
Citation: Gunji, Y.P.; Adamatzky, A.

Computation Implemented by the

Interaction of Chemical Reaction,

Clustering, and De-Clustering of

Molecules. Biomimetics 2024, 9, 432.

https://doi.org/10.3390/

biomimetics9070432

Academic Editor: Yongquan Zhou

Received: 24 May 2024

Revised: 5 July 2024

Accepted: 13 July 2024

Published: 16 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Computation Implemented by the Interaction of Chemical
Reaction, Clustering, and De-Clustering of Molecules
Yukio Pegio Gunji 1,* and Andrew Adamatzky 2

1 Department of Intermedia Art and Science, School of Fundamental Science and Technology,
Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

2 Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, UK;
andrew.adamatzky@uwe.ac.uk

* Correspondence: yukio@waseda.jp

Abstract: A chemical reaction and its reaction environment are intrinsically linked, especially within
the confines of narrow cellular spaces. Traditional models of chemical reactions often use differential
equations with concentration as the primary variable, neglecting the density heterogeneity in the
solution and the interaction between the reaction and its environment. We model the interaction
between a chemical reaction and its environment within a geometrically confined space, such as
inside a cell, by representing the environment through the size of molecular clusters. In the absence
of fluctuations, the interplay between cluster size changes and the activation and inactivation of
molecules induces oscillations. However, in unstable environments, the system reaches a fluctuating
steady state. When an enzyme is introduced to this steady state, oscillations akin to action potential
spike trains emerge. We examine the behavior of these spike trains and demonstrate that they can
be used to implement logic gates. We discuss the oscillations and computations that arise from the
interaction between a chemical reaction and its environment, exploring their potential for contributing
to chemical intelligence.

Keywords: chemical reaction; clustering and de-clustering; oscillation; spike train; logic gate;
implicit intelligence

1. Introduction

Theories and models of chemical reactions have traditionally assumed well-stirred
solutions. However, real systems, particularly biochemical reactions within living tissues
and cells, often deviate significantly from this assumption. This deviation is especially
relevant when attempting to use biological or chemical materials for computing instead
of silicon chips. The heterogeneity of such systems and the resulting dynamics can sig-
nificantly impact computations. To explore these issues, we investigate the interaction
between chemical reactions and the heterogeneity of molecule density caused by clustering
(aggregation) and de-clustering (dispersion).

We also consider material-based and organism-based computations. Biochemical
reactions occur within small cells and have various effects within these compact spaces.
Distinctions between reactions in-water and on-water [1–3], and between single-molecule
and multi-molecule behavior [4,5], exemplify how the interaction between chemical reac-
tions and the intracellular environment can influence computation.

Biochemical substances and biological populations confined to small compartments,
such as cells, exhibit various oscillatory phenomena. In the field of dynamical systems,
oscillations are often interpreted as limit cycles [6,7]. However, in these models, variables
represent the concentration of chemical substances, assuming well-stirred conditions and
homogeneous density, which is inconsistent with real biological systems.

Several studies have considered the chemical reaction of the KaiC protein [8–14]. The
phosphorylation and dephosphorylation of KaiC lead to circadian rhythms within a 24 h
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period. It was discovered that the KaiA, KaiB, and KaiC hexamer complex drives these
rhythms [8–10]. Experimental evidence showed that a 24 h cycle occurs with only KaiABC
and ATP in vitro [11,12]. Various models were proposed, suggesting that reaction constants
depend on the structure of KaiC [13] or the hexamer/cluster of KaiC [14]. It became clear
that KaiA and KaiB play roles in synchronization tuning [15], and that monomer shuffling
in the hexamer during dephosphorylation also contributes to synchronization [16]. The
temperature dependence of oscillation damping is expressed as a Hopf bifurcation from a
limit cycle to an unstable spiral as a macroscopic analogy [17]. However, this analogy does
not fully capture the role of parameters like temperature or the loss of KaiA [18].

Recent advances using real-time bioluminescence for the KaiABC system have shown
detailed mechanisms of KaiABC-ATP interactions [19]. Protein structure analysis using
particle accelerators indicated that circadian rhythms result from ATP hydrolysis, with
phosphorylation cycles driven by ATP hydrolysis [20–22]. Although mathematical models
incorporating these findings have been proposed [23,24], the dominant role of ATP hydroly-
sis in the KaiABC system is still debated. It is reported that the phase of the phosphorylation
cycle can be shifted by changing the ATP/ADP ratio or adding oxidized quinone [25].

From the research history of circadian rhythms based on KaiC, we learn that the initial
assumption was that gene regulation in vivo was necessary for the cyanobacterial circadian
rhythm. The discovery of 24 h oscillations in vitro was surprising, suggesting a complete
set of chemical substrates necessary for circadian rhythms. However, further research
revealed additional factors such as the specific site of phosphorylation on KaiC, the role of
KaiA, and unexpected phenomena like monomer shuffling and ATP hydrolysis oscillations.

These factors create the environment in which phosphorylation–dephosphorylation
(computation) occurs, suggesting that biochemical reactions depend on various accom-
panying chemicals and conditions (environment for computation). This concept can be
generalized to other biochemical reactions. While complex chemical reactions are pro-
grammable [26], they are not defined as closed systems but depend on the reaction envi-
ronment. Novel models of synchronization based on the idea of dissipative structures have
been proposed [27]. The detailed balance between individual oscillators involves energy
dissipation, driving oscillator coupling, and synchronization. Each oscillator’s environment
contributes to its generation, demonstrating the interaction between a chemical reaction
and its environment mediated by fluctuations.

In light of these observations, we implement the interaction between a chemical reac-
tion and its environment using an abstract chemical reaction. We assume that the reaction
involves only the activation or inactivation of a chemical species and that the reaction
constantly changes depending on the environment. Here, the environment is a cluster of
various sizes formed by self-aggregating molecules open to fluctuations and other enzymes
not initially part of the system. This situation is common in real cells. After evaluating the
basic properties of the interaction between a chemical reaction and its environment, we
implement logic gates based on this interaction. Since ballistic computation was proposed,
various material-based and biomaterial-based logic gates have been implemented [28–31].
Finally, we discuss the relationship between intelligence inherent in cells and computing
operated outside cells.

The research results presented in this paper align with the theoretical and experimental
domains of enzymatic computation developed by Katz and colleagues [32,33]. However, the
novelty and originality of this study lie in simulating an oscillating enzymatic system that
produces outputs but does not match mechanisms, similar to glycolytic oscillations [34,35].
This innovative approach not only supports Katz’s foundational ideas but also extends
them by demonstrating the potential for complex dynamic behavior in enzymatic systems,
paving the way for new applications in biochemical computing and synthetic biology.
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2. Chemical Reaction Dependent on Cluster Size
2.1. General Framework

The abstract chemical system is defined as ⟨M,℘(M), Fc, FD, φ, B, v⟩, where M is a set
of molecules, ℘(M) is a power set of M, Fc : ℘(M)× ℘(M) → ℘(M) and
FD : ℘(M) → ℘(M)× ℘(M) are maps applied to elements of ℘(M), representing clus-
tering and de-clustering of molecules, B = {0, 1} is the value of molecules, φ : B → B is
a stochastic map controlling activation and inactivation of molecules, and v : M → B is
verification for a molecule. The value of a molecule, 0 or 1, indicates inactive or active
molecules, respectively.

A cluster of molecules is expressed as an element of ℘(M), i.e., a subset of M, and
is represented by a letter that is distinguished from the other clusters. The number of
molecules is preserved, and a set of molecules is divided into clusters where each cluster is
mutually disjoint. A collection of all clusters is called a partition, P, which can be expressed
as follows:

M = {x ∈ C|∀C ∈ P}. (1)

Given M = {m1, m2, . . . , mn}, one partition is expressed as

P = {{m1}, {m2, m3, . . . , ms}, {ms+1, . . .}, . . . , {. . . , mn}} (2)

where each cluster is distinguished by a letter such that

C1 = {m1}, C2 = {m2, m3, . . . , ms}, . . . , Cr = {. . . , mn}. (3)

A cluster containing just one molecule is called a monomer. Clustering is defined for

(C p, Cq

)
∈ ℘(M)× ℘(M) as follows:

Fc

(
(C p, Cq

)
) = Cp ∪ Cq, (4)

with the probability PC ∈ [0.0, 1.0] dependent on the rate of inactive molecules in a cluster
such that

PC ∝
|{m ∈ C|v(m) = 0}|

|C| (5)

where |S| represents the number of elements of a set S. This implies that Cp and Cq are

chosen for clustering if both |{m∈Cp|v(m)=0}|
|Cp| and |{m∈Cq|v(m)=0}|

|Cq| are high enough to be

chosen. In contrast, de-clustering is defined for Cp ∈ ℘(M) as follows:

FD
(
Cp

)
=

(
Cp1 , Cp2

)
(6)

where Cp1 ∪ Cp2 = Cp, how to divide the elements into two sets is determined stochasti-
cally, and de-clustering proceeds with the probability PD ∈ [0.0, 1.0], thus satisfying the
following expression:

PD ∝
|{m ∈ C|v(m) = 1}|

|C| (7)

The more clusters are de-clustered, the more molecules in a cluster are active. Activa-
tion and inactivation for a molecule are stochastically determined, dependent on the cluster
size in which a molecule is contained. Thus, for m ∈ C ⊆ M, the following expression is
generated:

φ(v(m)) =

{
0, if v(m) = 1, with PIA(C)
1, if v(m) = 0, with PA(C)

(8)
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where PIA, PA ∈ [0.0, 1.0] is the probability satisfying the following conditions:{
PIA(C) > PA(C) if |C| is small # #
PIA(C) < PA(C) if |C| is large

(9)

Equations (4)–(7)—with (4) and (5) referred to as clustering conditions and (6) and (7)
as de-clustering conditions—imply that clustering and de-clustering proceed depending
on the rate of active or inactive molecules in a cluster. Equations (8) and (9), referred to
as reaction conditions, imply that the chemical reactions of activation (from 0 to 1) and
inactivation (from 1 to 0) depend on the cluster size. Throughout this paper, we assume
that inactivation is dominant in monomers, while activation is dominant in large clusters.

Figure 1 illustrates the interaction between a chemical reaction and its environment,
showing that the reaction proceeds within this environment. A molecule in monomer form
predominantly changes from an active to an inactive state, while a molecule within a large
cluster predominantly changes from an inactive to an active state.
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Figure 1. Schematic diagram showing the relationship between chemical reaction (computation) and
cluster size (environment for computation). Each circle represents a molecule, with blue and yellow
molecules representing inactive and active molecules, respectively. Thick arrows represent dominant
reactions under a given environment (i.e., the size of the cluster).

The simulation of the interaction between the chemical reaction and its environment
is conducted by the following procedure:

1. An initial condition, consisting of the partition of molecules and the state of each
molecule (active or inactive), is set.

2. If two randomly chosen clusters satisfy the clustering condition, they combine into
one cluster; otherwise, nothing occurs.

3. If a randomly chosen cluster satisfies the de-clustering condition, it divides into two
clusters; otherwise, nothing occurs.

4. Each molecule is activated or inactivated if it satisfies the reaction condition.
5. The partition is updated based on procedure instructions 3–4 above, which constitutes

one time step.

This iterative process continues in a stepwise manner.
The chemical reaction at the molecular level is implemented using the stochastic

Gillespie algorithm, which determines whether each molecule reacts based on the reaction
constant [36–38]. Molecular-level chemical reactions can also be implemented using a
multiset approach [39,40]. While the Gillespie algorithm is widely applied to stochastic
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chemical simulations, it does not account for the interaction between chemical reactions
and molecule self-aggregation, i.e., the interaction between computation and its execution
environment. In this regard, our model differs from previous molecular-based chemical
reaction models.

We next consider the extreme case. Firstly, it is assumed that PC ∼ 1.0 if more
than 60% of molecules in a cluster are inactive and PD ∼ 1.0 if more than 60% of
molecules in a cluster are active. This tendency satisfies conditions (4)–(7). Secondly,
it is assumed that PIA(C) ∼ 1.0 and PA(C) ∼ 0.0 if C is a singleton set (i.e., monomer),
and that PIA(C) ∼ 0.0 and PA(C) ∼ 1.0 if C is a big cluster consisting of more than 90%
of all molecules. It is also assumed that under other environments (i.e., various sizes of
clusters), activation and inactivation are antagonistic and their ratio does not change. This
assumption also satisfies conditions (8) and (9).

This extreme case shows a simple oscillation between clustering and de-clustering
triggered by drastic changes in activation and inactivation. Figure 2 shows part of a time
series oscillation. Here, the number of all molecules is 16 and is preserved. The initial condition
is the largest cluster consisting of 16 molecules. Since PIA(C) ∼ 0.0 and PA(C) ∼ 1.0 for a big
cluster, once a big cluster is generated, all molecules are activated. Thus, the biggest cluster
is broken up until all clusters become monomers. Once all clusters become monomers, they
are inactivated since PIA(C) ∼ 1.0 and PA(C) ∼ 0.0 for a monomer. Because PC ∼ 1.0 for
inactive monomers, clustering proceeds until most of the molecules are collected into the
biggest cluster. This process is repeated.
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Figure 2. Time series of de-clustering and clustering of molecules. The horizontal line represents the
isochron line, and time proceeds from top to bottom and from the left diagram to the right diagram.
Each number represents a cluster whose value is the number of molecules contained in a cluster. The
yellow loop shows a cluster in which a tracked molecule is contained.

The yellow loop in Figure 2 depicts the trajectory of the target molecule being tracked.
Initially, the target molecule is part of a cluster comprising six molecules. Subsequently,
this cluster divides into two smaller clusters, each containing three molecules. Notably, the
target molecule is found within one of these three-molecule clusters.

The oscillation between clustering and de-clustering remains stable under the absence
of noise conditions, provided a complete initial condition is specified. This complete
initial condition entails either all clusters being inactive monomers or one of the largest
clusters comprising active molecules. Noise conditions are delineated by a noise level,
pnoise ∈ [0.0, 1.0], whereby active molecules transition to inactive states and inactive
molecules transition to active states with a specified probability, pnoise.
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The oscillatory behavior of clustering and de-clustering is readily observed in the
absence of noise across varying numbers of molecules. In Figure 3, the extreme case is
depicted concerning the number of clusters and active molecules, with 200 molecules
in total. The minimum point for the number of clusters is observed at 1, indicating the
formation of the single largest cluster comprising all molecules. Subsequently, a rapid
increase in the number of active molecules occurs, reaching 200. As de-clustering progresses,
a substantial number of active molecules is maintained. Following this phase, as molecules
transition to inactive states, clustering gradually recommences. Hence, the oscillation
between clustering and de-clustering mirrors the oscillation between molecule activation
and inactivation.
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condition (above) and under the noise condition of pnoise = 0.02 (bottom).

In the presence of noise levels ranging from 0.01 to 0.2, oscillations cease, and both the
number of clusters and active molecules fluctuate, leading to a stable state, as illustrated
in the lower section of Figure 3. This indicates that the oscillatory behavior of clustering
and de-clustering becomes unstable under perturbed conditions. Consequently, we are
prompted to explore another potential source of oscillation, namely, the contribution of
enzymes.

2.2. Spike Oscillation Derived by Enzyme

Here, we introduce an enzyme to accelerate the chemical reaction. Given the abstract
nature of our chemical reaction, we define two types of reactions: activation and inactiva-
tion. Consequently, we introduce two enzymes to accelerate these processes. Our specific
focus lies on the enzyme that accelerates inactivation, as it can induce spike-like oscillations.
The enzymatic activity responsible for accelerating inactivation is defined as follows:

If 0.5 <
|{m ∈ M|v(m) = 0}|

|M| < Pα and v(m) = 0, then v(m) = 1. (10)

Given that the enzyme for inactivation solely facilitates the progression of inactivation,
its enzymatic activity advances under conditions where inactivation predominates over
activation. Therefore, the condition 0.5 < |{m∈M|v(m)=0}|

|M| make sense. The probability Pα is
variously set.

Figure 4 illustrates how the interaction between a chemical reaction and its environ-
ment under noisy conditions is significantly influenced by the presence of an enzyme,
leading to spike oscillations. The noise condition is set to pnoise = 0.02 and Pα = 0.7. For
convenience, these parameter settings are used throughout this paper. Although it may
seem counterintuitive that inactivation could increase the number of active molecules, the
acceleration of inactivation promotes clustering, eventually forming the largest cluster.
Once this largest cluster is generated and the conditions are met, all molecules abruptly
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switch from inactive to active states, resulting in a rapid increase in the number of active
molecules. This predominance of active molecules leads to a gradual de-clustering process.
However, due to the continuous perturbation by noise, the de-clustering is short-lived,
leading to a decrease in active molecules and the resumption of clustering. As inactive
molecules dominate, the enzyme facilitates clustering again, causing another drastic in-
crease in active molecules. This cyclical process results in the appearance of spike-like
oscillations.
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Just as spikes are used to transmit signals in neurons, it is highly conceivable that
spikes can be used as a tool for transmitting information and could serve as a prototype for
computation and intelligence. This perspective opens the possibility of controlling spike
formation and using the temporary administration of enzymes computationally. If logical
computation can be performed externally to the cell, it is plausible that similar processes
occur within the cell, indicating cellular intelligence. Therefore, we first investigate the
basic behavior of spikes generated by enzyme administration.

The appearance of spikes depends on the antagonistic relationship between clustering
and de-clustering and on the cluster size. However, perfect control over clustering and de-
clustering is not possible. Spike generation is determined by the size of the clusters present
at any given time, so even with enzyme presence, spikes may not always form successfully.
When enzymes are introduced to the system, they affect both molecule activation and
changes in cluster size. Consequently, the generation of spikes is inherently unstable and
depends on the timing of enzyme administration.

Figure 5 shows spike generation resulting from enzyme administration. In the time se-
ries presented in Figure 5, an enzyme that accelerates inactivation is administered between
1000 and 2000 time steps. Shortly after administration, most molecules become inactive,
leading to clustering and a decrease in the number of clusters. As the number of clusters
continues to decrease, the number of active molecules oscillates violently in very short
periods. Once the largest cluster is formed, all molecules become active, generating a spike.
As de-clustering proceeds under highly activated conditions, inactivation also continues
due to the enzyme, reaching an equilibrium point between clustering and de-clustering.
This equilibrium then shifts back to clustering, generating a spike-like signal. Clustering
continues until the largest cluster is formed, while the number of active molecules continues
to oscillate rapidly.

The time series shown in the top part of Figure 5 demonstrates that after the occurrence
of a series of spikes, the number of clusters remains low. This suggests that large clusters
persist without disassembling. The time series shown in the bottom part of Figure 5
indicates that the second administration of the enzyme starts 1000 steps after the first. It is
evident that clustering is maintained after the first enzyme administration, which is why
the second administration generates a spike shortly after its initiation. It takes a very short
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time to reach the largest cluster. This raises the question of whether the reduction in the
number of clusters is a general tendency.
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Figure 5. Generation of a spike in the number of active molecules derived by temporal administration
of the enzyme: one-shot administration (above) and continuous administration over time (below).

Figure 6 shows how the spike train is influenced by enzymatic strength, defined
by the probability of inactivation applied to a molecule satisfying condition (10). The
percentages above the graph represent this probability, indicating the enzymatic strength.
The second enzyme administration occurs 1000 steps after the termination of the first for all
enzymatic strengths. While it was considered that higher enzymatic strength would lead
to a greater reduction in the number of clusters, the data show no significant difference in
cluster reduction between 100% and 20% enzymatic strengths. Although the 40% enzymatic
strength shows a noticeable reduction, this result is merely a consequence of probability.
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Subsequently, the behavior of spikes and changes in cluster size were investigated at
even weaker enzyme strengths, as shown in Figure 7. When the enzyme strength drops
below 10%, the effects become pronounced. As the number of clusters increases after the
first enzyme administration, it becomes difficult to reach the minimal point (i.e., the largest
cluster). Therefore, spikes are not generated smoothly after the first enzyme administration.
At the 1% enzyme strength level, even the first administration fails to produce a spike train.
It is evident that weaker enzyme strengths are insufficient to form the largest cluster and
generate spike trains.
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Even though enzyme administration contributes stochastically to the system, it is
anticipated that cluster formation will be promoted, and this effect will persist even after
the enzyme has dissipated. Essentially, the initial enzyme administration is memorized in
the form of cluster formation. To assess this memory effect, we evaluated the duration for
which the memory of enzyme administration persisted after the initial administration.

2.3. Memory Effect or after Effect of Chemical Reaction

Considering that weaker enzyme strengths are expected to influence the memory
effect, enzyme strengths of 2% and 1% were selected to investigate this effect. The initial
condition was set as a complete initial condition, with all active molecules contained within
a large cluster. Concurrently, the system was consistently exposed to a 2% perturbation,
resulting in fluctuated steady states if the enzyme was not administered. The first enzyme
administration began at 1000 time steps and concluded at 2000 time steps. The second
enzyme administration commenced at either 200, 300, 500, 700, 900, or 1100 steps after the
termination of the first enzyme administration.

Figure 8 illustrates the aftereffect of enzyme administration, with the enzyme strength
set at 2%. Even at this level of enzyme strength, it significantly contributes to spike train
generation. The aftereffect of enzyme administration is particularly evident when the
second enzyme is administered at 300 steps after the termination of the first enzyme
administration. At this point, or at 500 steps after the first enzyme administration, the
number of clusters remains low, indicating the persistence of large clusters due to the initial
enzyme administration. Consequently, when the second enzyme administration inactivates
molecules, it easily generates the largest cluster, leading to a sudden activation change in
all molecules, expressed as a spike.
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500, 700, 900, 1000, and 1100 steps after the termination of the first administration of the enzyme, the
second enzyme administration is started in 1000 steps. The vertical and horizontal lines indicated by
orange and blue curves are the same as those in Figure 5.

The aftereffect observed at 300 steps after the first enzyme administration may con-
tribute to more spikes than those driven solely by the first enzyme administration. However,
at 500 steps after the first administration, the number of clusters does not reach the stan-
dard steady-state level of about 100 molecules. In contrast, when the second enzyme is
administered between 700 and 1100 time steps after the first, the number of clusters does
not decrease sufficiently to generate the largest cluster, and the number of active molecules
oscillates at lower levels. Notably, when the second enzyme is administered at 900, 1000, or
1100 time steps after the first enzyme administration, it takes some time to generate spikes,
and only two spikes are produced. This implies a diminishment of the aftereffect.

Figure 9 presents another instance of the aftereffect of enzyme administration. Even
with the first administration of the enzyme failing to reduce the number of clusters in
the system, it appears that there is minimal aftereffect. However, due to the lingering
effect of the first enzyme administration, the second administration can prove effective.
At a 1% enzyme strength level, no spikes occur after the first enzyme administration. A
series of continuous enzyme administrations can be effective, as the effect of the initial
administration persists, resulting in a decrease in the number of clusters and sustained
damping. If the enzyme is continuously administered without a 500 h gap, it is possible to
administer the enzyme for the second time while maintaining the cluster formation effect
incrementally. Consequently, spike train formation becomes possible only after the second
enzyme administration. At 300 steps after the first administration, two spikes are distinctly
observed, and even at 400 steps after the first, there is one definite spike, indicating an
explicit aftereffect of enzyme administration.

In contrast, if the second enzyme administration occurs beyond 500 steps after the
termination of the first, the number of clusters increases to the standard level of the
fluctuated steady state, making it unlikely for spikes to be generated. Since the aftereffect
of enzyme administration is a probabilistic process, we here estimate the probability of
aftereffects with respect to the distribution of cluster numbers.

Figure 10 illustrates the distribution of cluster numbers following enzyme admin-
istration. The top left graph depicts the distribution under the no-enzyme condition,
representing the fluctuated steady state. In this scenario, arbitrary time steps after the
virtual termination of no-enzyme administration—100, 500, and 1000 steps—are examined
across 1000 trials. Given the steady state condition, the distributions at these time steps are
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nearly identical. Each horizontal line represents one-fifth of the total clusters, with the peak
of the distribution typically occurring around 120 clusters, which is the standard level of
the steady state.
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Figure 10. The number of cluster distributions resulting from the aftereffect of enzyme administration
with 1, 2, 5, 10, and 100% enzyme strengths compared to the number of cluster distributions resulting
from the no-enzyme condition (left top). For each number of cluster distributions from the aftereffect,
blue, orange, and gray histograms show the distribution 100, 500, and 1000 steps after the termination
of the enzyme administration condition. Histograms are obtained by 1000 trials.

The remaining graphs display distributions under various enzyme strength condi-
tions. Under 1% enzyme strength, the distributions at 1000 and 500 steps after enzyme
administration overlap. Although the distribution at 100 steps after administration differs
from those at 1000 and 500 steps, it lacks a prominent peak, indicating minimal impact on
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cluster reduction or generation. Conversely, at 2%, 5%, 10%, and 100% enzyme strengths,
the distributions at 1000, 500, and 200 steps after administration differ, showing a bimodal
distribution with a smaller peak at one cluster. This suggests that the aftereffect significantly
contributes to the rapid generation of the largest cluster, persisting for at least 1000 steps
after administration, and indicates that rapid activation changes are memorized by cluster
size dynamics in the reaction environment.

Just as a large computer heating a small room affects subsequent computer use due to
elevated temperatures, the chemical reaction and its environment described in this paper
exhibit a similar memory effect. However, unlike the negative impact of temperature on
subsequent computations, memorizing a chemical reaction positively influences subsequent
reactions. This memory effect through the computation–environment interaction is likely a
common occurrence.

The occurrence of spikes and memory capacity can facilitate information processing
and logical computing. Here, we implement a logic gate using the interaction between
chemical reactions and their environment.

3. Logic Gate Implemented by the Interaction of Activation and Clustering

If the logic gate of AND-gate and NOT-gate can be defined, any logical statements can
be expressed in classical logic, i.e., Boolean algebra of which the value of any expression can
be determined by either 0 or 1. The AND-gate is defined by the truth table such that 0 AND
0 = 0, 0 AND 1 = 1 AND 0 = 0, and 1 AND 1 = 1. The NOT-gate is defined by the truth table
such that NOT (0) = 1 and NOT (1) = 0. In contrast, OR-gate is defined by 0 OR 0 = 0 and 0
OR 1 = 1 OR 0 = 1 OR 1 = 1. As Boolean logic is defined by an algebra closed with respect
to binary operations, AND, OR, and unary operation, NOT, it can be straightforwardly
verified that for any value of x, y, x OR y = NOT (x AND y). Thus, one can say that Boolean
logic can be well defined by the definition of AND- and NOT-gates [41].

Figure 11 illustrates how to implement AND- and NOT-gates using the interaction
of chemical reactions (activation and inactivation) and their environment (various sizes
of clusters). The fluctuated steady state under the no-enzyme condition is regarded as
the value 0, while an adequate number of spikes generated by enzyme administration is
regarded as the value 1. Inputs are prepared either by no-enzyme or enzyme administration.
As the effect of the enzyme is not deterministic, the input sometimes cannot be adequately
transmitted to the gate. The occurrence of spikes is estimated by counting spikes generated
by enzyme administration. The output value is prepared by either no-enzyme or enzyme
administration, depending on the total number of spikes obtained from a pair of input
values. If the total sum of two spike trains exceeds an adequate threshold value, one spike
train is generated as the value 1, indicating the operation of an AND-gate. The values 0 and
1 can be prepared by the no-enzyme condition and enzyme administration, respectively,
enabling the implementation of the AND-gate as shown in Figure 11.

Similarly, it is straightforward to implement the NOT-gate. The value 0 is prepared
by the no-enzyme condition, while the value 1 is prepared by the enzyme administration
condition. After preparing the input value, the number of spikes generated is counted. If
the number of spikes exceeds a threshold value, the output is determined as the no-enzyme
condition; otherwise, the output is determined as the enzyme administration condition,
allowing the transition from 0 to 1 and from 1 to 0, representing the NOT-gate.

As mentioned before, activation–inactivation and clustering–de-clustering are stochas-
tic processes destined to be unstable. If the input and output preparations are implemented
with low enzyme strength, the memory effect of enzyme administration can influence
the value’s appearance. The preparation of both input and output values cannot entail
one-to-one correspondence between preparation and realization, representing the essential
character of this unconventional computing.
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Figure 11. Schematic diagram of AND-gate and NOT-gate implemented by the interaction of chemical
reaction (activation) and its environment (clustering of molecules). Each graph represents a time
series of the number of clusters (blue) and of the number of active molecules. Under the no-enzyme
condition, a fluctuated steady state is obtained, and under the enzyme administration condition, a
spike train appears. Counting the number of spikes can implement logic gates.

Figure 12 demonstrates the implementation of the AND-gate through the interaction
of activation and clustering. The response of the output to all possible inputs is depicted,
with each input response represented by a pair of vertically arranged graphs. The orange
curve illustrates the time series of activated molecules, while the blue curve represents the
time series of cluster numbers.
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Figure 12. Implementation of AND-gate. A pair of two graphs (cell-0 and cell-1) in the same column
represents a pair of inputs, where the input in cell-0 is expressed as a time series of active molecules
surrounded by a black square, the input in cell-1 is expressed as a time series of active molecules
surrounded by a black square on the left, and the output shown in cell-1 is expressed as a time series
of active molecules surrounded by a black square on the right. The vertical and horizontal lines
indicated by orange and blue curves are the same as those in Figure 5.

As the AND operation is a binary operation, there are two input values: one input is
received by cell-1 in the upper graph, and the other input is received by cell-2 in the lower
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graph. Input preparation is defined by administering the no-enzyme condition for 0 and
administering the enzyme condition for 1, with the enzyme strength set to 100%. The input
preparation is reflected in the number of activated molecules. Consequently, the first input
value is determined by the number of active molecules within the time series enclosed by
the black square in cell-0, while the second input value is determined by the number of
active molecules within the time series enclosed by the black square on the left in cell-1. If
a spike occurs wherein the number of active molecules within the time series enclosed by
the black square in cell-0 or cell-1 exceeds 190 and reaches its maximum, it is counted as
one spike. If the number of spikes exceeds 2, the input value is defined as 1; otherwise, it is
defined as 0.

If the total number of spikes summed up from cell-0 and cell-1 exceeds four, the
output preparation is determined as the enzyme administration condition; otherwise, it
is determined as the no-enzyme condition. The enzyme is administered to the system
1000 steps after the termination of the input in cell-1. By examining the time series of the
number of active molecules in cell-1, which reflects the output preparation, the number of
spikes is counted. If the number of spikes exceeds two, the output is defined as 1; otherwise,
it is defined as 0. The output value is determined in cell-1.

Finally, the implemented AND-gate reproduces the truth table for AND-gates. For
input pairs (0, 0), (0, 1), and (1, 0), the output is 0, and for input pair (1, 1), the output is
1. It is evident that the NOT-gate is easily implemented in a similar manner, with input
processing executed by a different procedure. The input and output values are the same as
those for the AND-gate. After counting the number of spikes, if it exceeds two (i.e., input 1),
the output value preparation is determined as the no-enzyme condition; otherwise, it is
determined as the enzyme administration condition. Subsequently, the time series of the
number of active molecules is used to compute the output value, and the output value is
determined from the number of spikes. This reproduces the truth table for the NOT-gate.

As the number of active molecules is influenced by both chemical reactions and
their environment, particularly by memory effects, logic gates implemented through the
interaction between chemical reactions and their environment are unstable. However, such
instability could contribute to robust and adaptable computing. Exploring this possibility
will be discussed in our next paper.

Recently, logic gates implemented by biomaterials such as DNA and RNA [42,43] and
by molecules [44,45] are being developed for practical applications instead of silicon gates.
Together with the development of logic gates made of conductive and soft materials [46],
these advancements will contribute to the practical development of soft robotics. Through
this development, the significance of probabilistic computations, which can be interpreted
as malfunctions observed in real living organisms, will be fundamentally questioned.

4. Discussion

Since Ilya Prigogine proposed the concept of dissipative structures [47], it has been
argued that external perturbations contribute to the dynamic and stable behavior of systems.
The Bénard cell, a typical example of a dissipative structure, results from the coupling of
convection due to thermal gradients and the diffusion of viscous fluids. Thermal dissipation
leads to convection and the fluctuation of fluid results in the distribution of cells. While
external perturbations play an essential role in pattern formation, a specific structure with
high (convection) and low (diffusion) velocities of information propagation is necessary to
achieve the effects of perturbation. In reaction–diffusion systems, it is also argued that the
combination of slow and fast diffusion effectively couples with nonlinear activation and
inhibition. These specific conditions, which enhance the effects of perturbation, have not
been generalized in complex systems.

Is the mechanism generating spike trains in our model too specific to generalize to
other dissipative structures or systems influenced by external factors? Is the interaction
between chemical reactions and their environment too specific for general dissipative struc-
tures? Self-aggregation and dispersion of molecules are ubiquitously found in biochemical
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phenomena. It is also common to observe that chemical constants vary depending on the
cluster size, leading to chemical oscillations influenced by the interaction between cluster
size and chemical reaction. Enzymes also frequently contribute to chemical reactions.
Notably, enzyme administration leads to spike trains only if the system is perpetually
perturbed, implying that dissipation plays a crucial role in generating spike trains. In this
sense, our model might be considered a possible extension of the concept of dissipative
structures.

Although spike trains in our model are generated by the interaction between chemical
reactions, clustering–de-clustering, and enzyme administration under perturbation, they
might lack the fundamental property to generate autonomous periodic oscillations, such as
the negotiation of chemical reactions. The recently proposed mechanism of deviating from
the detailed balance of reaction coupling derived from dissipation might be a promising
candidate for the hidden mechanism behind the negotiation of chemical reactions.

This perspective may represent a stronger version of dissipative structures. The
intrusion of an oscillator external to a specific oscillator can lead to oscillator–oscillator
coupling. External involvement in the system could signify a stronger mechanism, such
as temporal cohesion [48]. This can result in stable non-equilibrium states, akin to living
systems [49]. The fact that these phenomena are products of various coincidences implies
that their cause cannot be found within the system itself. Essentially, the system is connected
to its external environment. We posit that this external connectivity is at the core of intrinsic
intelligence, distinct from the extrinsic intelligence found in mechanical systems. One of
the challenges to exploring the issue of intrinsic intelligence might be Markov blankets [50].

When we say that a system possesses intelligence, does this imply the existence of a
mechanism or algorithm within the system that activates this intelligence? If we consider
consciousness and mind as extensions of intelligence, then a system with consciousness
and mind must have an internal mechanism expressing these attributes, which negates
autonomy or free will. This is paradoxical. Precisely because the cause of intelligence is
sought outside the system, the system can possess intelligence that is not merely mechanical.
In this sense, the extension of the concept of dissipative structures can be regarded as
intrinsic intelligence.

One such computational capability surpassing the limitations of conventional sys-
tems is illustrated by breaking the trade-off between computational universality and
efficiency [51,52]. The trade-off in chemical reactions is originally proposed by Michael
Conrad [53]. While a knife is universally applicable but less efficient for specific uses, a wine
opener can only open wine but is highly efficient for this purpose. Generalists exhibit high
universality and low efficiency, whereas specialists exhibit low universality and high effi-
ciency. There is typically a trade-off between universality and efficiency. Elementary cellular
automata [54,55] also demonstrate a definite trade-off between computational universality
and efficiency, where universality is defined by the number of reachable configurations, and
efficiency is defined by the average velocity to reachable configurations [51,52]. Normal
cellular automata are deterministic systems not connected to the external environment.
However, if cellular automata are updated asynchronously, they are compelled to use a
random generator, thereby becoming connected to the outside. Asynchronous cellular
automata and asynchronously tuned cellular automata have been reported to break the
trade-off observed in elementary cellular automata updated synchronously [51,52]. The
system proposed in this paper is expected to break that trade-off, serving as an explicit sign
of intrinsic intelligence.

5. Conclusions

The interaction between computation and the computation execution environment
was implemented in the form of a chemical reaction and its reaction environment, and its
behavior was investigated through simulation. A chemical reaction is expressed by the
activation and inactivation of an abstract chemical substance, and the reaction environment
is expressed by the size of a cluster formed by the aggregation of chemical molecules. The



Biomimetics 2024, 9, 432 16 of 18

interaction is defined by the dominance of inactivation for monomers and the dominance
of activation for big clusters, leading to oscillations between clustering and de-clustering
and between activation and inactivation only in the absence of fluctuations.

Under fluctuating conditions, the system does not exhibit oscillations; the numbers of
both the clusters and active molecules settle into a fluctuating steady state. By administering
an enzyme that accelerates inactivation, the system produces spike trains. Accelerated
inactivation leads to the formation of large clusters, triggering sudden activation of all
molecules, followed by clustering. This process iterates, resulting in spike trains.

While the behavior is probabilistic, the memory of spike trains can be encoded in
cluster size. This memory effect decreases the number of clusters, maintaining large clus-
ters and making subsequent enzyme administrations easily realize spike train formation.
Simultaneously, due to its probabilistic nature, the number of clusters sometimes increases,
making it challenging for subsequent enzyme administrations to generate spike trains.

Logic gates were implemented using chemical reactions and enzyme administration.
By controlling the number of spikes, AND- and NOT-gates were achieved. These logic
gates pave the way for implementing cellular automata based on chemical reactions. Given
that our system relies on various phenomena and probabilities, it remains connected to the
outside environment. We contend that this external connection could represent intrinsic
intelligence rather than the mechanical intelligence inherent in machines. By constructing
cellular automata within this system, one could assess whether it breaks the trade-off
between universality and efficiency, offering a potential verification method. Our system
could be one of the candidates exhibiting implicit intelligence.

Our model does not encompass all possible cellular reactions to external stimuli. The
limitations of our model and the specific conditions under which it can be applied will be
a topic of further studies. Right now, our model serves as an abstract representation to
generate hypotheses rather than a comprehensive depiction of cellular processes.
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