphabet. Each letter tracing corresponds to the distinct signal
pattern and duration linked to the pronunciation of each letter. The
differences in magnitude and temporal characteristics indicate the
unique acoustic properties of each speech sound. This data facilitates
the examination of the connections between spoken phonemes and their
electrical representations, which can be applied in fields such as speech
recognition and audio signal processing.

FIGURE 5 Electrical signatures generated by the kombucha–
chlorella–proteinoid (KCP) (Channel C) with input oscillations. (a)
Time-dependent oscillations of KCP in Channel C and the input signal.
The KCP signal exhibits a mean of –47.02 mV, a standard deviation
of 48.49 mV, a skewness of –0.36, and a kurtosis of 14.53. The input
signal has a mean of 10.28 mV, a standard deviation of 107.41 mV, a
skewness of 0.38, and a kurtosis of 15.19. (b) Temporal difference between
the KCP and input signals. The cross-correlation between the KCP and
input signals is displayed, illustrating the correlation at various time
lags. Both signals exhibit left-skewness, as indicated by their negative
skewness values. Additionally, they possess steep peaks, as evidenced by
their high kurtosis values. The cross-correlation demonstrates a robust
positive correlation between theKCPand input signalswith no time delay.
(c) Cross–correlation between the KCP and input signals, illustrating the
correlation at various time lags.

correlation of 0.85 and no time lag (Figure 5b). The quantitative
analysis showed that the KCP signal had a mean potential of
−47.02 mV, which was lower than the input’s mean potential of
10.28mV. The distributions of bothKCP and input signals showed
a left-skewed pattern, with skewness values of −0.36 and 0.38,
respectively. Additionally, both signals exhibited sharp peaks,
with kurtosis values of 14.53 and 15.19, respectively. The metrics
used in this study demonstrate the strong synchrony between
input and output waveforms, indicating that the KCP material
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FIGURE 6 The kombucha–chlorella–proteinoid (KCP) undergoes
oscillations when exposed to audio stimuli representing the English
alphabet. (a) The graph represents the temporal variation of the acoustic
input waveform for the English alphabet, measured in millivolts (mV).
(b) The waveform of the KCP response measured in millivolts during
a specific period of time. The KCP displays distinct oscillations in
response to each phoneme. The difference waveform illustrates the
millivolt difference between the KCP response and the auditory input
of the alphabet, measured over a period of time. (c) The difference plot
demonstrates the distinct patterns produced by the KCP in reaction to the
intricate sonic stimuli. This exemplifies the capacity of the KCP to convert
delicate acoustic waves into discernible electrical patterns.

shows dynamic electrical behavior that is highly responsive to
external stimulation.

Figure 6 demonstrates the clear oscillatory responses exhibited
by the KCP when stimulated with audio waveforms of the
English alphabet. The acoustic input signals exhibited unique
patterns for each phoneme, as shown in Figure 6a. On the other
hand, the KCP output waveforms were more variable but still
displayed letter-specific profiles, as depicted in Figure 6b. The
analysis of the difference waveform showed significant fluctu-
ations in amplitude, reaching up to 60 mV. This demonstrates
the impressive ability of the KCP to convert intricate audio
signals into modulated electrical outputs. The cross-correlation
analysis revealed that the highest correlation was observed with
a lag of 75 ms. This suggests that the KCP does not respond
instantaneously, but instead integrates acoustic information over
short periods. The results presented here demonstrate the KCP
material’s remarkable electrodynamic properties, which allow
it to transduce and encode complex sonic stimuli with great
sensitivity. An understanding of the information transmission
capabilities of synthetic systems can be gained by examining the
ranges at which biological signals can travel. Figure 7 demon-
strates that the KCP displayed oscillatory responses to audio
waveforms, even with platinum–iridium electrodes positioned at
a significantly greater distance from each other.

The electric waveform, representing the acoustic input, was
transmitted through nearby electrodes (Figure 7a), while the KCP
response was recorded using electrodes 40 mm away (Figure 7b).
The KCP signal displayed distinct waveforms corresponding to
each letter, albeit with reduced amplitude compared to the
input. The analysis of the difference plot showed significant
fluctuations of up to 40 mV, indicating the occurrence of acoustic
information propagation over this distance. Nevertheless, the
cross-correlation between the input and output experienced
a decrease to 0.65, suggesting an increase in delay and sig-

FIGURE 7 The kombucha–chlorella–proteinoid (KCP) exhibits
oscillatory behavior when exposed to audio stimuli representing the
English alphabet, using platinum–iridium electrodes placed at a distance.
(a) The acoustic input waveform is transmitted by electrodes located
in the KCP solution. (b) The KCP response waveform, measured using
platinum–iridium electrodes positioned 4 × 10 mm apart from the input
electrodes. The KCP demonstrates distinctive oscillations in reaction to
each phoneme, even when using platinum–iridium electrodes positioned
four times farther away from the input electrodes. (c) The difference
waveform illustrates the millivolt discrepancy between the remote KCP
response and the auditory input of the alphabet, observed over a period
of time. This showcases the KCP’s capacity to convert delicate acoustic
waveforms into clear electrical patterns across a greater distance.

nal loss. These results demonstrate that the KCP is capable
of transducing electrical waveforms and transmitting electri-
cal signals over long distances. However, it is important to
note that signal weakens as the distance between electrodes
increases.

Channel B refers to a specific channel that represents the output
potential of the KCP device. It is a designated measurement or
recorded signal used to capture the electrical potential generated
by the KCP proto-brain system in response to the input audio
stimulation of the English alphabet.

To characterize the statistical properties of the output potential
V2 in response to the input voltage V1 generated from the English
audio alphabet, we calculated the skewness and kurtosis of V2.
The skewness, denoted as γ1, is a measure of the asymmetry
of the probability distribution of a real-valued random variable
[59]. It is defined as the third standardized moment of the
distribution:

𝛾1 =
𝐸[(𝑉2 − 𝜇)

3
]

𝜎3
(1)

where E is the expected value operator, µ is the mean of V2, and
σ is the standard deviation of V2. A positive skewness indicates
a distribution with an asymmetric tail extending toward more
positive values, while a negative skewness indicates a distribution
with an asymmetric tail extending toward more negative values.
The kurtosis, denoted as γ2, is a measure of the “tailedness”
of the probability distribution of a real-valued random vari-
able. It is defined as the fourth standardized moment of the
distribution:

𝛾2
𝐸[(𝑉2 − 𝜇)

4
]

𝜎4
(2)
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FIGURE 8 Electrical signatures of kombucha–chlorella–proteinoid
(KCP) Channel B and input oscillations. (a) Oscillations of KCP Channel
B and input versus time. The KCP Channel B signal has a mean of
0.05 mV, standard deviation of 128.79 mV, skewness of –0.25, and kurtosis
of 2.63. The input signal has a mean of 10.28 mV, standard deviation of
107.41 mV, skewness of 0.38, and kurtosis of 15.19. (b) Difference between
the KCP Channel B and input signals over time. (c) Cross-correlation
of the KCP Channel B and input signals, showing the correlation at
different lag times. The negative skewness and lower kurtosis of Channel
B compared to input indicate a flatter distribution. The cross-correlation
shows Channel B exhibits distinct oscillations from the input.

where E, µ, and σ have the same meanings as in the skewness
equation. A high kurtosis value indicates a distribution with
heavy tails and a sharp peak, while a low kurtosis value indicates
a distribution with light tails and a flatter peak. The skewness
and kurtosis of the output potential V2 were calculated using a
sample ofNmeasurements. The sample skewness (g1) and sample
kurtosis (g2) were computed as:

𝑔1 =
𝑚3

𝑚
3∕2

2

=
1

𝑁

∑𝑁

𝑖=1 (𝑉2,𝑖 − 𝑉2)
3

(
1

𝑁

∑
𝑖 = 1𝑁(𝑉2,𝑖 − 𝑉2)

2)3∕2 (3)

𝑔2 =
𝑚4

𝑚2
2

=
1

𝑁

∑𝑁

𝑖=1 (𝑉2,𝑖 − 𝑉2)
4

(
1

𝑁

∑
𝑖 = 1𝑁(𝑉2,𝑖 − 𝑉2)

2)2 (4)

where V2 ,i is the i-th measurement of the output potential, 𝑉2
is the sample mean of V2, and mk is the k-th sample central
moment. The calculated values of g1 and g2 provide insights into
the shape and distribution of the output potential V2 in response
to the English audio alphabet input voltage V1. These statistical
measures help characterize the behavior of the KCP system and
its potential for processing and encoding information.

Understanding how synthetic systems alter input signals reveals
their information processing features. We quantified the input
oscillation and KCP Channel B electrical activity. Figure 8 illus-
trates the distinct variations in the electrical activity patterns of
KCP Channel B when exposed to input oscillations, as compared
to the stimulus waveform. Channel B exhibited an oscillatory
pattern that closely resembled the input signal (Figure 8a).
However, a quantitative analysis showed that the mean potential
of Channel B was significantly lower at 0.05 mV compared to
the input signal’s 10.28 mV. Channel B also showed a negative
skewness of –0.25, which is lower than the input’s skewness of

FIGURE 9 Comparison of electrical responses to English audio
stimuli in kombucha–chlorella–proteinoid (KCP) hydrogels with differ-
ent kombucha:chlorella–proteinoid ratios. (a) Channel C responses for
40:60 (red) and 25:75 (blue) mixtures. The 40:60 mixture shows a higher
mean output potential (0.642284 mV) compared to the 25:75 mixture
(−0.201196mV), indicating enhanced sensitivity. (b) Channel D responses
for 40:60 (green) and 25:75 (cyan) mixtures. The 40:60 mixture exhibits a
more negative mean output potential (−41.683704 mV) compared to the
25:75 mixture (−0.590862 mV), suggesting a wider dynamic range. Both
channels demonstrate that the 40:60 ratio yields more pronounced elec-
trical responses to audio stimuli, potentially indicating better information
processing capabilities. The x-axis represents time (in seconds), and the
y-axis shows the output potential (in millivolts).

0.38. Additionally, it had a lower kurtosis of 2.63 compared to the
input’s kurtosis of 15.19, suggesting a more flattened distribution
of potentials.

The analysis of the difference plot (Figure 8b) showed notice-
able variations compared to the input, which is supported by
the low cross-correlation of 0.35 with no lag (Figure 8c). The
results presented here offer quantitative evidence that KCP
Channel B produces unique electrical outputs, rather than simply
transmitting the input signal.

In order to examine the influence of composition on the electrical
characteristics of our KCP hydrogel, we conducted a comparison
between two different mixtures: one with a ratio of 25:75 and
another with a ratio of 40:60 (kombucha:chlorella–proteinoid).
Figure 9 illustrates the electrical reactions of these two mixtures
when subjected to identical auditory stimuli. Our investigation
revealed significant differences in the average output potentials
for both Channel C and Channel D. For Channel C, a blend of
40% and 60% exhibited a voltage of 0.642284 mV, while mixing
25% and 75% resulted in a potential difference of −0.201196 mV.
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Regarding Channel D, the 40:60 mixture showed a voltage of
−41.683704 mV, and a mixture comprising 25% and 75% of two
substances yielded a potential difference of −0.590862 mV. The
40:60 mixture demonstrated a much greater average output
potential in Channel C and amore pronounced negative potential
in Channel D as compared to the 25:75 mixture. These findings
indicate that the 40:60 composition may provide improved
sensitivity and dynamic range in electrical responses to audio
stimuli. We selected the 40:60 blend as the primary focus of our
investigation for multiple reasons:

∙ Increased electrical activity: The 40:60 mixture demonstrated
more noticeable electrical responses, suggesting a greater
ability to process and encode information.

∙ Balanced composition: The balanced composition refers to
the optimal ratio between the kombucha component, which
enhances the structural integrity of the hydrogel, and the
chlorella-proteinoid component, which is believed to be
essential for the material’s bioelectrical capabilities.

∙ Reproducibility: Our initial investigations indicated that the
40:60 mixture exhibited greater consistency in outcomes over
multiple experiments, indicating superior reproducibility.

∙ Potential for self-organized criticality: As discussed earlier,
the observed power law behavior in the electrical activity
of the 40:60 mixture indicates that this composition may be
operating in a state that is close to a critical point between
chaos and order. This means that it could potentially have
improved computational capacities. These findings empha-
size the significance of composition in adjusting the electrical
characteristics of our KCP hydrogel system. The current
analysis suggests that the 40:60 mixture provides an ideal
equilibrium. However, future research could investigate a
broader range of compositions to enhance the material’s
performance for certain applications.

The frequency domain analysis of electrical responses offers valu-
able insights into the intricate signaling properties of biological
materials such as KCP. Figure 10 provides a clear example of
a fast Fourier transform (FFT) analysis, which compares the
frequency spectra of KCP activity with input signals. The FFT
analysis uncovers a prominent 0.5 Hz component in the KCP
output, which stands apart from the input. This suggests that
the KCP is capable of producing unique waveforms instead of
simply transmitting stimuli. Figure 10 showcases the utilization of
techniques like FFT to unravel the complex bioelectrical charac-
teristics and information processing capabilities of electroactive
materials.

In addition to Channel B, Channel C can be defined as a
second channel that corresponds to the output signal of the KCP
proto-brain system in response to the input audio stimulation
of the English alphabet. The electrical activity in Channel C
exhibited a different pattern compared to the oscillatory behavior
seen in Channel B KCP recordings. This was evident from
the FFT analysis in Figure 11, which showed more stochastic
characteristics. The Channel C signals displayed a frequency
distributionwithout any prominent peaks. The KCP FFT analysis
revealed a dominant amplitude at 0 Hz, indicating a lack of
significant oscillations. This suggests that the majority of the
recorded data do not exhibit pronounced oscillatory behavior,

FIGURE 10 The fast Fourier transform (FFT) was utilized to exam-
ine the frequency of the kombucha–chlorella–proteinoid (KCP), input,
and difference waveforms of Channel B. The FFT of the KCP signal
reveals a dominant frequency component at 0.4985 Hz. The prominent
peak in the KCP FFT signifies the presence of robust oscillations at the
specific frequency, which are absent in the input. This illustrates that the
KCP produces distinctive electrical patterns that are separate from the
stimuli it is exposed to. Examining the KCP waveform in the frequency
domain allows for a deeper understanding of its intricate bioelectrical
characteristics.

FIGURE 11 Frequency analysis of Channel C kombucha–
chlorella–proteinoid (KCP), input, and difference signals. Application
of the fast Fourier transform (FFT) revealed no noticeable peaks in
the frequency domain representations, indicating a lack of dominant
oscillatory components. The FFT of the Channel C KCP waveform
showed maximum amplitude at 0 Hz, without prominent frequencies.
Similarly, the FFTs of the input and difference signals exhibited flat
responses, devoid of salient peaks across the frequency spectra. The
absence of discrete high-amplitude spikes in the frequency distributions
demonstrates the Channel C signals have broad spectral content, rather
than energy concentrated at specific frequencies. This suggests the KCP
and input possess noise-like properties in the Channel C recordings, with
stochastic fluctuations rather than rhythmic oscillations.

potentially indicating a different underlying phenomenon or
characteristic of the recorded signals (Figure 11a).

In Figure 11b,c, the input and difference FFTs showed flat, broad
spectra without any noticeable spikes across frequencies. The
Channel C recordings appear to havemore noise-like fluctuations
rather than rhythmic oscillations, as there is a lack of discrete,
high-amplitude frequency components. Thus, while the other
KCP channels displayed periodic waveforms, the measurements
from Channel C indicate that the material can also demon-
strate unpredictable electrical behaviors without any discernible
pattern in the frequencies.
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FIGURE 12 Plotting the potential against time for a sample of KCP.
The sample was subjected to electrical waveform representation of audio
recordings of the English alphabet at regular intervals, as indicated by the
shaded regions. The fluctuations in potential observed in these stimulus–
response regions reflect the sample’s “learning” response to the new
stimuli. The nonstimulus regions in between exhibit a consistent baseline
potential, suggesting that the sample is “remembering” or becoming
accustomed to the stimulus. The KCP sample showcases its impressive
capacity to absorb and preserve information of external stimuli for
extended periods. The potential was measured using a Pico Technology
ADC-24 High-Resolution Data Logger, equipped with platinum–iridium
electrodes placed 10 mm apart.

Figure 12 illustrates the dynamic electrical potential changes
observed in the KCP proto-brain sample when exposed to sequen-
tial audio stimulus presentations. The recordings in response
to electrical waveforms revealed sudden potential fluctuations
in the shaded regions, indicating the KCP’s rapid information
processing and encoding. Throughout the nonstimulus intervals,
the potential consistently returned to a baseline level, indicating
a reliable retention of the absorbed stimulus patterns. The
baseline potential showed a gradual adaptation over repeated
presentations, suggesting a progressive long-term assimilation
of the audio inputs. The KCP demonstrated an impressive 80%
learning accuracy within just five repetitions, as shown by
quantitative analysis. The results presented here demonstrate the
behavioral evidence supporting the ability of the KCP material
to absorb new information from external stimuli and retain
learned patterns in persistent memory. The KCP displayed strong
oscillatory patterns during stimulus presentations, as shown in
the magnified stimulus regions in Figure 13. The oscillations
were analyzed quantitatively and found to have a periodicity of
340.9 min and an amplitude of 10 mV. The rhythmic electrical
activity observed indicates that there is a coordinated signaling
dynamics and pattern formation happening within the KCP
network in response to external inputs. The cross-correlation
analysis revealed a remarkable synchronization of oscillations
across various recording sites within the sample. In addition,
the amplitude and frequency of the oscillations adjusted during
repeated stimulus exposures, suggesting a dynamic adjustment of
the signal patterns. These findings suggest that the KCP system
has bioelectrical properties that can process and learn external
information through rhythmic signaling.

FIGURE 13 Plotting the potential against time for a sample of KCP.
The insets provide enlarged views of the stimulus regions. The regions
display significant oscillations, characterized by a period of 340.9min and
an amplitude of 10 mV. This suggests the presence of organized electrical
activity in the KCP sample. The oscillations suggest the capability of
complex information processing and memory formation within the
KCP network when presented with external stimuli. The potential was
measured using a Pico Technology ADC-24 High-Resolution Data Logger
equipped with platinum–iridium electrodes positioned at a distance of
10 mm from each other.

The KCP showed localized hyperactive responses during stim-
ulus spikes, with high-frequency, low-amplitude oscillations as
depicted in the insets of Figure 14. The measurements showed a
periodicity of 1.85 min and a small amplitude of 1.23 mV. During
the stimulus periods, it is evident that certain regions of the KCP
network become highly active in order to process incoming infor-
mation, as indicated by the emergence of rapid, small oscillations.
The cross-correlation analysis revealed that the hyperactivity
patterns exhibited no correlation across different recording areas,
indicating the presence of localized and diverse dynamics. The
KCP system’s capacity for adaptive information regulation and
encoding is demonstrated by its ability to modulate signaling
patterns between hyperactive and quiescent states.

Figure 15 demonstrates the endogenous electrical activity of
the KCP, which is characterized by multiscale oscillations in
the absence of external stimulation. The data reveals two clear
patterns: one consists of large, slow waves with a period of
305.75 min and an amplitude of 8.26 mV, indicating synchronized
global network dynamics. The other pattern consists of smaller,
faster waves with a period of 26.6 min and an amplitude of
2mV, suggesting localized hyperactivity and information retrieval
(Figure 15). The spatial distribution of the global and local
patterns across the KCP network was confirmed through cross-
correlation analysis. This synthetic KCP system demonstrates the
presence of self-organized rhythms, indicating the existence of
intricate temporal information processing even in the absence
of external inputs. This showcases the remarkable ability of the
KCP mimic to exhibit spontaneous emergent order and signaling
complexity.
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FIGURE 14 A graph depicting the relationship between poten-
tial and time for a sample of KCP. The data was collected using a
Pico Technology ADC-24 High-Resolution Data Logger equipped with
platinum–iridium electrodes (diameter of 0.2 mm) that were positioned
10 mm apart. The insets display magnified images of the stimulus–
response regions, which demonstrate modest, rapid oscillations with a
period of 1.85 min and an amplitude of 1.23 mV in response to the
letter auditory stimuli. The presence of high-frequency, low-amplitude
oscillations indicates that there is localized hyperactivity in the KCP
proto-brain sample while it is processing the incoming external infor-
mation. The divergent oscillation patterns illustrate the KCP network’s
capacity to regulate its activity in order to effectively react to and encode
environmental information.

FIGURE 15 Potential versus time plot for a KCP sample that was
not stimulated. In the absence of external stimuli, the nonstimulus region
exhibits organized electrical activity, indicating endogenous memory and
information processing within the KCP network. There are two unique
oscillating patterns observed: (1) Large, slow oscillations with a period of
305.75 min and an amplitude of 8.26 mV, representing coordinated global
network activity. (2) Smaller, quicker oscillationswith a period of 26.6min
and an amplitude of 2 mV, indicating localized hyperactivity and retrieval
of stored information. The coexistence of these multiscale rhythms
exemplifies the complex temporal information processing capacities that
emerge spontaneously in this synthetic KCP proto-brain system.

The KCP networks were analyzed using a multimodal approach
that included trajectory mapping, spectral power analysis, and
scalogram visualizations. This allowed for a thorough under-
standing of the intricate spatiotemporal dynamics associated
with cognitive phenomena. Over consecutive “learning” days,
the progressive potential shifts were observed, emphasizing the
assimilation of macroscale information (Figure 16a). Figure 16b
shows a significant spike at 0 mHz in the power spectral analysis,
suggesting the presence of strong long-range correlations that
facilitate persistent memory encoding. The scalogram maps in
Figure 16c depict the presence of stable ultralow frequency
rhythms and multifrequency peaks, indicating the existence
of independent nested oscillations across different scales. The
findings presented here provide a quantitative analysis of the
long-lasting, hierarchically structured electrical patterns that
arise in the KCP system during the process of “learning.” The
methodology presented here allows for the decoding of complex
dynamical signatures associated with proto-brain structures that
express emergent cognitive functions.

The KCP networks were analyzed using advanced spectral analy-
sis, revealing detailed information about the complex spatiotem-
poral dynamics involved in endogenous memory processes. The
mapping of the potential over time demonstrates a gradual stabi-
lization during the process ofmemory formation (Figure 17a). The
power spectrum analysis displayed a significant spike of 39.5 dB
at 0 mHz, indicating the presence of strong ultra-low-frequency
rhythms that facilitate long-lasting correlations for the purpose of
retaining information (Figure 17b). The scalogram in Figure 17c
showcases a dynamic pattern of low-frequency rhythms, punc-
tuated by occasional bursts of high-frequency activity. These
fluctuations are indicative of the KCP proto-brain’s engagement
in the rehearsal of stored patterns. The findings presented here
provide a comprehensive understanding of how slow, stable
circuits and faster, intermittent dynamics work together to create
a strong internal memory function. The presented approach
offers a clear analysis of the intricate neuroelectric signatures
inherent in the KCP system. It also provides a framework for
understanding the rhythmic drivers behind cognitive phenomena
in synthetic proto-brain architectures.

To investigate the potential power law behavior of the electric
potential fluctuations in our KCP hydrogel material, we plotted
the magnitude in decibel against frequency in Hertz (Figure 18).
The data shows a clear power law relationship, characteristic
of 1/f noise or pink noise, which is often observed in complex
systems operating at the edge of chaos [60]. We fitted the data
with a logarithmic function of the form:

𝑦 = 𝑎 − 𝑏ln(𝑥 + 𝑐) (5)

where y is the magnitude in dB, x is the frequency in Hz, and
a, b, and c are fitting parameters. The fit yielded the following
parameter values:

𝑎 = −97.40398 ± 0.02739 (6)

𝑏 = 10.55101 ± 0.01544 (7)

𝑐 = (4.61567 ± 0.22210) × 10−4 (8)
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FIGURE 16 Multimodal analysis of electrical activity of KCP samples. (a) Potential (mV) for a KCP sample traced across time (days) during
“learning.” (b) Power (dB) versus frequency (mHz) persistence spectrum for the “learning” stage. At 0 mHz, a high power of 46 dB is found, indicating
substantial long-range correlations and “memory” formation. The quick decrease to –19 dB by 10 mHz implies that these correlations are truncated at
longer time delays. The 480 mHz continuum to –60 dB demonstrates a reduction in short-term noisy dynamics during learning. The skewed power
distribution (blue–red bar) underlines the importance of ultra–low-frequency information retention, which is a critical enabler of “memory” encoding
in the system. (c) Scalogram displaying the power spectrum’s time evolution across consecutive learning days. Warm colors represent a strong spectral
power. The continuous existence of dominating low frequencies throughout time shows that learning rhythms are durable and strong. The various
peaks spanning different frequencies on each day demonstrate the cooccurrence of independent oscillations. The nested multiscale peaks indicate a
link between fast and slow rhythms at various stages of memory formation. The scalogram thus reveals the complexities of spatiotemporal patterns
underpinning the KCP network’s emergent cognitive skills.

The goodness of fit is indicated by an R-square value of 0.76635,
suggesting that the model explains approximately 76.6% of the
variability in the data. The observed power law relationship
indicates that our KCP hydrogel system is likely functioning in
close proximity to a critical state, where it balances between
chaos and order. This condition, which is characterized by self-
organized criticality, is well-known for its ability to perform
complex computations. The power law exponent, denoted by the
parameter b in our analysis, is roughly 10.55, which exceeds the
average values commonly reported for 1/f noise (typically around
1). The greater exponent implies a more rapid decrease in power
as frequency increases, indicating a unique dynamical regime
in our KCP system. The observation of power law behavior in
the electrical activity of our system provides evidence that the
KCP hydrogel might exhibit emergent computational capabilities
resulting from the complex interactions among its diverse com-
ponents (kombucha, chlorella, and proteinoid microspheres).
This discovery is consistent with ideas that propose that systems
operating at the edge of chaos can have enhanced ability to
process information.

The potential evolution was quantitatively analyzed, revealing
distinct dynamics between proto-brain regions involved in mem-
ory retrieval and “learning” new information, as depicted in

Figure 19. In Figure 19b,d, the “remembering” area showed
faster oscillations with a higher maximum rate of change
of 0.994650 mV/s and a lower minimum of –7.535990 mV/s
compared to the “learning” zone, which had a maximum of
0.606300mV/s and aminimum of –5.532790mV/s. In “learning,”
the average rate of change was more negative at –0.000043 mV/s
compared to –0.000008 mV/s in “remembering” (Figure 19a,c).
The findings indicate that the memory area exhibits rapid and
variable fluctuations, while the learning region displays more
stable and restricted activity. The overall analysis reveals that the
retrieval of memories is linked to increased sensitivity toward
neural patterns, while the assimilation of new information
involves the deliberate and consistent encoding of electrical
signals. Figure 20 demonstrates the utilization of logic operations
to convert the electrophysiological dynamics in the regions
responsible for memory and learning into digital form.

To transform the electrophysiological dynamics into discrete
logic states, the following logic operations were implemented
(Figure 20):

ANDOutput = RemembAvg > ThresholdLow

∧LearnAvg > ThresholdLow (1)
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FIGURE 17 Complex “memory” formation dynamics in KCP samples are revealed through advanced time–frequency analysis. (a) The potential
(mV) for a KCP sample is recorded over time (hours) during the process of “remembering.” The persistence spectrum of the “remembering” stage shows
the power (dB) plotted against frequency (mHz). (b) The power of 39.5 dB at 0mHz indicates strong and enduring correlations that contribute to internal
memory processes. The rapid decay to –12.1 dB by 10mHz indicates the truncation of temporal correlations and the presence of dominant low-frequency
rhythms. The extended continuum down to –76.4 dB at 480mHz suggests the effective suppression of rapid and noisy dynamics as circuits reach a stable
state. The power distribution, which is strongly right-skewed, provides further evidence of the presence of prominent ultraslow activity. This activity
allows for maximum information retention even in the absence of new stimuli. (c) A scalogram is used to map the power spectrum over consecutive
hours of “memory” formation. The colors used in this piece are indicative of strong spectral intensity. The presence of intense low-frequency signals
indicates the possibility of persistent circuit reverberations and the ability to recall learned patterns. The presence of sparse patches of high frequencies
indicates the occurrence of transient bursting activity, which is associated with the rehearsal of stored information. Coordinating the toggling between
fast encoding and slow retention is necessary when coupling disjoint frequency bands. The scalogram reveals a complex and intricate coordination of
spatiotemporal patterns that underlie the internal memory processes within the KCP.

OR Output = RemembMax > ThresholdHigh

∨LearnMax > ThresholdHigh (2)

NOT Output = (RemembAvg < ThresholdLow) (3)

where RemembAvg and RemembMax are the average and maxi-
mum rate of change for the remembering region data, LearnAvg
and LearnMax are for the learning data, and ThresholdLow and
ThresholdHigh are set threshold values. Implementing logic gates
provides a methodology to digitize electrophysiological patterns
into discrete computational states for analysis. Contrasting logic
gate activations are presented in Table 1, with distinct patterns
exhibited between the remembering and learning data.

4 Discussion

This study showcases the ability to artificially create a hybrid
biosystem comprised of kombucha zoogleal mat, chlorella alga,

and thermal proteins. The KCP system exhibited intricate struc-
ture ranging from the smallest nano size to the largermacro scale,
creating interconnected networks. The electrical characterization
demonstrated the presence of oscillations triggered by acoustic
stimuli converted to electrical waveforms, adaptation occurring
over repeated exposures, and inherent neural-like rhythms [61],
which might indicate a potential for storing of information,
learning, and memory.

The use of microscopy, electrophysiological, and spectrum tech-
niques in an experimental strategy allowed for the thorough
analysis of the structure, activity, and rhythmic drivers that
support cognition-like phenomena in the KCP. This approach
provides a tool for understanding the mechanics of computation
in synthetic proto-brains by decoding dynamic patterns across
different spatial and temporal scales.

It is worth mentioning that through thermal cycling, proteinoids
were able to spontaneously form spherical nanoparticles, which
bear resemblance to proto-neurons [62]. The ability to organize
itself in a controlled manner from chaotic beginnings offers
insights into the emergence of order in biological systems. The
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FIGURE 18 The power spectral density of the electrical activity
of the KCP hydrogel. The graphic displays the logarithmic relationship
between the magnitude (in decibels) and frequency (in hertz). The
experimental data points are represented by black squares. The red
curve represents the optimal fitting using the logarithmic function. The
equation is given as y = a−b ln(x+c), where y represents the magnitude
in decibels (dB) and x represents the frequency in hertz (Hz). The fitting
parameters are as follows: a=−97.40398± 0.02739, b= 10.55101± 0.01544,
and c = (4.61567 ± 0.22210) × 10−4. The R-square value of 0.76635 suggests
a strong correlation with the data. The observed power law connection
indicates that the KCP hydrogel system is likely functioning in close
proximity to a critical state, where it exhibits characteristics of both
chaos and order. This suggests that the systemmay possess self-organized
criticality and the ability to perform complex computations.

understanding of how small-scale interactions give rise to larger
scale collective behaviors is a crucial inquiry in unraveling the
guiding principles behind the development of basic cognitive
systems [63]. The KCP system showcases complex spontaneous
electrical low-frequency oscillations (SELFOs).

These SELFOs, observed in various living systems, potentially
have a vital function in integrating and communicating infor-
mation throughout an organism [64]. Within the KCP system,
the complex interaction among the kombucha SCOBY, chlorella
algae, and synthesized proteinoids leads to the emergence of
these oscillations. These oscillations have the potential to act as
a mechanism for orchestrating the system’s reaction to external
stimuli, such as audio signals. The presence of SELFOs in the
KCP system has similarities to the findings in Hydra, a primitive
multicellular creature that has served as an excellent model for
investigating fundamental biological mechanisms [65]. Rhythmic
potentials generated by the neural system have been observed
in Hydra, known as SELFOs, even in the absence of external
stimuli [66]. These oscillations are believed to have a role in
the integration of sensory information and the coordination of
behavior [64]. Similarly, the SELFOs in the KCP system can
combine information from different system components and
synchronize their reactions to acoustic signals, hence facilitating
the categorization of these signals. The KCP system contains not
only the kombucha SCOBY, chlorella algae, and proteinoids, but
also T. acetiworms. The presence of these minuscule nematodes,

frequently encountered in kombucha cultures, potentially plays
a role in the generation and spread of SELFOs throughout the
system.Nematodes exhibit a remarkably complex nervous system
that is capable of generating and transmitting electrical signals.
The function of T. aceti nematodes in the KCP system’s SELFOs
may be similar to the suggested role of the default mode network
(DMN) in the human brain [67]. It is thought that the DMN helps
the brain process sensory information and develop self-referential
cognitive functions. The electrical activity of nematodes in the
KCP system may assist in integrating information from the
kombucha SCOBY, chlorella algae, and proteinoids, thereby
helping to develop a unified response to auditory signals [68].
As illustrated in Figure 21, the KCP system consists of several
components, including the kombucha SCOBY, chlorella algae,
proteinoids, and T. aceti nematodes. These components interact
to generate spontaneous oscillations that play a crucial role in
the integration and classification of auditory signals within the
system.

The KCP utilizes bottom-up synthetic biology approaches to
reconstruct quintessential brain behavior, such as information
processing and memory encoded through electrical signaling
patterns. The signatures quantified here capture the rhythmic
drivers of cognition as proposed by neuroscience theories [69, 70].
This concurrence serves to validate the proto-brain architectures
as simplified yet relevant models of neural computation and
knowledge representation through bioelectricity.

In recent years, there has been significant research activity
focused on the development of new materials and techniques for
classifying audio signals. Table 2 presents a thorough comparison
of the performance of various cutting-edge audio classification
methods, including the KCP biosynthetic classifier presented in
this study. The CNT-PDMS composite and the graphene woven
fabric (GWF) have been demonstrated to effectively capture
and react to audio signals, with the GWF displaying a relative
resistance change above 4%. The MEMS microphone array, as
described in the study by Huang et al. [71], has successfully
achieved a classification accuracy of 98.38% when tested on a
specific vehicle audio dataset. This result serves as evidence
of the array’s usefulness in practical scenarios. The proteinoid-
based classifier [72] has been assessed using the SPIKE-distance
metric, which measures the temporal dissimilarity between
spike trains produced in reaction to audio signals. The SPIKE-
distance value of 0.3702 suggests that there is a moderate level
of similarity between the proteinoid’s reaction and the reference
signal. By contrast, the KCP biosynthesis classifier, as described
in this study, has exhibited an impressive learning accuracy of
80% after only 5 iterations using the English alphabet audio
dataset. The KCP’s rapid learning ability, along with its unique
electrodynamic properties and capability to process and encode
complicated audio inputs, demonstrates the potential of this
innovativematerial for tasks involving audio signal classification.
The KCP’s performance can be linked to its capacity to produce
letter-specific electrical waveforms, its synchronized signaling
dynamics, and its localized hyperactive responses during stim-
ulus presentations. The KCP possesses these attributes that
allow it to effectively assimilate, analyze, and retain audio data,
positioning it as a highly promising candidate for forthcoming
audio categorization applications.
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FIGURE 19 Potential dynamics in “remembering” and “learning” regions. (a) The temporal evolution of the electric potential in the area
responsible for “memory” formation. (b) The temporal derivative of potential in the region responsible for “memory” retention. (c) Evolution of potential
inside the “learning” region over time. (d) The rate of change of potential in the “learning” region. The quantitative study reveals that the “remembering”
zone exhibits a largermaximum rate of change (0.994650mV/s) and a lowerminimum rate of change (7.535990mV/s) compared to the “learning” region,
which has a maximum rate of change of 0.606300 mV/s and a minimum rate of change of −5.532790 mV/s. In the “learning” zone, the average rate of
change is more negative, namely,−0.000043mV/s compared to−0.000008mV/s. The data suggests that the region responsible for memory shows faster
and more unpredictable oscillations. In the “learning” region, the maximum, minimum, and mean rates of change were all closer to zero, indicating
more stable dynamics. In summary, the quantitative findings indicate clear patterns of potential activity in the two regions. “Remembering” is linked to
rapid oscillations associated with retrieving information, while the process of encoding new “memories” shows reduced dynamics.

FIGURE 20 Logic implementations utilizing electrophysiological fluctuations in regions associated with memory and learning. (a) Results
obtained by applyingAND,OR, andNOT logic gates on rate of change statistics from each region. Bars representmemory outputs, while circles represent
learning outputs. The logic outputs are connected to the relevant symbols in subplot B using red arrows, illustrating the mapping of the outputs to the
visualizations of the logic gates. The region responsible for memory shows higher activity of the OR gate in comparison to the region responsible for
learning. (b) The visual representation of logic gate outputs is achieved through the use of colored symbols. In this representation, the color cyan is used
to indicate a true (1) output, while the color blue is used to indicate a false (0) output. This is linked to the logic outputs in subplot A through the red
arrow annotations.
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The KCP composites’ wide range of complicated dynamics raises
issues about the underlying mechanisms that enable sensory
processing abilities.

∙ How might the various components (cellulose matrix, pro-
teinoids, electrodes, microbiological ingredients, mineral
deposits) confer complementary capabilities that result in
waveforms classification and frequency sensitivity, as shown
in Table 3?

∙ The intricate interaction and coupling between structural,
electrical, biological, and inorganic compounds responsible
for emerging bioelectronic processing capacities remain a
work in progress. Can interactions between living, nonliving,
and integrated systems introduce or bring forth hybrid sensing
modes not possible with separate substrates alone?

∙ Can these findings inspire the development of novel bio–
abiotic architectures specialized for audio applications, in

TABLE 1 Logic gate outputs for remembering and learning regions.

Logic operation Remembering Learning

AND Output 0 0
OR Output 1 0
NOT Output 1 0

FIGURE 21 Spontaneous oscillations in the KCP system and inte-
gration of auditory signals.

TABLE 2 Performance comparison of audio classification methods.

Reference Material/Method Dataset
Evaluation
metric Performance

[73] CNT-PDMS
composite

Custom EEG
dataset

Visual inspection Successful
recording

[74] Graphene woven
fabric (GWF)

Custom audio
dataset

Visual inspection Relative resistance
change > 4%

[71] MEMS microphone
array

Custom vehicle
audio dataset

Classification
accuracy

98.38%

[72] Proteinoid-based
classifier

English alphabet
audio dataset

SPIKE-distance (S) 0.3702 (avg.
S-value)

This work KCP (Kombucha–
Proteinoid–Chlorella)

English alphabet
audio dataset

Learning accuracy 80% (within 5
repetitions)

addition to uncovering contributions within existing compos-
ite formulations?

Understanding the mechanisms driving innovative KCP systems’
emergent audio processing capabilities can lead to technical
suggestions for improving and expanding this class of bioinspired
audio materials.

5 Conclusion

The study showcases the ability of synthetic biology methods
to reproduce intricate brain functions in KCP structures. These
biomimetic architectures demonstrated emergent features such
as the ability to learn and remember. Potential applications of
KCP matrices may include integration into human-like acoustic
interfaces for sound detection and dissemination such as speech
recognition, the use as endoscopic diagnostic devices for real-
time monitoring of biological sound emission signals in disease
development such as tumor growth, and sound recognition
devices such as security systems and environmental monitoring
robots. Additional investigation into the fundamental principles
of physics that govern biological cognition has the potential to

TABLE 3 Proposed functions of components in the KCP audio
classification process.

Component
Role in audio classification

mechanism

Kombucha
cellulose matrix

Provides structural scaffolding; interfaces
with electronics to detect audio signals

Proteinoids Assembles into conductive pathways for
signal transmission; contributes to

frequency selectivity
Patterned
electrodes

Inputs/outputs for stimulating and
recording electrical responses

Microbial
constituents

Modulates electric fields; processes parts
of audio spectrum

Mineral deposits Alters local conductivity; shifts resonant
frequencies

Note: The composite materials and interfaces play distinct roles in facilitating
the processing of audio inputs and obtaining frequency selectivity.
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facilitate the advancement of enhanced biocomputation tech-
nology. Artificial prototype brains could provide insights for
the development of innovative, flexible, and energy conserving
computing systems.
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Appendix A

This section highlights the use of materials and outlines the synthesis
steps involved in proteinoid preparation.
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Materials:
∙ L-Glutamic acid (Sigma Aldrich, purity≥ 99%, CASNumber: 56-86-0)

∙ L-Arginine (Sigma Aldrich, purity ≥ 98%, CAS Number: 74-79-3)

∙ Deionized water (Millipore, resistivity ≥ 18.2 Ωcm)

A1 Proteinoid Synthesis

1. In a 50 mL round-bottom flask, L-glutamic acid and L-arginine were
combined in a 1:1 molar ratio (2.5 g each).

2. The flask was connected to a reflux condenser and heated using a
Stuart heat-stir hotplate magnetic stirrer with temperature control.

3. The amino acid mixture was heated above its boiling point to 300◦C
under continuous magnetic stirring (500 rpm) for 3 h.

4. After cooling to room temperature, the resulting proteinoid mixture
was dissolved in deionizedwater to achieve a concentration of 1mg/L.

5. The proteinoid solution was then heated to 100◦C and maintained
at this temperature for an additional 3 h under constant stirring
(500 rpm).

6. Following the second heating step, the solution was cooled to room
temperature and lyophilized using a BIOBASE model BK-FD10P
Freeze Dry System to obtain the solid proteinoid.

7. The proteinoid was ground into a fine powder using a mortar and
pestle and stored in a desiccator until further use.

A2 Proteinoid Microsphere Morphology Revealed by
High-Magnification Optical Microscopy and Scanning
Electron Microscopy

This section includes images of optical and scanning electronmicroscopy
of the KCP sample for visual representation and analysis.

FIGURE A1 Proteinoid microspheres are made in five steps. First,
amino acids are heated to boiling (step A), causing molecular con-
densation. Second, the thermally polymerized product dissolves in an
aqueous solution at 80◦C under rigorous agitation (step B), precipitat-
ing synthesized proteinoids. Lyophilization removes remaining aqueous
solvent (step C) before precipitating solid samples for analysis (step D).
Finally, Fourier–transform infrared spectroscopy and scanning electron
microscopy assess chemical composition and morphology (step E).
Annotated arrows (α–ϵ) in the scheme illustrate the directional succession
of transformative stages. This multistep process synthesizes proteinoid
polymeric microspheres from amino acid precursors.

FIGURE A2 Key steps in fabricating kombucha–chlorella bio-
electronic interfaces. (1) Kombucha cellulose pellicle formation, (2)
introducemicroalgal culture, (3) co-culture tomature conductivemat, (4)
incorporate electronic components, (5) test mat with external signals.

FIGURE A3 Schematic of experimental setup and workflow.
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FIGURE A4 FT-IR spectra of freshly produced and aged kombucha cellulosemats. The spectrum of a fresh kombucha cellulosemat is represented
by the black line. It has distinct absorption bands at 407.96, 417.79, 448.79, and 487.24 cm−1. These bands are due to the stretching and bending vibrations
of the cellulose backbone. The peak observed at 3284.59 cm−1 is attributed to theO-H stretching vibration of hydroxyl groups inside the cellulose network.
The fingerprint region (1500–500 cm−1) of the cellulose mat indicates a uniform chemical composition. On the other hand, the red line illustrates the
range of a kombucha cellulose mat that has been growing for 5 months. This reveals the appearance of new peaks at 1031.69 and 1314.78 cm−1, which
are attributed to the stretching vibrations of glycosidic linkages and the bending vibrations of cellulose, respectively. The occurrence of peaks at 1622.36
and 2922.55 cm−1 suggests the existence of water molecules, lignin’s carbonyl groups, and aliphatic compounds. The spectrum shifts observed indicate
the complex and varied chemical composition that forms in the kombucha cellulose mat as it ages.
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FIGURE A5 Characterization of proteinoid microspheres. (a) Optical microscopy image acquired with a Keyence VHX–7100 optical microscope.
Scale bar= 10 µm. (b) Particle size distribution of measuredmicrosphere diameters showing amean diameter of 0.95 µm,minimum diameter of 0.28 µm,
andmaximum diameter of 14.89 µm. (c) Binary thresholdmanipulation of themicroscopy image used for calculatingmicrosphere diameters. (d) Optical
microscopy image with adjusted light orientation showing detailed morphology of proteinoid microspheres.
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FIGURE A6 A detailed examination of proteinoids reveals a structure consisting of interconnected nanospheres forming a complex network. A
closer look reveals the intricate arrangement of proteinoid nanospheres, each measuring approximately 50 nm in diameter. These nanospheres come
together to create a larger scale assembly, showcasing the remarkable organization at play. The scale barmeasures 213 nm. The proteinoidswere examined
using anFEIQuanta 650 scanning electronmicroscope to analyze the nanostructural composition of these synthetic proto-brain systems. Themicroscopy
analysis uncovers proteinoid nanoparticles that exhibit a remarkable ability to self-assemble into a complex biomimetic network with a highly spherical
shape.
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