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Abstract— The global prevalence of stress and its far-reaching impact on well-being has spurred the pursuit of innovative
solutions for physiological and stress monitoring. Existing methods, whereas informative, often lack cost-efficiency, daily
usefulness, real-time capabilities, or user comfort. This study introduces a novel approach using a low-cost wearable
polymeric optical fiber (POF) sensor to classify stress in 12 healthy individuals (seven women and five men) using the
Trial Social Stress Test (TSST) method for stress induction. The study’s methodology involves validating the POF sensor’s
physiological measurement, comparing it with a fiber Bragg Grating (FBG)-based sensor and with an electrocardiogram
(ECG) commercial sensor, and subsequent making a stress classification approach using a Bagged Decision Tree
Classifier (BDTC). To the authors’ knowledge, this is the first work implementing POF and FBG sensors in stress detection.
The results showcase the POF sensor’s proficiency in capturing pulse and respiration signals, aligning closely with
established monitoring sensors. The tested classification algorithm with the POF sensor exhibits an accuracy of 92.37% in
the validation stage and 84.75%, recall of 79.41%, precision of 93.10%, and F-score of 85.71%. These results demonstrate
the POF sensor’s potential to be a reliable stress indicator. Also, considering the reduction in the size of the optical
interrogation system for the POF sensor compared to FBG interrogation systems, the proposed sensor can be used in
complete wearable systems. For future work, the sensor will be improved in terms of TRL and tested in real-scenario

applications.

Index Terms— Fiber Optic Sensors, Physiological Monitoring, Polymeric Optical Fiber, Stress Detection, Wearable

. INTRODUCTION

HE effects of stress on physical and mental health

have been evaluated because it has been growing in the
statistics of the World Health Organization (WHO), as well as
the importance of stress management to avoid diseases related
to the Autonomous Nervous System (ANS) [1]. In a significant
sample of interviewed people in the United Kingdom, 74%
felt so stressed they could not cope. As a behavioral result,
46% reported to be unhealthy and as psychological results,
51% reported depression and 61% anxiety [2]. Considering
the physiological influence of stress on the body, the body’s
response to stressors has been studied by sensing parameters
of the sympathetic system of the ANS. The ANS works
in constant balance through the sympathetic and parasympa-
thetic systems to maintain well-being, regulating breathing,
heart control, digestive functions, and hormone release [3].
When stress occurs, hormones such as cortisol are released,
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saliva production stops, energy consumption is maintained by
stopping digestive function, and cardiac function is highly
regulated [4].

Therefore, it is helpful to monitor stress, which can assist
adults and children in providing feedback, promoting stress
management, and improving quality of life [5]. Nowadays,
there are technologies for comprehending the behavior of the
ANS [6]. Those sensors use different methods to estimate
stress through physiological data. Through the number of
hormones present in saliva [7], monitoring cardiac activity [8],
and obtaining characteristics directly related to the regulation
of the sympathetic system such as heart rate variability (HRV)
[6]. Furthermore, respiratory sensors play a crucial role in
monitoring breathing patterns and respiratory rates, as the
measurement of other sympathetic responses like the use of
galvanic skin response (GSR) sensors [9] reflecting changes
in sweat gland activity. Some of these methods are not
continuously monitorable [7], so the most effective method
is by monitoring heart activity and HRV features.

The HRV is the variation in the time intervals between
adjacent heartbeats; it is a validated method to detect stress due
to cardiac regulations of the sympathetic system, which gen-
erates low and high-frequency variations [6]. Stress estimation
with HRV relies on sensors to quantify changes in the body’s
responses [8]. Among the sensors employed in stress research
are electrocardiograms (ECG), which record the heart’s elec-
trical activity, providing insights into HRV responses. More-
over, those sensors are costly and more oriented to clinical
or research applications and not for everyday use. Another
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pivotal sensor is photoplethysmography (PPG), which detects
blood volume changes through optical methods, offering a
non-invasive means to assess cardiovascular parameters [5].
Integrating these sensors, often in wearable or non-intrusive
forms, enables a holistic approach to stress estimation [10].

Non-invasive and wearable sensors offer a continuous moni-
toring solution in various contexts [11], [12]. Often in wearable
devices, optical sensors utilize light-based techniques such
as PPG to assess physiological parameters, commonly found
in wristbands and smartwatches, using light absorption and
reflection to detect blood volume changes, providing heart rate
measurements [5]. These devices facilitate real-time monitor-
ing without impeding daily activities, enabling long-term data
collection for robust assessments [5]. Furthermore, the inte-
gration of optical fiber sensors has expanded the capabilities
of optical technology in physiological measurement. Optical
fibers can be embedded in clothing [13], are highly sensitive
[14], and have electromagnetic immunity [15]. Optical sensors
have been used to measure medical biosignals, especially
the FBG-based sensors, measuring biomechanical parameters,
minimally invasive surgery applications and physiological
monitoring [16]. In this sense, the sensors in the development
process are classified according to the Technology Readiness
Level (TRL), which describes the status where the advance-
ment of the sensors and devices are currently [16].

The optical sensors’ comfort and unobtrusiveness expand
the research toward optimized and personalized health mon-
itoring systems [17]. FBG-based optical sensors have been
used for medical applications, in its pure and doped material
for faster responses and detections [18]. In this case, the
FBGs sensors are useful in multimodal pulse and respiratory
rate monitoring applications [19], [20]. Nevertheless, their
widespread adoption has been limited by the necessity for
costly interrogation systems [21]. To address this limitation,
various studies have endeavored to minimize the size and
expense of those methods [22]. Moreover, some interesting
approaches using FBG sensors have reported high-sensitive
responses to these signals [18], and embedded in fabrics
and printed designs to protect and achieve the measurement,
leveraging the characteristics of size and weight of the optical
fiber [13], [23]. Zhichao et al., developed a system embedded
in textiles containing three FBGs, one as the diaphragm,
another for measuring heart rate, and the last one to measure
breathing rate, and obtaining the peaks using the variational
modal decomposition algorithm [23].

In this sense, Lo Presti et al, developed a soft patch
for simultaneously monitoring HR and RR through a single
sensing device with a silicone cover and a textile with the bone
form [13], achieving a correct measurement in supine, sitting,
and standing positions in a protocol of eupnea and tachypnea.
Similarly, Presti et al., developed a dog-bone form sensor with
an embedded FBG with a TPU 3D-printed encapsulation [20].
They made a metrological characterization and an analysis of
the fiber in mechanical and thermal conditions, they tested
the sensor in physiological measurement in a unique healthy
volunteer during 60 seconds of normal breathing and 30
seconds of apnea, for which a larger quantity of volunteers
is needed to see how the sensor measures different anatomical

shapes and breathing patterns detection.

In addition, other structures have been designed with FBG
sensors embedded, with different techniques, these optical
fiber sensors are highly versatile to indirectly measure heart
and respiratory rates [24]. In contrast, POF sensors have been
an alternative approach for wearable sensors due to their size,
resistant coating, and polymeric material [21]. POF sensors are
easy to fabricate due to the detection method of light intensity
and the facility for creating sensitive zones to generate varia-
tions [17]. The flexibility makes them more resistant to bend
and handle, and are low-cost systems by using optoelectronic
simple devices such as photodetectors and light emission
diodes (LED) [25]. This generates the possibility of developing
a stress-monitoring low-cost sensor. Stress estimation has had
significant advancements with integrating machine learning
(ML) techniques [8], offering a robust framework for ana-
lyzing physiological data. ML algorithms have demonstrated
capabilities in discerning intricate patterns associated with
stress [12]. These signals include HRYV, electrodermal activ-
ity, and respiratory patterns by employing feature extraction
methods and training [9]. Lee et al. [12] and Castaldo et
al. [8] have successfully applied support vector machines
(SVM), K-nearest neighbor (KNN), and ensemble methods
to achieve accurate stress classification. The versatility of ML
algorithms in handling diverse physiological datasets and their
adaptability to real-time applications make them essential tools
in developing stress estimation sensors [26].

This work seeks to validate a low-cost POF sensor for
stress detection by monitoring pulse and respiration peaks and
comparing it with another optical fiber sensor (FBG sensor)
and a commercial ECG monitoring sensor (Shimmer Sensing,
Ireland). To the authors’ knowledge, this is the first reported
approach of optical fiber sensors in stress estimation and
comparing them with a reference sensor using ML algorithms.
The proposed POF sensor seeks to improve well-being and
give a low-cost solution for a daily-life world issue.

Il. MATERIALS AND METHODS

The methodology is based on comparing three physiological
monitoring sensors for stress detection. This section describes
the sensors’ operation principle, the TSST protocol, experi-
mental setup, signals obtained and its processing for feature
extraction, and the ML classification process.

A. Used sensors’ principle

This study used three sensors: a POF sensor based on
light intensity variation, an FBG sensor based on wavelength
light spectrum variation, and the commercial ECG monitoring
sensor using electrical variation using electrodes.

1) POF sensor: The proposed POF sensor is made with
a SH4001 Simplex Optical Fiber made of Polymethyl-
methacrylate (PMMA), with numerical aperture of 0.5, core
and cladding of ~980 and ~1000 pm of diameter, and a
Polyethylene jacket of ~2200 pm (Mitsubishi Chemical Co.,
Japan). The sensor is based on the optical intensity variation
concept, where a constant wavelength and intensity LED is
connected through a POF to a photodetector configured with
a trimmer to read as best as possible the light intensity
variation [17]. The sensor has a light-sensitive area to generate
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Fig. 1. Principle and functioning schematics of the sensors. A) The POF sensor intensity principle. B) The FBG sensor for physiological monitoring
showing its principle and the division of the FBG in the chest band and the interrogation system. C) The chest band distribution and the backpack
containing the electronics of the POF sensor. D) The variation of the optical fiber sensors according to the respiratory and pulse phases.

a variation in the light intensity that can be detected with
a photodetector [27]. A 3D-printed piece was designed to
maintain the coupling between two ends of POF, having one
end fixed to the 3D-printed piece connected to the LED
and another free-moving end connected to the photodetector;
shown in Figure 1 (a).

This system located in the chest has a light loss depending
on the expansion and contraction provoked by the pulse and
the respiration as shown in Figure 1 (d), changing the distance
between the POF ends inside the 3D-printed piece. Two of
these light variation areas were distributed in an elastic velcro
band to have redundant information and to be adaptable to
subjects. An electronic circuit was designed, connecting the
photodetectors and the LEDs to the High-Precision Analog
to Digital and Digital to Analog (AD/DA) Board (Waveshare,
United States) with 24-bit resolution. The AD/DA board was
directly connected to a single board computer (SBC, Raspberry
Pi4, United Kingdom), powered by a portable USB charger of
5V 2A (TP-Link, Brazil), as shown in the electronics segment
of Figure 1 (c), showing the 3D printed case made for the
electronics. The SBC stores and sends data through Wi-Fi by
MQQT protocol to a computer with Matlab at 120 Hz. The
electronics were stored in a small backpack.

2) FBG sensor: The FBG-based sensor was developed using
a silica FBG centered at 1544.86 nm wavelength with 21 dB
of extinction ratio, obtaining enough variation for this appli-
cation [15]. To improve mechanical resistance, the FBG was
protected with an elastic silicone coat of polydimethylsiloxane
(PMDS) as used in other optical fiber sensor applications [28]
and especially in FBG sensors to protect and give enough

flexibility [13]. This allows the movement and variation of the
FBG and makes it more robust for wearable use. The sensor
was added to the elastic chest band in the middle of both POF
coupling pieces, as shown in Figure 1 (c).

The FBG was monitored with an I-MON 256 High-Speed
Interrogation monitor (1525-1570 nm) (Ibsen, photonics, Den-
mark), recording the FBG sensor’s spectrum. It was connected
to a broadband source centered at the C-band (DL-BP1-150A
SLED, Denselight, Singapur) containing an internal optical cir-
culator. The interrogator monitors the backscattered spectrum
and the output Bragg wavelength spectrum; the interrogator
was connected to a computer with the software to monitor and
save the data; the sensor’s schematic is shown in Figure 1 (b)
with the FBG sensor principle. Still, when it is located on
the participant’s chest, the grating period changes due to the
respiratory and pulse expansion (red-shift) and contraction
(blue-shift), so the reflected Bragg wavelength depends on the
physiological signals (see Figure 1 (d)).

3) ECG sensor: The Shimmer 3 Consensys ECG sensor
(Shimmer sensing, Ireland) can be utilized to monitor four
channels of ECG, recording the pathway of electrical impulses
through the heart muscle. The ECG can also be used to
monitor respiratory signals by connecting the electrodes as
informed by the Shimmer documentation and shown in Figure
2. The software allows real-time monitoring of the heart’s
electrical activity and respiration. The ECG sensors work with
the heart’s electrical activity, so the heart cycle contraction
can be seen. It is used in clinical and different lead setups,
depending on the clinical evaluation objective, comparing the
electrode voltage between them.
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B. Ethics committee and Participants

The Rehabilitation Center Club Leones Cruz del Sur scien-
tific committee accepts the protocol presented in this work
as the validation-of-the-sensor stage, and the LabTel lab-
oratory agrees with the development of the study in the
laboratory facilities. The study involved 12 subjects (seven
females and five males, 24.6 £ 3.5 years old). All of them
were postgraduate students; the only exclusion criteria were
anxiety-influenced subjects with any psychologically reported
disease or any recent overstress episode. All subjects signed
the informed consent allowing participation, divulgation, and
video recording. The obtained data is publicly available'.

C. TSST stress induction protocol

For stress-related studies, there have been discussions on
the methods used for stress induction [29]. Results indicate the
intersubject variability to specific stressors or the physiological
and mental response for different classified stressors [30], so
selecting the stress induction method depends on the partici-
pants, considering the environment, or using daily life situa-
tions that can induce stress [5]. This selection is a challenging
task as it has been seen that conditions vary between subjects
and groups to produce stress, i.e., a stressful stimulus does
not affect everyone equally, so their physiological response
will depend on how much a stimulus affects the subject [30].
For this reason, standard tests have been developed to induce
types of stress, such as the TSST, which uses two types of
stressors, a social and a mental task [12].

The protocol started by explaining the five steps (instru-
mentation of the sensors, relaxation, social and mental stress-
induction test, and removal of the sensors) and signing the
informed consent. After that, the five steps started as follows:

1) ECG sensor: Place 5 electrodes on the subjects as
in Figure 2, placing the elastic band with the ECG sensor
underwear connected to the electrodes. Subsequently, the two
signals (respiration and ECG) were checked.

2) FBG sensor: Carefully place the elastic band over the
clothing on the subjects’ chest. Subsequently, the subjects are
asked to sit in front of the monitor, and the wavelength signal
is verified in the I-MON software of the optical interrogator.

3) POF sensor: The backpack with the electronics was
placed with the help of the researcher. The POF ends were
placed on the same elastic band of the FBG in the coupling
pieces sewn previously to the band, connecting the LED end
to the fixed connection and the photodetector end to the free-
motion connection. Subsequently, the data status is checked in
Matlab and synchronized with the video and the three sensors.

4) Relaxation induction: The participant is asked to sit
comfortably, and “headspace: relax your mind” is played as
the relaxation phase in the front monitor. This interactive video
stimulates breathing and a relaxing visualization for 5 minutes.

5) Induction of social stress: The TSST stress test was
designed to simulate challenging situations, such as a job
interview. Five questions were asked and lasted between 3
to 5 minutes per subject.

6) Mental stress induction: The TSST mental stress test
was with questions with positive and negative sound and visual

"https://figshare.com/s/51cb5e18a6000ca550de

feedback, but without giving the solution in case of being
incorrect; this test had 30 questions, and the participants must
answer as many questions as possible in 5 minutes.

7) Removal of the sensors: The sensors were paused, the
video was stopped, and the sensors were removed.

FBG monitoring
Computer =

TSST
computer *
Shimmer and
POF monitoring i

Shimmer

computer

g o
Fig. 2. Protocol setup on the laboratory facilities. The screens used for
the sensors’ software and the sensors located on the participant’s chest.

D. Experimental setup

The experimental setup was planned to have a comfortable
space to locate the sensors and conduct the protocol. In this
study, our primary objective was to validate the sensor’s ability
to detect physiological signals under controlled conditions,
rather than conducting a comprehensive metrological charac-
terization. The experiments were performed in a temperature
and humidity-controlled environment within a TTI lab (Lab-
Tel), ensuring that the sensor’s performance was not influenced
by variations in these environmental parameters. This approach
was made focusing on the comparative validation of the sensor
against reference sensors, it is worth noting those variables are
slow dynamic and induce an optical power drift (dc offset)
instead of a periodical amplitude modulation.

Optical fiber studies have investigated the influence of tem-
perature and humidity on sensor performance, and have em-
ployed controlled environments to maintain consistent condi-
tions. Presti et al., analyzed temperature influences by expos-
ing an FBG sensor to temperature changes of approximately
20 °C, followed by a static assessment as the temperature
returned to ambient levels. Additionally, the effect of relative
humidity (RH) was assessed by exposing the sensor to quasi-
static RH changes, from 100% to approximately 20% [20].
The controlled environment in the current study ensures that
the sensors’ performance is reliable and not affected by envi-
ronmental variations. A table was prepared with (1) a computer
connected to the FBG interrogator and exclusively for the FBG
monitoring due to its fragility and saving the data, (2) a second
computer with the Shimmer Consensys software connected
through Bluetooth to the sensor to monitor data acquisition and
avoid disconnections, and the POF connection through SSH
and Wifi, as Betti et al. who developed an interface to monitor
sensors signals during TSST stress induction [31], and (3) a
monitor connected to the second computer to display the TSST
in front of the participant, as shown in Figure 2. A comfortable
chair was arranged for the subjects, and the researcher stood
near the second computer to manage the session flux, monitor
the sensors’ correct functioning, and make the protocol’s social
and mental stress questions.
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E. Features extraction for ML algorithms

Data processing and management are shown in Figure 4.
This process is performed per sensor (i.e., feature matrices,
training, and validations). The physiological validation was
made to compare the results, with the detection of breathing
and pulse peaks, and then, the stress classification with the
performance of the ML algorithm validation. In addition, a
test with the POF sensor data was conducted.

For data processing in the validation phase, each subject’s
first and last 30-second segments were omitted, and the
relaxation and stress times were divided according to the
video annotations. To confirm the frequency bands of the
obtained signal with the POF, the first relaxation segment for
each participant was analyzed, the raw data was plotted, and
the fast Fourier transformation (FFT) was performed to see
the frequency bands and confirm the filtering process. The
frequency bands for the biosignals correspond to the normal
frequencies of heart and respiratory rates, as have been defined
previously [20], from 0.1 to 0.8 Hz for the respiration and from
1 to 3 Hz for the pulse. Comparing the 12 subjects’ FFT with
the bands found in the literature [23], [25], a Butterworth filter
was implemented for each signal. After the filtering process,
the signals were verified by plotting the signals obtained, this
process is shown in Figure 3. After the filtering process, the
Findpeaks function of Matlab was used to collect the peaks in

both cases and for the three sensors.
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Fig. 8.  The the POF sensor’s filtering process. A) Raw and C)
processed signals. B) FFT of the proposed sensor data with the two
filtered sections highlighted and with zoom in the pulse peak.

Subsequently, 30-second windows are segmented, and a
graphical comparison is performed as shown in Figure 5 for
respiration and pulse. In this phase, the windows with dis-
connection lapses are discarded, thus obtaining 296 windows
(120 in relaxation and 176 in stress). The peaks related to
pulse and respiration are analyzed statistically between the
sensors. The statistical Friedman test is performed to find
significant differences in the number of peaks and the mean of
the Standard Deviation (SD) of the peaks’ intervals. Feature
extraction uses pulse and respiration peaks to train and test
different ML algorithms. The 24 pulse and respiration features
listed in Table I are obtained for each time window, each
participant, and each sensor. These features with a class flag,
where 0O is relaxation, and 1 is stress, lead in three matrices
of 296 rows and 25 columns.

The ECG and the FBG data are used 100% for training and
validating, and the POF data are divided into 80% for training
and validation and 20% for testing, as shown in Figure 4. For
the feature selection method for classification applications, it

TABLE |
FEATURES DESCRIPTION EXTRACTED FROM BIOSIGNALS WITH THE
THREE SENSORS WITH THE REFERENGCE NUMBER [6], [9], [11], [12]

Signal :E?;Ef:; Description
Pulse/Resp (1) ) The average value of the 30 seconds segment
Pulse/Resp 3) @ The median value of the signal
Pulse/Resp G) (6) SD of how much fluctuates the signal from
the mean
Skewness measures the signal’s asymmetrical
Pulse/Resp @) spread about its mean valﬁe g
Pulse/Resp 9) (10) Kurtosis measures the signal peakedness
Pulse an The related SD of successive RR inte_rvql_
differences (SDSD) as short-term variability
SD1 measures short-term HRV and correlates
Pulse (12) with baroreflex sensitivity (BRS), which is the
change in inter-beat interval
Pulse (13) SD2 measures short-and longterm HRV and is
- correlated with LF power and BRS
The ratio of SD1/SD2 measures the
Pulse (14) unpredictability of the RR time series, is used
to measure ANS balance
Pulse/Resp  (15) (16)  The RMS represents the average power
Pulse/Resp  (17) (18)  The mean of the inter-peak intervals
Pulse/Resp  (19) (20)  SD of the inter-peak intervals
Number of peaks in the segment multiplied
Pulse/Resp  (21) (22) by two to obtain the estimated number of
peaks in one minute
Resp (23) The mean amplitude of the respiratory peaks
Resp (24) The SD of the respiratory peaks

is essential to consider the characteristics of the data and the
tested classification algorithms and compare the performance
of different methods. Additionally, ensemble methods or com-
binations of multiple feature selection techniques are explored
to improve robustness [32]. For dimension reduction, two
feature selection techniques are used: the Maximum Relevance
Minimum Redundancy (MRMR) algorithm [33] and the Chi-
squared (Chi2) test [34].
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Fig. 4. Flux diagram for the features extraction and data flow for the
stress classification algorithms.

Finally, the training and validation data are evaluated with
the cross-validation technique with n=10, which divides the
training data into ten equal parts. It performs algorithm
training with nine parts and validates the algorithm with
the remaining part. This procedure is performed to train an
algorithm not influenced by overfitting. The main stress ML
classification algorithms used in literature studies are tested
(KNN [8], decision trees [9], and SVM [12] with and without
feature reduction). For the POF, the best algorithm is used with
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the test data. The test is carried out with 20 % of the POF
data that have not yet encountered the algorithm. The four
main evaluation metrics are obtained for the test: accuracy,
precision, recall, and F-score.

[1l. RESULTS AND DISCUSSION

This work validates the developed POF sensor using an
FBG and an ECG as reference sensors. This results and
discussion section includes the validation and comparison of
the biosignals in the physiological measurement, the stress
classification validation, and the test of the POF sensor for
stress detection centered on evaluating the selected algorithm.

A. Physiological measurement validation

When performing feature extraction of the 30-second win-
dows, a comparative difference analysis was performed to see
if detecting the number of peaks and the mean time difference
between them significantly differed between the sensors. This
test would confirm that the signal peaks of the POF sensor
corresponded to the heart and respiratory chest movements,
by comparing with the reference sensors. A Shapiro-Wilk
normality test was conducted to assess the normality of the
data. Due to non-normal distribution, a comparative Friedman
test was chosen as an appropriate non-parametric alternative.
The results in Table II show the statistical comparison between
the three sensors in four variables, the mean distance between
pulse peaks, the standard deviation of the distance between
pulse peaks, and the same for breathing. This indicates that
all the calculated p-values exceed the alpha level of 0.05 for
the sensor comparisons, and the results are not statistically
different among the sensors in the pulse and respiration peak
detections and peak-to-peak intervals. Additionally, a graphical
analysis was made to see the differences in the measured
signals among the three compared sensors. An example is
shown in Figure 5, where the peak detection was correctly
collected for both biosignals.

TABLE I
FRIEDMAN TEST BETWEEN THE THREE SENSORS IN PEAK DETECTION

FOR PULSE (1) AND RESPIRATION (3) AND PEAK-TO-PEAK INTERVAL IN
PULSE (2) AND RESPIRATION (4)

Variable POF FBG ECG p-value
[€)) 4252 £ 15.11  45.81 £ 12.09  44.06 £+ 16.53 0.32
2) 0.70 £ 0.19 0.69 £+ 0.20 0.63 £ 0.23 0.19
3) 8.12 £ 2.01 8.52+ 2.13 9.05 + 1.85 0.40
(@) 3.10 + 0.82 3.58 + 0.49 3.25 £ 0.53 0.28

When evaluating the accuracy of physiological measure-
ments, it is crucial to consider the context and intended use
[35]. In this scenario, no significant difference was obtained
in rest while comparing the wearable POF sensor, the FBG-
based sensor, and an ECG device. Other studies showed
mean absolute errors related to their reference of 1.6% in
the heart rate and 0.78 breaths/minute in the respiratory rate
by comparing with Masimo MightySat fingertip using the
smartphone camera [35]. And percent differences of 0.6%,
0.9%, and 5.5% in the heart rate (HR) and non-errors in
the respiratory rate with an FBG sensor compared with a
Bioharness sensor [36].

The results in Figure 5 suggest that the wearable POF
sensor may exhibit slight inaccuracies in measuring pulse and

A) Respiration peak detection B) Pulse peak detection

\AN\/\NV\M WM HM Il

10 . 20 30 0 10 20 30
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Fig. 5. Physiological signal from the ECG reference sensor, the FBG-
based sensor, and the proposed POF sensor in the same 30-second
interval A) Respiration and B) Pulse peaks detection.

respiration rates, as in other studies of in-development sensors
[37]. This margin of error is acceptable for specific applica-
tions and demonstrated by the lack of significant difference in
comparing the main stress-related and independent variables
extracted from the two measured physiological signals. In
addition, Figure 5 (B) shows the heart activity’s R peaks
(pulse). Haseda et al. [38] discuss the importance of the
waveshape for physiological heart measurement with optical
fiber sensors; moreover, the application, in this case, extracts
variables related to the detection of the R peaks for which
the exact waveform is not necessary. Nevertheless, this limits
the healthcare applications of the sensor for those based
on superficial characteristics of the heart activity. Complete
waveform sensors based on electrical heart activity are needed
in scenarios where are required precise and accurate data
and variables. FBG sensors have been used for more specific
heart variable measurements, such as the blood pressure curve
[38], where more complex heart variables can be extracted.
Also, some novel approaches with doped FBG sensors made
more sensitive sensors, which get to better detections and
potential wearable applications in healthcare [18]. For this
reason, an improved preprocessing must be done to obtain
a more detailed biosignal waveform with the proposed POF
sensor, as the Pan-Tompkins algorithm [39], and could be done
by replicating the processing methods with the FBG signal
[38]. Moreover, for this approach, simpler preprocessing was
useful to obtain the respiratory and pulse peaks.

The main reason to develop an intensity-based optical fiber
sensor is the interrogation system needed in the FBG sensors.
The FBG sensor used as the optical fiber sensor reference
uses a costly and complex interrogation system, as in most
of the developed FBG sensors for physiological measurement
[13], [23], that measures the spectral response of FBGs to
read the sensed data. This is a limitation for developing a
wearable physiological sensor. Due to this complex equipment,
the setups for FBG reading technologies are static [21]. Shi et
al. developed a wearable FBG sensor for simultaneous sensing
of respiration and heart rates, moreover while the sensing part
is wearable in a chestband, the system needed a commercial
interrogator with a size of 206 mm x 274 mm x 79 mm and
highly costly compared to simpler optoelectronic elements like
phototransistors, limiting the progress of the system for real
wearable needed applications and accessible technology [24].
The FBG sensor showed a good performance during this work,
and considering the recent interrogator’s development field, as
future work, a low-cost interrogation system could be tested
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with the physiological monitoring system.

In the case of the proposed sensor and the evaluated setup,
the measurements obtained may not be suitable for medical
diagnoses or critical healthcare decisions. Still, in the case
of monitoring full-day stress detection, the sensor provides
a correct measurement being the first approach of a POF
intensity-based sensor in stress detection, and with a 3D
printed case with a size of 130 mm x 78 mm x 50 mm
for the electronics and interrogation system, reducing the size
and weight making the sensor a potential system for real-
life scenarios measurement. The TRL of the developed sensor
system is currently positioned at the third stage of proof of
concept in the preliminary validation. Our focus in this study
was primarily on demonstrating the sensor’s functionality
and comparing its performance against established reference
sensors in the literature. While our system represents a foun-
dational implementation, future efforts will be directed toward
advancing its TRL through iterative development and testing.
This will involve improving the sensor design, enhancing its
integration into wearable devices, and conducting comprehen-
sive validation studies to assess reliability and durability. By
progressing through the TRL stages, is aimed to achieve the
transition of the proposed sensor toward practical deployment
and integration into wearable applications.

Also, while the current study focused on validating the
sensor’s ability to detect physiological signals, it is recognized
the importance of understanding the sensor’s behavior under
varying environmental conditions for broader applications. Fu-
ture studies will include comprehensive testing of the sensor’s
response to different temperature and humidity levels. This
will involve placing the sensor in controlled environments
where temperature and humidity can be systematically varied
and monitored, similar to methodologies described in the
literature [20]. These additional tests will allow the charac-
terization of the sensor’s metrological properties, including its
sensitivity and response time to environmental changes, also
approximating to real-world conditions.

Considering the context and intended use of the sensor, the
POF sensor is portable, low-cost, and provides an acceptable
measurement of pulse and respiratory signals. The wearable
optical sensor was designed for monitoring applications; other
optical sensors have been developed for fitness [40], moni-
toring [41], and users’ individual use [30]. Their convenience
and non-invasiveness make them well-suited for daily health
and wellness tracking [15]. Moreover, clinical sensors are
typically less suitable for long-term and continuous use outside
of clinical environments [21]. This makes them less practical
for full-day stress monitoring in everyday settings.

B. Stress cross-validation for the sensors comparison

With the matrices obtained, three training-with-cross-
validation algorithms (KNN, BDTC, SVM) were tested with
and without feature reduction. Two methods were imple-
mented for a robust selection [32], and are shown in Figure
6, where the features referenced in Table I were ordered by
importance scores. The MRMR algorithm, which minimizes
redundancy [33], and the Chi-squared method to assess the
independence between the variables [34]. A general score

depending on the feature importance position was assigned and
the variables were ordered from lower to higher, the features
with a score lower than 12 were selected for the optimized
training and validation test.

The chosen features were (11), (5), (9), and (13), all of them
extracted from the pulse signal. The higher importance score
for both methods, with a general score of 2, was the SDSD
parameter, which indicates the related standard deviation of
successive RR interval differences [6]. This is an HRV metric,
but it is only related to short-term variability and is highly
correlated to stress and ANS response [6], [8]. The standard
deviation in time of the pulse signal was the second selected
feature in the third position for both methods, with a general
score of 6. This metric is not related to HRV but gives
information on the signal variation along the segment [42]. The
third selected metric was the pulse signal kurtosis, in the fourth
position in the MRMR algorithm and the fifth position in the
Chi-squared technique, with a general score of 9. Kurtosis
represents a numerical value to the graphical behavior of the
peakedness of the segment’s signal [43]. Finally, the fourth
feature selected was the SD2, sixth in both methods, with a
general score of 12. This metric is related to the HRV as
a non-linear measurement obtained from the Poincaré plot of
the RR peaks intervals, representing short- and long-term HRV
and correlates with Low Frequency (LF) power and BRS [6].
This variable is correlated to the body’s stress response by
representing LF variations and sympathetic activity [12].

A) MRMR algorithm B) Chi2algorithm
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Fig. 6. Importance scores of the features reduction methods used. A)
MRMR algorithm, and B) Chi2 statistical technique.

C. POF best-algorithm test evaluation metrics

The best algorithm was obtained while considering all the
features of the three sensors. The POF sensor, combined with
the BDTC algorithm (accuracy of 92.37%). For the FBG
and ECG sensors, the KNN was the best performed dur-
ing the cross-validation (accuracies of 94.93% and 95.61%).
These results suggest that the sensors are highly effective in
accurately classifying the data with stress-related variables.
Furthermore, the accuracy results for all the tested algorithms
in both situations are shown in Table III, comparing the results
after the feature reduction.

TABLE Il

ACCURACY RESULTS FOR THE THREE ALGORITHMS TESTED FOR THE
THREE SENSORS WITH AND WITHOUT FEATURES REDUCTION

All-features (%)

Features reduction (%)

Sensor NN BDTC SVM  KNN BDTC  SVM
ECG 9561 8855 0158 9065 8742 89.10
FBG 9493 8963 9027 9150 8331  85.69
POF 8310 9237 8263 8221 8014 8524
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TABLE IV
RESULTS COMPARISON WITH OTHER RELATED STUDIES INCLUDING ML ALGORITHMS FOR STRESS CLASSIFICATION

Sensor Results

Limitations

Proposed POF
sensor

A comparison with ECG and FBG sensors for stress-related
features with a low-cost POF sensor obtaining validation accuracy
of 92.37% and test accuracy of 84.75% and precision of 93.10%

Waveform for other physiological applications, established
and constant time windows

Multisignals approach
with the Microsoft

Extreme gradient Boosting classifier with accuracy of 67.66%
with multiphysiological information for mental load classification

Public dataset with previously reported low accuracies in
the classification with dynamic sampling rates of HR

band [11] and RR peaks and by using a commercial high-cost device
Polar H10 SVM algorithm tested in classification of police stress using short Processing time, computing cost for real-time detection,
HR [12] and ultra short HRV features with accuracies of 86.5% and 90.5% waveform for other application and high-cost sensor

Multisignals approach
with Bitalino [9]

Classification accuracy of 89.9% with a BDTC after a features
reduction in anxiety-influenced participants (arachnophobia)

Classification algorithm for high stress for phobias therapy
but low/middle stress differentiation could not be detected

Multisignals approach
with the Empatica
sensor [5]

Online approach using context identification algorithm for 55 days
in real-life setups with five subjects with a precision of 95% and
recall of 70%. With context the F1-score went from 0.47 to 0.90

Detection every 2 minutes, noisy blood pressure signal
while moving, offline the high-stress detection was low,
the tests were with low variety of subjects (5
subjects, all men, 28 years)

ECG sensor [8]

KNN algorithm used for stress classification with an accuracy of
94% in the validation and 88% in the test with feature reduction

Only mental stress task was used for the classification
and use a low quantity of test data

The choice of classification algorithm plays a crucial role
in achieving high accuracy [9]. In this case, the KNN algo-
rithm and BDTC algorithm proved effective in classifying the
sensors’ data. It is essential to validate these results in real-
world scenarios and consider factors such as sensor durability,
ease of deployment, and data processing [5]. When evaluating
stress monitoring solutions, it is crucial to consider accuracy
and affordability [44], where POF sensors are generally more
cost-effective than FBGs and ECG clinical devices [45]. Their
affordability, coupled with the results obtained, makes them
an attractive option for individuals seeking stress monitoring.

The best result with the cross-validation was with a BDTC,
where the evaluation metrics with the test data were calculated.
The 84.75% of accuracy obtained indicates that the POF sen-
sor, when coupled with the BDTC algorithm, performed well
in classifying stress and non-stress data. Precision measures
the proportion of correctly identified stress cases among all
positive predictions, and a 93.10% means that when the POF
sensor predicts a case as stress, it is highly likely to be accu-
rate. The 79.41% recall obtained indicates that the POF sensor
captures a significant portion of stress cases. The F1 score
was 85.71%, suggesting a good balance between accurately
identifying stress cases and minimum false positives.

In the comparison in Table IV, other sensors and techniques
reported similar results and accuracies. Initially, the proposed
POF sensor is the first optical fiber sensor known by the
authors to be used in stress estimation. Moreover, some
limitations include indirect measurement, which generates
difficulties in obtaining the complete heart waveform for other
applications. Lee et al. applied traditional short HRV features
and a novel ultrashort HRV feature to estimate police officers’
stress with an accuracy of 86.5% and 90.5%, respectively.
Their main limitations are the processing time and the cost
of the sensor [12]. Ihmig et al. obtained an accuracy of 89.9%
with their public database of spider-fearful subjects and the
best results with a BDTC. However, the participants responded
highly to the stress method, for which the algorithm with not
fearful people may not work [9].

A classification system uses the context variable in real-time
setups identification, with 95% precision. Moreover, the detec-
tion is made in real setups but every 2 minutes, which leads to

stress periods that are not detected, and there is a noisy signal
during some movements. Compared with reported fiber optic
sensors, a detection analysis was found with the pulse through
HRV features analysis with two participants [15], where the
influence of stress was observed. However, no classification
was performed. There are studies where the importance of
separating subjects in extracting and analyzing features has
been stated [11], which can be considered for an intersub-
ject analysis study with the proposed sensor. Physiological
responses to stress can vary widely among individuals, making
it challenging to establish stress thresholds [5]. Moreover, the
reported metrics should be considered when contemplating
such variability. An accuracy of 84.75% indicates that the
sensor and algorithm combination can effectively capture a
substantial part of this variability, but some individuals may
still exhibit atypical responses. The precision of 93.10% sug-
gests that the sensor has minimized false positives caused by
artifacts. In addition, environmental factors, sensor placement,
and motion artifacts can introduce noise and affect accuracy
[5]. For this, validation in no-controlled environments must
be made, and efforts to improve data processing methods are
needed [46].
V. CONCLUSIONS

A POF sensor was developed and evaluated by comparing
it with reference sensors in physiological detection and stress
classification. The sensor employed a simple system using
optical intensity detection; the results in the comparison show
the sensor measuring the peaks of pulse and respiration as
the FBG and the ECG sensors. The cross-validation results
show that the ECG data had the best accuracy of 95.61%.
The FBG and the POF also had optimal results of 94.93%
and 92.37%, respectively. The test of the POF sensor shows
acceptable results, mainly in its precision of 93.10%, and when
compared with a developed FBG sensor.

For stress estimation in real setups, the no-significant dif-
ference in the physiological measurement shows the potential
use of low-cost POF sensors in monitoring wearable devices,
instead of FBG sensors, reducing costs and leveraging the
advantages of using optical fiber in sensing applications.
This study lays the groundwork for future advancements in
wearable sensor technology using POF, and even when optical
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fiber sensors have been used for physiological monitoring, to
the knowledge of the authors, this is the first approach of POF
and FBG sensors in stress estimation using ML algorithms.

The next step will involve a dedicated wearable system
incorporating the sensor. This will include optimizing the
sensor’s form, exploring integration into soft and flexible
materials, and leveraging additive manufacturing techniques
for a lower-size customized 3D-printed case to advance in
the TRL stages. Also testing the sensor and algorithm in
real-world and online settings to validate the practical utility
in stress monitoring applications outside controlled environ-
ments. Future research can explore strategies to address inter-
subject variability, such as personalizing stress classification
models to individual baseline physiological characteristics.
Further efforts to enhance noise reduction and artifact handling
techniques can improve sensor performance, especially in real-
world, noisy environments.
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