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ABSTRACT 

This research intends to determine the appropriate sample sizes for two-arm pilot 
studies to help correctly determine the required sample size for the corresponding 
substantive or definitive trial. Previous research in the area has been reviewed. R 
programming is used to undertake simulation studies. The first study is an 
investigation of the procedure proposed by Browne (1995).  Results from this study 
confirm the work of Browne and show that alpha (nominal Type I error rate), beta 
(nominal Type II error rate), and effect size do not affect the error associated with 
estimation of sample size using the method. Desired coverage has a moderate effect, 
and the pilot sample size has a big effect on the error associated with the predicted 
sample size when using Browne’s formula.  In general, the approach of Browne (1995) 
is valid but gives very large incorrect estimates.  For this reason, the Goldilocks (“just 
about right”) approach was developed from quantifying the degree of underestimation 
and overestimation and this new approach may be used to guide researchers in 
controlling the excess margin. Study 2 compared the performance of four methods of 
sample size estimation when the Minimum Clinical Importance Difference (MCID) is 
unknown. The results showed that Browne’s method does not work effectively when 
MCID is unknown.  In these situations, the use of Hedge’s correction was the best of 
four formulae but still led to overestimation. Hence the need for Study 3 where new 
methods are proposed using upper confidence limit of the coefficient of variation which 
was presented using examples and simulations. Using this new approach, the 
parameter had similar impact in error margin as in Browne’s method and performed 
well for large effect sizes only. The multiplier critical table was developed in study 4  
however it results in big sample sizes and therefore would not be used in practice. 
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Commonly used parameters  

Table 1: Commonly used notation, simulation parameters. 

SYMBOL MEANING   

𝛼 Alpha (The probability of a Type I error)  

𝛽 Beta (The probability of a Type II error) 

𝑚1 Pilot sample size for randomised arm 1 

𝑚2 Pilot sample size for randomised arm 2 

𝑛 Sample size 

𝜇1 Mean of distribution 1 

𝜇2 Mean of distribution 2 

𝜎1
2

 

𝜎2
2 

Variance of distribution 1 

Variance of distribution 2 

𝑥̅1 Mean of sample 1 

𝑥̅2 Mean of sample 2 

𝑘 Multiplier in Browne’s formula  

𝜈 Degrees of freedom  

𝑠1
2 Variance of sample 1   

𝑠2
2 Variance of sample 2   

𝑠𝑝
2 Pooled Variance for sample 1 and sample 2 

𝛾 Gamma (coverage) 

𝑟 Random allocation ratio  

𝜒2 Chi-Square 

𝑁𝑡𝑟𝑢𝑒 Smallest sample size which satisfies power requirements 

𝑁̂ Estimated total smallest sample which satisfies power requirements 

𝛿 Cohen’s delta  
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Chapter 1 

Introduction  

In 2022, there were more than 38,000 newly registered clinical trials, bringing the total 

to over 430,000 since the year 2000 on ClinicalTrials.gov, with a global estimated 

spending of more than US$68 billion by 2025 (Gehr et al., 2023). In addition, there are 

many other non-clinical trials (e.g., in psychology, or in the biological sciences) which 

do not require registration.  A large percentage of the amount spent is on trials with an 

investigative medicinal product. A critical role in advancing medical knowledge and 

improving care of patients is done by clinical trials (Holford et al., 2010).  

The effectiveness and safety of new treatments, medical services, drugs or 

identifying potential side effects or risk associated with interventions are the aims of 

these trials ( Locock and Smith, 2011). There are phases in conducting the trials (Korn 

et al, 2012; Browne, 1995).  In these drug investigations, trials are typically described 

as being Phase I, Phase II, Phase III, or Phase IV trials.  In brief, a Phase I trial is a 

relatively small study (circa 10 to 50 participants) designed to find out what a new drug 

might do to the body and to identify safe dosage levels.  Phase II trials, with typically 

20 to 120 participants are designed to identify efficacy, find out more about side 

effects, and can be used to help plan for a more substantive or definitive Phase III 

trial.  The Phase III trial is usually large; sample sizes are in hundreds or thousands 

and are designed to give substantive conclusions and to add to the knowledge 

base.  Phase IV investigations are concerned with further understanding the long-term 

effects of drugs when used as a treatment.  In non-drug studies, the terminology “pilot” 

and “definitive study” are used to reflect the equivalent of a Phase II study and a Phase 

III study respectively.  However, a Phase III study might not give substantive 

conclusions if the sample size is incorrectly set too low or it may be too costly if the 

sample size is incorrectly pitched too high. Whitehead et al. (2016) explained that 

despite randomised controlled trials (RCTs) being considered the gold standard to 

determine the effectiveness of a novel intervention, they can be underpowered for the 

expected primary outcome measure if they fail to recruit sufficient participants. 

The Goldilocks principle of getting the sample size “just about right” would 

therefore have great economic and social benefit.  There is evidence that “just about 
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right” is not happening in practice (Nayak, 2010).  A systematic review of published 

RCTs with continuous outcomes found the population variation was underestimated 

in 80% of reported endpoints. According to Charles et al. (2009) a review of trials for 

both binary and continuous outcomes found that 25% of studies were vastly 

underpowered. The proposed work in this thesis will consider rectifying this problem 

with the most used design; the randomised controlled trial with two parallel arms.   

For every clinical trial there is a need for a justification of the sample size to be 

used for the design (Julious, 2005), and the minimum number of participants needed 

for a clinical trial is determined from a sample size calculation (Campbell et al., 2010). 

In some research, there is no prior information upon which the sample size for a 

definitive or substantive trial can be justified leading to a need for more research to be 

carried out (Julious and Swank, 2005).  For this reason, it is not uncommon for a pilot 

study to be carried out prior to a potentially costly large-scale investigation.  One 

purpose of a pilot study may be to gather information on either the likely effect size, or 

the standard deviation and to then use that information to help estimate the sample 

size needed for a definitive or substantive trial (i.e., one which will either give 

essentially definitive conclusions with 90% power or higher or conclusions of some 

substance with at least 80% power).  Although there are various rules of thumb for 

recommended pilot study sample sizes, there is no agreed way of determining the size 

of a pilot study to subsequently help determine the parameters needed to estimate the 

sample size for a larger definitive trial.   

 

1.1 Motivation 

According to Suresh and Chandrashekara (2012), if the appropriate sample size of a 

purportedly substantive trial is not determined it could lead to a study without statistical 

significance, and in particular, the chance of an inconclusive result is high when too 

few participants are used for a main trial (Halpern et al., 2002). 

A study with a small sample size (underpowered) may produce incorrect or 

inconclusive results or unconvincing results and make the study process a failure. If a 

study is ostensibly designed to produce substantive (e.g., 80% power) or a definitive 

set of conclusions (e.g., 90% power or higher), but has a sample size incorrectly set 

too low, then this is deemed unethical as it means participants are being put through 

a data collection process which cannot meet its objectives.  In contrast, an overly large 
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sample size could lead to a waste of resources, and it is arguably unethical to put an 

increased number of participants through a research study when the same 

conclusions could have been determined with a smaller sample size.  Relatedly, with 

an overly large sample size, too many people may be denied beneficial treatment if 

randomised to placebo or the control arm, if in fact the treatment confers benefit. If the 

treatment offers no benefit, and an overly large sample size is used, then this too may 

be seen as unethical.  For these reasons, institutional ethics committees, review 

boards and funding councils use statistical expertise to help evaluate quantitative 

research including the proposed sample size. Unfortunately, textbooks do not give 

sufficient guidance on how to determine the sample size of a definitive trial (Prescott 

and Soeken, 1989). In addition, Browne (1995), Julious (2004), Julious (2005), and 

Sim and Lewis (2012), all acknowledge that there is a disagreement over what sample 

size should be used for pilot trials to inform the design of definitive randomised 

controlled trials; recommendations have been developed but there is no consensus. 

Whitehead et al. (2016) state that a pilot study can help predict more precisely 

parameters required for the sample size calculation such as the variance of the 

outcome and the dropout rate and present issues early on the trial development. Kelly 

et al. (2005) confirmed there is insufficient guidance for conducting pilot trials. Most of 

the recommendations focus on continuous outcome data (see Browne (1995), Kieser 

and Wassmer (1996), and Sim and Lewis (2012)). 

 

1.2 Previous research in pilot sample size determination 

The value of the standard deviation is not known ahead of the research; however, 

when this standard deviation is obtained from a pilot study, the values could be 

imprecise (Friede and Kieser, 2001).  Pilot trials often estimate the standard deviation 

for a main trial imprecisely and more participants than necessary will be used for a trial 

if the anticipated standard deviation is estimated to be too high, and if the value for the 

standard deviation used is too low the trial will not have enough participants to achieve 

the required effect which could lead to misleading results or inconclusive findings  

(Whitehead et al., 2016). Using a standard deviation from a small pilot sample, the 

probability of getting the planned power can be as low as 40%; the rule of thumb of 

using a pilot sample size 𝑚 of 30 or greater to estimate a parameter will not eliminate 

the problem, except when the effect size is quite large (Browne, 1995). The research 
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results suggest the use of at least 80 per cent upper one-sided confidence limit on 𝜎 

as the estimate of the standard deviation to guarantee an 80 per cent chance of 

achieving the planned power in the clinical trial (Browne, 1995). Sample size could be 

wrongly estimated if the imprecise value of standard deviation from a pilot study is 

used in the standard method for sample size determination (Friede and Kieser, 2001). 

According to Whitehead et al. (2016), incorrectly estimating the sample size for 

a clinical trial could cause both ethical and financial challenges for a trial. Results for 

an external pilot trial sample size are offered which aim to lessen the overall trial 

sample size. It was found that the optimal pilot trial sample size increases with the size 

of the main trial. For a two arm study, Whitehead et al. (2016) proposed stepped rules 

of thumb for 90% powered main trials and that the sample size for a two-armed pilot 

trial to minimize the  sample size for a two-armed pilot trial should be 150, 50, 30, and 

20 per arm for standardized effect sizes (δ)  of   𝛿 < 0.1, 0.1 ≤ 𝛿 < 0.3, 0.3 ≤ 𝛿 ≤

0.7 , 𝛿 ≥ 0.7 respectively.  

 This overview of the literature shows that there have been previous 

adjustments made to sample size estimation formulae to improve sample sizes 

estimation however this adjustment led to inflated sample sizes (Whitehead et al 

2016). The upper confidence limit approach (UCL) referred to as Browne’s method 

(Browne, 1995) will be further discussed in section 1.2.1, the non-central t-distribution 

approach section will be covered in 1.2.2, Whitehead et al. (2016) research will be 

reviewed in section 1.2.3, and UCL review by Kieser and Wassmer 1996 will be 

covered in section 1.2.4. 

 

1.2.1 The Upper Confidence Limit Approach (UCL) 

The most influential work in this area is by Richard Browne (Browne 1995). The 

objective of the method is to better estimate sizes sample for trials while attaining the 

planned power. Using the standard deviation from a pilot sample size will likely lead 

to a study not achieving the planned power. To investigate the occurrence of actual 

power values that equal or surpass the planned power values when estimating 

standard deviation, Browne investigated the occurrence of actual power values that 

equal or surpass the planned power values when estimating the standard deviation 

from (a) 100(1 − 𝛾) percent upper one-sided confidence limit (UCL) on 𝜎 for several 

values of 𝛾, and (b) the pilot sample standard deviation (unadjusted values). In this 
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work, the one and two sample t-test, with an alternative hypothesis being a point 

specific value was used for the one arm and two arm design.  It is assumed that this 

alternative hypothesis is precisely true in the simulations.  In Browne’s work, stochastic 

computer simulations are done for a nominal significance level  (𝛼)= 0.05 only and for 

𝑚= 5, 10, 30, 50, 100.   For a target  (1 − 𝛽) = 0.8, Browne showed that the power for 

a definitive trial would be lower than wanted if the standard deviation from pilot sample 

is used in calculations of substantive sample sizes.  

The alternative approach suggested by this method concluded that using an 

80% upper one-sided confidence limit on the variance will help improve the chance of 

achieving the planned power in clinical trial 80% of the time, and more generally 

concluded that using a P% upper one-sided confidence limit on the variance will help 

improve the chance of achieving planned power in clinical trial up to P% of the time.    

This work of Browne is the leading approach for sample size estimation based on pilot 

estimates, but it does not identify the minimum sample size for a pilot study, nor does 

it consider whether the projected sample sizes are “too small” or “too large”.  A 

consideration of the limitations of Browne’s work will help establish a “Just about right” 

(JAR) or Goldilocks approach to determining sample size.   

For a definitive two group trial, the formula to determine the sample size for 

testing at the 𝛼 significance level with power equal to (1 − 𝛽), assuming normally 

distributed data, is given by 

 
𝑁𝑡𝑟𝑢𝑒 = 

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝜎2 

(1.1) 

where  𝑁𝑡𝑟𝑢𝑒  denotes the minimum sample size needed; 𝑍1−𝛼 2⁄   and 𝑍1−𝛽  are 

standardized normal deviate for two-sided significance testing with nominal 

significance level 𝛼 and required power (1 − 𝛽), 𝜎2 is the population variance for the 

outcome measure and is assumed to be equal for both arms, 𝜇1  is the mean for 

distribution 1, and 𝜇2  is the mean for distribution 2, and  𝑟 is the allocation ratio(see 

Van Belle and Martin 1993, Whitehead et al, 2016). The 𝑁𝑡𝑟𝑢𝑒 is for each arm and is 

rounded up to obtain an integer value. 

In the above formula (1.1) it is assumed that all the parameters are known.  In 

practice the parameters will not be known and will be estimated from small-scale pilot 

data.  For assumed equal variances, a naive estimated sample size would then be  
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𝑁̂ =  

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝑥̅1 − 𝑥̅2)2
  . 𝑠2 

(1.2) 

where 𝑠2 is sample variance of the pilot data and 𝑥̅1 and 𝑥̅2 are respectively the sample 

mean for group 1 and 2 respectively. 

when the Minimum Important Clinical Difference (MCID) is known 

 
𝑁̂ =  

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝑠2  

(1.3) 

However, the estimated sample size, 𝑁̂𝐵, using Browne's approach (Browne, 1995) is 

given by  

 
𝑁̂𝐵 = 

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝑘𝑠2 

(1.4) 

where 𝑘 =  (𝑚1 +  𝑚2 − 2) (𝜒𝜈,1−𝛾
2⁄ ) is the multiplier in Browne’s method, 𝑚1 is the 

pilot sample size for randomised arm 1, 𝑚2 is the pilot sample size for randomised arm 

2,  𝜒𝜈,1−  𝛾
2   is the upper 100 𝛾 percentage point of the chi-square variate on 𝜐 degrees 

of freedom, and  𝑠2  is the pooled variance and 𝑟 the allocation ration is equal to 1.   

These formulae will form the basis of the initial investigations and be used in 

deriving conditions for the Goldilocks solution.  

 

1.2.2 The Non-central 𝒕-distribution (NCT) Approach 

Considering the use of 𝑠2 (from sample) instead of  𝜎2 (from population) in the sample 

size calculation, Julious and Owen (2006) proposed a method for the sample size 

calculation known as the non-central 𝑡-distribution approach which accounts for this. 

However, in this approach the sample size is inflated based on the number of degrees 

of freedom 𝑑𝑓 which the variance estimate is based on, the sample size per treatment 

arm in this approach for main trial is presented by 

 
𝑛 ≥ 2𝑠2

[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑑𝑓, 𝑡1−𝛼 2𝑛−2⁄ )]
2

𝑑2
 

(1.5) 

where the inverse function of the cumulative distribution function with non-centrality 

parameter 𝑏 on  degrees of freedom (𝑑𝑓) is given by 𝑡𝑖𝑛𝑣 (. , 𝑘, 𝑏 ), 𝑑𝑓 is the degrees 

of freedom about the estimates of sample variance  𝑠2, and 𝑑  is the unknown 

difference in means. The estimated sample size will be increased if the estimate of the 

variance is based on only a few degrees of freedom (𝑑𝑓). An increase in the degrees 

of freedom of the variance will lead to the estimated sample sizes being smaller.   
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Essentially, as the pilot sample size (and hence degrees of freedom) increase, the 

better the accuracy resulting in narrower confidence intervals and more accurate 

estimates. 

According to Julious and Owen (2006) the method must be solved iteratively as 

𝑛 appears on both sides. With iterations starting at  

 
𝑛 =

2𝑠2[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑑𝑓 , 𝑧1−𝛼/2)]
2

𝑑2
 

(1.6) 

The sample variance tends to the population variance as the degrees of 

freedom increases. According to Julious (2004), as the degrees of freedom becomes 

higher, the less sensitive calculation is to assumptions about the variance.  

It is challenging specifying MCID, and a variance estimate hence specifying the 

standardized difference is preferred, which will lead to replacing 𝑑 and 𝑠 in the equation 

above with in equation 1.6 

 
𝑛 =

2[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑑𝑓 , 𝑧1−𝛼/2)]

𝛿2
 

(1.7) 

To allow comparison of effect sizes across scales, Cohen (1992) proposed the use of 

0.2, 0.5  and 0.8 as small, medium, and large standardized effect sizes. This method  

however seen to lead to inflation of sample sizes by 

 
𝐼𝐹 =

[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑑𝑓, 𝑧1−𝛼/2)]
2

(𝑧1−𝛼/2 + 𝑧1−𝛽)2
 

(1.8) 

 If the inflation factor (𝐼𝐹) is multiplied by the standard method in Eqtn 1.1, it will give 

the sample size as it would be when done with NCT method. The inflation factors 

depend on the type I error rate, the type II error rate and on pilot trial samples sizes. 

The inflation factor, using NCT approach for two-sided type I error rate of 5%, varying 

pilot trial sample sizes and power requirements of 80% and 90% are presented in 

Table 1.1. The table shows that as the pilot sample sizes increase the Inflation factor 

reduces, indicating that pilot sample sizes have an impact on the corresponding 𝐼𝐹.It 

shows how much larger the sample size is compared to the standard calculation. 

Using pilot trial sample size of 50, as suggested in the tables implies the sample size 

will be inflated by 1.055 at 90% power and by 1.036 at 80% power. 
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Table 1.1: Inflation factor for sample size calculation for the NCT approach at 5% 
Type 1 error. 

 Power  

Sample size for Pilot trial 90% 80% 

20 1.156 1.099 

24 1.125 1.080 

30 1.097 1.062 

40 1.071 1.045 

50 1.056 1.036 

70 1.039 1.025 

100 1.027 1.017 

200 1.013 1.008 

 

This method therefore leads to inflation of sample size however it did not consider to 

what extent the sample sizes were overestimated as will be done in this research. 

 

1.2.3 Upper Confidence Limit (UCL) and Non-central t-distribution (NCT) 

approaches comparism by Whitehead (2016) 

UCL and NCT methods were investigated by Whitehead (2016) to find out how well 

these methods estimate sample sizes. UCL approach by Browne, as in equation 1.8,  

 
𝑁̂𝐵 = 

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝑘𝑠2 

(1.8) 

was divided by the standard method of sample size calculation formula. 

 
𝑛 =

(𝑟 + 1) (𝑧1−𝛽  +  𝑧1−𝛼/2)
2
 𝑠2

𝑟𝑑2
 

(1.9) 

where 𝑠2 is used as an estimate of 𝜎2. The research found UCL approach of sample 

size estimation to be larger by inflation factor. 



9 
 

𝐵𝑈𝐶𝐿
2 = 𝐼𝐹𝑈𝐶𝐿 = [

𝑘

𝜒1−𝑥,𝑘
2 ] 

and this depends on the sample size and the value of 𝜒. The standardizes effect size, 

Type 1 error rate as well as the probability of achieving the required power (𝑋) is set. 

The upper confidence limit taken in UCL approach which gives a 100𝑋% chance of 

achieving the required power for the trial. The eventually achieved probability levels 

using this approach are in Table  1.2. 

Furthermore, using the NCT approach the Inflation Factor 𝐼𝐹  was obtained 

from Julious and Owen (2006) to investigate by how much the method overestimate 

compared to standard method.  

 

𝐼𝐹 =
(2[𝑡𝑖𝑛 𝑣 (1 − 𝛽, 𝑘, 𝑧1−𝛼/2)]

2
𝑆2) /𝑑2

(2(𝑧1−𝛽  + 𝑧1−𝛼/2)
2
 𝑆2) /𝑑2

 

(1.10) 

Pilot trial sample size, type I error rate (𝛼) and type II error rate (𝛽) are all factors to 

be considered in inflation by NCT.  

Table 1.2 presents inflation factors (𝐼𝐹) and proportion of confidence level (𝑋) 

for the UCL approach that gives the same sample size as the NCT approach as 

summarized in the research of  whitehead (2016). It shows that for 80 percent powered 

main trial, a researcher using a pilot sample size of 20 is 56% confident that the 

estimated sample size for the main trial will be inflated by a factor of 1.099 using either 

UCL or NCT. For a 90 percent powered main trial, a researcher using a pilot sample 

size of 20 is 62% confident that the estimated sample size for the main trial will be 

inflated by a factor of 1.156 using either UCL or NCT. 
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Table 1.2: Levels of 𝑋 and 𝐼𝐹 that for the UCL approach that gives the same sample 
size as the NCT approach presented. 

Sample size  

for pilot trial 

Power 

80% 

𝑋 

 

 

𝐼𝐹𝑈𝐶𝐿/𝑁𝐶𝑇 

Power 

90% 

𝑋 

 

 

𝐼𝐹𝑈𝐶𝐿/𝑁𝐶𝑇 

20 0.566 1.099 0.622 1.156 

24 0.560 1.080 0.611 1.125 

30 0.553 1.062 0.599 1.097 

40 0.546 1.045 0.586 1.071 

50 0.541 1.036 0.577 1.056 

70 0.534 1.025 0.565 1.039 

100 0.529 1.017 0.554 1.027 

200 0.520 1.008 0.538 1.013 

 

The Inflation value shows these methods overestimate sample sizes, without 

achieving desired power supporting the need for further research in the area. 

 

1.2.4 Keiser and Wassmer 1996 review of Upper Confidence limit approach  

The research reviewed the UCL approach suggested by Browne 1995 using analytical 

considerations. It concludes that 100(1 − 𝛾) percent upper confidence interval for the 

population variance produces results with a probability of at least 1 − 𝛾 of achieving 

the planned power 1 − 𝛽  thereby concurring with Browne’s research. The research 

suggested adequate pilot sample size for (1 − 𝛾)=0.8 should be ranging 20 to 40 for 

an intended sample size of 80 to 250 hence adding to existing rules of thumb.  The 

research however did not consider how much these processes overestimate the 

minimum required sample size. 
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1.3 Aim and Objectives 

The overarching aim of this research is to estimate the sample size for a pilot study to 

help estimate the sample size of a definitive (90% power) or substantive (80% power) 

trial. This will help avoid overestimation of sample sizes that would waste resources, 

be unethical, and avoid underestimation of sample sizes that would lead to inaccurate, 

inconclusive, or unconvincing results and be unethical.   

The prominent work in this area is due to Browne (1995).  The proposed work 

will evaluate and extend the work of Browne.  In addition, a new novel mathematical 

device to provide a Goldilocks solution is proposed; this new novel approach will be 

used to determine its effectiveness under a position when a researcher could specify 

a minimum clinically important difference or, through subject knowledge, estimate an 

effect size.  Furthermore, the method of estimation of sample size using Upper 

confidence Limit of co-efficient of variation will be proposed and compared to Browne’s 

approach. The critical values of 𝑘2 multiplier was developed for when the true effect 

size is not known.  

The objectives are: 

1. Review of Browne’s approach of sample size estimation (Study 1a) To 

determine how accurate Browne's approach is in sample size determination over a 

range of significance levels 𝛼 =(0.01,0.05), power levels 1 – 𝛽 =(0.8,0.9), pilot sample 

sizes 𝑚 =(5,10,30,50,100), known effect sizes 𝛿 =(0.10,0.40,0.75), coverage levels 

1 − 𝛾 =(0.8,0.9). This review is given in Chapter 4. 

 

2. Goldilocks method for sample size determination (Study 1b) 

Propose and develop a method termed the “Just about Right” (JAR) method or the 

"Goldilocks approach" for sample size determination.  Check for substantial merits of 

the proposed method compared with rules of thumb.  Given in Chapter 5. 

 

3. Comparison of Sample Size Estimation Methods when the Minimum Clinically 

Important Different (MCID) is unknown (Study 2).  

This study compares: a naive estimate for sample sizes assuming 𝜎2, 𝜇1, 𝜇2  are 

unknown denoted as (𝑁𝑁,𝐶),an estimate for sample size using Cohen’s 𝑑  in Browne’s 

approach denoted as  (𝑁𝐵,𝐶),a naive estimate of sample size using Hedge’s ℎ denoted 
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as (𝑁𝑁,𝐻) and an estimate of sample size using Hedges’ ℎ in Browne’s approach 

denoted as (𝑁𝐵,𝐻).The sample size estimates provided in (𝑁𝑁,𝐶), (𝑁𝐵,𝐶), (𝑁𝑁,𝐻) and 

(𝑁𝐵,𝐻) will be compared through simulation to determine which formula gives the most 

accurate sample size when MCID is unknown. The simulation parameters will be pilot 

sample size 𝑚 = (8, 16, 32, 64, 128); 𝛼 =(0.01, 0.05);  𝛽= (0.1, 0.2);  1 − 𝛾= (0.8, 0.9) 

and 𝛿 = (0.10, 0.40, 0.75) chosen in close similarity to Browne’s parameter 

combination. See Chapter 6.   

 

4. Sample size estimation method developed from upper confidence limit of 

coefficient of variations (Study 3).  

The study will develop three formulae for sample size estimation using coefficient of 

variation. They will be developed using coefficient of variation (c) considering the 

upper 𝛾% confidence interval for c using the: Standard coefficient of variation formula 

(𝑁𝐶,𝑆), the McKay (𝑁𝐶,𝑀) and  the Vangel formula (𝑁𝐶,𝑉) .Examples and simulations 

will be done to check the performance of the formulae and generate 

recommendations. See Chapter 7. 

 

5. 𝒌𝟐 Modifier approach (Study 4 ) 

This study will develop modified approach that uses  𝑘2 modifier based on coverages 

for when MCID is unknown. See Chapter 8. 

 
 

1.4 Research Questions 

The study intends to answer the following questions: 

1. How accurate is Browne’s approach? (Study 1) 

2. Does the newly proposed “Goldilocks approach” have substantial merit    

compared with rules-of-thumb ? (Study 1b) 

3. Does 𝑁𝑁,𝐶 , 𝑁𝐵,𝐶 , 𝑁𝑁,𝐻, 𝑁𝐵,𝐻 methods of data estimation estimate with a 

tolerable level of error? (Study 2) 

4. Does using the upper confidence limit of coefficient of variations   

approaches namely: Standard coefficient of variation (𝑁𝐶,𝑆), McKay (𝑁𝐶,𝑀) and 

the Vangel formula (𝑁𝐶,𝑉) estimate with less error than Brown’s formula. 

(Study 3) 
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4. Does a modified approach that uses  𝑘2 modifier based on coverages  presents 

the proposed solution for when MCID is unknown? (Study 4)  

 

1.5 Impact statement 

If successful, this research will 

(a) Add to the knowledge base for methodologists. 

(b) Provide researchers with a means of conducting better science and empirical 

discovery in the two-arm randomised design. 

(c) Help ethics committees when considering pilot research (Phase II) and 

substantive research (Phase III) in commonly encountered research.   

(d) Help funding panels assess grant applications for a commonly used design.  

(e) Help prevent underpowered research and avoid failure to demonstrate the 

true situation. 

(f) Help prevent overly large sample sizes with attendant economic benefits. 

(g) Help prevent too many participants being exposed to an intervention when the 

same conclusions could have been obtained from a smaller sample size (ethical 

benefit) or too many being assessed (e.g., depriving too many of a beneficial 

effect, or too many undergoing an ineffective invasive procedure or receiving 

an ineffective active treatment)  

(h) Provide a springboard for extending the methodology to other designs and 

methods. 

 

1.6 Outline of Thesis 

This chapter began by introducing the concept of clinical trials and pilot studies. Some 

previous research in pilot sample size determination was reviewed, the motivation 

section explained the importance of the research, the aim, objectives, specific 

research question and the impact of the study was also discussed. 

Chapter 2 gives a literature review of the research, and includes an outline of 

randomised trials, sample size for pilot studies, factors affecting powers of a test, pilot 

and feasibility studies, sample size for pilot studies and confidence intervals for means, 

standard deviations, cohen’s 𝑑 and coefficient of variation. 
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Chapter 3 contains methodological work involved in carrying out the research, 

discussed simulations and random number, Monte Carlo methods, number of 

iterations and  research evaluation metrics. 

Chapter 4 examines the sample size formula using Browne’s approach of 

sample size estimation, which is used for the two-group problem assuming normality, 

for known MCID. The results from Analysis of objective 1 are presented in tables and 

graphs, and their interpretation are discussed too (Study 1). 

Chapter 5 explains the Goldilocks Principle, which is the “Just about right” (JAR) 

method of estimating sample size to ensure that an estimated sample size does not 

exceed certain margin for a lower or upper percentage of the required true, but 

unknown, sample size, which is objective 2. The results from this study led to two peer 

reviewed publications: Obodo et al. (2021) and Obodo et al. (2023) both given in 

Appendix A. 

Chapter 6 presents Objective 3,which compares four methods of sample size 

estimation when the MCID is unknown to determine their performance in estimating 

sample sizes. The results from this are presented using tables and graphics (Study 2).  

Chapter 7 elaborates on Objective 4, which involves the comparison of methods 

of sample size estimation using the upper confidence limit for the coefficient of 

variation (Study 3).The simulation design, results and summary are presented, 

followed by a comparism of the best of the three method to Browne’s method. The 

findings are presented in tables and graphs. 

Chapter 8 presents objective 5, the proposed solution for when MCID is 

unknown, which involves developing critical values of the 𝑘2 multiplier. However, the 

solution will not be feasible in practice (Study 4). 

Chapter 9 This chapter gives a summary of the thesis, the findings and their 

implications, recommendation, and suggestion for further research. 
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Chapter 2 

Literature Review and Preliminary investigation 

The literature on randomised trials, sample size for pilot studies, factors affecting 

power of a test, pilot and feasibility studies, confidence intervals for means, standard 

deviation , Cohen’s 𝑑  and coefficient of variation are discussed. This chapter 

concludes with examples using coefficient of variation for confidence intervals, which 

will be utilized as a measure of variability in proposing new methods in study 3. 

 

2.1 Randomised Trials 

Ranjith (2005) highlighted that the term “randomised trial (RT)” and “randomised 

controlled trials (RCT)” are sometimes used synonymously.  Note that RCT is 

“controlled” and not “controls” and can therefore describe studies that compare 

multiple treatment groups with each other in the absence of a control group. It is 

commonly recognized that the Randomised Controlled Trial is where allocation is 

controlled by randomisation irrespective of whether there is a control group or not.  

Bailey (2008), comments that there may be more than one treatment group, more than 

one control group, or both.  As such, there are different types of randomised trials 

namely Randomised Controlled Trials (RCT), Randomised Clinical Trials (RCT) and 

Randomised Controlled Clinical Trials (RCCT). 

Chalmers et al. (1981) states that a randomised controlled trial (RCT) is a type 

of scientific (often medical) experiment that aims to reduce certain sources of bias 

when testing the effectiveness or efficacy of new treatments by randomly allocating 

subjects to two or more groups while treating them differently and comparing with a 

measured response. 

 In a clinical trial, the intervention under review is typically contrasted with a 

control procedure or treatment. The control treatment accounts for the fact that 

feelings of excitement, acceptance, and anticipation will influence patient outcomes. 

A monitoring procedure should be used to ensure that the effect assessed is due to 

the intervention and not to the presence of the patient in the clinical trial itself, called 

the Hawthorne effect (Parsons, 1974). 
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Dettori (2010) explained that a randomised controlled trial (RCT), when done 

with a large enough sample, is an effective measure of reducing bias. Bias is an 

unintended distortion in the choice of patients, data collection, endpoint determination 

and final analysis (Chalmers et al.,1981). When there is a systematic difference 

between the true values and the result in the trial, bias is said to have occurred 

(Malone, 2014). 

The bias of interest in clinical trial is the Hawthorne effect, however there are 

other types of bias namely assessment bias, confounding and attrition bias (Malone, 

2014). However, randomization helps to reduce the different types of bias of a trial, 

and this is achieved by making the treatment groups comparable for a prognostic 

factor so that any contrast between the groups can be attributed to the intervention 

under investigation (Torgerson, 2008). 

There are  different designs for trials, for instance, crossover trials are where 

patients receive both treatments sequentially and randomisation is used to determine 

the order each of the participants receives interventions.  A simpler design is the 

parallel design used in the comparison of treatment groups, where treatments are run 

concurrently each receiving one of the treatments to which patients are randomised. 

In sequential trials, results are monitored throughout the trial and the trial is stopped 

when one treatment is shown to be better or if it is not likely a difference will emerge. 

A factorial design allows us to investigate the effect of two treatments individually 

compared to control, compared to each other and when used in combination. Adaptive 

design allows the investigator to use accumulating data to modify the trial without 

deterring the validity and integrity of the trial (Chuang-Stein and Beltangady, 2010). 

The form of design thereby offers a high amount of flexibility to the investigators and 

could be argued they are more ethical, as they allow a trial to be stopped early if it 

shows that a treatment is inferior or superior so that participants then needed are not 

recruited into the trial. 

The RCT is said to be dependent on the random allocation process. The 

process involves generating an unpredictable programming sequence and 

implementing the sequence in a way that conceals the treatment until the patients 

have been formally assigned to their group.  

Hinkelmann and Kempthorne (1994), explained that in the design of 

experiments, treatments are applied to experimental units in a treatment group.  In 

https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Experimental_unit
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comparative experiments, members of a control group receive a standard treatment 

(treatment as usual, TAU), a placebo, usual care (UC), or no treatment at all.   

According to Vickers (2019), RCTs are the least biased research designs for 

evaluating new technologies and results from such trials are used by decision makers, 

such as the National Institute for Health and Care Excellence (NICE), to guide policy 

and practice. These trials are to be well designed with good power to provide solutions 

to important clinical questions. Underpowered or overpowered trials pose both 

statistical, practical, and ethical problems.  

Randomisation is a method of experimental control that has been used in 

human biological experiments and clinical trials. It insures against accidental bias and 

prevents selection bias. It produces comparable groups and eliminates the source of 

bias in treatment assignments (see Suresh, 2011).  Schulz and Grimes (2002) outlined 

the benefits of randomisation in RCTs to include masking the identity of treatments 

from participants, assessors, and invigilators; it permits the use of probability theory to 

express the likelihood that difference in outcome between treatment groups merely 

indicates chance and eliminates bias in treatment assignment. Frane (1998), Altman 

and Bland (1999), all state that randomisation provides a basis for the statistical 

methods used in analyzing the data, ensure that each patient has an equal or pre-

specified chance of receiving any of the treatments under study and generate 

comparable intervention groups, which are alike in all the important aspects except for 

the intervention each group receives. The summary of benefits of randomisation 

includes elimination of the selection bias, balances the groups with respect to many 

known and unknown confounding or prognostic variables, and forms the basis for 

statistical tests. In general, a randomised experiment is an essential tool for testing the 

efficacy or effectiveness of a treatment. 

Frane (1998), Altman and Bland (1999), further explained that, in practice, 

studies involve the generation of a randomisation schedule which should be 

reproducible and usually includes obtaining random numbers and assigning random 

numbers to each subject or treatment conditions. For simple experiments with a small 

number of subjects, randomisation can be performed easily by assigning the random 

numbers from random number tables to the treatment conditions while for the large 

sample size situation, or if restricted randomisation or stratified randomisation is to be 

performed, then randomisation is done using a computer environment such as R or 

https://en.wikipedia.org/wiki/Placebo
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SAS or similar. In general, there are various types of randomisation schemes, which 

include simple, block, stratified, and covariate adaptive randomisation.  

Altman and Bland (1999) explained that simple randomisation proceeds as a 

single sequence of random assignments. This technique maintains complete 

randomness of the assignment of a subject to a particular group. For an equal 

allocation ratio, a simple method of simple randomisation is flipping a coin. For 

example, with two treatment groups (control versus treatment), the side of the coin 

(i.e., heads - control, tails - treatment) determines the assignment of each subject. 

Other physical methods include using a shuffled deck of cards (e.g., black - control, 

red - treatment) or throwing a six-sided dice (e.g., below and equal to 3 - control, over 

3 - treatment). A random number table found in a statistics book, or computer-

generated random numbers can also be used for simple randomisation of subjects. It 

is easy to implement in clinical research. For large sample sizes, simple randomisation 

can be trusted to generate similar numbers of subjects among groups. However, 

randomisation results could be problematic in relatively small sample size clinical 

research, resulting in an unequal number of participants among groups. Simple 

random allocation is the most basic and easiest approach that provides 

unpredictability of treatment assignment, treatment is made by chance without regard 

to prior allocation.  

Frane (1998), and Altman and Bland (1999), state that the method designed to 

randomize subjects into groups that result in equal sample sizes and ensure balance 

in sample size across groups is block randomisation.  Balance in sample size may be 

achieved using this method.  

The need to control and balance the influence of covariates is addressed by 

stratified randomisation, this method is achieved by generating separate blocks for 

each combination of covariates. This method controls for possible influence of 

covariates that will affect the conclusion of clinical trials.   

Fleiss, Levin, Paik (2013) and Zalene (1990) explained covariate adaptive 

randomisation as valid alternative randomisation method for clinical research. In this 

method a new participant is sequentially assigned to a particular treatment group by 

considering the specific covariates and previous assignments of participants. 

The CONSORT (CONsolidated Standards of Reporting Trials) guideline is 

intended to improve the reporting of parallel group randomised controlled trials 

(RCTs), enabling readers to understand a trial's design, conduct analysis and 
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interpretation, and to assess the validity of its results. This can only be achieved 

through complete adherence and transparency by authors. Shamseer et al. (2016) 

recommends that all submissions to journals should follow the CONSORT guidelines. 

The guideline in point 7a of CONSORT, states that authors will explain how sample 

size was calculated.   

Relatedly, the SPIRIT (Standard Protocol Items Recommendation for 

Interventional) guide aims to improve quality of protocols and to enable accurate 

interpretation of trial results. The SPIRIT 2013 Statement provides evidence-based 

recommendations for the minimum content of a clinical trial report (Chan et al., 2013).  

SPIRIT is widely endorsed as an international standard for trial protocols. The SPIRIT 

Statement also details the systematic development methods of the SPIRIT guidance 

and the scope. The SPIRIT checklist is endorsed by high-ranking peer-reviewed 

journals, research institutions, the Cochrane Consumer Network, and some 

pharmaceutical companies.   

The EQUATOR (Enhancing the QUAlity and Transparency Of health 

Research) collaboration is an international collaboration that intends to promote 

accurate reporting of health research studies to enhance the values and reliability of 

medical research literature. Its network was established to raise awareness of the 

importance of good reporting of research monitoring the status of the quality of 

reporting of research studies in the health sciences literature and conducting research 

relating to issues that impact the quality of reporting of health research studies 

including sample size (Simera and Altman (2009), Simera et al. (2010)).  

The International Council for Harmonization of Technical Requirements for 

Pharmaceuticals for Human Use (ICH), give Statistical Principles for clinical trials (E9) 

and states that a clinical trial can provide reliable answer to questions addressed by 

the trial, only if the sample size is large enough (p.1923) (Lewis, 1999). The primary 

objective of the clinical trial is to be used in determining the sample size but if the trial 

size is determined based on a secondary objective, or safety questions it should be 

stated clearly and justified. A trial size based on primary efficacy questions will need 

a smaller number of subjects than one based on secondary objectives, basic safety 

questions and requirements.  

 

 
 

https://www.spirit-statement.org/publications-downloads/
https://www.spirit-statement.org/about-spirit/spirit-endorsement/
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2.2 Sample size for Pilot studies  

The sample size calculation being done correctly is important for ensuring the validity, 

reliability, and integrity of results from a clinical trial. Chow et al., (2017); Cohen (2013) 

and Winer et al. (1971) explained that to achieve the sample size of a study the 

standard deviation of the population needs to be known. This is usually not possible 

ahead of the research, hence the importance of a pilot study to determine the value of 

the standard deviation that can be used in calculating the sample size for a larger trial 

(Campbell et al., 2010). 

According to Teare et al. (2014) the main weakness when estimating key 

parameters from small sample sizes is the large sampling variation. Pilot sample sizes, 

however, often imprecisely estimate the standard deviation for the main trial 

(Whitehead et al., 2016). Some methods proposed for correcting the inaccurate 

estimation of sample size by adjusting the prediction of the variance from pilot trial to 

be used in main trial sample size calculation is further presented.  

Recommendations for pilot sample size vary in the  literature. Neiswiadomy 

(2002) recommends approximately 10 participants per group for a pilot study.  Julious 

(2005) suggests 12 per group. Hertzog (2008) outlined that a sample of 20-25 would 

be needed if the aim of a pilot study is to demonstrate intervention efficacy in a single 

group. Birkett and Day (1994) suggested 20 per arm for internal pilot studies. Browne 

(1995) mentions that the use of 30 is commonplace. Kieser and Wassmer (1996), state 

that a pilot sample size of 20-40 is sufficient for a sample size between 80 and 250 

per arm. Connelly (2008) gave a circular suggestion that the sample size for a pilot 

study should be 10% of the unknown sample size needed for a definitive study. 

According to Hertzog (2008) there is insufficient literature concerning guidance on the 

size of a pilot study and choosing 10% might not be adequate as there are numerous 

factors that could influence a study. Teare et al. (2014) recommends ≥70 for both 

arms. It is well known all the rules used in picking pilot sample sizes have limitations 

(Whitehead et al., 2016). 

In the context of a single arm study, and two arm studies, Browne (1995) 

commented that to compute the sample size needed to compare population means 

with a planned power, the researcher requires the population standard deviation. 

However, the value of the population standard deviation is rarely known and must be 

estimated. It suggested that to run a pilot study to estimate sigma (𝜎). The distribution 
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of the sample standard deviation is positively skewed and as such over 50 per cent of 

the time, the sample standard deviation will be less than sigma (𝜎)  hence more likely 

to underestimate sigma. Using the sample standard deviation will therefore, on 

average, underestimate sample size.   

Lee et al. (2014) emphasized  the importance of estimating the sample size for 

pilot trials to minimize the overall sample size required for both pilot and main trial. 

Also, they suggest considering other factors like plausible estimates of clinical effect 

through confidence intervals. 

Browne (1995) investigated the frequency with which the actual power equals 

or exceeds planned power values when the standard deviation is estimated using (a) 

the unadjusted value of the pilot sample standard deviation, or (b) 100(1 - 𝛾) per cent 

upper one-sided confidence limits.   

Browne considers the one sample design using the one sample t-test, with an 

alternative hypothesis being a point specific value.  It is assumed that this alternative 

hypothesis is precisely true in the simulations.  Simulations are only done for alpha = 

0.05 and for the single sample design with pilot sample sizes equal to 5, 10, 30, 50, 

100.   For target power of 0.8, for unadjusted analyses, power is lower than wanted 

but it increases with increasing sample size and increasing effect size. For target 

power of 0.8, for a 50% Upper Confidence Limit (UCL), power exceeds 50% and rises 

with increasing sample size and increasing effect size e.g., 75% for a medium to large 

effect using 𝑚 = 30.  Similar conclusions are drawn for other UCLs.  The same 

conclusions hold for a target power of 0.9.  The above conclusions hold for the one-

sample paired t-test assuming the point alternative hypothesis is true. 

Browne (1995) showed that simply using the standard deviation from a pilot 

study reduces the chances of achieving planned power to as low as 40 percent and 

the rule of thumb that proposes the use of  𝑚 equal to 30 to estimate a parameter for 

a sample group will not solve the problem except for where the effect size is large. The 

research concluded that at least 80% upper one sided confidence limit on the variance 

will help improve the chance of achieving planned power in clinical trial to 80%. 
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2.3 Factors affecting power of a test 

The concept of null hypothesis testing has been long established. The Type I error 

rate, denoted by alpha (𝛼), is the probability of incorrectly rejecting 𝐻0 and claiming an 

effect to be real when in fact the null hypothesis, 𝐻0, is true. It is the likelihood that the 

study will reject the null hypothesis, assuming the null hypothesis to be true (Dalgaard, 

2008). Statistical tests are developed so that under idealistic settings, the error rate 

can be set at a pre-study selected level. Conventionally, the level is typically set at 𝛼 

= 0.05, but  𝛼 = 0.1, 𝛼 = 0.025, 𝛼 = 0.01, and 𝛼 = 0.001 are alternatives depending 

upon the situation, and in particular, significance levels in tests of assumptions may 

be radically different from significance levels used in either decision making or in 

testing research hypotheses. The Type I error c]an be thought of as a false positive. 

 The Type II error, beta (𝛽), is the pre-study probability of failing to reject the null 

hypothesis when in fact the null hypothesis is false. This error is known as false 

negative. The pre-study probability of correctly rejecting a false null hypothesis is  1 −

𝛽 and represents statistical power. Note that both 𝛼  and 𝛽  are pre -study concepts 

which are specified in the design phase prior to data collection.  

For a given data set and a given test statistic, the p-value is defined as the 

largest significance level for which there is failure to reject the null hypothesis.  At the 

5% significance level, the null hypothesis is to be rejected if the p-value is less than 

0.05. The p-value relates to the null hypothesis; p-values do not relate to the alternative 

hypothesis.  

Cronbach et al, (1972), Marcoulides (1993), state that larger samples more 

accurately represent the characteristics of the population from which they are derived 

assuming an unbiased sampling mechanism. For example, a mean obtained from 

random sample of n = 10 would allow a better estimate for the population mean than 

a random sample of n = 3.  Intuitively, unbiased big samples will better estimate a 

parameter compared with unbiased small samples. Accordingly, unbiased large 

samples will have a greater chance of rejecting a false null hypothesis than unbiased 

small samples. It therefore follows that increasing sample size is associated with 

increase in power subject to all other factors remaining constant. Accordingly, the 

power of a test increases with increases in sample size.   

 Type I errors are more serious than Type II errors, and for this reason, it is 

conventional to set 𝛼 less than or equal to 𝛽. The pre-study significance level also 
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affects power. A study with 𝛼 equal 0.01 requires more evidence to reject, 𝐻0 than the 

same study with 𝛼 set to 0.05. The higher evidential threshold for  𝛼 = 0.01 compared 

with 𝛼 = 0.05 necessarily means that 𝛼 = 0.01 has lower power. Hence, increasing 

alpha (𝛼)  is associated with increasing power assuming all other factors remain 

constant.  

 The standardized effect size 𝛿 denotes the strength of a relationship or the 

magnitude of a difference relative to the variation. If effects are large and clear, then 

they will be easy to detect and establish. If effects are small and unclear, then it will 

be difficult to detect and establish. The level of ease or difficulty is synonymous with 

power. Increase in effect size is associated with increase in power assuming all other 

factors remain constant.  

 Another factor affecting power is the chosen test statistics.  Different test 

statistics are chosen to be optimal in certain considerations. For instance, under an 

assumption of normality, a parametric test will have greater power than its non-

parametric counterpart. Likewise, in the absence of normality, an appropriate non-

parametric test may be more powerful. Accordingly, a critical reason over the choice 

of statistics is to choose a test statistic that has got greater power, but which would not 

inflate the Type I error rate if the null hypothesis is true. Incorrectly choosing a test 

statistic would more than likely result in a decrease in power or a failure to control the 

Type I error rate. 

The design of a study affects power.  For example, if a researcher decides to 

maximize effect size by maximizing the difference between or among independent 

variable levels in a study examining the effect of caffeine on performance, the likely 

effect in performance will be more apparent when the researcher compares individuals 

who ingest widely different amounts of caffeine e.g.  (450mg vs 0mg) than for 

comparison of (25mg vs 0mg). Cohen, (1992) states that error variance due to factors 

other than the independent variables, decreases the likelihood of detecting differences 

or relationships that exist. Cohen (1992) and Conover (1980) state that for designing 

a study were there is  a choice of generating paired data or unpaired data then we 

would opt for paired design as it gives a direct focus on the phenomenon of interest 

and at the analysis phase we can remove or account for some variation providing the 

paired data does not affect the validity of the study (e.g. learning effects, fatigue effects 

and so on, which in a paired design, could compromise validity).  
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Outliers affect the power of a test. Typically, very large outliers may obscure 

important effects resulting in a decrease in power, but medium sized outliers may lead 

to an increase in power unless robust statistics are used (Derrick et al, 2017). 

 

2.4 Pilot and Feasibility Studies   

The NETSCC (NIHR Evaluation, Trials, and Studies Coordinating Centre) which 

oversees managing National Institute for Health and Care Research (NIHR) evaluation 

research in the UK, describe a pilot study as ‘a miniature version of the main test to 

tell if the main study components will all work together.’ A pilot study should focus on 

how the trial will progress. It notes that for a trial to be classified as a pilot there needs 

to be a proposal for future study (among other criteria) (NETSCC, 2012) 

Feasibility studies are intended to determine whether it is feasible and 

appropriate to perform a larger study (Thabane et al., 2010). These studies focus on 

data collection, methods, recruitment, and retention. Potential problems that might 

occur during the main study can be identified by researchers at this stage and solutions 

suggested. It therefore helps ensure that the primary investigation is carried out 

successfully, efficiently and with minimal risk to research participants (Thabane et al., 

2010) 

Pilot and feasibility studies are critical components of clinical research because 

they provide valuable information that can be used to refine study designs, identify 

potential challenges, and optimize study processes (Thabane et al., 2010). The 

studies are conducted as a preliminary step before undertaking a larger definitive 

study to ensure the main study will be conducted efficiently and effectively as possible. 

They are used to test the study design, the intended outcomes and any intervention 

that are under investigation to improve inclusion/exclusion criteria, estimate sample 

size and adjust research topics and study designs (Thabane et al., 2010) 

According to Prescott and Soeken (1989), the aim of a pilot study includes 

feasibility and to help plan a larger study. Likewise, according to Thabane et al. (2010), 

a pilot study, is a small-scale preliminary study conducted to evaluate feasibility, 

duration, cost, adverse events, and improve upon the study design prior to 

performance of a full-scale research project. However, other authors make a 

distinction between a pilot study and a feasibility study. Specifically, Justis and 

Kreigsmann (1979) and Georgakellos and Macris (2009) define a feasibility study as 
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an assessment of the practicality of a proposed project or system.  A feasibility study 

aims to objectively and rationally uncover the strengths and weaknesses of trial 

opportunities and threats present in the natural environment, the resources required 

to carry through, and ultimately the prospects for success.  

 A pilot study is like the main study in many ways, including assessment of 

primary outcome, it is sometimes the first phase of substantive study.  Data from the 

pilot phase may contribute to the main trial and this case is referred to as internal pilot 

(Thabane et al., 2010). If at the end of a pilot study data is not used in the main trial, 

then it is said to be an external pilot (Lee et al., 2014). 

 Feasibility and pilot studies have certain limitations. Pilot studies are frequently 

of a limited scale and could not be an accurate representation of the research 

population. Considering this limitation, results of a pilot study should be interpreted 

with caution and not the best for definitive trials (Thabane et al., 2010). 

 Prescott and Soeken (1989), suggest that despite limitations of small-scale 

studies, researcher can increase the overall quality and rigour of their research by 

performing pilot and feasibility studies, ensuring that the study is conducted effectively, 

efficiently and with minimal risk to study participants. 

In practice, it could be the case that a pilot study quite legitimately has an 

element of feasibility, and a feasibility study could include an element of piloting, and 

as such a study might not fall neatly into one or the other.      

 

2.5 Confidence Intervals for Means, Standard Deviation, Cohen’s 𝒅 and 

Coefficient of Variation   

A confidence interval alongside a statistical test improves the usefulness of a report, 

and it shows how precise an estimate is (Funder et al., 2014). This will be very helpful 

and the results from Confidence Intervals for Means, Standard Deviation, Cohen’s d 

and Coefficient of Variation will be outlined to gain a better understanding of this 

research. 

A confidence interval (CI) is an estimate computed from the statistics of 

observed data and can be used to propose a range of plausible values for an unknown 

parameter (e.g., the mean). The interval usually has a corresponding confidence level 

that the true parameter is in the range of that interval, and the confidence interval for 

an unknown parameter is obtained from sampling the distribution of a corresponding 

https://en.wikipedia.org/wiki/Natural_environment
https://en.wikipedia.org/wiki/Resources
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estimator, Dekking (2005). Using a confidence interval of 95% would mean that 95 

percent of the confidence intervals would contain the unknown population parameter 

value under repeated sampling (Swinscow and Campbell, 2002). 

The effect size and its confidence interval for a sample comparison contains more 

information than a p-value, which itself is also an estimate. An effect size that is 

estimated using data from a large sample size is likely to be more accurate than one 

estimated from a data of small sample size (assuming unbiased sampling). Hence, the 

concepts of confidence intervals may be used to quantify the error imposed on an 

effect size. The interpretation of the confidence interval for an effect size or a 

standardised effect size is the same as that in the case of the CI of the mean. For all 

hypothetically sampled data from the same population and using the same sampling 

method, a population effect size would fall in 95% of the calculated effect size.  

Providing the effect size (point estimate) and CI (the precision of effects) are essential 

to understand the magnitude of intended treatment effects (Hedge and Olkin,2014). 

 

Confidence intervals for one sample mean 

A confidence interval (CI) for the mean is a range of values in which the population 

mean is expected to lie a pre-specified proportion of the time. Under an assumption of 

normality, a confidence interval for a one sample mean can be calculated using  

𝑥̅ ± 𝑡
𝑠

√𝑛
 

where 𝑥̅ is the sample mean, 𝑠 the sample standard deviation, t is the critical value of 

the t distribution and is based on 𝑛 − 1 degrees of freedom. 

 

Example 1  

For a sample of 3539 randomly selected participants in a clinical trial, the mean weight 

is 127.3kg with a standard deviation of 19.1kg. The 95% confidence interval is  

              = 127.3 ± 1.96
19.1

√3539
 

= 127.3 ± 0.63 

= (126.7,127.9) 

An estimate for the mean weight of the population is 127.3kg, and we are 95% 

confident that the true mean is between 126.7kg and 127.9kg. The margin of error is 

very small 0.63 because the sample size is large. 
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Confidence Interval for two means 

There are situations where it is of interest to compare two groups with respect to their 

mean scores on a scale outcome. These situations involve comparisons between 

two independent groups. For normally distributed data, the 95% CI for the difference 

in population means is calculated by 

𝐶𝐼(1−𝛼) = (𝑥̅1 − 𝑥̅2  )  ± (𝑡𝑎 2⁄ )𝑠𝑝√
1

𝑛1
+

1

𝑛2
 

where 𝑡 represents the 𝑡𝑎 2⁄  tabled critical value in the t distribution for 𝑛1 + 𝑛2 − 2 

degree of freedom (df) and where  

𝑠𝑝
2 =

(𝑛1 − 1)𝑠1
2 + (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2
 

is the pooled variance and is an unbiased estimator of 𝜎2 .  Similarly,  

𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
  

is the pooled standard deviation, where 𝑛1 is sample size for population 1, 𝑠1
2 the 

sample variance of sample 1, 𝑛2 is the sample size of sample 2 and 𝑠2
2 is the sample 

variance of sample 2. 

 

Example 2 

The following data relate to systolic blood pressure for randomly selected participants 

receiving a treatment for a medication and the placebo group. The 95% confidence 

interval for the difference in sample means of the systolic bp in mmHg is obtained as 

follows. 

 Treatment group (𝑥1)  102.9, 100.2, 97.4, 97.0, 100.5, 101.9, 97.4, 99.9, 104.4, 101.3 

 Placebo group (𝑥2) 100.2, 96.9, 100.9, 101.0, 100.1, 95.3, 97.5, 98.0, 97.0, 96.0 

   

𝑥̅1 = 100.2900           𝑥̅2 = 98.2900 

𝑠1
2 = 6.1166              𝑠2

2 =  4.3966 

𝑠𝑝
2 = 5.2565 

𝑠𝑝 = √5.2565 = 2.2927  

For these data, the 95% confidence interval for the difference in means is  
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2 ± 2.101(2.2927)(0.4472) 

2 ± 2.101(1.0253) 

(−0.1541, 4.1541) 

Our best estimate of the difference, the point estimate, is 2.0 mmHg. The standard 

error of the difference is 1.0253 mmHg, and the margin of error is 2.1531 mmHg. We 

are 95% confident that the difference in mean systolic blood pressures between 

treatment and placebo group is between -0.1541 and 4.1541 mmHg. In this sample, 

the treatment group have higher mean systolic blood pressures than control by 2.0 

mmHg. Based on this interval, we also conclude that there is no statistically significant 

difference in mean systolic blood pressures between treatment and placebo group, 

because the 95% confidence interval includes the null value, zero. 

Confidence interval for variance and standard deviation 

For independent identically distributed normal random variables 𝑋1, 𝑋2, … 𝑋𝑛 it is well 

known that 

(𝑛 − 1)
𝑠2

𝜎2
~ 𝜒𝑣

2 

where 

𝑠2 =∑ (𝑥𝑖
𝑛

𝑖=1
− 𝑥̅)2/(𝑛 − 1) 

And 

𝑣 = 𝑛 − 1 (Zar, 1984).  

Accordingly, two-sided confidence intervals for 𝜎2 may be obtained via 

Pr (𝜒𝑣,𝛼 2 ⁄
2 <

(𝑛 − 1)𝑠2

𝜎2
< 𝜒𝑣, 1−𝛼 2 ⁄

2 ) = 1 − 𝛼 

so that 

Pr (
(𝑛 − 1)𝑠2

𝜒𝑣, 1−𝛼 2 ⁄
2 < 𝜎2 <

(𝑛 − 1)𝑠2

𝜒𝑣, 𝛼 2 ⁄
2 )  = 1 − 𝛼 

Accordingly, the upper limit of the two-sided confidence interval for 𝜎2 is given by 

𝑢1 = 
(𝑛 − 1)𝑠2

𝜒𝑣, 𝛼 2 ⁄
2  

For the same situation, a one-sided (1 − 𝛼) 100% confidence interval, may be 

obtained from  
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Pr(0 <
(𝑛 − 1)𝑠2

𝜎2
< 𝜒𝑣,1−𝛼

2 ) = 1 − 𝛼 

i.e. 

1 − Pr ( 
(𝑛 − 1)𝑠2

𝜎2
< 𝜒𝑣,1−𝛼

2 ) = 1 − 𝛼 

Pr (
(𝑛 − 1)𝑠2

𝜎2
< 𝜒𝑣,1−𝛼

2 ) = 𝛼 

Hence, the upper limit of the one-sided confidence interval is given by  

𝑢2 =
(𝑛 − 1)𝑠2

𝜒𝑣,1−𝛼
2  

Clearly for any give 𝛼 

𝜒𝑣,1−𝛼
2 < 𝜒𝑣, 1−𝛼 2 ⁄

2  

and it follows 

𝑢2 < 𝑢1 

It is 𝑢2 which is used in Browne’s formula. It is worth noting that since the chi-square 

distribution is not symmetric, we will be obtaining confidence intervals that are not 

symmetric about the point estimate. 

 

Example 3 

A random sample of 17 participants using a new medication is selected. Their ages  

was taken as follows   56, 30, 34, 77, 55, 67, 45, 65, 44, 47, 49, 60, 63, 64, 55, 67, 

and 88. Assuming the data is normally distributed with unknown mean 𝜇 and unknown 

variance 𝜎2 then the 95% two-sided confidence interval for the variance 𝜎2 and 

standard deviation 𝜎 is derived as follows:  

𝑛 = 17 

𝑠2 =   216.4044 

𝑠 =   14.7107 

(𝑛 − 1)𝑠2

𝜒𝑣,1−𝛼
2 < 𝜎2 <

(𝑛 − 1)𝑠2

𝜒𝑣,1−𝛼 2⁄
2  

 

(17 − 1)14.71072

28.845
< 𝜎2 <

(17 − 1)14.71072

6.908
 

 

120.0372 < 𝜎2 < 501.2268 
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For the 95% confidence interval for standard deviation take the square root of both 

sides 

√120.0372 < 𝜎 < √501.2268 

10.9561 < 𝜎 < 22.3881 

Hence, we can be 95% confident the standard deviation for the ages of the participants 

is between 10.96 years and 22.39 years.  

 
Confidence interval for Cohen’s  𝒅 

Cohens’ 𝑑 is a standardized effect size for measuring the difference between two 

group means and it is used when comparing control group to treatment group and it is 

an effect size suitable for the independent samples t test. It is suggested that values 

0.2,0.5 and 0.8 represent small, medium, and large effects respectively (Baguley, 

2009).  

Cohen originally defined effect size for comparing two independent groups 

based on equal sample sizes as 

𝑑 =
𝑥̅1 − 𝑥̅2

(𝑠1 + 𝑠2)/2
 

To accommodate different sample sizes Hedge gave a more general form as  

𝑑ℎ = (𝑥̅1 − 𝑥̅2)/𝑠𝑝 

where 𝑠𝑝 is given by  

𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 

In the literature both 𝑑 (a special case of 𝑑ℎ) and 𝑑ℎ are invariably referred to as 

Cohen’s d, and both 𝑑 and 𝑑ℎ are biased estimators of  

𝛿 = (𝜇1 − 𝜇2)/𝜎 

Hedge derived an unbiased estimator for 𝛿 , given by  

ℎ∗ = 𝑄(𝑛1 + 𝑛2 − 2)𝑑ℎ 

where a simple but accurate approximation of ℎ is given by  

ℎ = (1 −
3

4(𝑛1 + 𝑛2) − 9
)𝑑ℎ 

This latter form, ℎ, is known as Hedges unbiased estimator for the standardized two 

sample effect size (Hedges and Olkin, 2014).  
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The confidence interval for Cohen’s 𝑑 at 95 % confidence interval is 

𝑑 − 1.96 𝜎(𝑑), 𝑑 + 1.96 𝜎(𝑑) 

where  

𝜎(𝑑) = √
𝑛1 + 𝑛2 

𝑛1 × 𝑛2
+

𝑑2

2(𝑛1 + 𝑛2)
 

where 𝑛1 is the sample size of group 1 and 𝑛2 is the sample size of group 2.  

 

Example 4 

For a clinical trial, the body weight of 30 randomly selected participants were taken. 

The participants were classified into the treatment group and control group, 15 per 

group. The 95% confidence interval for Cohen’s 𝑑 for the data is given as   

Treatment group (𝑥1)  75, 63, 54, 76, 83, 92, 54, 67, 58, 45, 56, 89, 57, 75, 76 

Control group (𝑥2)  65, 87, 94, 65, 87, 65, 65, 98, 76, 56, 76, 45, 70, 62, 71 

 

𝑥̅1 = 68.0000                                                  𝑥̅2 = 72.1333  

𝑠1 = 14.0915           𝑠2 = 14.4611 

σ(𝑑) = 0.3585         𝑠𝑝 = 70.0971  

𝑑ℎ = (𝑥̅1 − 𝑥̅2)/𝑠𝑝         ℎ = (−0.0589 ) 

The approximate 95% confidence interval for Cohen’s 𝑑 is 

 𝑑ℎ − 1.96 ×  σ(𝑑), 𝑑ℎ + 1.96 ×  σ(𝑑)   

(−0.0589) − 1.96 × (0.3585), (−0.0589) + 1.96 × (0.3585)  

(−0.7237, 0.6815) 

The researcher is 95% confident that the Cohen’s 𝑑  is between  -0.72 and 0.68. 

 
Coefficient of variation 

For a population or distribution, the coefficient of variation is defined as  

𝐶𝑉 = 𝜎 µ⁄  

and is used with ratio data. A sample estimate of the coefficient of variation is given 

by  

𝑐 = 𝑠 𝑥̅⁄  

In the context of Cohen’s 𝑑 and sample size estimation, it is worth noting that  

1

𝑑
=  

𝑠𝑝

𝑦̅
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where 𝑠𝑝 is the pooled standard deviation and  

𝑦̅ =  𝑥̅1 − 𝑥̅2 

For normally distributed data, a naive confidence interval for the coefficient of variation 

would have 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑐√
(𝑛 − 1)

𝜒2(1 − 𝛼 2, 𝑛 − 1)⁄
 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑐√
(𝑛 − 1)

𝜒2(𝛼 2, 𝑛 − 1)⁄
 

However, these limits have less than ideal coverage. 

McKay (1932) provides a seemingly better estimate of confidence intervals 

whereby 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
𝑐

√(
𝑢1
𝑛 − 1) 𝑐2 +

𝑢1
(𝑛 − 1)

 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
𝑐

√(
𝑢2
𝑛 − 1) 𝑐2 +

𝑢2
(𝑛 − 1)

 

where 𝑢1 = 𝜒(1−𝛼 2,𝑛−1)⁄
2     and 𝑢2 = 𝜒(𝛼 2,𝑛−1)⁄

2  

To further improve on accuracy, Vangel (1996) gave alternative limits  

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑐

√(
𝑢1 + 2
𝑛 − 1) 𝑐2 +

𝑢1
(𝑛 − 1)

 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑐

√(
𝑢2 + 2
𝑛 − 1) 𝑐2 +

𝑢2
(𝑛 − 1)

 

 

Example 5 

A clinical trial team randomly selected 15 participants for a clinical trial. The body 

weight of the participants was taken. The mean weight of the participants is 81kg and 

standard deviation 19.52kg. The 95% confidence interval for the coefficient of variation 

using Naive, McKay, and Vangel method is given below.   

𝑛 = 15 

𝑥̅ = 81.00𝑘𝑔 

𝑠 =   19.5192𝑘 

𝑐 = 0.2410 
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𝑢1 = 26.1190 

𝑢2 = 5.629 

 

The approximate 95% confidence interval 

Using the Naive method 

For normally distributed data, a naive confidence interval for the coefficient of variation 

would have 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑠

𝑥̅
√

(𝑛 − 1)

𝜒(1−𝛼 2,𝑛−1)⁄
2           

                          =
19.5192

81
√

(15 − 1)

𝜒(1−0.025,15−1)
2     = 0.1764 

      

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑠

𝑥̅
√

(𝑛 − 1)

𝜒(𝛼 2,𝑛−1)⁄
2           

                         =
19.5192

81
√

(15 − 1)

𝜒(0.025,15−1)
2    = 0.3801 

The 95% confidence interval using Naive method is (0.1764,0.3801) 

 

McKay (1932) provides a seemingly better estimate of confidence intervals whereby 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
𝑐

√(
𝑢1
𝑛 − 1) 𝑐2 +

𝑢1
(𝑛 − 1)

 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
0.2410

√(
26.1190

15
− 1) 0.24102 +

26.1190
(15 − 1)

 

=  0.1744 

 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
𝑐

√(
𝑢2
𝑛 − 1) 𝑐2 +

𝑢2
(𝑛 − 1)

 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  
0.241

√(
5.629
15

− 1) 0.2412 +
26.110
(15 − 1)

 

=  0.3985 
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The 95% confidence interval using McKay’s method is (0.1744,0.3985) 

 

To further improve on accuracy, Vangel (1996) gave alternative limits:   

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑐

√(
𝑢1 + 2
𝑛 − 1) 𝑐2 +

𝑢1
(𝑛 − 1)

 

=
0.2410

√(
26.1190 + 2

15
− 1) 0.24102 +

26.1190
(15 − 1)

 

= 0.1740 

 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑐

√(
𝑢2 + 2
𝑛 − 1) 𝑐2 +

𝑢2
(𝑛 − 1)

 

=
0.2410

√(
5.629 + 2

15
− 1) 0.24102 +

5.629
(15 − 1)

 

= 0.3944 

The 95% confidence interval using Vangel method is (0.1740,3944).   

The results from the three methods do not seem to differ much based on this example. 

 

2.6 Summary 

There was an extensive review of the literature on sample size, sample size for pilot 

studies, randomised trials, factors affecting power of a test, pilot and feasibility studies, 

confidence intervals, and coefficient of variations. The confidence interval and co-

efficient of variations were better illustrated with practical examples. The reviewed 

literature elaborated on some challenges in standard deviation estimation. These 

findings in addition to literature in the first chapter will lead to investigation of new 

methods. The next chapter will present methodology for achieving this research. 
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Chapter 3    

Methodology 

The chapter presents the procedure for assessing the formula given by Browne (1995) 

and other proposed methods.  It includes discussion of simulation and random 

numbers, Monte-Carlo simulations, the number of iterations, and research evaluation 

metrics. 

 

3.1   Simulations and Random numbers 

According to Banks et al, (2001), a simulation, in general, is an approximate imitation 

of the operation of a process or system. Sokolowski and Banks (2009) states that a 

simulation can be used to show the eventual real effects of alternative conditions and 

courses of action and is also used when the real system cannot be engaged, because 

it may not be accessible, or it may be dangerous or unacceptable to engage, or it is 

being designed but not yet built, or it may simply not exist. In-silico simulation studies 

use computer intensive procedures to assess the performance of a variety of statistical 

methods in relation to a known truth (Burton et al., 2006). Such evaluation cannot be 

achieved with studies of real data alone. The research details that when doing a 

simulation study, it is important to consider specific objectives of the study, determine 

the procedures for generating the data sets and the number of simulations to perform. 

These techniques provide empirical estimation of the sampling distribution of the 

parameters of interest that could not be achieved from a single study and enable the 

estimation of accuracy measures, such as the bias in the estimates of interest, as the 

truth is known. Whenever a new statistical method is developed, there are 

assumptions that need to be tested and confirmed. Statisticians use simulated data to 

test such assumptions or investigate the effect of their violation. Simulated data is 

cheap because it uses random numbers generated rather than primary collected data, 

it saves time as it is faster to achieve, and results of simulation statistics can 

approximate real result and may be replicated.   

Physical random numbers are problematic because of the difficulty of storage, 

the need for frequent testing for randomness and the fact they are not generated in 

the computer but by an external source (see Ahrens et al., 1970). The physical random 
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numbers that sound convincing from an axiomatic standpoint suffer from the practical 

deficiency that no concrete sequence used in a calculation can verifiably satisfy the 

definition. Therefore, one has taken recourse to sequences that make no pretense of 

being "random" in any meaningful sense of the term, but which can be readily 

generated in the computer by simple arithmetic algorithms, while still passing an 

assortment of statistical tests for randomness. The terms of such sequences are 

collectively (and loosely) called pseudo-random numbers (PRNs). It should be 

emphasized that no such sequence can perform well under all imaginable tests for 

randomness. Rather, the user of PRNs must be aware of the specific statistical 

properties that are desirable in a simulation calculation and choose PRN that are 

known to pass these tests. Overall, PRNs have a record of meeting any reasonably 

limited set of statistical requirements if adequately chosen for the particular purpose. 

Barker et al. (2012), explained a pseudo-random number generator (PRNG) to 

be an algorithm for generating a sequence of numbers whose properties approximate 

the properties of sequences of random numbers. The PRNG is completely determined 

by an initial value hence the generated sequence is not truly random. The initial value 

is called the PRNG's seed (which may include truly random values) and will be 

represented as set.seed in the R programming codes in this research. The set.seed 

makes it possible to replicate the studies using the set value.  PRNGs are central in 

applications such as simulations e.g. for the Monte Carlo simulation, (Maigne et al, 

2004). 

 The generation of pseudo-random numbers is important for statistical 

computing (Scott, 2011). For well-tested pseudo-random generators for the uniform 

distribution, the probability integral transform may be employed to provide an exact 

algorithm for transformation to any desired probability distribution.  

The generation of independent normally distributed random variables 

(Gaussian random variables) is paramount as an assumption of normality is frequently 

made in the development of parametric statistics. The Box–Muller transformation, (Box 

and Muller, 1958) is a pseudo-random number sampling method for generating pairs  

of independent, standard, normally distributed (zero expectation, unit variance) 

random numbers, given a source of uniformly distributed random numbers.  

 

 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Random_seed
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Pseudo-random_number_sampling
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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3.2 Monte-Carlo Methods 

Experimental mathematics concerned with experiments on random numbers is known 

as Monte-Carlo methods and is a broad class of computation algorithms that rely on 

repeated random sampling to obtain numerical results. It is applicable in a field with 

variety of problems with limited resources of theoretical mathematics It uses 

randomness to solve problems that might be deterministic in principle (Kroese, 2014) 

and the terminology was made popular by  von Neumann and Ulam (1951). It is very 

useful for simulating phenomena with significant uncertainty in inputs and systems 

with many coupled degrees of freedom. Random sampling of numbers is achieved by 

simulations and the simulation technique is an application of Monte Carlo methods .  

The standard of Monte Carlo experiment in statistics were set by Cassey 

(2014). Monte Carlo, when used in applied statistics, gives the possibility of reducing 

error and infinitesimally small treatment effects as real data often do not fit abstract 

distribution (Maggio and Sawilowsky, 2014). Serlin (2000) explained that when a test 

statistic is proposed, the robustness for validity (Type 1 error rate) and efficiency 

(power) can be explored using simulation. Simulations in this research are performed 

in R, using various versions of it  (R Core Team, 2020; R Core Team, 2022),with the 

R studio interface (R Studio Team, 2020; R Studio team 2022).The corresponding 

code for each study will be presented in Appendix B.  

 

3.3 Number of iterations 

A simulation will comprise a number of iterations. The number of iterations required is 

research dependent. The appropriate number of iterations is a critical aspect of 

conducting simulations in R. Inaccurate estimates may be obtained if an insufficient 

number of replications are used, (Kim, 2005). According to Kocak (2019) in Monte 

Carlo simulation studies, increasing the number of iterations helps in producing data 

with less error estimation and the number of iterations can be altered depending on 

the desired level of accuracy. Browne (1995) used 2000; Kieser and Wassmer (1996) 

used 2000, Whitehead et al., (2016) used 10,000, and in examining small sample 

behavior of various statistics Browne and Forsythe (1974) used 10,000, Wynants et 

al., (2015) used 100,000 in their research on a simulation study of sample size.  

Considering the interest for best results, improved accuracy, and the range of 

values of the previous research in this area 100,000 iteration will be used in replication 
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of Browne’s method (objective 1) in contrast to 2,000 previously used in their research 

and for the study of the other objectives in this research. The parameter combinations 

used in this research will be based on Browne’s parameter combination for effective 

comparison and will be described in detail for e]ach study objective. 

  

3.4 Research Evaluation Metrics 

Browne’s formula of sample size estimation was reviewed using simulation and the 

percentage of over and under estimation was considered. To evaluate the predictive 

accuracy of the formula in estimating the sample sizes the median percentage error 

will be used in this research. 

 

Median Percentage error  

The Median percentage error is used’ to assess the accuracy of the model which is 

crucial for informed decision using the model. It can be used to evaluate how accurate 

a model predicts data  while considering precision. The MPE is used to evaluate the 

accuracy of a predictive model and it can be used as a robust measure of central 

tendency for error making it a very useful tool. It is determined by finding the median 

of the percentage errors (PE) of each observation where 

𝑃𝐸 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 
𝑥 100 

MPE provides direction of magnitude of error with positive values  implying 

overestimation and negative indicating underestimation . The value of MPE being 

close to zero implies minimum bias and smaller values of MPE shows better model 

while large values show greater deviation (Hyndman and Koehler, 2006).  

In the context of this research the percentage error  for any iteration is given by 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑛̂ − 𝑛𝑡𝑟𝑢𝑒
𝑛𝑡𝑟𝑢𝑒

 𝑥 100 

where 𝑛̂ is the estimated value and 𝑛𝑡𝑟𝑢𝑒 the true value. For any set of parameter 

combinations there will be Maximum Iteration (Maxiter) percentage errors. The median 

of this is the median percentage error. 

 

Mean median percentage error (MMPE) 

This evaluation technique combines both median and mean approaches advantages, 

it is equally used for the evaluation of accuracy of a model. It involves calculating the 
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median of the percentage error across all observations and then taking the mean of 

each median percentage error. It uses the robustness of the median to mitigate the 

influence of the outliers, providing a balanced measure of forecast accuracy . This 

metric can help determine the most effective model by covering enhanced robustness 

against outliers while retaining interpretability.  

MMPE =
1

𝑛
∑|𝑷𝑬𝒊|

𝒏

𝒊=𝟏

 

where 𝑛 is the total number of observations and 𝑃𝐸𝑖 is the percentage of error for the 

𝑖𝑡ℎ  observation. 

When the value of MMPE is close to zero it implies minimal bias, positive values imply 

overestimation and negative values imply underestimation. However, in the context of 

this research the MMPE is in relation to the  regression model that will be developed 

for MPE and sample size. The regression model is represented by 

 𝑦 = 𝛼 + 𝛽𝑥 

The regression model of MPE for study one is given  below  

1
𝑀𝑃𝐸⁄  =  𝛼 +   𝛽√𝑚 

With the structural part of the regression model being for the mean 𝑀𝑃𝐸.where 1 𝑀𝑃𝐸⁄  

is the dependent variable,  𝛼 is the intercept, 𝛽  is the slope  and  𝑚 is the sample size 

of the regression model. Hence, the regression is for the mean median percentage 

error and will be achieved using simulations in r programming. 
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Chapter 4  

Review of Browne’s approach of sample size estimation  

Browne’s approach of sample size estimation is reviewed using simulations to 

evaluate its effectiveness. The parameter combinations used is like Browne’s 

approach, however the number of iterations was increased to enhance accuracy of 

the results and considering other literatures. Additionally, the algorithm, flowchart is 

shown detailing the codes implementation that was done using r programming.  The 

findings of the study are presented in tables and graphics for better analysis of study 

results. 

 

4.1 Review of Browne’s approach of sample size estimation (Study 1a)  

 4.1.1 Sample size formulae 
 

According to van Belle and Martin (1993), for the two-group problem (assuming 

normality), the formula to determine the sample size (𝑛) for testing at the 𝛼 significance 

level with power equal to 1 – 𝛽 is given by  

 

 
𝑛 =   

(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)
2(𝜎1

2 + 𝜎2
2)  

(𝜇1 − 𝜇2)2
 

(4.1) 

where 𝑛 denotes the sample size per arm needed;  𝑍1− 𝛼 2⁄  is the normal deviate for 

the alpha significance level, 𝑍1−𝛽 is the normal deviate for power , 𝜎1
2 is the variance 

of population 1, 𝜎2
2 is the variance of population 2, 𝜇1 is the mean for population 1, and 

𝜇2 is the mean for population 2.  For proof of this formula see (Arnold 1990; Moore 

and McCabe 1989). 

 

For equal variances the formula becomes 

 
𝑛 =   

(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)
2(2𝜎2)  

(𝜇1 − 𝜇2)2
 

(4.2) 

  

 
𝑛 =   

2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)
2

𝛿2
 

 

(4.3) 
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where 𝛿 =   (𝜇1 − 𝜇2) 𝜎⁄  is the population standardized effect size.    

In the above it is assumed that all the parameters are known. In practice the 

parameters will not be known and will be estimated from small scale pilot data.  For 

assumed equal variances, a naive estimated sample size would then be  

 
𝑛̂  =   

(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)
2 (2𝜎̂2)  

(𝑥̅1 − 𝑥̅2)2
 

(4.4) 

 
=  

2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2

𝑑2
 

(4.5) 

where 𝑑 is the sample estimate of Cohen’s 𝑑 defined as the difference between two 

means divided by a standard deviation for the data, i.e., 𝑑 = (𝑥̅1 − 𝑥̅2) 𝑠⁄ .  

More generally, under an assumption of normality, for any given parameters, 

the required minimum sample size, 𝑁𝑇𝑅𝑈𝐸, is given by Whitehead et.al. (2016) as 

 
𝑁𝑡𝑟𝑢𝑒 = 

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1− 𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝜎2 

(4.6) 

where r denotes the allocation ratio of participants between the placebo and the 

treatment group. 

The estimated sample size,  𝑁̂𝐵, using Browne's approach would be given by  

 
𝑁̂𝐵 = 

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1− 𝛽))

2

(𝜇1 − 𝜇2)2
  . 𝑘𝑠2 

(4.7) 

where the multiplier  𝑘 =  (𝑚1 +  𝑚2 − 2) (𝜒𝜈,1−𝛾
2⁄ ).    

However, in most practical situations, the difference between distributional means 

might not be known, and hence a naive estimation of the sample size will be   

 
𝑁̂ =  

1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1− 𝛽))

2

(𝑥̅1 − 𝑥̅2)2
  . 𝑘𝑠2 

(4.8) 

The work of Browne (1995) provides a mechanism of estimating a sample size which 

will be equal to or exceed the desired true sample size with a preselected probability,

(1 − 𝛾).  For instance, (1 − 𝛾) = 0.8 would correspond to an estimated sample size 

which will be equal to or exceed,  𝑁𝑡𝑟𝑢𝑒, 80% of the time.  However, Browne did not 

consider the magnitude of the difference between     𝑁̂ − 𝑁𝑡𝑟𝑢𝑒.  The first stage 

simulation would be to reproduce the work of Browne and to further consider the 
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magnitude of  𝑁̂ − 𝑁𝑡𝑟𝑢𝑒 which is  how many times the estimate exceeds the true value. 

This was not considered by Browne. 

In Browne’s original work the null hypothesis is given by 𝐻0: 𝜇1 = 𝜇2 and  under 

an assumption of normality.  Under the alternative hypothesis, 𝜇1 − 𝜇2 taken to be a 

prespecified minimally clinical important difference.   

 

Table 4.1: Parameter combinations. 

Factor  Number of 

Levels 

Levels 

Alpha(𝛼) 2 0.01, 0.05 

Beta (𝛽) 2 0.1, 0.2 

Coverage (1 − 𝛾) 

Effect size (𝛿) 

2 

3 

0.8, 0.9 

0.1, 0.4, 0.75 

Pilot sample size (𝑚) 5 5,10, 30, 50,100 

 

Hence the design corresponds to a 2 by 2 by 2 by 3 by 5 fully crossed design. 100,000 

replicates will be conducted at each cell combination (contrast with Browne who 

undertook 2000 replicates per cell). 

 

4.1.1.1:  Algorithms for study one (a) 

1. Start at set. seed 462 

2. Set iteration =100,000 

3. Define ranges of values of 𝛼=(0.01,0.05), 𝛽=(0.10,0.20), 

𝑚= (5,10,30,50,100), 1 − 𝛾 = (0.8,0.9), and 𝛿 =(0.1,0.40,0.75) 

4. Work out   𝑍1−𝛼 2⁄  and 𝑍1−𝛽 ,   (2𝑚 − 2)/𝜒1−𝛾,2𝑚−2
2  

5. Loop over 𝛼, 𝛽,𝑚, 1 − 𝛾 and 𝛿 

6. Calculate 𝑁𝑡𝑟𝑢𝑒   

7. Generate Sample 1 of size 𝑚 using iid Normal (0,1) 

8. Generate Sample 2 of size 𝑚 using iid Normal (effect size, 1) 

9. Calculate N-estimated  

10. Store (𝑁𝑒𝑠𝑡 − 𝑁𝑡𝑟𝑢𝑒)  

11. Store Nest > (𝑁𝑡𝑟𝑢𝑒+ P* 𝑁𝑡𝑟𝑢𝑒), (P= -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 
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1.5, 2.0) 

12. Loop for each combination for all iterations 

13. Save results  

14. End 

The R code for the study is given in Appendix B and the flowchart is given in Figure 

4.1.   
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                                                           START 

                                                             

 
                                                       Set.seed to 462 

 
 
 

                                           Let Maxiter =100,000. Let 𝑖 = 0 

 

 

                             For given parameter combination of 𝛼, 𝛽,𝑚, 1 − 𝛾 and 𝛿   

 
                   

                      Calculate and store 𝑍1−𝛼 2⁄ , 𝑍1−𝛽 𝑎𝑛𝑑 (2𝑚 − 2)/𝜒1−𝛾,𝑑𝑓=2𝑚−2
2  

   
 

                                                           Set iteration 𝑖=𝑖 + 1                 Calculate 𝑁𝑡𝑟𝑢𝑒, 
                                                                                                                  sample 1 , sample 2 

                                                                                     𝑁𝑒𝑠𝑡  for all parameter  

 
 
 Store 𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 if > 
                                                                                                                     (𝑁𝑡𝑟𝑢𝑒 + 𝑝 ∗ 𝑁𝑡𝑟𝑢𝑒) 
                                                                                                               where 𝑝  is  
                                                                                                               (-0.2,-0.1,0.0,0.1,…,1.0) 
 

                             No                𝑖=Maxiter? 

 

                                             Yes 

 

                                            End 

 

 

 

Figure 4.1: Flowchart for Study 1(a). 

 

 4.1.2 Results from Browne’s method presented in tables  

The simulation approach is used to generate results using Browne’s method under the 

normality assumption. The simulation is done at varying parameter combinations and 

presented in the tables below. The results of the simulation are summarized in Table 

4.2 through to Table 4.5. The remaining result not presented here is in Appendix C. 
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Table 4.2 considers the parameter settings 𝛼 = 0.05, 𝛽 = 0.2, (1 − 𝛾) =

0.8,and, as required, 80% of the time the estimated sample size is equal to, or larger 

than, 𝑁𝑡𝑟𝑢𝑒.  As the pilot sample size increases the degree of excess decreases and 

this is true for every effect size.  With a very small pilot sample sizes of 𝑚 = 5  per 

group, there is in excess of 50% chance of the estimated sample size being 

overestimated by more than 50%, there is in excess of 30% chance of the estimated 

sample size being in excess of 100%, and there is in excess of a 15% chance of the 

estimated sample size being in excess of 150%, and this is true for all effect sizes.   

With a small pilot sample size of  𝑚 = 10 per group there is in excess of a 30% 

chance of the sample being in excess of 50%, there is in excess of a 10% chance of 

the estimated sample size being over-estimated by 100%, there is in excess of 35% 

chance of the estimated sample size being over-estimated by 50%, and there is in 

excess of a 50% chance of the estimated sample size being in excess of 30%, and 

this is true for all effect sizes.   

With a moderate pilot sample size of 𝑚 = 30 per group, there is more than a 

40% chance of the sample size being overestimating by more than 20%.  Even with 

moderately large sample sizes of 𝑚 = 50 per group, there is more than a 30% chance 

that the sample size will be overestimated by 20% and there is a non-trivial 10% 

chance that the estimated sample size will be more than 30%, and this is true for all 

effect sizes.   

Even with a large sample size of 𝑚 = 100 per group there is more than a 10% 

chance that the sample size will be overestimated by 20%.  
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Table 4.2: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at    

    𝛼 = 0.05, 𝛽 = 0.2, (1 − 𝛾) = 0.8. 

Sample 

size 

Effect 

size 

>-20% >𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

5 .10 .884 .799 .701 .650 .547 .325 .175 

10 .10 .922 .800 .634 .544 .377 .107 .021 

30 .10 .973 .799 .452 .289 .086 .001 .000 

50 .10 .989 .797 .334 .159 .019 .000 .000 

100 .10 .998 .801 .164 .035 .000 .000 .000 

         

5 .40 .883 .799 .698 .646 .544 .325 .175 

10 .40 .920 .800 .629 .539 .367 .105 .021 

30 .40 .972 .801 .450 .284 .079 .001 .000 

50 .40 .988 .801 .332 .154 .018 .000 .000 

100 .40 .998 .801 .159 .032 .000 .000 .000 

 

5 .75 .876 .801 .694 .638 .547 .325 .174 

10 .75 .910 .801 .617 .520 .370 .106 .020 

30 .75 .963 .798 .423 .255 .085 .001 .000 

50 .75 .982 .799 .327 .126 .018 .000 .000 

100 .75 .996 .799 .130 .023 .000 .000 .000 

 

 

Table 4.3 uses  𝛼 = 0.05, 𝛽 = 0.1 and 1 − 𝛾  = 0.8 and this is almost identical to Table 

4.2 the only parameter that has changed is 𝛽. The results of both tables are almost 

identical, and hence 𝛽 does not have an impact on the degree of excess. 
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Table 4.3: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at   

      𝛼= 0.05, 𝛽=0.1, (1 − 𝛾)=0.8. 

Sample 

size 

Effect 

size 

>-20% >𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

5 .10 .884 .800 .701 .650 .549 .326 .175 

10 .10 .922 .799 .631 .541 .372 .105 .021 

30 .10 .974 .801 .454 .290 .085 .001 .000 

50 .10 .989 .800 .338 .159 .019 .000 .000 

100 .10 .998 .800 .166 .035 .000 .000 .000 

 

5 .40 .883 .800 .701 .651 .545 .327 .175 

10 .40 .918 .798 .627 .539 .367 .106 .021 

30 .40 .971 .800 .452 .291 .083 .001 .000 

50 .40 .987 .801 .329 .155 .017 .000 .000 

100 .40 .998 .801 .158 .034 .000 .000 .000 

 

5 .75 .886 .803 .702 .646 .538 .326 .174 

10 .75 .921 .800 .628 .531 .354 .105 .020 

30 .75 .972 .799 .445 .273 .072 .001 .000 

50 .75 .988 .804 .331 .143 .014 .000 .000 

100 .75 .998 .801 .155 .029 .000 .000 .000 
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Table 4.4 uses 𝛼= 0.01, 𝛽  = 0.1 and 1 − 𝛾  = 0.8 this is almost identical to Table 4.3 

the only parameter that has changed is 𝛼 . The proportion of excess in both tables are 

almost identical,  this shows the degree of excess is not caused by changing 𝛼 . 

 

Table 4.4: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at  

   𝛼= 0.01, 𝛽=0.1,  (1 − 𝛾)=0.8. 

Sample 

size 

Effect 

size 

>-20% >𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

5 .10 .885 .800 .702 .651 .549 .328 .177 

10 .10 .922 .801 .632 .543 .375 .107 .022 

30 .10 .973 .799 .452 .291 .086 .001 .000 

50 .10 .988 .800 .338 .160 .019 .000 .000 

100 .10 .998 .803 .165 .035 .000 .000 .000 

 

5 .40 .885 .800 .698 .648 .548 .325 .175 

10 .40 .921 .800 .628 .541 .376 .107 .020 

30 .40 .973 .799 .443 .286 .086 .001 .000 

50 .40 .989 .801 .329 .157 .019 .000 .000 

100 .40 .998 .801 .156 .034 .000 .000 .000 

 

5 .75 .882 .801 .698 .650 .544 .325 .173 

10 .75 .915 .802 .625 .539 .366 .107 .021 

30 .75 .968 .799 .436 .283 .078 .001 .000 

50 .75 .986 .800 .316 .152 .017 .000 .000 

100 .75 .997 .800 .145 .032 .000 .000 .000 

 

 

Table 4.5 uses 𝛼 = 0.01, 𝛽 = 0.1 and 1 − 𝛾= 0.9 and these parameters are like the 

parameters in Table 4.4 except the parameter that has changed is coverage (from 

80% to 90% coverage). Comparing the two tables there is a very large  change in the 

proportion of error values. This shows that coverage does affect the error value in the 

outcome of the result. 
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Table 4.5: Percentage of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error 

   𝛼=0.01, 𝛽=0.1,(1 − 𝛾) =0.9. 

Sample 

size 

Effect 

size 

>-20% >𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

5 .10 .948 .901 .842 .808 .734 .541 .368 

10 .10 .967 .900 .789 .721 .574 .246 .078 

30 .10 .991 .900 .638 .471 .196 .005 .000 

50 .10 .997 .901 .520 .303 .058 .000 .000 

100 .10 .999 .900 .307 .092 .002 .000 .000 

 

5 .40 .947 .902 .840 .807 .733 .539 .367 

10 .40 .966 .901 .788 .722 .573 .247 .076 

30 .40 .990 .898 .631 .467 .193 .005 .000 

50 .40 .996 .899 .508 .299 .057 .000 .000 

100 .40 1.000 .900 .293 .090 .002 .000 .000 

 

5 .75 .944 .898 .835 .803 .727 .538 .362 

10 .75 .963 .899 .781 .716 .561 .240 .072 

30 .75 .988 .900 .620 .462 .181 .005 .000 

50 .75 .995 .900 .499 .294 .052 .000 .000 

100 .75 .999 .900 .278 .086 .002 .000 .000 

  

Table 4.6 uses  𝛼  = 0.05, 𝛽  = 0.2 and 1 − 𝛾 = 0.8 and shows the proportion of 

error is similar even when the effect size is varied. For under estimation by 20% the 

proportion are .884, .883 and .886 for effect size 0.1, 0.4 and 0.75 respectively, the 

results are very similar. For over estimation by 20% the proportions are 0.701, 0.698 

and 0.694 respectively which are all approximately 0.7. This shows effect size does 

not have an impact on the proportion of error generated in sample size estimation 

using Browne’s method.   
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Table 4.6: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒  +/- error at 𝛼=0.01,
  𝛽=0.2, (1 − 𝛾) =0.9 considering impact of effect size for different percentages 
 of error.  

  𝛿 

𝑚  % under or overestimation 

 

0.1 0.4 0.75 

 

5 -20 .884 .883 .886 

10  .922 .918 .921 

30  .974 .971 .972 

50  .989 .987 .988 

100  .998 .998 .998 

5 0 .799 .799 .800 

10  .800 .800 .801 

30  .799 .801 .798 

50  .797 .801 .799 

100  .801 .801 .799 

5 20 .701 .698 .694 

10  .634 .629 .694 

30  .452 .450 .423 

50  .334 .332 .327 

100  .164 .159 .130 

5 30 .650 .646 .634 

10  .544 .539 .520 

30  .289 .284 .255 

50  .159 .154 .126 

100  .035 .032 .023 

5 100 .325 .325 .325 

10  .107 .105 .106 

30  .000 .001 .000 

50  .000 .000 .000 

100  .000 .000 .000 

5 150 .175 .175 .174 

10  .021 .021 .020 

30  .000 .000 .000 

50  .000 .000 .000 

100  .000 .000 .000 
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 4.1.3 Graphical representation of results from study 1 

By way of illustation, Figure 4.2 shows the proportion of overestimation of sample size 

by more than 30%. It can be seen that there is no difference due to 𝜹, no difference 

attributable to 𝜶 or 𝜷, and hence these three parameters do not affect proportion of 

error. There is change due to coverage with 0.9 coverage level giving higher error in 

sample size  estimation.  Figure 4.2 shows also that as the sample size increases the 

error values reduces and unlikely to overestimate by 30% with pilot sample sizes as 

large as 𝒎 = 𝟏𝟎𝟎  the value tends to zero at that point.   

 

 
 

Figure 4.2: Graphical representation for 𝑁𝑡𝑟𝑢𝑒 > 30%. 

 

Figure 4.3 shows the proportion of overestimation of sample size by more than 100%.  

There is no change due to 𝛿, the coverage showed a change (higher error for higher 

values of coverage), but the error tends to zero with increasing pilot sample size.  For 

𝑚 = 30 the curves flatten i.e., , 𝑚 ≥ 30 for the parameter combinations ensures that 

more than 100% overestimation is unlikely.   
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Figure 4.3: Proportion of times that the sample size is overestimated by more than 
 100%. 

Figure 4.4 is the proportion of times that the sample size is overestimated by more 

than 150%. For pilot sample size ≥ 30 the error flattens. It is unlikely that the error will 

exceed 150% of the true required sample size. It further shows the effect size does 

not cause a change, there is change due to coverage and there is change as the pilot 

sample sizes increased. When the sample size becomes 30 both error margins flatten.  

 
Figure 4.4: Proportion of times that the sample size is overestimated by more than 
 150%. 
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4.2 Median Percentage Error of study 1 

MPE is used to evaluate the performance of a formula in sample size prediction. This 

indicates the percentage by which the sample size deviates from the true or optimal 

sample size. The median percentage error will show the impact of different 

parameters. The median percentage error will be used to measure the accuracy of 

Browne’s approach for sample size estimation. 

 

 4.2.1 Median Percentage error (MPE) for study 1a in tables 

Table 4.7 and 4.8 gives median percentage error summary for the various parameter 

combinations. 

At 𝛽=.10, 𝑚=5, 𝛿=.10 and 𝛼=. 01 the MPE is approximately 60%, other 

parameters remaining the same and 𝛼 changes to .05 the MPE remains the same. For 

𝛼=. 01, 𝑚=10, 𝛿=.40 and 𝛽=.10, the MPE is approximately 35%, other parameters 

remaining the same and when 𝛽 changes to .20 the MPE remains the same. This 

result shows that median percentage error is not dependent on 𝛼 or 𝛽 as the median 

percentage error value approximately same despite the changes in both 𝛼 and 𝛽 

values. There is negligible impact by 𝛿.  

For 𝛼=.01, 𝛽=.10, 𝛿=.10, 𝑚=5 the MPE is approximately 60%, when pilot 

sample size  𝑚=10 is approximately 35%, at 30 is approximately 17% , at 50 is 

approximately 13% and at 100 is approximately 9% . The MPE is decreasing with 

increase in pilot sample size hence it is said to have an impact. Table 4.8 shows MPE 

for coverage of 0.9 and the error increases with increase in coverage hence coverage 

has an impact on the MPE. Both Table 4.7 and 4.8 show that Browne’s method can 

lead to overestimation of sample sizes  
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Table 4.7: Median percentage error for study one at (1 − 𝛾) = 0.80   

 

Table 4.8: Median percentage error for study one at (1 − 𝛾) = 0.9. 

 

 

 

    𝑚  

(1 − 𝛾) 𝛿 𝛼 𝛽 5 10 30 50 100 

.80 .10 .01 .10 60.49 34.96 17.39 13.04 8.96 

   .20 59.60 34.97 17.32 13.03 8.92 

  .05 .10 60.25 34.85 17.40 12.98 8.92 

   .20 59.32 34.42 17.53 13.10 8.95 

 

 .40 .01 .10 59.88 34.77 17.39 13.09 8.97 

   .20 60.59 34.55 17.45 13.19 8.99 

  .05 .10 59.24 34.34 16.68 12.46 8.49 

   .20 58.80 33.71 16.55 12.03 7.89 

 

 .75 .01 .10 60.49 34.21 17.25 12.97 8.75 

   .20 58.05 33.41 16.08 11.81 7.77 

  .05 .10 57.33 32.68 15.46 11.08 7.16 

   .20 59.43 34.70 17.03 12.68 8.61 

    𝑚  

(1 − 𝛾) 𝛿 𝛼 𝛽 5 10 30 50 100 

.90 .10 .01 .10 110.21 59.93 28.32 20.82 14.04 

   .20 110.79 59.81 28.27 20.92 14.08 

  .05 .10 109.87 59.13 28.40 20.81 14.01 

   .20 110.29 59.82 28.23 20.81 14.08 

 

 .40 .01 .10 110.76 59.34 28.40 20.82 14.07 

   .20 109.98 59.82 28.35 20.90 14.08 

  .05 .10 108.99 58.47 27.57 20.22 13.49 

   .20 108.77 58.05 27.13 19.82 13.05 

 

 .75 .01 .10 109.62 59.19 27.92 20.53 13.91 

   .20 107.98 57.75 26.65 19.50 12.84 

  .05 .10 106.64 56.81 26.08 18.80 12.16 

   .20 109.98 59.29 27.98 20.52 13.65 
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4.3 SUMMARY 

 

Browne’s method of sample size estimation was explained. Using simulation, the 

results were replicated at various parameter combinations, the proportion of 

under/over estimation results showed that sample size could be estimated by this 

method however it could lead to over estimation of sample sizes by over 100%. 𝛼 and 

𝛽 were seen to have little to no impact on the error margin, 𝛿 had negligible impact, 

1 − 𝛾 and sample size had great impact on the proportion of error. As 𝑚 increased the 

margin of error reduced. The MPE was calculated and showed the same impact by 

the parameters as in the over/under estimation tables. 
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CHAPTER 5 
 

The Goldilocks (“Just about right”) approach 

It is of ethical importance in sample size estimation to have research done with the 

least possible sample size but sufficiently large to draw firm conclusions. Results from 

study one showed sample sizes could be easily overestimated by up to 100% using 

Browne’s method.  This chapter is interested in controlling the margin of error. Using 

regression of Median percentage error (MPE) of study one, pilot sample sizes are 

proposed for different MPEs. To control error margin a new Goldilocks “Just about 

right” interval for the different error margins is developed. Results from this study led 

to two peer reviewed publications, Obodo et al. (2021) and Obodo et al. (2023) both 

given in Appendix A. 

 

5.1   Regression of MPE of study one to control margin of error 

Using the data from Study 1a, a regression model of MPE will be used to explain the 

range of values for pilot sample at different MPEs. The margin of error will be the width 

of the interval within which the true  sample size value lies while considering certain 

upper and lower values. A plot of the median percentage error at each cell combination 

against the square root of pilot sample size for coverage  (1 − 𝛾) = 0.8 is used to 

generate the result as given in Figure 5.1.    

The accuracy of mean and other parameters is related to the square root of the sample 

size (𝑛). Example the 95% Confidence interval for a mean is  

𝑥̅ ± 𝑡
𝑠

√𝑛
 

where 𝑥̅ is the sample mean, 𝑠 the sample standard deviation, t the critical value of the 

t distribution and is based on 𝑛 − 1 degrees of freedom. Hence, a relationship against 

1 √𝑛⁄   would be expected to hold with the error; or on arrangement for 1 𝑒𝑟𝑟𝑜𝑟⁄  to be 

related to √𝑛. Furthermore, the regression model utilizes the inverse of the MPE due 

to the  inverse relationship between MPE and pilot sample size. This suggests that an 

increase in the pilot sample size will result in a  decrease in the MPE. Therefore, using 

an inverse relationship will give the best model, considering how change of pilot 

sample sizes affects MPE of interest in this research. Additionally, A square root 
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function is applied to the pilot sample size in the model. This is due to the diminishing 

relationship between MPE and pilot sample size, where an increase in the pilot sample 

size leads  to diminishing effect on MPE. Hence, using the square root function will  

improve the linearity of the model, given the linearity nature of regression model been 

used (Kutner, 2005). 

The regression of the inverse of the MPE against the square root of pilot sample 

size per arm 𝑚 for the simulation data is given by  

 1
𝑀𝑃𝐸⁄  =  −0.01208 +   0.01298√𝑚 (5.1) 

(𝑅2 = 0.985) and which on re-arrangement gives  

 
𝑚 =  (0.930663 + 

1

0.01298 × 𝑀𝑃𝐸
)
2

 
(5.2) 

Repeating the process for coverage 1 − 𝛾 = 0.9 gives the regression equation  

 1
𝑀𝑃𝐸⁄  =  −0.009339 +   0.00828√𝑚 (5.3) 

(𝑅2 = 0.994) which on re-arrangement gives   

 
𝑚 =  (1.1280 + 

1

0.00828 × 𝑀𝑃𝐸
)
2

 

 

(5.4) 

 

.   

Figure 5.1: Graphical representation of MPEs against the square root of the pilot 

sample size (√𝑚) 
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Hence, via regression the relationship between median MPE and pilot sample size 

may be quantified.  Table 5.1 quantifies the pilot sample size to maintain the median 

percentage error at a required level for either  (1 − 𝛾) = 0.8 and for (1 − 𝛾) = 0.9. Thus, 

for instance, if a researcher opts for 80% coverage and wishes to control the MPE to 

be no more 10% of true sample size, then a pilot sample size of 𝑚 = 75 per arm would 

be needed, but for 90% coverage the minimum sample size to have a MPE of 10% 

would be 174 per arm. Furthermore, if the researcher opts for 80% coverage and the 

MPE to be no more than 20% of the true sample size, then the pilot sample size of 𝑚= 

23 per arm would be needed, but for 90% coverage the minimum sample size to have 

a median error of 20% would be 52.  

 

 

Table 5.1: Median percentage error at  various pilot sample size per arm. 

Median 

Percentage 

Error 

Pilot sample 

size per arm 

at 80% coverage 

Pilot sample 

size per arm 

at 90% coverage 

4  408 980  

5  267 639  

6  190 452  

7  143 337  

8  112 262  

9  90 211  

10  75 174  

12  54 125  

14  42 95  

16  33 75  

18  28 62  

20  23 52  

22  20 44  

24  18 38  

 

 

Table 5.2 shows the mean median percentage error (MMPE) for a given sample size 

for 80% and 90% coverage. From this table,  as the pilot sample size is increased the 

MMPEs value is seen to decrease implying increased accuracy with increasing  pilot 

sample size. For instance, considering 80% coverage at  𝑚 = 25 per arm the 
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corresponding MMPEs is 19 while an increase of 𝑚 = 50 the median percentage error 

decreases to 13 showing a better accuracy as the pilot sample size is increased.  

 
Table 5.2: Mean Median percentage error. 

𝑚 80% Coverage 90% Coverage 

  5 59 109 

10 35 60 

15 26 44 

20 22 36 

25 19 31 

30 17 28 

35 16 25 

40 14 23 

45 14 22 

50 13 20 

 

Table 5.1 and Table 5.2 and their corresponding regressions equations therefore have 

value that will be helpful to a research team and funders to decide on how big a pilot 

sample size should be. Table 5.3 gives the Mean Median percentage error values that 

will be associated with different rules of thumb at 80% coverage. In comparism to 

Julious (2005)  it suggests that if the pilot sample size of 12 is used then the sample 

sizes will have a corresponding 24 MMPE at 80% coverage. 

 

Table 5.3: Comparison of some rules of thumb to MMPE at 80 % coverage. 

Proposed by Pilot sample 

size 

 per group 

MMPE  

Teare et al. (2014)   35 16 

Sim and Lewis (2012) ≥ 28 14 

Browne (1995) 15 26 

Kieser and Wassmer (1996) 10-20 35-26 

Julious (2005) 12 24 

 

The results above suggest specific MMPE error for different at different pilot samples 

sizes and compares to rules of thumb but does not give an upper or lower control 
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range for research that intend to be within certain upper or lower limit range of error 

hence a Goldilocks Approach will be developed. 

 

5.2 The Goldilocks (“Just about right”) approach (Study 1b) 

In any given situation it may be desirable to  

(a) Ensure that the estimated sample size, 𝑁̂ does not exceeds a lower percentage 

of the true sample size 𝑁𝐿 = 𝑁 +  𝑞𝐿𝑁  (−1 <  𝑞𝐿 <  0) with a desired 

probability 𝜆1. 

(b) Ensure that the estimated sample size, 𝑁̂ does not exceed an upper percentage 

of the true sample size 𝑁𝑈 = 𝑁 +  𝑞𝑈𝑁  ( 𝑞𝑈 >  0) with a desired probability 𝜆2. 

where 𝑁𝐿 𝑎𝑛𝑑 𝑁𝑈 are the lower and upper sample sizes,𝑁 is the true sample 

size,𝑞𝐿 𝑎𝑛𝑑 𝑞𝑈 are the lower and upper proportions. 

For instance, suppose that the true sample size being estimated is 1000.  

Requirements may be to ensure there is a 95% chance that the estimate for the 

sample size is above the required sample size minus 10% (i.e., 95% chance of being 

above 900) and a 20% chance of not going beyond the true value plus 30% (i.e., not 

going beyond 1300).  In this example 𝑁𝐿 = 900, 𝑞𝐿 = -0.1, 𝜆1 = 0.95, 𝑁𝑈 = 1300, 

 𝑞𝑈 = 0.3, 𝜆2 = 0.20. 

It is postulated, that both requirement (a) and requirement (b) can be satisfied by 

a judicious choice of pilot sample size.  The estimate of the sample size under 

requirement (a) would equal the estimate of the sample size under requirement (b) if 

(1 + 𝑞𝐿)𝑁𝐿 = (1 + 𝑞𝑈)𝑁𝑈 i.e. 

when (1 + 𝑞𝐿) (1 + 𝑞𝑈)⁄  = 𝑁𝑈 𝑘𝐿⁄ . 

The left-hand side of this equation is based on researcher specification; the right-hand 

side of the equation depends on sample size.  We will solve this equation and hence 

estimate sample size for given requirements.  This will be verified by simulation.   

An investigator chosen “Just About Right” JAR interval is operationalized to be 

 [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛] where λ1, λ2 ∈  [0, 1], are investigator chosen parameters to prevent 

the degree of underpowering (λ1) and degree of overpowering (λ2). The aim is for 

trialists to be able to justify a pilot sample size and to make a statement to the effect 

of “The proposed two group pilot study will have a sample size of 𝑚 per arm.  This 

sample size is chosen so that the resultant power calculations for a larger study will 
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have 100(1 − 𝛾)% chance of exceeding the minimum required sample size and which 

in a two-sided test with significance level 𝛼 will have 100(1 − 𝛽)% power for detecting 

a difference between arms assuming a MCID of  (𝜇1 − 𝜇2). This proposed pilot sample 

size of 𝑚 per arm will ensure that the estimated sample size will lie in the interval 1 −

𝜆1𝑛 to 1 − 𝜆2𝑛, with probability 𝜋 providing a safeguard over under- and over- 

powering."  For this statement we consider 𝛼 = (0.01, 0.05), power (1 −  𝛽) =

(0.8, 0.9), coverage (1 −  𝛾) = (0.8, 0.9), as it is known that these factors do not affect 

the estimated sample size (as given in Chapter 4).  Furthermore, the lower bounds 

λ1 = (0.1, 0.2) and upper bounds 𝜆2 = (0.1, 0.2, 0.3)  for any chosen level of  π and any 

MCID will be used. 

Inspection of Table 5.4, 5.5, 5.6, 5.7 and Figure 5.2, shows the percentage 

within any given interval monotonically increases with increasing pilot sample size for 

each of (1 −  𝛾) = 0.8 and 0.9. It is also clear that the percentage in any given interval 

is greater for (1 −  𝛾) = 0.8 compared with (1 −  𝛾)  = 0.9 and this is only to be expected 

since, for any estimated sample size, the sample size for when coverage is 0.9 must 

be greater than the sample size when a tolerance for coverage is set to be equal to 

0.8. The percentage of instances within an interval is particularly sensitive to the upper 

bound 𝜆2 which naturally follows from the positively skewed chi-square distribution 

used in the estimation process. 

 

Table 5.4: Percentage of simulation instances 100𝜋̂ is in the interval  
  [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1=0.1,0.2,𝜆2=0.1,0.2,0.3, 𝑚= 5(5)35,  

  (1 − 𝛾)=0.8. 

Coverage = 0.8 

 

𝑚 

𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

5 11.1 16.5 22.0 15.8 20.9 24.9 

10 14.1 22.3 31.0 19.4 27.6 36.0 

15 16.9 27.7 39.2 22.4 33.7 45.7 

20 19.5 32.8 46.6 25.3 39.2 54.2 

25 22.1 37.7 53.3 28.0 44.3 61.5 

30 24.6 42.4 59.2 30.6 49.1 67.7 

35 27.1 46.8 64.4 33.1 53.5 72.9 
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Table 5.5: Percentage of simulation instances 100𝜋̂ is in the interval  
  [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1=0.1,0.2,𝜆2=0.1,0.2,0.3, 𝑚= 40(10)100,  

  (1 − 𝛾)=0.8. 

Coverage = 0.8 

 

𝑚 

𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

40 29.6 50.9 69.0 35.5 57.5 77.3 

50 34.4 58.4 76.5 40.1 64.6 83.9 

60 39.1 64.9 82.1 44.4 70.5 88.4 

70 43.5 70.4 86.2 48.4 75.4 91.6 

80 47.8 75.0 89.4 52.2 79.4 93.8 

90 51.8 78.9 91.7 55.7 82.7 95.4 

100 55.6 82.2 93.5 59.0 85.5 96.5 

 

 

Table 5.6:  Percentage of simulation instances 100𝜋̂ is in the interval  
  [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1=0.1,0.2,𝜆2=0.1,0.2,0.3, 𝑚= 5(5)35,  

  (1 − 𝛾)=0.9 in the interval. 

Coverage = 0.9  

𝑚 𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

5 6.6 10.1 13.6 9.0 12.5 15.7 

10 8.4 14.1 20.4 11.1 16.8 23.2 

15 10.1 17.9 27.2 13.0 20.9 30.4 

20 11.8 21.7 33.9 14.8 24.9 37.5 

25 13.5 25.5 40.4 17.0 28.8 44.1 

30 15.2 29.3 46.6 18.2 32.6 50.4 

35 16.9 33.1 52.4 20.0 36.4 56.1 
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Table 5.7:  Percentage of simulation instances 100𝜋̂ is in the interval  
  [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1=0.1,0.2,𝜆2=0.1,0.2,0.3, 𝑚= 40(10)100                                                             

                (1 − 𝛾) =0.9 in the interval. 

Coverage = 0.9  

𝑚 𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

40 18.7 36.8 57.7 22.0 40.0 61.3 

50 22.2 44.0 66.9 25.0 47.0 70.0 

60 25.7 50.8 74.3 29.0 53.3 76.9 

70 29.3 57.0 80.0 31.4 59.1 82.2 

80 32.9 62.6 84.5 34.6 64.2 86.1 

90 36.5 67.5 87.9 37.8 68.8 89.2 

100 40.0 71.9 90.5 40.8 72.8 91.6 

  

 

 

 

Figure 5.2: Scatter plot for probability of sample size being in various intervals of pilot 
 sample sizes. 
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Monotonic trends between 𝝅̂ and  𝒎 per arm. 
 

Table 5.10 is the monotonic trends between 𝜋̂ and pilot per arm sample size 𝑚, for 

each interval  [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] and each level of coverage modelled using 

linear regression with the functional form 

ln(𝜋̂) = 𝑏0 + 𝑏1√𝑚 

Thus, for instance, when coverage = 0.8 and the interval 𝑛 ± 0.1𝑛 is considered 

then it is readily verified that ln(𝜋̂) = −2.745 + 0.297√𝑚 and that the overall 

goodness-of-fit, 100𝑅2, is 96.3% obtained from Table 5.8. Table 5.8 and Table 5.9  

presents the estimated intercepts, gradients, and goodness of fit for 𝜆1= 0.1, 0.2; 

𝜆2 = 0.1, 0.2, 0.3  for (1 − 𝛾)= 0.8 and (1 − 𝛾) = 0.9 respectively. 

 

Table 5.8: Regression equations of the form 𝑙𝑛(𝜋) = 𝑏0 + 𝑏1√𝑚  given estimated 

 intercept (𝑏0), gradient (𝑏1) for (1 − 𝛾) = 0.8. 

(1 − 𝛾) = 0.8 

Lower 

Percentage 

(100 𝜆1) 

Upper 

Percentage 

(100 𝜆2)  

Intercept Gradient R- Squared 

10 10 -2.745 .297 .963 

10 20 -2.531 .406 .988 

10 30 -2.399 .506 .993 

10 40 -2.094 .543 .981 

10 50 -1.697 .527 .952 

 

20 10 -2.256 .262 .954 

20 20 -2.228 .400 .989 

20 30 -2.375 .569 .997 

20 40 -2.613 .759 .997 

20 50 -2.557 .853 .998 
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Table 5.9: Regression equations of the form 𝑙𝑛(𝜋) = 𝑏0 + 𝑏1√𝑚  given estimated 

 intercept (𝑏0), gradient (𝑏1) for (1 − 𝛾) = 0.9. 

(1 − 𝛾) = 0.9 

Lower 

Percentage 

(100 𝜆1) 

Upper 

Percentage 

(100 𝜆2) 

Intercept Gradient R- Squared 

10 10 -3.306 .290 .957 

10 20 -3.082 .402 .984 

10 30 -3.029 .528 .995 

10 40 -3.028 .656 .998 

10 50 -2.827 .712 .991 

 

20 10 -2.872 .250 .955 

20 20 -2.795 .378 .986 

20 30 -2.856 .524 .995 

20 40 -3.108 .716 .996 

20 50 -3.450 .919 .993 

 

 

For any level of coverage and any interval, any regression equation in Table 5.6 may 

be re-written in terms of pilot sample size i.e., 𝑚 = [ln(𝜋̂) − 𝑏0]/ 𝑏1)^2.  Solution of 

this will give an estimated pilot sample size per arm, 𝑚, for any required percentage 

for the given interval.     

Table 5.10 shows the pilot sample size per arm (𝑚) needed to have a required 

probability (𝜋) of being in each interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ]  for coverage of 0.8 or 

coverage 0.9. Thus, for instance, if an investigator requires an 80% chance of not 

being underpowered for a definitive trial (coverage = 0.8) and requires a 70% chance 

(𝜋 = 0.7) of being within ± 10% of the true required sample size (𝜆1 = 0.1, 𝜆2 = 0.1) 

then a sample size per arm (𝑚) of 65 is needed for any given MCID. 
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Table 5.10: Pilot sample size (𝑚) required for a required proportion (𝜋) to be in the

 interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ]. 

 

𝜋 

𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

(1 − 𝛾)= 0.8 

0.50 48 20 11 36 15 9 

0.55 52 23 13 40 17 10 

0.60 56 25 14 44 18 11 

0.65 61 27 15 49 20 12 

0.70 65 29 16 53 21 13 

0.75 68 31 17 56 23 13 

0.80 72 32 18 60 25 14 

0.90 79 36 h21 67 28 16 

(1 − 𝛾)= 0.9 

0.50 81 35 20 76 31 17 

0.55 87 38 21 83 34 18 

0.60 93 41 23 89 37 20 

0.65 98 43 24 95 39 22 

0.70 103 46 26 101 42 22 

0.75 108 48 27 107 43 24 

0.80 113 50    28 112 46 25 

0.90 121 54    31 122  51 27 

 

  

If an investigator requires a 90% chance of not being underpowered for a definitive 

trial (1 − 𝛾) = 0.9 and requires a 60% chance (𝜋 = 0.6) of being within the interval 

±10%  that is (𝜆1 = 0.1, 𝜆2 = 0.1) of the true required sample size then a pilot 

sample size per arm 𝑚 of 93 is needed. The other intervals can be interpreted in 

the same order. 

 

Table 5.11 shows comparism of some rules of thumb to proposed goldilocks interval  

at (1 − 𝛾) = 0.8. It shows that using Julious (2005) suggested 12 pilot sample per arm 

at 80% coverage, the researcher will achieve only a 55% chance (𝜋 = .55) of being 

within the interval of (𝜆1 = 0.2, 𝜆2 = 0.3)  of the true sample size.  

 

 

 

 

 

 



67 
 

Table 5.11: Comparison of some rules of thumb for pilot sample size and Goldilocks
  proportion range of Table 5.10 at (1 − 𝛾) = 0.8. 

Proposed by Pilot sample 

size 

 per arm 

𝜋  𝜆1, 𝜆2 

Teare et al. (2014)   35 .50  0.2,0.1 

Sim and Lewis (2012) ≥ 28 .90  0.2,0.2 

Browne (1995) 15 .50  0.2,0.2 

Kieser and Wassmer (1996) 10-20 .55           0.2,0.3, 

0.1,0.2  

Julious (2005) 12 .65  0.2,0.3 

 

 

5.3 Summary 

Considering the level of excess recorded in the Study 1 results, a model was  

developed using regression of the median percentage error to show the 

corresponding median percentage error associated with different pilot sample 

sizes. The mean median percentage error for different pilot sample sizes at 80% 

and 90% coverage was also developed.  The Goldilocks ‘Just about right’ 

approach was further developed to allows researcher to select a pilot sample size 

to control the error (MPE and interval error), this ensures sample sizes do not go 

below a certain lower percentage or exceed a certain upper percentage of the true 

sample size for a desired probability. The findings were compared to the rules of 

thumb that suggested pilot sample sizes without considering the corresponding 

error values. The findings will be very helpful to researchers in making informed 

decision when choosing pilot sample sizes. The next chapter will consider applying 

Browne’s method and naive methods using Cohen’s  𝑑 and Hedge’s ℎ when the 

minimum clinical importance difference (MCID) is unknown. 

 

 



68 
 

CHAPTER 6  

Comparison of sample size Estimation Methods when 

Minimum Clinically Important Different (MCID) is unknown 

(Study 2).            

This study develops and investigates how Naive and modified Browne’s formulae 

operate when the MCID cannot be specified in advance. The formulae are developed 

using Browne’s method, Cohen’s 𝑑 , and Hedge’s ℎ . They give an estimation for 

sample size and will be compared based on how accurately they estimate sample size. 

Their percentage greater than smallest sample size that satisfies power requirements 

𝑁𝑡𝑟𝑢𝑒 will be reviewed. The Median percentage error associated with each formula will 

be used to evaluate their performance. The formulae are respectively: 

 

(a) the naive estimate for the sample size using Cohen's 𝑑 when 𝜎2, 𝜇1, 𝜇2  

are unknown known as Naive-Cohen. 

 
𝑁𝑁,𝐶 = 

2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2

𝑑2
 

 

(b) using Cohen’s 𝑑  in Browne’s formula known as Browne-Cohen 

 
𝑁𝐵,𝐶 =

2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2𝑘 

𝑑2
 

 

where 𝑘 is the Browne multiplier and depends on the level of coverage, (1 − 𝛾). 

 𝑑 is a biased estimator of 𝛿 = (𝜇1 − 𝜇2)/𝜎  whereas the correction proposed by Hedge 

is unbiased.  

Hence a naive estimate of sample size, using Hedge’s ℎ instead of   Cohen’s  

𝑑 would be 

 (c) Known as Naive-Hedge 

𝑁𝑁,𝐻 =
2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)

2 

ℎ2
 

 and 

 (d)  using Hedges’ ℎ in Browne’s approach known as Browne-Hedge 

𝑁𝐵,𝐻 =
2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)

2𝑘 

ℎ2
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All 𝑁,𝐶,  𝑁𝐵,𝐶,  𝑁𝑁,𝐻 and 𝑁𝐵,𝐻 were generated for the two-sample case, assuming equal 

variances, and under 1:1 allocation. 

 

6.1 Pre-Study Hypothesis for Study 2 

By inspection Cohen's 𝑑 is larger in magnitude than Hedge's ℎ. Accordingly for any 

given pilot samples 𝑁𝑁,𝐶 (the naive estimate for the sample size using Cohen's 𝑑 ) will 

be smaller than 𝑁𝑁,𝐻 (the naive estimate of sample size using Hedge's ℎ ) i.e., 𝑁𝑁,𝐶 <

𝑁𝑁,𝐻 .  By the same reasoning, 𝑁𝐵,𝐶  (the estimated sample size using Cohen's 𝑑  in 

Browne’s formula) will be smaller than the estimate 𝑁𝐵,𝐻 (the estimated sample size 

using Hedge's ℎ in Browne's method) i.e 𝑁𝐵,𝐶 < 𝑁𝐵,𝐻. 

Since,  𝑘𝑁𝑁,𝐶 = 𝑁𝐵,𝐶 and  𝑘𝑁𝑁,𝐻 = 𝑁𝐵,𝐻 

with 𝑘 =   (2𝑚 − 2)/𝜒1−𝛾,𝑚1+𝑚2−2
2 > 1 then it follows 

𝑁𝑁,𝐶 < 𝑁𝑁,𝐻 < 𝑁𝐵,𝐶 < 𝑁𝐵,𝐻 

and by virtue of finite machine precision during simulation there may be instance were  

𝑁𝑁,𝐶 ≤ 𝑁𝑁,𝐻 < 𝑁𝐵,𝐶 ≤ 𝑁𝐵,𝐻 

In study 1, 𝜇1 − 𝜇2,  is assumed known and 

 
𝑁𝑒𝑠𝑡 =

2(𝑧1−𝛼 2⁄ + 𝑧1−𝛽)
2𝑘𝑠2

(𝜇1 − 𝜇2)2
 

(6.1) 

The comparable estimate in using study 2 is  

 
𝑁𝐵,𝐶 =

2(𝑧1−𝛼 2⁄ + 𝑧1−𝛽)
2𝑘𝑠2

(𝑥̅1 − 𝑥̅2)2
 

(6.2) 

The ratio of these two estimates is   

 𝑁𝑒𝑠𝑡
𝑁𝐵,𝐶

=
(𝑥̅1 − 𝑥̅2)

2

(𝜇1 − 𝜇2)2
=
(𝑥̅1 − 𝑥̅2)

2

𝛿2
 

(6.3) 

 

when 𝜎2 = 1 (as per simulation parameters).   

 

6.1.1 Non-central chi-square distribution for two-sample case for 

sample size estimation 

In accordance with Casella and Berger (2002), if 𝑋1 𝑎𝑛𝑑 𝑋2   are independent normal 

random variables with means 𝜔1 − 𝜔2 and common variance, 𝜎2 then (𝑋1 −  𝑋2)
2   

has a scaled non-central chi square distribution with one degree of freedom and non-

centrality parameter 
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𝜆 =  (

𝜔1 − 𝜔2

𝜎
)
2

 
(6.4) 

The mean and variance of the non- central chi- square distribution are given by  

Mean: (1 + 𝜆) 

Variance:  (1 + 2𝜆)   

and with positive skew  

When considering the scaling parameter 𝜎2 the mean and variance is 

Mean: 𝜎2(1 + 𝜆) 

Variance: 𝜎4(1 + 2𝜆) 

Accordingly 

 (𝑥̅1 − 𝑥̅2)
2

𝛿2
 

(6.5) 

has a scaled non- central chi square distribution with scaling parameter. 

 2

𝑚𝛿2
 

(6.6) 

and hence with mean  

 
=

2

𝑚𝛿2
+ 1 

(6.7) 

and with variance  

 4

𝛿4𝑚2
+

8

𝛿2𝑚3
 

(6.8) 

 

Hence, on average, the estimated sample sizes for study 2 will be smaller than those 

estimated when 𝜇1 − 𝜇2  is known and then this degree of excess is a function of 𝑚  

(degree of excess diminishes with increasing sample size).  The simulation will 

investigate the degree of difference.  

The formulae would be compared by simulation to view their impact on sample 

size estimation. Simulation parameters are presented in Table 6.1 with the design 

corresponding to a 2 by 2 by 2 by 2 by 3 by 5 fully crossed design. 100,000 replicates 

will be conducted at each cell combination. 
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Table 6.1: Parameter combinations for study 2. 

Factor  Number of 

Levels 

Levels 

Alpha(𝛼) 2 0.01, 0.05 

Beta (𝛽) 2 0.1, 0.2 

Coverage (1 − 𝛾) 

Effect size (𝛿) 

2 

3 

0.8, 0.9, 

0.1, 0.4, 0.75 

Pilot sample size (𝑚) 5 8, 16, 32, 64, 128 

 

6.1.2 Algorithm for study two  

1. Start at set.seed (100) 

2. Set number of iterations 100,000 

3. Create the vector for given parameter combination of 𝛼= (0.01,0.05),  

𝛽 =(0.1,0.2), (1 − 𝛾) =(0.8,0.9), 𝛿 =(0.1,0.4,0.75), and 𝑚 =(8,16,32,64, 128).  

4. Loop over the parameters 

5. Define qnorm (1 − (𝛼/2) and qnorm (1 −  𝛽 )   

6. Define (2 ∗ m − 2)/qchisq(1 − coverage, df = (2 ∗ m − 2)) 

7. Calculate 𝑁𝑡𝑟𝑢𝑒   

8. Calculate 𝑁𝐵,𝐶 , 𝑁𝐵,𝐻 , 𝑁𝑁,𝐶, and  𝑁𝑁,𝐻 

9. Calculate percentage greater than  𝑁𝑡𝑟𝑢𝑒 and the Median percentage error 

Get results summary for data. frame (𝑁𝑡𝑟𝑢𝑒, 𝑁𝐵,𝐶, 𝑁𝐵,𝐻 , 𝑁𝑁,𝐶 , and 𝑁𝑁,𝐻, percentage 

greater than  𝑁𝑡𝑟𝑢𝑒 and the Median percentage error) 

10. Loop for each combination for all iterations 

11. Create summary results for each combination for all iteration 

12. Save results  

13. End 
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6.2 Percentage greater than 𝑵𝒕𝒓𝒖𝒆 for estimated sample size and Median 

Percentage Error (MPE) of Study 2 

6.2.1 Percentage greater than 𝑵𝒕𝒓𝒖𝒆 for estimated sample size using 𝑵𝑩,𝑪, 

𝑵𝑩,𝑯 , 𝑵𝑵,𝑪, and 𝑵𝑵,𝑯 

Percentage greater than 𝑁𝑡𝑟𝑢𝑒 calculates the percentage by which a predicted or 

estimated value exceeds the true or actual value. It is computed as follows: 

 

Percentage Greater than 𝑁𝑡𝑟𝑢𝑒 value = (Number of values greater than 𝑁𝑡𝑟𝑢𝑒 /Total 

number of values) *100 

 

This will be done by simulation, and the result will be used to determine the magnitude 

of overestimation. This outcome will present the percentage by which the results from 

𝑁𝐵,𝐶, 𝑁𝐵,𝐻 , 𝑁𝑁,𝐶, and  𝑁𝑁,𝐻 are greater than 𝑁𝑡𝑟𝑢𝑒 for different 𝛼,𝛽,(1 − 𝛾),𝛿 and 𝑚 

scenarios. Result will help determine the formulae that appears to perform better. 

 

Results  

Table 6.2 shows the percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 80% coverage for the four 

formulae, from the result the approaches generally lead to overestimation of sample 

sizes. It further shows that this overestimation is not due to 𝛼 or 𝛽. 𝛿 and 𝑚 has an 

impact in the level of overestimation. Browne-Hedge 𝑁𝐵,𝐻 seems to perform better 

based on  the result. This will be elaborated in further detail using graphs. 
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Table 6.2: Percentage Greater than 𝑁𝑡𝑟𝑢𝑒 at 𝛼 = 0.01, and (1 − 𝛾) = 0.8. 
 
  Browne-Cohen Browne-Hedge Naive-Cohen Naive-Hedge 

  𝛽 𝛽 𝛽 𝛽 

𝑚 𝛿 .10 .20 .10 .20 .10 .20 .10 .20 

8 .10 18.5 18.8 19.6 19.5 15.3 15.2 16.1 16.1 

 .40 51.8 51.8 54.5 54.4 43.6 43.5 45.9 45.8 

 .75 60.5 60.5 64.2 64.1 48.6 48.5 51.8 51.8 

 

16 .10 24.0 23.8 24.2 24.4 21.2 21.0 21.7 21.6 

 .40 54.6 54.6 24.6 55.9 48.3 48.4 49.6 49.6 

 .75 59.5 59.5 55.9 61.7 49.0 48.9 51.1 51.0 

 

32 .10 31.1 31.0 61.8 31.4 28.7 28.6 51.1 29.0 

 .40 55.1 55.1 31.5 55.9 49.6 49.6 29.1 50.3 

 .75 59.4 58.6 55.9 60.1 49.5 48.8 50.4 50.2 

 

64 .10 38.9 39.0 39.2 39.2 37.0 37.0 37.2 37.2 

 .40 55.0 55.0 55.6 55.6 49.6 49.8 50.4 50.3 

 .75 58.9 58.1 59.9 59.1 49.5 48.7 50.5 49.7 

 

128 .10 46.1 46.2 46.2 46.3 44.4 44.6 44.6 44.7 

 .40 55.0 54.8 55.4 55.1 49.9 49.8 50.3 50.1 

 .75 58.7 57.8 58.7 57.8 49.6 48.6 50.2 49.3 

 

The percentage achieved overall is not up to desired 80% coverage, the simulation 

finding agrees with the theory which is always underneath the coverage level. A further 

elaboration of the impact of various parameters based on  table 6.2 is presented 

 

Beta impact 

Considering impact of 𝛽, the percentage greater than 𝑁𝑡𝑟𝑢𝑒 for Naive-Cohen 

approach, with  𝛼 = .01 , 𝑚 = 8 , 𝛿 = .10 at 𝛽 =.10, is approximately 15%. This 

percentage remains the same when 𝛽  is changed to .20. For Browne-Cohen 

approach, with  𝛼 = .01, 𝑚 = 16 , 𝛿 = .40 at 𝛽 =  .10, the percentage greater than 

𝑁𝑡𝑟𝑢𝑒  is approximately 54%. This percentage remains the same when 𝛽  is changed 

to .20. Naive-Hedge approach, with  𝛼 = .05, 𝑚 = 32, 𝛿=.75 at 𝛽 = .10, the 

percentage greater than 𝑁𝑡𝑟𝑢𝑒 is approximately 50%. Again, this percentage remains 

constant when 𝛽  is changed to .20. Finally for Browne-Hedge approach with  𝛼 = .05 
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, 𝑚 = 128 , 𝛿 = .10  at  𝛽 = .10 the percentage greater than 𝑁𝑡𝑟𝑢𝑒  is approximately 

46% and remains the same when 𝛽  changes to .20. It indicates that 𝛽 does not have 

an effect in the result this is graphically presented in Figure 6.1. 

 

Figure 6.1: Impact of 𝛽 on percentage greater than 𝑁𝑡𝑟𝑢𝑒 ,  at 𝛼 = 0.01,  

  (1 − 𝛾) = 0.8,0.9,𝑚 = (8,16,32, 64,128), and 𝛿 = (0.10,0.40,0.75).    

Effect sizes impact 

Considering the impact of 𝛿, the Naive-Cohen approach, with 𝛼 = .01, 𝛽 = .10, 𝑚 =

8, and  𝛿 = .10 , results in a percentage greater than 𝑁𝑡𝑟𝑢𝑒 of approximately 15%. 

When is  𝛿 = .4, the percentage rises to 44%, and for  𝛿 = .75  it reaches 49%. For 

Browne-Cohen approach, with 𝛼 = .05  𝛽 = .10, 𝑚 = 16, and  𝛿 = .10  percentage 

greater than 𝑁𝑡𝑟𝑢𝑒  is approximately 24%. With 𝛿 = .4 ,it becomes 54% and for  𝛿 =

.75 it rises to 59%. In the case of Naive-Hedge approach with 𝛼 = .05  𝛽 = .10, 𝑚 =

32, and  𝛿 = .10  percentage greater than 𝑁𝑡𝑟𝑢𝑒  is approximately 29%. With 𝛿 = .4 the 

percentage becomes 50% and at  𝛿 = .75  it stays the same. Using Browne-Hedge 

approach, with 𝛼 = .05  𝛽 = .20, 𝑚 = 32, and  𝛿 = .10  the percentage greater than 

𝑁𝑡𝑟𝑢𝑒  is approximately 31%. With 𝛿 = .4, the percentage increases to 56% and for  𝛿 =

.75 , it rises to 60%. Hence 𝛿 has an impact in the result. The variance in performance 

is less for the larger 𝛿 but still a tendency to underestimate with 50:50 to be 

underpowered using these methods providing 𝛿 is ≥ 0.4. 
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 Figure 6.2  further concurs there is an impact due to 𝛿, with the range of value is 

smaller for 𝛿 of 0.4 and 0.74. 

 

 
Figure 6.2: Impact of 𝛿 on percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝛼 = (0.01,0.05), 𝛽 = (0.1,

 0.2), 1 − 𝛾 = (0.8.0.9), and 𝑚 =(8,16,32, 64,128).  

Pilot sample size  

Considering the impact of 𝑚, for Naive-Cohen approach, with 𝛼 = .01  𝛽 = .10,𝛿 =

.10 and 𝑚 = 8  the percentage greater than 𝑁𝑡𝑟𝑢𝑒  is approximately 15%. Other 

parameter remaining the same at  𝑚 = 16 the percentage greater than 𝑁𝑡𝑟𝑢𝑒  becomes 

21%, 𝑚 = 32  it becomes 28%, 𝑚 = 64  it is 37%, finally at  𝑚 = 128  it reaches 48%. 

There is similar pattern for Browne-Cohen, Naive-Hedge and  Browne Hedge 

approaches hence there is impact due to 𝑚. 

  Figure 6.3 Shows the impact of 𝑚 in the different formulae. The box plot shows 

there is impact in the result due to changes in 𝑚. The variance decreases with an 

increase in pilot sample sizes for all the formulae.  
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Figure 6.3: Impact of pilot of sample sizes on percentage greater than 𝑁𝑡𝑟𝑢𝑒   at  𝛼 

 = (0.01,0.05), 𝛽 = (0.1, 0.2), (1 − 𝛾) = (0.8,0.9) and 𝛿 = (0.10, 0.40, 0.75).  

Alpha impact in percentage greater than 𝑵𝒕𝒓𝒖𝒆 

The parameter combination for Table 6.3 is like those of Table 6.2, with the only 

difference being the change in 𝛼 value from 0.01 to 0.05. The results are however 

similar and the similarity in result suggest that there is no significant impact due to 𝛼  

value.  

In the Naive-Cohen approach with 𝛽 = .10, 𝑚 = 8, 𝛿 = .10  at 𝛼 = .01, the 

percentage greater than 𝑁𝑡𝑟𝑢𝑒  is approximately 15%. The percentage remains the 

same when 𝛼  is changed to .05. For the Browne-Cohen approach with 𝛽 = .10, 

𝑚=16, 𝛿 = .40  and 𝛼 = .01 the percentage greater than 𝑁𝑇𝑟𝑢𝑒  is approximately 48%, 

and it remains the same when 𝛼  is changed to .05. Similarly, the Naive-Hedge 

approach shows that with 𝛽 = .20,𝑚 = 32 𝛿 = .75 at 𝛼 = .01, the percentage greater 

than 𝑁𝑇𝑟𝑢𝑒 is approximately 49%. Again, the percentage remain the same when 𝛼  is 

changed to .05. Finally, for Browne-Hedge approach with  𝛽 = .20=,𝑚=64, 𝛿 = .40 at 

𝛼 =.01, the percentage greater than 𝑁𝑡𝑟𝑢𝑒   is approximately 55% and remains the 

same when 𝛼  changes to .05. These observations indicate that 𝛼  has no impact in 

the in sample size estimation using these formulae.  
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Table 6.3: Percentage Greater than 𝑁𝑡𝑟𝑢𝑒  at 𝛼 = 0.05, and (1 − 𝛾) = 0.8. 

  Browne-Cohen Browne-Hedge Naive-Cohen  Naive-Hedge  

  𝛽 𝛽 𝛽 𝛽 

𝑚 𝛿 .10 .20 .10 .20 .10 .20 .10 .20 

8 .10 18.5 18.8 19.6 19.5 15.3 15.2 16.1 16.1 

 .40 51.8 51.8 54.5 54.4 43.6 43.5 45.9 45.8 

 .75 60.5 60.5 64.2 64.1 48.6 48.5 51.8 51.8 

 

16 .10 24.0 23.8 24.2 24.4 21.2 21.0 21.7 21.6 

 .40 54.6 54.6 24.6 55.9 48.3 48.4 49.6 49.6 

 .75 59.5 59.5 55.9 61.7 49.0 48.9 51.1 51.0 

 

32 .10 31.1 31.0 61.8 31.4 28.7 28.6 51.1 29.0 

 .40 55.1 55.1 31.5 55.9 49.6 49.6 29.1 50.3 

 .75 59.4 58.6 55.9 60.1 49.5 48.8 50.4 50.2 

 

64 .10 38.9 39.0 39.2 39.2 37.0 37.0 37.2 37.2 

 .40 55.0 55.0 55.6 55.6 49.6 49.8 50.4 50.3 

 .75 58.9 58.1 59.9 59.1 49.5 48.7 50.5 49.7 

          

128 .10 46.1 46.2 46.2 46.3 44.4 44.6 44.6 44.7 

 .40 55.0 54.8 55.4 55.1 49.9 49.8 50.3 50.1 

 .75 58.7 57.8 59.4 58.5 49.6 48.6 50.2 49.3 

 

Figure 6.4 further illustrates there is no impact by 𝛼 in result by the four formulae as 

the box-plot are similar for the four formulae for both 𝛼  of .01 and .05 
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Figure 6.4: Impact of 𝛼 on percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝛽 = (0.1, 0.2), (1 − 𝛾) =
  0.8,0.9,𝑚 = (8,16, 32, 64,128), and 𝛿 = (0.10, 0.40,0.75).  

 

Table 6.4 and 6.5 shows results for percentage Greater than 𝑁𝑡𝑟𝑢𝑒 for 𝑁𝐵,𝐶, 𝑁𝐵,𝐻 , 𝑁𝑁,𝐶, 

and 𝑁𝑁,𝐻    at coverage of 0.9 as against 0.8 in table 6.2 and 6.3. This result shows 

coverage has an impact on the percentage greater than 𝑁𝑡𝑟𝑢𝑒  as the values are 

slightly different despite all other parameters remaining the same. The percentage 

greater than 𝑁𝑡𝑟𝑢𝑒 changes slightly.  

 

Coverage impact in overestimation of sample sizes using table 6.4 and 6.2. 

The Naïve-Cohen and Naive-Hedge do not have any adjustment for coverage. So, 

they perform the same for both 0.8 and 0.9 coverage. They simply tend to 

underestimate. The Browne-Cohen and Browne-Hedge shows a slight impact in the 

results due to change in coverage. 
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Table 6.4: Percentage Greater than 𝑁𝑡𝑟𝑢𝑒  at 𝛼 = 0.01 and  (1 − 𝛾) = 0.9. 

  Browne-Cohen Browne-Hedge Naive-Cohen Nave-Hedge 

  𝛽 𝛽 𝛽 𝛽 

𝑚 𝛿 .10 .20 .10 .20 .10 .20 .10 .20 

8 .10 20.4 20.4 21.6 21.5 15.3 15.2 16.2 16.2 

 .40 56.4 56.6 59.0 59.2 43.6 43.7 45.9 45.9 

 .75 67.1 67.1 70.8 70.6 48.7 48.6 52.0 52.0 

 

16 .10 25.4 25.4 26.1 26.0 21.2 21.0 21.8 21.6 

 .40 57.8 58.0 59.2 59.4 48.3 48.4 49.4 49.6 

 .75 65.4 64.8 67.6 67.1 49.0 48.7 51.4 50.8 

 

32 .10 32.4 32.3 32.8 32.7 28.8 28.7 29.1 29.0 

 .40 58.1 58.0 58.9 58.3 49.6 49.6 50.5 50.4 

 .75 64.4 63.8 65.9 65.3 49.5 48.8 50.9 50.5 

 

64 .10 40.1 40.1 40.3 40.3 37.0 37.0 37.2 37.3 

 .40 57.8 57.7 58.3 58.1 49.6 49.8 50.4 50.3 

 .75 63.8 62.9 64.8 63.9 49.5 48.7 50.6 49.7 

 

128 .10 47.1 47.0 47.2 47.1 44.7 44.6 44.8 44.6 

 .40 57.5 57.7 57.9 58.1 49.9 49.8 50.3 50.1 

 .75 63.2 62.4 63.9 63.1 49.4 48.7 50.1 49.3 

 

The parameter combination for Table 6.3 is like Table 6.5, with the only difference 

being the change in coverage value from 0.8 to 0.9. The results show slight difference 

for Browne approaches suggesting an impact due to coverage in them. 
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Table 6.5: Percentage Greater than 𝑁𝑡𝑟𝑢𝑒 at 𝛼 = 0.05 and  (1 − 𝛾) = 0.9.  

  Browne-Cohen Browne-Hedge Naive-Cohen Naive-Hedge 

  𝛽 𝛽 𝛽 𝛽 

𝑚 𝛿 .10 .20 .10 .20 .10 .20 .10 .20 

8 .10 20.4 20.5 21.6 21.6 15.4 15.5 16.2 16.3 

 .40 56.1 56.1 58.8 58.8 43.4 43.4 45.6 45.7 

 .75 66.5 67.0 70.1 70.1 48.1 48.6 51.4 51.9 

 

16 .10 25.5 21.8 26.1 26.2 21.3 21.3 21.8 21.8 

 .40 57.9 49.7 59.3 59.3 48.4 48.2 49.5 49.4 

 .75 65.3 51.0 67.0 67.0 48.9 49.2 50.7 51.2 

 

32 .10 32.3 32.3 32.7 32.7 28.7 28.7 29.1 29.0 

 .40 57.9 57.9 58.8 58.8 49.5 49.5 50.3 50.3 

 .75 63.3 64.3 64.8 64.8 48.5 49.3 49.9 50.8 

 

64 .10 40.1 37.3 40.3 40.3 37.0 37.0 37.2 37.2 

 .40 57.5 50.2 58.1 58.1 49.7 49.5 50.1 50.1 

 .75 62.5 49.3 63.5 63.5 48.3 49.3 50.3 50.3 

 

128 .10 46.5 47.1 47.1 47.1 44.5 44.6 44.6 44.7 

 .40 57.4 56.9 57.8 57.8 49.8 49.6 50.1 47.6 

 .75 61.5 63.2 62.1 62.1 47.7 49.4 48.5 62.1 

 

6.2.2  Graphical presentation of result showing comparism of the four 

formulae using Percentage greater than 𝑵𝒕𝒓𝒖𝒆 for all formulae 

Figure 6.5 shows the percentage of overestimation using the four different formulae. 

The plot showed skewed distribution for all. The median value for the Naive 

approaches is below median value of about 50% of the times and barely above the 

median hence they will have sample size estimates that are not evenly distributed 

around the median. The Browne Cohen and Browne Hedges plot show a more 

balanced distribution with values below and above the median value of 50% which 

make them better estimators with Browne Hedges as the best estimator based on 

these results and graphic.  
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Figure 6.5: Box plot for Percentage Greater than 𝑁𝑡𝑟𝑢𝑒 at 𝛼 = (0.01,0.05) , 𝛽 = 
  (0.1,0.2), (1 − 𝛾)= (0.8,0.9) 𝑚 = (8, 16, 32, 64,128), and 𝛿 = (0.10, 0.40, 
  0.75).  

 

6.2.3 MPE of Study 2 presented in Tables and Graphs 

The overall accuracy of predictions or estimates of the four formulae can be 

determined using the median percentage error. The MPE is used to quantify the 

average deviation of the four formulae from 𝑁𝑡𝑟𝑢𝑒 and this is usually expressed as a 

percentage and can help to check the under and overestimation of sample sizes by 

the four formulae. The median percentage error for 𝑁𝐵,𝐶 , 𝑁𝐵,𝐻 , 𝑁𝑁,𝐶, and  𝑁𝑁,𝐻 at different 

parameter combination will be presented in tables and graphs to further study them.  

 

Results of MPE  

For Table 6.6 and 6.7 the MPE for Naive Cohen’s shows negative values for the 

different combinations of the various parameters hence indicating on average they 

are  less likely than not to achieve or exceed the true value. Browne Cohen’s shows 

for effect sizes of 0.10 the MPE values are negative and  this is same for all pilot 

sample sizes. However, the MPE are positive for 0.4 and 0.75 effect sizes showing 

that on average they are more  likely than not to achieve or exceed the true value.  
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The Naive Hedges shows negative values for effect size of .10 and .40 sample sizes 

for pilot sample sizes of 8 and 16. For effect size of 0.75,the values are positive for all 

pilot sample sizes. The results of Browne Hedge’s, shows negative values  for 0.10 

effect size and positive for 0.40 and 0.75 effect sizes and this is applicable for both 

0.80 and 0.90 coverages. This finding will be a useful guide to researchers in decision 

making of parameters to pick in research. 

 

Table 6.6: Median percentage error for Study 2 at 𝛽 = 0.1  and (1 − 𝛾) = 0.8. 

   Naive-Cohen Browne-Cohen Naive-Hedge Browne-Hedge 

   𝛼  𝛼  𝛼  𝛼  

𝛽 𝑚  𝛿 .01 .05 .01 .05 .01 .05 .01 .05 

.10 8 .10 -92.0 -92.0 -88.1 -88.1 -91.0 -91.0 -86.7 -86.7 

  .40 -26.3 -26.5 8.9 8.6 -17.6 -17.7 21.7 21.3 

  .75 -3.8 -5.3 41.5 41.2 7.5 7.0 58.5 57.0 

 

 16 .10 -84.2 -84.1 -79.7 -79.6 -83.3 -83.3 -78.6 -78.5 

  .40 -6.5 -6.6 20.3 19.9 -1.4 -1.8 26.5 26.0 

  .75 -1.9 -2.6 26.4 26.3 3.8 2.6 32.7 31.6 

 

 32 .10 -70.3 -70.5 -65.0 -65.1 -69.6 -69.7 -64.1 -64.2 

  .40 -.9 -1.0 17.0 16.9 1.6 1.3 19.9 19.4 

  .75 .0 -.9 18.2 15.8 1.9 .9 20.8 18.4 

 

 64 .10 -22.9 -23.2 -16.7 -16.9 -22.5 -22.7 -16.2 -16.4 

  .40 .2 -.3 8.4 7.8 .9 .3 9.0 8.6 

  .75 .0 .0 8.8 7.9 1.9 .0 9.4 7.9 

 

 128 .10 -22.9 -23.2 -16.7 -16.9 -22.5 -22.7 -16.2 -16.4 

  .40 .2 -.3 8.4 7.8 .9 .3 9.0 8.6 

  .75 .0 .0 8.8 7.9 1.9 .0 9.4 7.9 
 

The parameter combination for Table 6.6 is like those in Table 6.7, with the only 

difference being the change in 𝛽 value from 0.10 to 0.20. The results are however 

similar and the similarity in results suggest that there is no significant impact due to 𝛽.  
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Table 6.7: Median percentage error for study 2 at  𝛽 = 0.2, and  (1 − 𝛾) = 0.8.  

   Nave-Cohen Browne-Cohen Naive-Hedge Browne-Hedge 

   𝛼  𝛼  𝛼  𝛼  

𝛽 𝑚  𝛿 .01 .05 .01 .05 .01 .05 .01 .05 

.20 8 .10 -92.0 -92.0 -88.1 -88.2 -91.0 -91.0 -86.7 -16.4 

  .40 -26.3 -26.6 8.7 8.43 -17.8 -17.8 21.5 21.2 

  .75 -4.8 -3.6 41.3 42.9 7.1 7.1 57.9 59.5 

 

 16 .10 -84.2 -84.1 -79.8 -79.5 -83.4 -83.2 -78.7 -78.5 

  .40 -6.2 -6.7 20.5 19.9 -1.4 -1.7 26.7 25.9 

  .75 -1.6 .0 26.2 28.6 3.2 3.6 33.3 33.3 

 

 32 .10 -70.4 -70.3 -65.0 -64.9 -69.6 -69.5 -64.2 -64.0 

  .40 -.9 -1.3 16.9 16.5 1.4 1.0 19.6 19.5 

  .75 .0 .0 16.7 17.9 2.4 3.6 19.0 21.4 

 

 64 .10 -49.0 -48.8 -42.8 -42.6 -48.4 -48.2 -42.2 -41.9 

  .40 .0 -1.0 11.6 10.8 .9 .0 13.0 12.1 

  .75 .0 .0 11.9 14.3 .0 3.6 11.9 14.3 

 

 128 .10 -22.6 -22.8 -16.3 -16.5 -22.1 -22.3 -15.8 -16.0 

  .40 .2 -.3 8.0 7.7 .5 .0 8.4 8.1 

  .75 .0 .0 7.1 10.7 .0 3.6 9.5 10.7 

 

The parameter combination for Table 6.8 is like Table 6.6, with the only difference 

being the change in coverage value from 0.80 to 0.90. The results are however 

different, and this suggests that there is significant impact on the MPE due to coverage 

for Browne based approaches.  
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Table 6.8: Median percentage error for study 2 at 𝛽 = 0.1 and (1 − 𝛾) = 0.9. 

   Naive-Cohen Brown-Cohen Naive-Hedge Browne-Hedge 

𝛽 𝑚 𝛿 𝛼 

0.01        0.05    

  𝛼 

0.01        0.05 

 𝛼 

0.01       0.05 

𝛼 

0.01       0.05 

.10 8 .10 -91.0 -92.0 -88.1 -85.6 -91.0 -91.0 -83.8 -83.9 

  .40 -25.8 -26.8 8.9 30.9 -17.2 -18.4 48.4 46.5 

  .75 -3.1 -5.3 41.5 70.2 8.2 6.1 93.7 89.5 

 

 16 .10 -84.1 -84.1 -76.8 -76.9 -83.3 -83.3 -75.6 -75.7 

  .40 -6.1 -6.1 35.5 37.1 -2.2 -.8 42.7 43.9 

  .75 -1.8 -1.8 44.0 43.0 4.4 3.5 51.6 50.0 

 

 32 .10 -61.7 -61.7 -61.9 -61.9 -69.5 -69.6 -60.8 -61.0 

  .40 27.4 27.4 26.3 26.8 1.6 1.3 30.6 30.3 

  .75 28.3 28.3 26.3 26.3 1.9 .9 32.1 28.9 

 

 64 .10 -48.5 -48.5 -39.0 -38.9 -48.0 -47.9 -38.3 -38.2 

  .40 -.3 -.3 18.6 17.9 1.1 .8 19.9 19.4 

  .75 .0 .0 18.9 18.4 1.9 .0 20.8 18.4 

           

 128 .10 -22.9 -22.9 -12.4 -13.2 -21.5 -22.5 -11.9 -12.7 

  .40 .0 .0 12.7 12.4 .7 .5 13.4 13.1 

  .75 .0 .0 13.2 10.5 1.9 .0 13.2 13.2 

 
 

The parameter combination for Table 6.7 are like those of Table 6.8, with the only 

difference being the change in (1 − 𝛾) value from 0.80 to 0.90. The results are 

however different, this suggests that there is significant impact on the MPE due to 

coverage. Figure 6.6 shows the impact of coverage on MPE. The range of the median 

percentage error is seen to increase as the coverage changes from 0.8 to 0.9. This 

shows there is impact on MPE caused by coverage. Increase in coverage leads to 

increase in range of MPEs. 
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Figure 6.6: Median Percentage Error  for study 2 showing the impact of coverage. 

 

6.2.4 Graphical comparison of MPE results for study 2 

The result of the study median percentage errors for each formula are graphically 

represented for better understanding. Figure 6.7 shows that Browne Cohen leads to 

overestimation or underestimation of sample sizes with the median value being above 

zero. The Browne Hedges show a similar range. The Naive Cohen approach has the 

median value and upper range below 0 which implies the method will lead to 

underestimation in all cases. The Naive Hedges show median value at 0 point with the 

range all below that and implies the method will lead to underestimation most of the 

time. Median percentage errors being less than zero for both Naive Cohen and Naive 

Hedges implies that the naive methods underestimate sample sizes. This plot clearly 

shows the Browne Hedges method as the most suitable of the four for sample size 

estimation as it’s better skewness will give chance for better estimation of sample 

sizes. 
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Figure 6.7: Median percentage error of study 2 at  𝛼 =(0.01,0.05) , 𝛽 = 0.1, (1 − 𝛾) = 

0.8,𝑚 = (8, 16, 32, 64,128), and 𝛿 = (0.10, 0.40, 0.75). 

Figure 6.8 shows the impact of alpha, beta, and pilot sample sizes in the MPE. It shows 

there is no impact due to alpha as the plots remain the same when alpha values 

change from 0.01 to 0.05, no impact due to beta as the plots remain the same when 

Beta changes from 0.1 to 0.2. The range of the plot is seen to reduce as pilot sample 

sizes changes from 8 to 128, this implies there is impact due to pilot sample sizes. 

These results are in concurrence with the percentage greater than 𝑁𝑡𝑟𝑢𝑒  findings.  
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Figure 6.8: Median Percentage error  𝑁𝑁,𝐶,𝑁𝐵,𝐻,𝑁𝐵,𝐶,and  𝑁𝑁,𝐻 at different parameter  

 combinations. 

 

Figure 6.9 and 6.10 considered MPE for alpha and beta concurrently results showed 

that error across all settings is ≤ 0 for 𝑁𝑁,𝐶 and 𝑁𝑁,𝐻 but median percentage error > 0 

for 𝑁𝐵,𝐶 and 𝑁𝐵,𝐻. This shows that naive approaches underestimate whereas previous 

work has shown a Brown correction can produce large estimates.   
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Figure 6.9: Median percentage error of the methods at alpha (0.01, 0.05). 

 

 

Figure 6.10: Median percentage errors at Beta (0.1,0.2). 

 

6.3 Summary 

This chapter presented four formulae for sample size estimation when MCID is 

unknown 𝑁𝐵,𝐻, 𝑁𝐵,𝐶, 𝑁𝑁,𝐻and 𝑁𝑁,𝐶 . Simulation results for study 2, represented in both 
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tables and graphics, shows that Browne’s method, when 𝜇1  and 𝜇2 are unknown,  

does not work effectively. Additionally, using Hedge’s correction does not completely 

solve the problem. The results are not dependent on 𝛼 or 𝛽; that increase in (1 − 𝛾) 

gives worse sample size estimates,  (1 − 𝛾) and 𝑚 has an impact in the MPE by the 

formulae. The naive methods will lead to underestimation of sample sizes most of the 

time and Browne Hedges’ is seen to be the best of the four formulae with the best 

range of skewness. results show that in 99.9% of instances the sample sizes  followed 

the prior reasoned logical order of  𝑁𝐵,𝐻 , 𝑁𝐵,𝐶 , 𝑁𝑁,𝐻, 𝑎𝑛𝑑 𝑁𝑁,𝐶 100% of the time we have 

𝑁𝐵,𝐻 >= 𝑁𝐵,𝐶> 𝑁𝑁,𝐻>= 𝑁𝑁,𝐶, this follows from the formula. The next chapter will develop 

a method of sample size estimation using upper confidence limit for coefficient of 

variations. 
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CHAPTER 7 

Sample size estimation method developed from upper 

confidence limit of coefficient of variations (Study 3). 

The study will develop three formulae for sample size estimation using the upper 𝛾% 

confidence interval for improved versions of  coefficient of variation 𝑐2,a measure of 

variability discussed in Chapter two (2.6) of this research. The new formulae will be 

improved: 

(a) Standard coefficient of variation approach 

(b) McKay approach 

(c) Vangel approach 

The most efficient in the new formulae will be compared to Browne’s method  𝑁𝐵. 

They will be presented by examples and simulation to consider their performance in 

sample size estimation and recommendations based on findings will be generated.  

 

7.1 Theorem of study 3  

The sample size formula is given by 

 
𝑛 = 2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)

2.
𝜎2

(𝜇1 − 𝜇2)2
 

(7.1) 

Where 𝜎2, 𝜇1 and 𝜇2  are unknown but may be estimated, the estimated sample size 

given is given by 

 𝑛𝑒𝑠𝑡 = 2(𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2. 𝜑2 (7.2) 

where 𝜑2 is the 𝛾% upper confidence limit for  𝜎2 (𝜇1 − 𝜇2)
2⁄  .Under an assumption 

of normality.   

Consider     𝑌̅ = 𝑥̅1 − 𝑥̅2 

𝑌̅ ∼ 𝑁(𝜇1 − 𝜇2, 𝜎𝑌̅
2) 

where 

 𝜎𝑌̅
2 = 𝜎2 𝑚⁄ + 𝜎2 𝑚⁄ = 2𝜎2 𝑚⁄  (7.3) 

The coefficient of variation for 𝑌̅ is  

 𝐶𝑌̅ =
𝜎𝑌̅
𝜇𝑌̅

 (7.4) 
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=
√2𝜎2 𝑚⁄

(𝜇1 − 𝜇2)
 

(7.5) 

Hence  

 
𝐶𝑌̅
2 =

2𝜎2 𝑚⁄

(𝜇1 − 𝜇2)2
 

(7.6) 

 

 𝑚𝐶𝑌̅
2

2
=

𝜎2

(𝜇1 − 𝜇2)2
 

 

(7.7) 

The upper 𝛾% confidence interval for 𝜎2 (𝜇1 − 𝜇2)
2⁄  is therefore given by the upper 

𝛾% confidence interval 𝑚𝐶𝑌̅
2/2. 

The 𝛾% confidence interval for 𝐶𝑌̅ may be given by a few formulae which 

includes the standard formula, McKay, and Vangel. Using the standard 𝛾% standard 

co-efficient formula 

 
𝐶𝑌̅ ± 𝑡𝛾

(1 + 1 4𝑛)⁄

√2𝑛
 

(7.8) 

(See Anderson et al., 2020).   

In terms of 𝑚 where 𝑛 = 2𝑚 this confidence interval is given by  

 
𝐶𝑌̅ ± 𝑡𝛾

(1 + 1 8𝑚)⁄

2√𝑚
 

(7.9) 

If  𝑦̅ = 𝑎𝑏𝑠(𝑥̅1 − 𝑥̅2) 

then  

 
𝐶𝑢 = 𝐶𝑌̅ + 𝑡𝛾

(1 + 1 8𝑚)⁄

2√𝑚
 

(7.10) 

and 

 𝜑2 =
𝑚

2
𝐶𝑢
2 (7.11) 

Therefore, by substituting into equation 7.2, the Standard formula is  

 𝑁𝐶,𝑆  = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2.𝑚𝐶𝑢

2       (7.12) 

Subsequently for McKay  

 𝑁𝐶,𝑀 = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2. 𝑚𝐶𝑢𝑚

2  (7.13) 

where 𝐶𝑢𝑚
2  is upper co-efficient of variation of McKay  

 
𝑁𝐶,𝑀 = ((𝑍1−𝛼 2⁄ + 𝑍1−𝛽)

2. 𝑚. 𝐶𝑌̅
2. ((

𝑢2
2𝑚

− 1)𝐶𝑌̅
2 +

𝑢2
(2𝑚 − 2)

)) 
(7.14) 
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and  𝑢2 = 𝜒(1−𝛾,2𝑚−2)
2  

For the Vangel approach,  

𝑁𝐶,𝑀 = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2.𝑚𝐶𝑢𝑣

2  

where 𝐶𝑢𝑣
2  is upper co-efficient of variation of Vangel  

 
𝑁𝐶,𝑉 = ((𝑍1−𝛼 2⁄ + 𝑍1−𝛽)

2. 𝑚. 𝐶𝑌̅
2. ((

𝑢2 + 2

2𝑚
− 1) 𝐶𝑌̅

2 +
𝑢2

(2𝑚 − 2)
)) 

      (7.15) 

Study 3 will use the same parameters for sample size, effect size, alpha, beta and 

gamma as Study 2. 

 

Example 

For a randomised controlled clinical pilot trial with two groups, the data of the weight 

of the participants for the two groups were taken and presented below   

Grp1(kg) 100,105,109,98,90,87,103,109,113,106,95,106,115,97,99,103,106,118,117,90 

Grp2(kg) 106,110,108,103,92,93,100,1]09,115,107,94,103,120,102,103,103,107,119,120,93 

Using 𝛼 = 0.05 and 𝛽 = 0.1  

Estimate the required sample size for the substantive trial using the upper 80% 

confidence interval for 𝑐 using the  

a. Standard coefficient of variation formula (𝑁𝐶,𝑆) 

b. McKay method (𝑁𝐶,𝑀) 

c. Vangel method  (𝑁𝐶,𝑉) 

d. Browne’s method 

𝛼 = 0.05 

𝛽 = 0.2 

𝑚1 +𝑚2 = 𝑚 = 40 

(𝑥̅1 − 𝑥̅2) = 2 

Solution 

a. Sample size calculation using Standard coefficient of variation formula  

 (𝑁𝐶,𝑆) 

𝑁𝐶,𝑆 = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2.𝑚𝐶𝑢

2 

𝐶𝑌̅
2 =

2𝑠𝑝
2 𝑚⁄

(𝑥̅1 − 𝑥̅2)2
 

𝐶𝑌̅
2 =

2(77.38) 40⁄

(2)2
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𝐶𝑌̅
2 = 0.9672 

𝐶𝑌̅ = 0.9835 

𝐶𝑢 = 𝐶𝑌̅ + 𝑡𝛾
(1 + 1 8𝑚)⁄

2√𝑚
 

𝐶𝑢 =  0.9835 + 0.8512
(1 + 1 8(20)⁄

2√20
 

𝐶𝑢 =   1.0793 

𝐶𝑢
2 = 0.9835 + 0.8512.0.1125 

𝐶𝑢
2 =  1.0793 

𝑁𝐶,𝑆 = (1.9599 + 1.2816)2. 20 . ( 1.0793) 

𝑁𝐶,𝑆 = 226 

b. McKay method (𝑁𝐶,𝑀) 

𝑁𝑀,𝑉  = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2.𝑚. 𝐶𝑌̅

2. (
𝑢2
2𝑚

− 1)𝐶𝑌̅
2 +

𝑢2
(2𝑚 − 2)

 

𝑢2 = 30.5373 

= (1.959 + 1.282)2. 20(0.9672)(0.5670) 

=115 

c.  Vangel method  (𝑁𝐶,𝑉) 

𝑁𝐶,𝑉 = (𝑍1−𝛼 2⁄ + 𝑍1−𝛽)
2.𝑚𝐶𝑌̅

2. (
𝑢2 + 2

2𝑚
− 1) 𝐶𝑌̅

2 +
𝑢2

(2𝑚 − 2)
 

 

 = (1.959 + 1.282)2. 20. (0.9672)(0.6231) 

= 127 

e. Browne formula ( 𝑁𝐵) 

 𝑁𝐵 = 
1 + 𝑟

𝑟
 .  
(𝑍(1−𝛼/2) +  𝑍(1−𝛽))

2

(𝑥̅1 − 𝑥̅2)2
  . 𝑘𝑠2 

where 𝑘 =  (𝑚1 +  𝑚2 − 2) (𝜒1−𝛾,𝜈
2⁄ ), and 𝜒1−𝛾,𝜈

2   is the upper 80% point of the chi-

square variate on 𝜐 degrees of freedom. 

𝜒1−𝛾,𝜈
2 = 45.076 

𝑘 =
38

30.5373
= 1.2444 

 𝑁𝐵 =  2 .  
(1.9599 +   1.2816)2

(2)2
 . (1.2444)(77.38) 
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  𝑁𝐵 = 505 

From the result the sample size that should be used for the substantive trial using 

Standard coefficient of variation formula (𝑁𝐶,𝑆), McKay method (𝑁𝐶,𝑀), Vangel method 

 (𝑁𝐶,𝑉), and Brown formula ( 𝑁𝐵)  are respectively 226,115,127 and 505. However, 

there are other factors that need to be considered including attaining the desired power 

for the research before concluding on the sample size hence the need to further view 

the details of this methods using simulations. The parameter combination for the 

simulation is given as follows. 

 

Table 7.1: Parameter combinations for study 3. 

FACTOR  Number of 

Levels 

LEVELS 

Alpha(𝛼) 2 0.01,0.05 

Beta (𝛽) 2 0.1,0.2 

Coverage (1 − 𝛾) 

Effect size (𝛿) 

2 

3 

0.8, 0.9, 

0.1, 0.4,0.75 

Pilot sample size (𝑚) 5 8, 16, 32, 64, 128 

 

7.1.1 Algorithm for study 3 

1. Set the seed at 101 

2. Set the number of iterations 100,000 

14. Create the vector for 𝛼= (0.01,0.05), 𝛽 =(0.1,0.2), (1 − 𝛾) =(0.8,0.9), 𝛿 

=(0.1,0.4,0.75), and 𝑚 =(8,16,32,64, 128).  

3. Loop over the parameters  

4. For each alpha value calculate the k1 = 𝑍(1−𝛼/2) using the qnorm function 

5. For each beta value calculate the value calculate k2 = 𝑍(1−𝛽) using the qnorm 

function  

6. For each coverage probability, loop over the sample size 

7. For each sample size calculate the critical t value using the qt function and 

calculate the chi square using qchisq. 

8. Calculate the true sample size required using 𝑁𝑡𝑟𝑢𝑒 formula. 

9. Initialize empty vectors for all thresholds  
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10. Loop over the iteration 

11. Using rnorm function with mean 0 and the effect size generate two random 

samples. 

12. Calculate the pooled var, difference in means. 

13. Calculate the estimated sample size using the Standard approach (Repeat 

process for  the McKay and the Vangel formula) 

14. For GreaterThan𝑁𝑡𝑟𝑢𝑒 vector if the estimated sample size is greater than or 

equal the true samplesize append 1 otherwise 0 

15. If the estimated sample size is greater than or equal to a threshold append 1 

for the various thresholds, otherwise append 0. 

16. Repeat 11 to 14 for all iterations. 

17. Give an output of the results showing the number of times estimated sample 

size exceeds the true sample size and the various threshold for each 

combination of parameters. 

18. End  

 

 

7.2    Study 3 results 

The findings from Standard coefficient of variation formula  𝑵𝑪,𝑺  in tables  

Table 7.2 illustrates that for an 𝛿 of 0.1 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 is 16% at 

𝑚=8, indicating a severe underestimation. At  𝑚 = 16, the percentage increases to 

22%, still indicating underestimation but not as severe as at 𝑚 = 8. For  𝑚 = 128 the 

percentage > 𝑁𝑡𝑟𝑢𝑒 is 45%, implying about half the time it will underestimate and half 

overestimate. 

For 𝛿 of 0.4 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝑚=8 is 50%, indicating half 

the time it will underestimate and half overestimate.  At  𝑚 = 16, the percentage 

becomes 55%, underestimation about 45% of the time. For   𝑚 = 128 the percentage 

> 𝑁𝑡𝑟𝑢𝑒 is 67% suggesting underestimation around 33% of the time.   

For large 𝛿 of 0.75 of the time the estimated sample size is larger than 𝑁𝑡𝑟𝑢𝑒 

about 80% for 𝑚 = 32, 64 and 128. The result suggests the standard approach 

demonstrates there is underestimation when effect sizes are small, and this is partially 

corrected by increasing sample size. However, this approach generally shows 

overestimation which is not corrected by increasing pilot sample size.  
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To illustrate this percentage greater than 50% is chosen and graphically 

presented in Figure 7.1 and 7.2 to show the general impact of pilot sample size and 

effect size. 

 

Table 7.2: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at 
  𝛼 = 0.05 , 𝛽 = 0.2, and (1 − 𝛾) = 0.8. 

𝑚 Effect  

Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

8 .10 .180 .161 .145 .139 .129 .110 .110 

16 .10 .247 .220 .201 .193 .181 .159 .159 

32 .10 .330 .294 .269 .258 .242 .213 .213 

64 .10 .417 .378 .348 .334 .310 .269 .269 

128 .10 .499 .448 .411 .397 .370 .318 .318 

 

8 .40 .546 .491 .446 .428 .394 .342 .301 

16 .40 .616 .548 .494 .473 .437 .373 .327 

32 .40 .673 .583 .513 .482 .434 .354 .301 

64 .40 .726 .610 .508 .470 .405 .296 .227 

128 .40 .812 .662 .526 .467 .372 .229 .150 

 

8 .75 .756 .667 .584 .550 .501 .406 .345 

16 .75 .838 .733 .625 .576 .509 .377 .295 

32 .75 .918 .809 .674 .610 .517 .332 .230 

64 .75 .928 .898 .743 .660 .522 .264 .138 

128 .75 .997 .960 .811 .704 .520 .185 .062 

 

Figure 7.1 shows there is large change caused by 𝑚 as the proportion of excess value 

for 8,16,32,64 and 128 varies greatly. The proportion for 𝑚 = 8 between .1 to .5, 𝑚 =

16  is between .08 to .55, 𝑚 = 32 between .25 to .45, 𝑚 = 64 between .30 to .50, and 

𝑚 = 128 between .30 to .50. The range of the proportion of excess is seen to reduce 

as the pilot sample sizes increases. Implying an impact in variance of  under /over 

estimation by the formulae as the pilot sample size increases. 
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Figure 7.1: Proportion > 𝑁𝑡𝑟𝑢𝑒 +50% for samplesize. 

 

Figure 7.2 shows there is change caused by 𝛿 as the proportion value for both 0.1,0.4 

and 0.75 varies. For effect size of 0.10 the proportion ranges from 0.1 to 0.3 with the 

median value of about 0.22, for 0.40 the proportion ranges from 0.38 to 0.41 with the 

median value of about 0.4 and for 0.75 the proportion  ranges from 0.38 to 0.41 with 

the median value of about 0.44 to .58 with median value of 0.45.  

 

 

 
Figure 7.2: Proportion > 𝑁𝑡𝑟𝑢𝑒 +50% for effect size. 



98 
 

For Table 7.3 there is change in beta values to 0.1 as against 0.2 in Table 7.2 however 

the results presented in the table are similar.  This shows that 𝛽 has little to no effect 

in the over-under estimation of sample sizes by this standard formula. 

 

Table 7.3: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at      

  𝛼 = 0.05 , 𝛽 = 0.1,(1 − 𝛾) = 0.8. 

𝑚 Effect 

Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

8 .10 .174 .156 .141 .136 .126 .109 .098 

16 .10 .247 .221 .201 .193 .180 .156 .140 

32 .10 .330 .295 .270 .260 .242 .210 .189 

64 .10 .424 .382 .351 .337 .315 .274 .245 

128 .10 .508 .459 .420 .404 .377 .328 .294 

 

8 .40 .550 .493 .448 .430 .399 .345 .306 

16 .40 .619 .550 .496 .473 .438 .372 .328 

32 .40 .676 .584 .512 .484 .436 .354 .301 

64 .40 .740 .619 .518 .478 .413 .302 .237 

128 .40 .819 .667 .527 .471 .378 .231 .154 

 

8 .75 .746 .656 .574 .540 .490 .396 .336 

16 .75 .830 .721 .609 .562 .492 .362 .283 

32 .75 .914 .799 .659 .595 .498 .316 .214 

64 .75 .973 .882 .721 .636 .497 .250 .134 

128 .75 .997 .953 .794l .686 .497 .172 .058 

 

Figure 7.3 shows there is no change in over/under estimation caused by 𝛽 as the 

proportion value for both .10 and 0.20 are similar.  
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Figure 7.3: Proportion  > 𝑁𝑡𝑟𝑢𝑒 +50% for Beta. 

 

Table 7.4 used 𝛼 = 0.01 as against results from table 7.3 where 𝛼 = 0.05. Results 

displayed in both tables are however similar and this shows there is no effect caused 

by 𝛼 in proportion of over or underestimation of sample sizes this will be further 

graphically presented. 
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Table 7.4: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at 𝛼 =
0.01 , 𝛽 = 0.1,(1 − 𝛾) = 0.8. 

𝑚 Effect 

Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150%  

8 .10 .176 .157 .143 .137 .128 .110 .098  

16 .10 .243 .217 .198 .191 .178 .153 .137  

32 .10 .328 .294 .270 .259 .242 .209 .187  

64 .10 .426 .383 .351 .338 .317 .275 .246  

128 .10 .506 .456 .418 .402 .376 .326 .293 

 

 

8 .40 .554 .496 .450 .432 .402 .347 .309  

16 .40 .618 .550 .496 .475 .439 .374 .331  

32 .40 .676 .585 .514 .487 .440 .357 .304  

64 .40 .740 .619 .519 .480 .414 .305 .239  

128 .40 .819 .667 .530 .475 .383 .236 .157 

 

 

8 .75 .751 .659 .579 .549 .493 .402 .339  

16 .75 .835 .724 .617 .574 .496 .366 .286  

32 .75 .917 .803 .666 .610 .500 .322 .218  

64 .75 .975 .888 .730 .655 .503 .257 .136  

128 .75 .997 .957 .810 .716 .506 .182 .062  

 

Figure 7.4 shows there is little to no change caused by Alpha as the proportion value 

for both 0.01 and 0.05 are quit similar, ranging from 0.3 to 0.5 with the median value 

of about 0.45. 
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Figure 7.4: Proportion > 𝑁𝑡𝑟𝑢𝑒 +50% for Alpha. 

 

Table 7.5 used similar parameters as table 7.3 with the only for coverage changing to 

0.9. There is a slight change increase in the result values implying there is impact 

caused by change in coverage values. The findings are however same as the results 

shows underestimations with only large effect size attaining the desired coverage at 

𝑚 = 32, 64 and 128. 

 

Table 7.5: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at 

  𝛼 = 0.05 , 𝛽 = 0.1,(1 − 𝛾) = 0.9. 

𝑚 Effect 
Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

8 .10 .178 .159 .144 .138 .128 .111 .099 
16 .10 .251 .224 .204 .196 .182 .158 .141 
32 .10 .336 .300 .274 .263 .245 .212 .191 
64 .10 .431 .388 .355 .342 .319 .277 .248 
128 .10 .516 .466 .426 .409 .382 .332 .297 

 
8 .40 .594 .529 .479 .459 .424 .363 .321 
16 .40 .669 .592 .532 .507 .465 .392 .344 
32 .40 .738 .638 .558 .525 .471 .379 .319 
64 .40 .815 .691 .581 .536 .461 .334 .259 
128 .40 .898 .760 .615 .553 .446 .271 .178 

 
8 .75 .867 .774 .679 .638 .576 .455 .380 
16 .75 .940 .853 .743 .688 .605 .439 .337 
32 .75 .985 .931 .820 .757 .648 .418 .280 
64 .75 .999 .982 .901 .836 .704 .384 .207 
128 .75 1.000 .998 .966 .916 .774 .341 .125 
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Figure 7.5 shows there is change caused by (1 − 𝛾)   as the proportion value for both 

0.8, and 0.9 varies. For coverage of .80 the proportion ranges from .3 to .5 with the 

median value of about 0.42, and for .90 the proportion ranges from 0.30 to 0.61 with 

the median value of about 0.42. 

 
Figure 7.5:  Proportion > 𝑁𝑡𝑟𝑢𝑒 +50% for Coverage. 

 

The findings from McKay formula  𝑵𝑪,𝑴  in tables  

Table 7.6 illustrates that for an 𝛿 of 0.1 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 is 25% at 

𝑚=8, indicating a severe underestimation. At  𝑚 = 16, the percentage increases to 

30%, still indicating underestimation but not as severe as at 𝑚 = 8. For  𝑚 = 128 the 

percentage > 𝑁𝑡𝑟𝑢𝑒 is 48%, implying about half the time it will underestimate and half 

overestimate. 

For 𝛿 of 0.4 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝑚=8 is 51%, indicating half the time 

it will underestimate and half overestimate.  At  𝑚 = 16, the percentage becomes 55%, 

indicating underestimation about 45% of the time. For  𝑚 = 128 the percentage > 𝑁𝑡𝑟𝑢𝑒 

is 55% suggesting underestimation around 45% of the time.   

For large 𝛿 of 0.75 percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝑚=8 is 58%, indicating about 42% 

of the time it will underestimate.  At  𝑚 = 16, the percentage becomes 58%, indicating 

underestimation about 42% of the time. For   𝑚 = 128 the percentage > 𝑁𝑡𝑟𝑢𝑒 is 58% 

suggesting underestimation around 42% of the time.  The result suggests the Mckay 
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approach demonstrates there is underestimation with at all effect sizes and the power 

is not achieved at any parameter combination. 

 

Table 7.6: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at       

  𝛼 = 0.01 , 𝛽 = 0.1,(1 − 𝛾) = 0.8 using McKay formula. 

𝑚 Effect 

Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

8 .10 .263 .245 .231 .226 .216 .198 .185 

16 .10 .322 .299 .280 .273 .260 .237 .221 

32 .10 .387 .356 .333 .324 .309 .279 .259 

64 .10 .457 .419 .390 .378 .357 .319 .297 

128 .10 .522 .476 .441 .414 .402 .356 .324 

 

8 .40 .559 .514 .478 .463 .437 .389 .356 

16 .40 .607 .549 .506 .488 .456 .399 .361 

32 .40 .631 .555 .495 .473 .433 .361 .314 

64 .40 .657 .550 .468 .437 .381 .287 .231 

128 .40 .695 .551 .434 .436 .317 .202 .140 

 

8 .75 .646 .579 .522 .501 .459 .391 .343 

16 .75 .679 .588 .509 .479 .424 .331 .270 

32 .75 .717 .591 .479 .437 .361 .243 .174 

64 .75 .764 .597 .436 .378 .279 .145 .081 

128 .75 .825 .581 .382 .306 .185 .059 .021 

 

 

The findings from Vangel formula  𝑵𝑪,𝑽  in tables  

Table 7.7 illustrates that for an 𝛿 of 0.1 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 is 27% at 

𝑚=8, indicating a severe underestimation. At  𝑚 = 32, the percentage increases to 

32%, still indicating underestimation but not as severe as at 𝑚 = 8. For  𝑚 = 128 the 

percentage > 𝑁𝑡𝑟𝑢𝑒 is 48%, implying about half the time it will underestimate and half 

overestimate. 

For 𝛿 of 0.4 the percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝑚=8 is 53%, indicating 47% 

of  the time it will underestimate.  At  𝑚 = 16, the percentage becomes 56%, indicating 

underestimation about 14% of the time. For   𝑚 = 128 the percentage > 𝑁𝑡𝑟𝑢𝑒 is 55% 

suggesting underestimation around 45% of the time.   
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For large 𝛿 of 0.75 percentage greater than 𝑁𝑡𝑟𝑢𝑒 at 𝑚=8 is 55%, indicating 

about 45% of the time it will underestimate.  At  𝑚 = 16, the percentage becomes 59%, 

indicating underestimation about 41% of the time. For   𝑚 = 128 the percentage > 

𝑁𝑡𝑟𝑢𝑒 is 60% suggesting underestimation around 40% of the time.  The result suggests 

the Vangel approach demonstrates there is underestimation at all effect size, and the 

power is not achieved at any parameter combination. 

 
Table 7.7: Proportion of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒+/- error at 

  𝛼 = 0.01 , 𝛽 = 0.1,(1 − 𝛾) = 0.8 using Vangel formula. 

Sample  

Size 

Effect 

Size 

>-20% > 𝑁𝑡𝑟𝑢𝑒 >+20% >+30% >+50% >+100% >+150% 

8 .10 .293 .274 .259 .253 .243 .224 .211 

16 .10 .339 .315 .298 .291 .277 .252 .236 

32 .10 .396 .365 .343 .334 .318 .289 .268 

64 .10 .461 .423 .395 .383 .362 .324 .299 

128 .10 .523 .477 .443 .429 .404 .358 .327 

 

8 .40 .575 .531 .496 .493 .482 .457 .411 

16 .40 .613 .556 .513 .513 .496 .464 .409 

32 .40 .633 .558 .498 .498 .476 .436 .365 

64 .40 .658 .552 .469 .469 .438 .382 .289 

128 .40 .695 .551 .435 .435 .392 .318 .202 

 

8 .75 .653 .588 .532 .512 .471 .402 .356 

16 .75 .683 .592 .514 .484 .428 .336 .276 

32 .75 .718 .597 .481 .439 .363 .244 .176 

64 .75 .824 .600 .437 .379 .280 .145 .082 

128 .75 .657 .590 .383 .307 .186 .060 .022 

 

Results from  Standard coefficient of variation formula, McKay formula and Vangel 

formula shows the formula developed from co-efficient of variation also lead to 

over/under estimation of sample sizes. The standard method is seen to be the only 

that can attain the required power only for large effect sizes and hence it will be 

compared to Browne’s method. 
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7.3 Comparison of Browne’s approach of sample size estimation  

 (𝑵𝑩)  and sample size estimation approach developed from upper confidence 

limit of standard coefficient of variation   (𝑵𝑪,𝑺) 

Table 7.8 shows both approaches achieved the desired 80% coverage at large effect 
size of 0.75. 
 
Table 7.8: Percentage of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at 

 𝛼 = 0.05 , 𝛽 = 0.2,(1 − 𝛾) = 0.8. 

   NC,S  NB  NC,S  NB  NC,S  NB 

Sample  

Size 

Effect 

Size 

> 𝑁𝑡𝑟𝑢𝑒 > 𝑁𝑡𝑟𝑢𝑒 >+50% >+50% >+100% >+100% 

8 .10 .161 .801 .129 .436 .110 .166 

16 .10 .220 .798 .181 .240 .159 .026 

32 .10 .294 .798 .242 .073 .213 .001 

64 .10 .378 .799 .310 .006 .269 .000 

128 .10 .448 .801 .370 .000 .318 .000 

 

8 .40 .491 .795 .394 .421 .342 .162 

16 .40 .548 .790 .437 .229 .373 .024 

32 .40 .583 .786 .434 .065 .354 .000 

64 .40 .610 .782 .405 .005 .296 .000 

128 .40 .662 .771 .372 .000 .229 .000 

 

8 .75 .667 .795 .501 .430 .406 .166 

16 .75 .733 .798 .509 .237 .377 .025 

32 .75 .809 .794 .517 .071 .332 .000 

64 .75 .898 .795 .522 .006 .264 .000 

128 .75 .960 .789 .520 .000 .185 .000 

 

Table 7.9 is same parameter as table 7.8 with only the (1 − 𝛾) value changing to 0.9 

and the results vary slightly showing there is impact due to coverage. Both approaches 

achieved 90% coverage at large effect size of 0.75 
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Table 7.9: Percentage of time estimated sample size exceeds 𝑁𝑡𝑟𝑢𝑒 +/- error at 

  𝛼 = 0.01 , 𝛽 = 0.1,(1 − 𝛾) = 0.9. 

  NC,S NB NC,S NB NC,S NB 

Sample  

Size 

Effect 

Size 

> 𝑁𝑡𝑟𝑢𝑒 > 𝑁𝑡𝑟𝑢𝑒 >+50% >+50% >+100% >+100% 

8 .10 .160 .900 .130 .631 .112 .339 

16 .10 .221 .901 .180 .431 .155 .085 

32 .10 .299 .900 .244 .420 .211 .003 

64 .10 .389 .900 .320 .171 .278 .000 

128 .10 .463 .901 .380 .024 .330 .000 

 

8 .40 .532 .901 .427 .634 .365 .340 

16 .40 .591 .899 .466 .419 .395 .084 

32 .40 .637 .900 .475 .175 .381 .003 

64 .40 .690 .901 .462 .026 .336 .000 

128 .40 .759 .900 .450 .000 .276 .000 

 

8 .75 .778 .899 .577 .624 .461 .340 

16 .75 .858 .898 .608 .408 .445 .084 

32 .75 .934 .900 .650 .163 .427 .003 

64 .75 .983 .898 .708 .020 .397 .000 

128 .75 .999 .896 .782 .000 .357 .000 

 
 
7.4 Summary 

New formulae for sample size estimation using upper confidence limit of co-efficient 

of variations was developed .They are namely (a) the upper 𝛾% confidence interval for 

𝑐2 using the Standard coefficient of variation formula (𝑁𝐶,𝑆), (b) the upper 𝛾% 

confidence interval for 𝑐 using the McKay (𝑁𝐶,𝑀), and (c)  the upper 𝛾% confidence 

interval for c using the Vangel formula (𝑁𝐶,𝑉).They were studied using examples and 

simulations for various combinations of 𝛼 , 𝛽, (1 − 𝛾), 𝛿 and 𝑚.The findings was 

presented in table and graphically. The result show that the Standard method can be 

used for sample size estimation however the desired coverage is attained for only 

large effect sizes of 0.75. The  𝑁𝐶,𝑆 formula presented better outcome compared to the 

other two formulae and hence was compared to Browne’s method.  Similar, to 

Browne’s method this method can lead to over or under estimation of sample sizes. 
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CHAPTER 8 

Sample size determination using 𝒌𝟐 modifier based on 

coverage  

Modification for sample size determination for two-armed trial is further discussed. The 

study 4 of this research which develops modified approach using  𝑘2 modifier based 

on coverages when the Minimum Clinical Importance Difference is unknown is 

presented. Standard method for sample size estimation is compared to a modified 

method based on observed data using  𝑘2 modifier values to achieve desired 

coverage, where 𝑘 is Browne’s multiplier discussed in chapter one (1.2.1). 

 

8.1 Pre study hypothesis for Study 4  

For the two-armed RCT with normally distributed data, then  

 
𝑁𝑡𝑟𝑢𝑒 =  2(𝑍1− 𝛼 2⁄ + 𝑍𝛽)

2 𝜎2

(𝜇1 − 𝜇2)2
 =   

2(𝑍1− 𝛼 2⁄ + 𝑍𝛽)

𝛿2

2

 
(8.1) 

Suppose we consider  

 
𝑁𝑒𝑠𝑡 =  2(𝑍1− 𝛼 2⁄ + 𝑍𝛽)

2 𝑠2

(𝑥̅1 − 𝑥̅2)2
 =   

2(𝑍1− 𝛼 2⁄ + 𝑍𝛽)

𝑑2

2

 
(8.2) 

In this case 𝑁𝑒𝑠𝑡 > 𝑁𝑡𝑟𝑢𝑒 when 

 1

𝑑2 
 >  

1

𝛿2
  

(8.3) 

or equivalently when  

 𝛿2 > 𝑑2 (8.4) 

In other words when Cohen’s 𝑑 is smaller than the true effect size (𝛿) then the process 

will overestimate the sample size; and when Cohen’s 𝑑 is larger than the effect size 

(𝛿) then the process will underestimate the sample size. Consider 𝛿 = 1.  The 

distribution of 𝑑2 for 𝑚 = 5 is shown in Figure 8.1 (based on 100,000 simulation 

instances).  From the histogram, the 80-th percentile for m = 5 and 𝛿 = 1 is estimated 

to be 2.85.  Hence, dividing 𝑑2 by is 2.85 would ensure 80% of the values would be 

smaller than 1.  

 Let 𝑘2(1 −  𝜆,𝑚, 𝛿) =  𝑘2(0.8, 5, 1) = 2.85, (8.5) 

then  
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𝑁𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2 𝑠2

(𝑥̅1 − 𝑥̅2)2
 𝑘0.8,5,1

2   
(8.6) 

 
=  

2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

𝑑2

2

𝑘0.8,5,1
2  

(8.7) 

 
=  

2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

𝑑2

2

2.85  
(8.8) 

Equation 8.8 would provide an estimate of  𝑁𝑡𝑟𝑢𝑒  which would have 80% coverage 

provided 𝛿 = 1. 

 
𝑁𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2 𝑠2

(𝑥̅1 − 𝑥̅2)2
 𝑘0.7,5,1

2  
(8.9) 

Equation 8.9 would provide estimate of 𝑁𝑡𝑟𝑢𝑒  which would have 70% coverage. 

 
𝑁𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2 𝑠2

(𝑥̅1 − 𝑥̅2)2
 𝑘0.6,5,1

2  
(8.10) 

Equation 8.10 would provide an estimate of  𝑁𝑡𝑟𝑢𝑒  which would have 60% coverage 

provided 𝛿 = 1. 

 

8.2 Graphical representation of study 4. 

The finding for 80% coverage is graphically shown in Figure 8.1  

 

 

 

Figure 8.1: Graphical representation of probability density for varying 𝑑2. 
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Now consider when 𝛿 = 0.05.  Figure 8.2 shows that when 𝛿 = 0.5 the distribution of 

𝑑2 has an estimated 80-th percentile of 0.5216 and the distribution of 𝑑2 𝛿2⁄  when 

𝛿 = 0.5 has a percentile of 2.1046.  Hence 𝑘2(1 −  𝛾 = 0.8,𝑚 = 30, 𝛿 = 0.5) = 2.105  

 

 

Figure 8.2: Representation for 𝛿 = 0.05  when 𝑑2 has an estimated 80-th percentile.  

 

As a third example consider 𝛿 = 0.2, 𝑚 = 40.  The 60th percentile of 𝑑2is estimated to 

be 0.07235, the 70th percentile of 𝑑2 is estimated to be 0.1058, the 80th percentile of 

𝑑2  is estimated to be 0.15544.  Hence, dividing the values of the above percentiles by 

𝛿2 = 0.22 = 0.04 gives 

𝑘2(1 −  𝛾 = 0.6,𝑚 = 40, 𝛿 = 0.2) is estimated to be 1.809 

𝑘2(1 −  𝛾 = 0.7,𝑚 = 40, 𝛿 = 0.2) is estimated to be 2.645 

𝑘2(1 −  𝛾 = 0.8,𝑚 = 40, 𝛿 = 0.2) is estimated to be 3.886 

The 80% percentile transformation is shown in the graphic below.   
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Figure 8.3: Representation of density at 80% percentile transformation.  

 

Tables 8.1 to 8.3 provides an estimate of  𝑁𝑡𝑟𝑢𝑒  which would have 80% coverage 

providing 𝛿 = 1. In the same way,  𝑘2(0.6, 5, 1) is estimated to be 1.487, and 

𝑘2(0.7,𝑚, 1) is estimated to be 2.041 as shown  in the tables. Table 8.1 provides 

Modifier 𝑘2 values for 60% coverage, which when used in modified method will ensure 

60% coverage is achieved for example  𝑘2(0.6, 15, 1) is 1.2282 and multiplying same 

using modified method will ensure a sample size with 60% coverage. 

While Table 8.2 provides Modifier 𝑘2 values for 70% coverage, which when used in 

modified method will ensure 70 % coverage is achieved for example  𝑘2(0.7, 20, 1) is 

1.4220 and multiplying same using modified method will ensure a sample size with 

70% coverage. 
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Table 8.1: Modifier 𝑘2  (0.6,𝑚, 𝛿) for 60% coverage. 

 

 
 

Table 8.2: Modifier 𝑘2(0.7,𝑚, 𝛿) for 70% coverage. 

𝑚 𝛿 
 0.1 0.2 0.3 0.4 0.5 1.0 

5 49.8961 13.598 6.8363 4.5429 3.5106 2.0888 

10 23.6521 6.8063 3.7682 2.7813 2.3169 1.6515 

15 15.8028 4.7842 2.9100 2.2677 1.9697 1.4839 

20 12.2835 4.0452 2.5642 2.0718 1.8427 1.4220 

25 9.9356 3.4264 2.2912 1.9060 1.7040 1.3609 

30 8.3515 3.0522 2.1600 1.8281 1.6460 1.3244 

35 7.6212 2.9543 2.1197 1.7979 1.6228 1.3179 

40 6.6411 2.6902 1.9915 1.7130 1.5571 1.2851 

50 5.6492 2.4505 1.8781 1.6353 1.5011 1.2532 

60 4.7377 2.1978 1.7396 1.5340 1.4227 1.2141 

70 4.4272 2.1529 1.7109 1.5174 1.4105 1.2113 

80 3.9570 2.0676 1.6664 1.4829 1.3820 1.1949 

90 3.6989 1.9639 1.6149 1.4480 1.3530 1.1777 

100 3.3431 1.8780 1.5599 1.4109 1.3281 1.1676 

 

 

𝑚 𝛿 

 0.1 0.2 0.3 0.4 0.5 1.0 

5 33.0976 8.9543 4.5122 2.9532 2.3111 1.5318 

10 15.0447 4.4519 2.5117 1.8675 1.6202 1.3135 

15 10.2908 3.2261 1.9662 1.5937 1.4359 1.2282 

20 7.9663 2.7076 1.7841 1.5006 1.3883 1.2049 

25 6.4924 2.2632 1.5790 1.3966 1.3162 1.1671 

30 5.5809 2.0397 1.4925 1.3475 1.2774 1.1473 

35 5.1016 1.9841 1.5329 1.3848 1.3091 1.1614 

40 4.4161 1.8923 1.4831 1.3492 1.2777 1.1445 

50 3.6747 1.6641 1.3819 1.2819 1.2286 1.1260 

60 3.1299 1.5498 1.3294 1.2417 1.1947 1.1007 

70 2.9146 1.5332 1.3302 1.2465 1.2013 1.1056 

80 2.6187 1.4918 1.3109 1.2340 11839 1.0969 

90 2.4397 1.4152 1.2702 1.1987 1.1595 1.0826 

100 2.2029 1.4046 1.2612 1.1928 1.1542 1.0816 
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Table 8.3 provides Modifier 𝑘2 values for 80% coverage, which when used in modified 

method will ensure 80 % coverage is achieved for example  𝑘2(0.8, 50, 1) is 1.4163 

and multiplying same using modified method will ensure a sample size with 80% 

coverage. 

 

Table 8.3: Modifier 𝑘2 (0.8,𝑚, 𝛿) for 80% coverage. 

𝑚 𝛿 

 0.1 0.2 0.3 0.4 0.5 1.0 

5 79.3654 21.4529 10.7778 7.1006 5.3040 2.9311 

10 36.8651 10.6793 5.8641 4.1698 3.3592 2.0980 

15 24.3492 7.4068 4.3801 3.2894 2.7473 1.8413 

20 18.9876 6.0954 3.7380 2.8765 2.4287 1.6943 

25 15.3601 5.1867 3.3192 2.6161 2.2542 1.6093 

30 12.9273 4.5719 3.0217 2.4105 2.0901 1.5337 

35 11.5061 4.3322 2.9219 2.3475 2.0404 1.5074 

40 10.3247 3.9459 2.7353 2.2369 1.9584 1.4655 

50 8.5697 3.5587 2.5242 2.0854 1.8452 1.4163 

60 7.3339 3.1618 2.3097 1.9401 1.7338 1.3584 

70 6.6934 3.0544 2.2476 1.8942 1.7013 1.3445 

80 5.9455 2.8248 2.1244 1.8110 1.6360 1.3171 

90 5.5567 2.7166 2.0547 1.7575 1.5931 1.2931 

100 5.1031 2.5805 1.9823 1.7100 1.5551 1.2797 

 

 
 

8.3 Summary 

This chapter presented a modified method for sample size estimation to ensure the 

expected coverage is achieved. Findings were presented with graphics and tables. 

Table 8.1,8.2 and 8.3 shows that the modifier needed is very much dependent on 

coverage and the unknown true effect size.  However, the correction factor seems 

large and therefore although the problem can be corrected the extent of the correction 

means that either extraordinarily large pilot sample sizes would be needed or the 

projected sample size for the full study would be extraordinarily large.   
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CHAPTER 9 

Conclusions and Recommendations 

Estimation of pilot sample sizes and sample sizes for substantive studies was 

researched. Interest with issues arising from over/under estimation of sample sizes in 

clinical research have driven this research as both could lead to either waste of limited 

resources or unethical situation leading to participant undergoing a process that is 

completely avoidable. Numerous formulae exist for samples sizes estimation; 

however, this study focuses on the Upper Confidence limit developed by Browne in 

1995. The focus of the research is to propose a solution to control error margin in 

sample size estimation. This will serve as a guide to researchers and yield better 

research results. This final chapter presents a summary of the research findings, 

recommendations, and potential areas for further research. 

 

9.1 Findings and their implications 

There are numerous suggested formulae for estimating sample sizes in clinical trials;  

however, they have inherent limitations since some necessary parameter needed for 

the calculation are not known before the research begins. Researchers, therefore, 

depend on pilot studies to obtain the parameter value, such as standard deviation, 

required for the calculation. However, the standard deviation from pilot studies could 

be inaccurate. Currently, different rules of thumb are used by researchers to determine 

pilot sample sizes, but they are all known to have their limitations. 

Browne developed a formula that suggests using at least 80% one-side 

confidence limits on standard deviation as the estimate of standard deviation to ensure 

at least 80% chance of achieving the planned power in the clinical trial. The degree of 

over/underestimation of sample sizes by the formula was not considered. 

This research in study 1a investigates Browne 1995’s formula for sample size 

estimation in study one, using the following parameter combinations significance 

levels 𝛼 = (0.01,0.05), power level 1 – 𝛽= (0.8,0.9), pilot sample sizes 𝑚 = 

(5,10,30,50,100), known standardized effect sizes 𝛿 = (0.10,0.40,0.75), coverage 

levels (1 − 𝛾) = (0.8,0.9). To improve accuracy of findings,100,000 iteration was used, 

in contrast to Browne’s original research, which employed 2000 iteration. The results 
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show that using Browne’s 1995 formula would achieve the planned power but could 

lead to massive overestimation of sample sizes by over 100percent and 

underestimation of sample sizes more than minus 20percent. Consequently, the 

research further investigated the corresponding median percentage error associated 

to the formula and confirmed its over/underestimation tendencies. This implies that in 

the case of overestimation, the research team using Browne’s formula could spend 

double the cost needed to achieve a research result. Conversely, in the case of 

underestimation, the research team could end up with inconclusive results. Both 

situations are unethical and should be avoided. 

Based on the finding of study one(a) and considering its implications, this 

research developed a Goldilocks (“just about right”) model for pilot sample size 

estimation in study one(b), aiming to control both the lower and upper bound of the 

error margin. This model will serve as guide for researchers in managing the range of 

error when choosing sample sizes, enable them to choose pilot sample sizes that 

correspond to a desired coverage level and error margin for their research, and this 

will enhance decision making for researchers. This presents an advantage for 

Browne’s formula and the rules of thumb that do not consider the level of over/under 

estimation of sample sizes.  

Study two developed and studied four formulae for sample size estimation 

when the Minimum Clinical Importance Difference (MCID) is unknown. These 

formulae are as follows: Naive-Cohen: the naive estimate for the sample size using 

Cohen's 𝑑 when 𝜎2, 𝜇1, 𝜇2 are unknown(𝑁𝑁,𝐶), Browne-Cohen: using Cohen’s 𝑑  in 

Browne’s approach (𝑁𝐵,𝐶), Naive Hedge-a naive estimate using Hedge’s ℎ (𝑁𝑁,𝐻), 

and Browne Hedge- using Hedges’ ℎ in Browne’s approach (𝑁𝐵,𝐻). The percentage 

greater than 𝑁𝑡𝑟𝑢𝑒  and Median percentage error result for each formula were 

tabulated and the findings showed that the Naive estimates lead to massive 

underestimation of sample sizes. The box plots of Browne-Hedges showed a better 

range of variance compared to the other formulae suggesting it is the best of them all 

for sample size estimation for a substantive trial when MCID is unknown.  The 

formulae can be used with caution, considering their tendency for both overestimation 

and underestimation, thus highlighting the need for a further study. 

  Using the upper confidence limit for co-efficient of variation study three develop 

and investigates three formulae for sample size estimation namely Standard 
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coefficient of variation formula (𝑁𝐶,𝑆),McKay formula (𝑁𝐶,𝑀),and Vangel formula (𝑁𝐶,𝑉). 

Result shows that the formulae work best for only large effect sizes (0.75) and that is 

the point where the desired coverage can be achieved . Based on the results the  

relatively  best of the three formula is the standard formula and it was compared to 

results from Browne’s  formula . The study showed a level of over/under estimation 

using it and does not perform better than Browne as the coverage level is not attained 

at small effect sizes. 

The study proceeded to conduct study 4 the final study, where a modifier 

correction critical table was created to lead the expected coverage when MCID is 

unknown. This table ensures the desired coverage is attained at each point of sample 

size estimation, thus addressing the problem of coverage not been attained by some 

parameter combination. However, it was observed that this approach leads to a 

massive overestimation of sample sizes which is not practical in real life research. 

 

9.2 Recommendation  

The following recommendations are made after careful consideration of the findings  

from this research. Firstly, researchers should be informed of the limitation of the 

different methods of sample size estimation and exiting rules of thumb for pilot sample 

sizes, to ensure they have control over under/over estimation of sample sizes. 

Secondly when using Browne’s 1995 formula for sample size estimation leads to 

over/under estimation of sample sizes, the proposed Goldilocks (“just about right”) 

model and tables should be employed to control the over/under estimation of sample 

sizes and improve research outputs. 

 Also, when MCID is unknown the Browne-Hedge formula is the best of the 

proposed formulae but equally lead to over/under estimation of sample sizes hence 

the result in this research can serve as guide to control the range of error. 

For sample size estimation formulae developed using upper confidence limit of 

co-efficient of variation a close comparism of the formulae showed the Standard 

coefficient of variation formula (𝑁𝐶,𝑆) is the best.  The result compared to Browne 

method showed it is efficient as Browne’s Formula for large effect sizes only and can 

be used inter changeably. 

Furthermore, the 𝑘2 multiplier table developed in study four can be utilized 

when there is particular interest is in attaining a certain desired coverage level. 
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However, it should be noted that this formula will lead to massive overestimation of 

sample sizes, which is not cost effective but can guarantee accurate result. 

Finally, the findings of this research will be valuable in providing proper 

guidance to researchers in controlling over/under estimation of sample sizes. This will 

result in   resources saving, and ethical standard compliant outcomes. 

 

9.3 Further research 

This research was conducted based on assumption of normality and equal variance. 

Normal distribution and continuous outcome. Further research in this area could 

explore for non-normal distribution including binary outcomes and variance 

heterogeneity, do simulations for  other   two arm pre- post- RCT design with repeated 

measures ANCOVA as the analysis strategy.  A study of co-efficient of variation using 

other adjustments methods like Generalized Confidence interval by Liu 2012 can be 

explored. The margin of error models for the method when MCID is unknown and 

when using upper confidence limit of coefficient of variation can be studied and  

developed. 
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ABSTRACT 

Using data obtained from a pilot study, Browne (1995) proposed a procedure for estimating the sample 

size needed for a definitive two-arm randomised controlled trial when the minimal important difference 

is specified.  Simulations confirm these findings.  The results attributable to Browne are extended to 

consider the degree of error attached to sample size estimation using this procedure.  A consideration 

of the error provides a simple mechanism to estimate the sample size needed for a pilot study so as to 

control the degree of error in the follow-on substantive trial.   
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INTRODUCTION 

A pilot study is often the first step in a research protocol and is typically a smaller – scale study 

that aids in the planning and modification of the main study (In 2017). The pilot study is often 

done to aid in the development of a future substantive or definitive trial i.e. one with at least 

80% power or at least 90% power (Thabane et.al. 2010).  A vexing question is how big the 

pilot sample size needs to be to help accurately determine the sample size for a follow-on 

substantive trial.    

Sample information for a pilot study, such as the sample variance, may be used to help inform 

a power calculation for a follow-on trial. However, pilot studies invariably use small sample 

sizes and the main weakness when estimating key parameters from small sample sizes is the 

large sampling variation (Teare et. al., 2014). Using data from a pilot study to calculate a future 

sample size may result in any planned definitive trial being severely underpowered (sample 

size too small) or overpowered (sample size too large).  If the sample size for a planned 

definitive trial is too small then there is great chance of inconclusive results (Machin et al., 

2011) and it is unethical to put too few people through a trial in these circumstances (Halpern 

et. al. 2002).  Too large a sample size would lead to resources been wasted, more patients 

than necessary could be given a treatment which will later be proven to be inferior; or an 

effective treatment may mean too many in the control arm being denied the effective 

treatment, or an effective treatment may be delayed from being released on to the market 

(Julious, 2009).  Too large a sample size or too small a sample size may therefore be 

considered unethical.   

 

Hertzog (2008) laments that there is little published guidance for how large a pilot sample size 

should be.  Rules of thumb for helping in pilot size estimation are available.   For instance, in 

two arm studies, Nieswiadomy (2002) recommends obtaining approximately 10 participants 

per arm, Birkett and Day (1994) suggest 20, Browne indicates that 30 is commonplace.  Kieser 

and Wassmer (1996) suggest 20 to 40 to be used when main trial requires between 80 to 250, 

Teare et al, (2014) suggest ≥70, Sim and Lewis (2011) suggest ≥ 55 use for small to medium 

effect sizes. Others suggest the pilot sample size should be 10% of the unknown final study 

size (Connelly, 2008).  Whitehead et al (2016) considered stepped rules of thumb with pilot 

sample sizes being a function of anticipated effect size.  However, it is recognised that in 

practice, the final decision on a pilot sample size will be guided by cost and time constraints 

as well as by size and variability of the population.   
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A common design is the two-group parallel design with 1:1 randomisation and with an 

assumed normally distributed outcome variable.  In this case, if the two groups are to be 

compared using the two-sample t-distribution then the sample size per arm (n) needed to have 

(1 – 𝛽) *100% power at the alpha (𝛼) significance level is given by  

𝑛 =   
(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2(𝜎1
2 + 𝜎2

2)  

(𝜇1 − 𝜇2)
2

 

where  𝑍1− 𝛼 2⁄  is the normal deviate for the 𝛼 significance level, 𝑍1−𝛽 is the normal deviate for 

power (1 – 𝛽)𝜇𝑖  and  𝜎𝑖
2 are the means and variances of distribution i, (i = 1, 2) respectively.   

For equal variances the formula becomes 

𝑛 =   
2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2𝜎2  

(𝜇1 − 𝜇2)
2

 

(see Van Belle and Martin, 1993).  

In practice the population means and variances will not be known, although the effect size 

𝜇1 − 𝜇2 may be hypothesised, often based on the minimally important difference (MID), and 

the pooled variance may be estimated from sample pilot data.  Browne (1995) considered this 

formula when (i) the pooled sample variance is used to estimate 𝜎2  (unadjusted analyses) 

and (ii) when the 100(1 −  𝛾) per cent upper one-sided confidence limit is used as an estimate 

of 𝜎2 (adjusted analyses).  Using simulation, the parameters alpha = 0.05, beta = 0.1, 0.2, 

sample sizes per arm m = 5, 10, 30, 50,100 and upper one-sided confidence limits with  

𝛾 = 0.1, 0.2, 0.4, 0.5 and standardized effect size = 0.2, 0.3, 0.75 were considered.   For a 

target power of 0.8, Browne found that the resulting predicted sample sizes in the unadjusted 

formula frequently resulted in power lower than wanted but with increases in the percentage 

of times target power was achieved with increasing pilot sample size and increasing 

standardised effect size. In adjusted analyses, for a given coverage 𝛾, the required sample 

size (n) to produce at least 80% power was achieved 100* (1 − 𝛾) % of the time.  However, 

the magnitude and degree of excess between the predicted sample size 𝑛̂  and the true sample 

size 𝑛 was not considered by Browne, nor was a mechanism on how to determine an 

appropriate sample size for the pilot study.  This article aims to determine how accurate 

Browne's approach is in sample size determination over a range of significance levels                

(𝛼 = 0.01, 0.05), power levels (1 – 𝛽= 0.8, 0.9), pilot sample sizes (m = 5, 10, 30, 50, 100), 

standardised effect sizes ( 𝛿 = 0.10, 0.40, 0.75), and coverage levels (1 −  𝛾 = 0.8, 0.9) and to 

determine pilot sample size (m per arm) to control median percentage error between predicted 

sample size and the true minimum unknown sample size need to satisfy power requirements.  
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SIMULATION DESIGN 

We consider the two-sample parallel RCT design with 1:1 randomisation with a normally 

distributed outcome variable.  In common with Browne (1995) we consider when the specified 

mean difference 𝜇1 − 𝜇2  is equal to 0.10, 0.40, and 0.75 with a common unit standard 

deviation so that standardised effect size, Cohen’s 𝛿  is 0.10, 0.40, and 0.75, corresponding 

to what is often considered “small”, “medium” and “large” effect sizes.  Likewise, in common 

with Browne, we consider when the planned power for the follow-on study is 1 – 𝛽 = 0.8,0.9, 

and when pilot sample size is m = 5, 10, 30, 50, 100 per arm.  Browne considered when the 

nominal significance level to be used in the follow-on trial is 𝛼 = 0.05; we additionally extend 

the simulation to include 𝛼 = 0.01.  Hence the design corresponds to a 2 by 2 by 2 by 3 by 5 

fully crossed design (see Table 1). 100,000 replicates will be conducted at each cell 

combination (contrast with Browne who undertook 2000 replicates per cell). 

 

Table 1: Parameter combinations 

Factor  Number of 

Levels 

Levels 

Significance level (𝛼) 2 0.01, 0.05 

Power (1 – 𝛽)  2 0.8, 0.9 

Coverage level (1 −  𝛾) 2 0.8, 0.9 

Standardised Effect 

size (𝛿 ) 

3 0.10, 0.40, 0.75 

Pilot sample size per 

arm (m) 

5 5, 10, 30, 50, 100 

 

The predicted sample size for the follow-on study, under Browne’s adjust approach is given 

by  

𝑛̂  =   
2(𝑍1− 𝛼 2⁄ + 𝑍1−𝛽)

2𝑘𝑠2  

(𝜇1 − 𝜇2)
2

 

where 𝑠2 is the pooled sample variance based on 𝑚1+ 𝑚2 − 2 = 2𝑚 − 2 degrees of freedom. 

and k = (2𝑚 − 2)/𝜒,
2(2𝑚 − 2, 1 −  𝛾) (i.e., 𝑘 𝑠2 is the pilot sample derived one-sided upper 
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100 × (1 −  γ) % confidence limit for σ2 assuming normality).  The output from the simulation 

will record the percentage of time the predicted sample size 𝑛̂ will exceed 𝑛 and how frequently 

𝑛̂ will exceed 𝑛 + 𝑝𝑛 where p = -0.2, 0.0, 0.2, 0.3, 0.5, 1.0, 1.5.  The median percentage error 

at each cell combination of the design will be recorded.   

RESULTS 

Table 2 considers the parameter settings 𝛼 = 0.05, 𝛽 = 0.2, 1 −  𝛾 = 0.8, and records the 

percentage of times the predicted per arm sample size for the follow-on study (𝑛̂) exceeds the 

required sample size (𝑛) for each level of pilot sample size and standardised effect size.    As 

required, and as given previously by Browne (1995), 80% of the time the estimated sample 

size 𝑛̂ is equal to, or larger than 𝑛.  As the pilot sample size (m) increases the degree of excess 

decreases and this is true for every effect size.  With a very small sample sizes of 𝑚 = 5  per 

group, there is in excess of a 50% chance of the estimated sample size being in excess of 

50%, there is in excess of a 30% chance of the estimated sample size being in excess of 

100%, and there is in excess of a 15% chance of the estimated sample size being in excess 

of 150%, and this is true for all effect sizes (see Table 2) 

  

Table 2: Percentage of time estimated sample size exceeds 𝑛 ± 𝑝𝑛 (p = -0.2, +0.2, +0.3, +0.5, 

+1.0, +1.5) for  𝛼= 0.05, 𝛽=0.2,  1 −  𝛾 = 0.8  

Pilot 

Sample 

size (m) 

Effect 

size 

>-20% >𝑛 >+20% >+30% >+50% >+100% >+150% 

5 .10 .884 .799 .701 .650 .547 .325 .175 

10 .10 .922 .800 .634 .544 .377 .107 .021 

30 .10 .973 .799 .452 .289 .086 .001 .000 

50 .10 .989 .797 .334 .159 .019 .000 .000 

100 .10 .998 .801 .164 .035 .000 .000 .000 

5 .40 .883 .799 .698 .646 .544 .325 .175 

10 .40 .920 .800 .629 .539 .367 .105 .021 

30 .40 .972 .801 .450 .284 .079 .001 .000 

50 .40 .988 .801 .332 .154 .018 .000 .000 
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100 .40 .998 .801 .159 .032 .000 .000 .000 

5 .75 .876 .801 .694 .638 .547 .325 .174 

10 .75 .910 .801 .617 .520 .370 .106 .020 

30 .75 .963 .798 .423 .255 .085 .001 .000 

50 .75 .982 .799 .327 .126 .018 .000 .000 

100 .75 .996 .799 .130 .023 .000 .000 .000 

 

Equally, from Table 2, with a small sample size of  𝑚 = 10 per group there is more than a 30% 

chance of the sample being in excess of 50%, there is more than a 10% chance of the 

estimated sample size being in excess of 100%, there is more than a 35% chance of the 

estimated sample size being in excess of 50%, and there is more than a 50% chance of the 

estimated sample size being in excess of 30%, and this is true for all effect sizes.   

With a moderate sample size of 𝑚 = 30 per group, there is more than a 25% chance of the 

estimated sample size being in excess of 50%. 

With a moderately large sample size i.e., 𝑚 = 50 per group, there is more than a 30% chance 

of the estimated sample size being in excess of 20%, and more than a 10% chance of the 

estimated sample size being in excess of 30%, and this is true for all effect sizes.   

Even with large sample pilot samples sizes of 𝑚 = 100 per group there is in excess of 10% 

chance of the sample being overestimated by 20%. 

Note that with sample sizes of 𝑚 = 30 or smaller, there is a non-trivial chance of 

underestimating by more than 20% of n.   

Table 2 summarises the data when 𝛼 = 0.05, 1 −  𝛾 = 0.8 and 𝛽 = 0.20 and Table 3 uses 𝛼 = 

0.05, 1 −  𝛾 = 0.8 and 𝛽 = 0.10.  Note that the results in both tables are almost identical, hence 

there is very little effect caused by changing 𝛽.  The corresponding tables with  𝛼 = 0.01 are 

equally near identical as to when 𝛼 = 0.05 indicating significance level does not affect the 

degree of excess of the algorithm and for parsimony of exposition these additional tables have 

been suppressed in this note.   
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Table 3: Percentage of time estimated sample size exceeds 𝑛 + 𝑝𝑛 (p = -0.2, +0.2, +0.3, +0.5, 

+1.0, +1.5),  𝛼= 0.05, 𝛽=0.1, 1 – γ = 0.8  

Pilot 

Sample 

size (m) 

Effect 

size 

>-20% > n >+20% >+30% >+50% >+100% >+150% 

5 .10 .884 .800 .701 .650 .549 .326 .175 

10 .10 .922 .799 .631 .541 .372 .105 .021 

30 .10 .974 .801 .454 .290 .085 .001 .000 

50 .10 .989 .800 .338 .159 .019 .000 .000 

100 .10 .998 .800 .166 .035 .000 .000 .000 

5 .40 .883 .800 .701 .651 .545 .327 .175 

10 .40 .918 .798 .627 .539 .367 .106 .021 

30 .40 .971 .800 .452 .291 .083 .001 .000 

50 .40 .987 .801 .329 .155 .017 .000 .000 

100 .40 .998 .801 .158 .034 .000 .000 .000 

5 .75 .886 .803 .702 .646 .538 .326 .174 

10 .75 .921 .800 .628 .531 .354 .105 .020 

30 .75 .972 .799 .445 .273 .072 .001 .000 

50 .75 .988 .804 .331 .143 .014 .000 .000 

100 .75 .998 .801 .155 .029 .000 .000 .000 

 

If attention is restricted to any degree of excess then the same qualitative patterns are 

observed.  For instance, Figure 1 is a plot of the percentage of times the predicted per arm 

sample size 𝑛̂ is double the required sample size 𝑛.  The panels of Figure 1, defined by the 

factorial combination of 𝛼 and  𝛽 are near identical at each level of effect size indicating the 

small effect both  𝛼 and 𝛽 have on the degree of excess, and show that the degree of excess 
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is (a) greater when 1 - 𝛾 increases from 0.8 to 0.9 and (b) diminishes with increasing pilot 

sample size (m).   

 

Figure 1 Graphical representation for 𝑛̂ > 2𝑛  for standardised effect size 𝛿 = 0.10, 0.40, 0.75; 

coverage 1 −  𝛾 = 0.8, 0.9; significance level 𝛼 = 0.01, 0.05;  𝛽 = 0.1, 0.2  and per arm pilot 

sample size m = 5, 10, 30, 50, 100 

Equally, Figure 2, (using 1 −  𝛾 = 0.8) graphically depicts that the degree of excess is not 

dependent on effect size.  In summary the degree of excess is dependent on (a) pilot sample 

size 𝑚 and level of coverage 1 −  𝛾.   
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Figure 2 Graphical representation for 𝑛̂ > 1.5𝑛  for coverage 1 −  γ = 0.8 and for standardised 

effect size δ = 0.10,0.40,0.75;  α = 0.01, 0.05;  β = 0.1, 0.2  and per arm pilot sample size m = 

5, 10, 30, 50, 100 

 

Table 4 summarizes median percentage error at each cell combination.  Specifically, median 

percentage error is not dependent on alpha, nor dependent on beta, and the effect of 

standardised effect size appears negligible.  Equally, the median percentage error decreases 

with increasing sample size and increases with increasing coverage.   
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Table 4  Median percentage error at different alpha, beta, coverage, effect size, and 

sample sizes.  

 

 

A plot of the median percentage error at each cell combination against the square root of pilot 

sample size for coverage 1 −  𝛾 = 0.8 is given in Figure 3.   The regression of the inverse of 

the median percentage error (MPE) against the square root of pilot sample size per arm (m) 

for the simulation data is given by  

    Pilot Sample size (m)  

Coverage Effect size Alpha Beta 5 10 30 50 100 

.80 .10 .01 .10 60.49 34.96 17.39 13.04 8.96 

   .20 59.60 34.97 17.32 13.03 8.92 

  .05 .10 60.25 34.85 17.40 12.98 8.92 

   .20 59.32 34.42 17.53 13.10 8.95 

 .40 .01 .10 59.88 34.77 17.39 13.09 8.97 

   .20 60.59 34.55 17.45 13.19 8.99 

  .05 .10 59.24 34.34 16.68 12.46 8.49 

   .20 58.80 33.71 16.55 12.03 7.89 

 .75 .01 .10 60.49 34.21 17.25 12.97 8.75 

   .20 58.05 33.41 16.08 11.81 7.77 

  .05 .10 57.33 32.68 15.46 11.08 7.16 

   .20 59.43 34.70 17.03 12.68 8.61 

.90 .10 .01 .10 110.21 59.93 28.32 20.82 14.04 

   .20 110.79 59.81 28.27 20.92 14.08 

  .05 .10 109.87 59.13 28.40 20.81 14.01 

   .20 110.29 59.82 28.23 20.81 14.08 

 .40 .01 .10 110.76 59.34 28.40 20.82 14.07 

   .20 109.98 59.82 28.35 20.90 14.08 

  .05 .10 108.99 58.47 27.57 20.22 13.49 

   .20 108.77 58.05 27.13 19.82 13.05 

 .75 .01 .10 109.62 59.19 27.92 20.53 13.91 

   .20 107.98 57.75 26.65 19.50 12.84 

  .05 .10 106.64 56.81 26.08 18.80 12.16 

   .20 109.98 59.29 27.98 20.52 13.65 
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1
𝑀𝑃𝐸⁄  =  −0.01208 +   0.01298√𝑚 

(𝑅2 = 0.985) and which on re-arrangement gives  

𝑚 =  (0.930663 + 
1

0.01298 × 𝑀𝑃𝐸
)
2

 

Repeating the process coverage 𝛾 = 0.9 gives the regression equation  

1
𝑀𝑃𝐸⁄  =  −0.009339 +   0.00828√𝑚 

(𝑅2 = 0.994) which on re-arrangement gives   

𝑚 =  (1.1280 + 
1

0.00828 × 𝑀𝑃𝐸
)
2

 

 

.   

Figure 3: Graphical representation of median percentage errors against the square root of 

the pilot sample size (√𝑚)  

Hence, via regression the relationship between median percentage error and pilot sample 

size may be quantified.  Table 5 quantifies the pilot sample size to maintain the median 

percentage error at a required level for either 1 −  𝛾 = 0.8 and for 1 −  𝛾 = 0.9 



135 
 

Table 5: Median percentage error and pilot sample size per arm at 80% and 90% coverage 

Median 

Percentage 

Error 

Pilot sample 

size per arm 

at 80% coverage 

Pilot sample 

size per arm 

at 90% coverage 

4  408 980  

5  267 639  

6  190 452  

7  143 337  

8  112 262  

9  90 211  

10  75 174  

12  54 125  

14  42 95  

16  33 75  

18  28 62  

20  23 52  

22  20 44  

24  18 38  

 

Thus, for instance, if a researcher opts for 80% coverage and wishes to control median 

percentage error to be no more 10% of true sample size, then a pilot sample size of m = 75 

per arm would be needed, but for 90% coverage the minimum sample size to have a median 

percentage error of 10% would be 174 per arm.  

Table 6 shows the mean median percentage error (MPE) for a given sample size for 80% and 

90% coverage; for instance, if m = 25 per arm is used, then with 80% coverage the mean MPE 

would be 19% but would be 31% if 90% coverage is used.  
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Table 6 Mean Median percentage error for a given pilot sample size (m) per arm 

M 80% Coverage 90% Coverage 

5 59 109 

10 35 60 

15 26 44 

20 22 36 

25 19 31 

30 17 28 

35 16 25 

40 14 23 

45 14 22 

50 13 20 

 

Conclusions  

The simulations support the earlier work of Browne i.e. for situations when the effect size 𝜇1 −

 𝜇2 is known (hypothesised or MID) then the 100*(1 − 𝛾) % upper confidence interval for the 

variance may be used to determine sample size for a larger study and have 100*(1 − 𝛾) % 

coverage (0.8 or 0.9)  However, the simulations also show that the degree of excess from this 

approach may result in intolerably large predicted sample sizes leading to a study being vastly 

overpowered.  This degree of excess is very much pronounced when pilot sample sizes are 

small (e.g., m = 10 per arm) and the degree of excess is seen to decrease with increasing 

sample size.    

 

The degree of excess may be characterised by the median percentage error (MPE).  For a 

given level of coverage, the MPE is inversely proportional to the square root of pilot sample 

size (m) with a high degree of accuracy.  The regression model permits a pilot sample size 

(m) to be determined for any degree of median percentage error.  For instance, suppose a 

research team is planning a pilot study to help determine the sample size for a follow-on 

substantive study.  They may elect to have 80% coverage of the sample size; however if they 

want to ensure that median percentage error is no more than, say 16%, then a pilot sample 

size of m = 33 or large would be needed for each arm of the pilot study.  Table 5 and Table 6 

and their corresponding regressions equations therefore have value in helping a research 

team and funders to decide on how big a pilot sample size should be.     
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Abstract  

In practice, the required sample size for a two-arm randomised controlled trial cannot always be determined pre-

study with great accuracy. This lack of accuracy has economic, ethical and scientific implications. The sample 

size for a pilot study is an important consideration in helping the decision making for the sample size of a follow-

on trial. Consideration of under- and over-estimation of the sample size results in the idea of a Just-About-Right 

(JAR) sample size. For studies involving a minimally clinical important difference (MCID) we present the pilot 

sample sizes to meet investigator desired JAR considerations.  

Keywords: just-about-right, overestimation, pilot study, power, sample size, 

underestimation  

 

1. Introduction  

1.1 Incorrect Estimation of Sample Sizes  

A pilot study is a small-scale investigation designed to test the feasibility of methods and procedures for later 

use on a larger scale (Thabane et al, 2010). In clinical studies, a pilot randomised controlled trial (RCT) could be 

used to help in the planning of a proposed substantive RCT (power = 0.8) or definitive RCT (power >= 0.9). The 

pilot RCT provides a means to collect preliminary data on safety, is used to assess the recruitment rate and the 

degree of participant retention, provides data on willingness to be randomised, and crucially, to provide 

estimates of variation in outcomes measures to assist the decision-making process for the sample size of the 

follow-on trial (Lancaster et al, 2004, Ln 2005, Arnold et al, 2009). This latter consideration begs the question, 

on how to determine the optimal RCT pilot sample size for any given context, with the aim of being able to 

estimate accurately the sample size requirements of the proposed follow-on RCT.    

One of the most common errors in any type of empirical scientific research is an insufficient sample size (Makin, 

2019). Small sample sizes can lead to Type Two errors (false negatives) and in practice this is especially true 

when combined with moderately low or low effect sizes. Small sample sizes can leave a research community in 

some doubt as to whether effects are real. There is also the position that it is unethical to ask participants to 

commit to taking part in a study which is insufficiently powered to meet objectives (Altman 1980, Halpern et. al. 

2002). In addition, any such study would be an uneconomic use of resources. On the contrary, having too large a 

sample size could also be problematic. A sample size might be considered too large if the same quality of 

conclusions could have been obtained with a much smaller sample size. If the sample size is too large, then this 

too may be considered an uneconomic use of resources and it may be deemed unethical to be randomly allocating 

any excess sample size to control or intervention irrespective of whether intervention confers a benefit or not. In 

summary, for any substantive or definitive trial, the sample size should be sufficient to achieve worthwhile results, 

but not so large as to involve unnecessary recruitment of participants. Guidance is needed to allow research teams, 

ethics committees, funding panels, data monitoring committees, and protocol reviewers to evaluate whether a 
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study intends to recruit too many participants (overpowered) or too few participants (underpowered) and it is 

important to get a just-about-right (JAR) sample size which is not too small, not too large but just-about-right.    

A well conducted pilot study could be instrumental in helping to determine a JAR sample size for the follow-on 

study. Extant literature provides some rules-of-thumb for pilot sample size estimation. Julious (2005) noted that 

the marginal additional sample information content decreases with each unit increase in sample size and 

recommended a sample size of at least n = 12 per group.  Similarly, Birkett and Day (1994) suggest 20 per arm, 

Kieser and Wassmer (1996) suggest between 20 to 40 per arm be used when the main trial requires between 80 

to 250, Teare et al, (2014) suggest ≥70, and Browne (1995) indicates that n = 30 per arm is commonplace practice. 

However, the prevailing sentiment is that a simple one-size-fits-all solution or one rule-of-thumb would be 

inadequate when context specific considerations apply.  

In terms of context specific considerations, Browne (1995), considered determining sample size for a two-arm 

parallel RCT study when (a) a pilot study is used to collect preliminary data on outcome variation and (b) the 

minimum clinically important difference (MCID) is pre-specified and (c) the follow-on study is to be adequately 

powered to detect an effect and (d) an assumption of normally distributed outcome data can be made. For these 

situations, the required per arm sample size, 𝑛, is given by   

 
(

1) where 𝜇1 − 𝜇2 is the true mean difference or MCID, 𝑍1− 𝛼⁄2, and 𝑍1− 𝛽 are standardised normal deviates for two-

sided significance testing with nominal significance level 𝛼 and required power 1 − 𝛽 , and 𝜎2 is the population 

variance for the outcome measure assumed to be equal between arms. Although the MCID might be specified by 

hypothesis, the true population variance 𝜎2 would be unknown. The pilot study would provide a sample estimate 

for 𝜎2, but this sample estimate 𝑠2, would most likely underestimate the population variance 𝜎2, since 

 where 𝑚1 and 𝑚2 denotes the sample sizes in the two arms of the pilot study.  

It is well known that chi-square distributions are positively skewed, hence using 𝑠2 in place of 𝜎2 in the above 

formula would typically produce an estimated sample size lower than truly required. For this reason, Browne 

(1995) cautiously suggested estimating and replacing 𝜎2 in the sample size formula with the estimated 100(1 − 

𝛾) per cent one-sided upper confidence limit (UCL) for 𝜎2. Specifically, the sample size per arm, for 1:1 

randomisation under Browne’s suggested approach is given by   

 2 2 

   2(𝑍1− 𝛼/2 + 𝑍1−𝛽) 𝑘𝑠   

 
 𝑛  =  (𝜇1 − 𝜇2)2   

(2)  

where 𝑠2 is the sample pooled variance and 𝑘𝑠2 is the 100(1 − γ) percent one-sided upper confidence limit (UCL) 

for σ2. The quantity 100(1 − γ) is the “coverage” i.e., the percentage of times that the predicted sample size per 

arm, n , would exceed the true required sample size per arm n. From a practical perspective, Browne advocated a 

coverage of 80% (0.8) or a coverage of 90% (0.9).   

1 1.2 Browne’s Method   

Simulation work conducted by Browne (1995) and Obodo et al, (2021) confirms that the approach considered by 

Browne has merit, achieving the required coverage of 0.8 or 0.9 as appropriate, for α = 0.01, α = 0.05, β = 0.2, 

β = 0.1, and for a range of effect sizes (small, medium, large) and for a range of pilot sample sizes between 5 

and 100. However, Obodo et al, (2021) show that the procedure can produce underpowered studies, or frequently 

produce an intolerably large degree of excess, and that the extent of the problem depends on pilot sample size per 

arm (m), level of coverage (1 − γ) but not on significance level α = 0.01, 0.05, nor on power 1 − β = 0.8, 0.9, 

nor on MCID. Both coverage and pilot sample size are at the control of an investigator at the trial planning stage. 
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We therefore sought to quantify the relationship between pilot sample size and JAR requirements for coverage 

of 0.8 and 0.9 separately.    

We operationalise an investigator chosen JAR interval to be [n − λ1n, n + λ2n ] where λ1 , λ2 ∈ [0, 1], are 

investigator chosen parameters to prevent the degree of underpowering (λ1) and degree of overpowering (λ2). 

We aim for trialists to be able to justify pilot sample size and to make a statement to the effect of “The proposed 

two group pilot study will have a sample size of m per arm. This sample size is chosen so that the resultant power 

calculations for a larger study will have 100(1 − γ)% chance of exceeding the minimum required sample size 

and which in a two-sided test with significance level α will have 100(1 − β)% power for detecting a difference 

between arms assuming a MCID of (μ1 − μ2). This proposed pilot sample size of m per arm will ensure that the 

estimated sample size will lie in the interval (1 − λ1)n to (1 + λ2)n, with probability π providing a safeguard for 

under- and over- powering." In this statement we consider α = 0.01, 0.05, power (1 − β) = 0.8, 0.9, coverage 

(1 − γ) = 0.8, 0.9, any value for MCID, lower bounds λ1 = 0.1, 0.2 and upper bounds λ2 = 0.1, 0.2, 0.3, 0.4 for 

any chosen level of π.   

2 Monte Carlo Simulation Design  

The Monte Carlo simulations are informed by Browne (1995) and mimic the design given by Obodo et al, (2021). 

In brief, we consider the two-arm parallel RCT with 1:1 randomisation which is to be analysed using the 

independent samples t-test (equal variances assumed, two-sided, alpha = 0.05, 0.01). The true sample size for the 

RCT is calculated for desired power (0.8 or 0.9), for a specified MCID corresponding to a small, medium or large 

effect (0.1, 0.4, 0.75) assuming equal variances (𝜎2 = 1) under an assumption of normality.   

For pilot samples sizes (𝑚 = 5, 10, 30, 50, 100) the 80% and 90% upper one-sided confidence limit for the pooled 

sample variance is used in Browne’s formula. The percentage of times that the estimated sample size, 𝑛  is in the 

interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] is recorded for 𝜆1 = 0.1, 0.2, and 𝜆2 = 0.1, 0.2, 0.3, 0.4, 0.5. Table 1 summarises the 

factor levels for the 2 by 2 by 2 by 3 by 5 fully crossed design.   

Table 1. Parameter combinations  

FACTOR   Number of Levels  LEVELS  

Power  2  0.8, 0.9  

Significance level  2  0.01, 0.05  

Coverage level  2  0.8, 0.9  

Effect size  3  0.10, 0.40, 0.75  

Pilot sample size   5  5, 10, 30, 50, 100  

Simulation was done using the R programming language with 100,000 replicates (as against Browne 1995 who 

used 2,000 replicates) for each cell of the design to obtain more precise simulation values.  

3 Results  

Table 2 summarises the percentage of times the estimated sample size, 𝑛 , for the follow-on study would be in the 

interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1, 0.2, 0.3 for 𝑚 = 5(5)100, and for coverage (1 − 𝛾) = 0.8, 

0.9. Simulation percentages are aggregated over significance level 𝛼 = 0.01, 0.05, over prior reasoned statistical 

power  

(1 − 𝛽) = 0.8, 0.9 and assumed effect size 𝜇1 − 𝜇2 = 0.1, 0.4, 0.75 as it is known that these factors do not affect 

the estimated sample size (Obodo et al, 2021).   

Inspection of Table 2 and Figure 1, clearly shows the percentage within any given interval monotonically 

increases with increasing pilot sample size for each of coverage = 0.8 and for coverage = 0.9. It is also clear that 

the percentage in any given interval is greater for coverage = 0.8 compared with coverage = 0.9 and this is only 

to be expected since, for any estimated sample size, the sample size for when coverage is 0.9 must be greater than 

the sample size when a tolerance for coverage is set to be equal to 0.8. Table 2 and Figure 1 show that the 

percentage of instances within an interval is particularly sensitive to the upper bound 𝜆2 which naturally follows 

from the positively skewed chi-square distribution used in the estimation process.    
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Figure 1. Percentage of simulation instances 100𝜋  in the interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1, 

0.2, 0.3, for 𝑚 = 5(5)100, and for coverage (1 − 𝛾) = 0.8, 0.9   

Table 2. Percentage of simulation instances 100𝜋  in the interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1,  

0.2, 0.3, for 𝑚 = 5(5)100, and for coverage (1 − 𝛾) = 0.8, 0.9  
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The monotonic trends between 𝜋  and pilot per arm sample size   and  

each level of coverage has been modelled using linear regression with the functional form  .   

Thus, for instance, when coverage = 0.8 and the interval 𝑛 ± 0.1𝑛 is considered then it is readily verified that 

 and that the overall goodness-of-fit, 100𝑅2 , is 96.3%. Table 3 provides the  

estimated intercepts, gradients and goodness of fit for 𝜆1= 0.1, 0.2; 𝜆2 = 0.1, 0.2, 0.3, 0.4 0.5 for coverage 0.8 and 

coverage 0.9.  
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Coverage = 0.8   

Intercept   

Table 3. Regression equations of the form  giving estimated intercept (𝑏0), gradient (𝑏1),  

coefficient of determination (R-squared) for 𝜆1 = 0.1, 0.2, and 𝜆2 = 0.1, 0.2, 0.3, 0.4, 0.5    

Lower Percentage  Upper Percentage  Gradient  R- Squared  

 

  Coverage = 0.9    

Lower Percentage  

(100 𝜆1)  

Upper Percentage  

(100 𝜆2)  

Intercept  Gradient  R- Squared  

10  10  -3.306  .290  .957  

10  20  -3.082  .402  .984  

10  30  -3.029  .528  .995  

10  40  -3.028  .656  .998  

10  50  -2.827  .712  .991  

20  10  -2.872  .250  .955  

20  20  -2.795  .378  .986  

20  30  -2.856  .524  .995  

20  40  -3.108  .716  .996  

20  50  -3.450  .919  .993  

  

For any level of coverage and any interval, any regression equation in Table 3 may be re-written in terms of 

pilot sample size i.e., 𝑚 = ([ln(𝜋 ) − 𝑏0]/ 𝑏1)^2. Solution of this will give an estimated pilot sample size 

per arm, 𝑚, for any required percentage for the given interval.    

Table 4 shows the pilot sample size per arm (𝑚) needed to have a required probability (𝜋) of being in a 

given interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for coverage of 0.8 or coverage 0.9.  Thus, for instance, if an investigator 

requires an 80% chance of not being underpowered for a definitive trial (coverage = 0.8) and requires a 70% 

chance (𝜋 = 0.7) of being within ± 10% of the true required sample size (𝜆1 = 0.1, 𝜆2 = 0.1) then a sample 

size per arm (𝑚) of 65 is needed for any given MCID.    

  

 

 

 

 

 

   

( 100   𝜆 1 )   (100   𝜆 2   )   

10   10   - 2.745   .297   .963   

10   20   - 2.531   .406   .988   

10   30   - 2.399   .506   .993   

10   40   - 2.094   .543   .981   

10   50   - 1.697   .527   .952   

20   10   - 2.256   .262   .954   

20   20   - 2.228   .400   .989   

20   30   - 2.375   .569   .997   

20   40   - 2.613   .759   .997   

20   50   - 2.557   .853   .998   
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Table 4.  Pilot sample size (𝑚) required for a required proportion (𝜋) to be in the interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 

a given coverage.  

 
Coverage = 0.8  

0.50  48  20  11  36  15      9  

0.55  52  23  13  40  17     10  

0.60  56  25  14  44  18    11   

0.65  61  27  15  49  20     12  

0.70  65  29  16  53  21     13  

0.75  68  31  17  56  23     13  

0.80  72  32  18  60  25     14  

0.90  79  36  21  67  28     16  

   Coverage = 0.9      

0.50  81  35  20  76  31  17  

0.55  87  38  21  83  34  18  

0.60  93  41  23  89  37  20  

0.65  98  43  24  95  39       22  

0.70  103  46  26  101  42  22  

0.75  108  48  27  107  43  24  

0.80  113  50  28  112  46  25  

0.90  121  54  31  122    51   27  

  

4 Discussion and Conclusion  

Pilot studies are conducted for a variety of reasons. One such reason is to help determine variation in 

outcome measures to help plan the required sample size for a large-scale substantive or definitive follow-

on study. The preceding sections consider the situation where the MCID can be pre-specified for a scale 

outcome variable and an assumption of normality is reasonable.   

Sample size may be calculated if parameters are either known or can be reasonably estimated. For instance, 

in a two-arm study, if for example MCID = 0.2, variance = 1, alpha = 0.05, beta = 0.10, then the required 

sample size may be verified to n = 526 per arm (complete data set after any missing data). In practice the 

variation of the outcome measure may not be known but may be estimated by collecting pilot data. In these 

regards, Browne’s method, may be used to estimate a required sample size with either 80% or 90% coverage 

i.e. the estimated sample size has an 80% or 90% chance of exceeding the required minimum sample size. A 

problem with this approach is the chance of underestimating the required sample size, or in having an 

estimated sample size which far exceeds the required sample size (see Obodo et al, 2021). We considered a 

strategy to curb these excesses so that estimated sample sizes would be “not too small” and “not too large” in 

comparison to the true required but unknown sample size, by considering a just-about-right (JAR) sample 

size. The chosen coverage (say 80% or 90%) is not dependent on pilot sample size. However, with a given 

level of coverage a researcher may wish to ensure that the probability of the margin of error attached to any 

estimate is pre-specified to be within an interval around the true required sample size e.g. 70% chance of being 

within 10% of the required sample size. By inspection of Table 4, if 80% coverage is required with a 70% 

chance of being within +/- 10% of true sample size, then the pilot study would require at least m = 65 per arm. 

The protocol may then contain a summary “The proposed two group pilot study will have a sample size of 65 

per arm. This sample size is chosen so that the resultant power calculations for sample size in a larger study 

will have an 80% chance of exceeding the minimum required sample size and which in a two-sided test with 

significance level α will have 100(1 − β)% power for detecting an effect assuming an MCID of (μ1 − μ2). 

  

𝜋   

𝜆 1   0 . 1   

𝜆 2 
  0 . 1   

𝜆 1   0 . 1   

𝜆 2   0 . 2   

𝜆 1   0 . 1   

𝜆 2   0 . 3   

𝜆 1   0 . 2   

𝜆 2   0 . 1   

𝜆 1   0 . 2   

𝜆 2   0 . 2   

𝜆 1   0 . 2   

𝜆 2   0 . 3   



147 
 

This proposed pilot sample size of 65 per arm will ensure that the estimated sample size will have a 70% 

chance of being in an interval of +/- 10% of the true required sample size providing a safeguard over under- 

and over- powering."   

The pilot sample sizes given in this article (Table 4) is predicated on an MCID. If the true effect size exceeds 

the MCID then the follow-on study is likely to be overpowered to detect a difference (the lesser of the two 

possible errors). If the true effect is smaller than the MCID then any effect smaller than the MCID is not of 

clinical interest and may go undetected.   

The pilot sample sizes given in this article are based on assumptions of normality and equal variance. In 

these regards, the practical utility of the pilot sample size recommendations needs further investigation for 

variance heterogeneity and non-normal distributions including binary outcomes. In a similar way, other 

simulations may consider the two arm pre- post- RCT design with repeated measures ANCOVA as the 

analysis strategy. As such the given pilot sample sizes are restricted to the stated assumptions with a direct 

parametric comparison between the two groups. 
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The pilot randomised trial is frequently conducted to aid in the
development of a future substantive or definitive trial (Thabane et.al.
2010). When the minimalimportancedifference(MID) is specified,Browne
(1995) proposeda procedurefor estimatingthe samplesize requiredfor a
definitive two-arm randomisedcontrolled trial. If the sample size for a
planneddefinitive trial is too small, there is high likelihoodof inconclusive
results (Machin et al., 2011) and putting too few people through a trial is
unethical (Halpern et. al. 2002). Too large a samplesize would lead to
more patients than necessaryreceiving a treatment that may later prove
ineffective and implieswaste of resourcestoo (Julious,2009). Too large a
sample size or too small a sample size may therefore be considered
unethical.

The design corresponds to a 2 by 2 by 2 by 3 by 5 fully
crosseddesign. 100,000 replicateswill be conducted at each
cell combination(contrast with Browne who undertook 2000
replicatesper cell)
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The Monte Carlo Simulation design is used for the analysis in the R
programming language at the following combinations
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This studyaimsto determine

 how accurate Browne sapproachis in pilot samplesize determ ination

 the pilot samplesize to control medianpercentageerrors (MPE) between
predicted sample size and the true minimum unknown sample size
neededto satisfypowerrequirem ents.

Table    Mean Median percentage error for a
given pilot sample size per arm

Results supports Browne s procedure of pilot
samplesize determination. However the data
reveals that the procedureunderestimatesand
overestimates sample size. Fig. 1 shows
 and have no practical effect on degree of
excess which increasesas coverage increases
from and diminishes with increasing pilot
sample size. Using regression the results
shows the median percentage error(MPE) at
each pilot sample size and this can assist
researchers make better decisions in
determiningpilot samplesize.
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Alpha( ) and Beta ( ) are Type I and Type II error rates for the
planned definitive study, effect size ( ) relates to the true state of
nature (both in pilot and main trial) and coverage (1  ) is the desire
(probability)of not beingunderpowered
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The pilot studyis critical for improvingthe mainstudy s quality,it is done to
assess the safety of interventions as well as recruitment potentials, to
investigatethe randomizationand blindingprocess,and it provide estimate
for samplesize intervention(Ln 2017).
One of the primary reasons for conducting a pilot study is to collect the
preliminarydata neededto calculate a samplesize (Lancasteret.al 2004).
When the minimalimportancedifference(MID) is specified,Browne (1995)
proposed a procedure for estimating the sample size required for a
definitive two-arm randomisedcontrolledtrial.

The estimated sample size,  , using Browne s approach would be given
by

  =
1 +  

 
.
 (1  /2) +  (1  )

2

 1   2 2
.  2

where = ( 1 +  2  2) (  , 
2 )

The design corresponds to a 2 by 2 by 2 by 3 by 5 fully
crosseddesign. 100,000 replicateswill be conducted at each
cell combination(contrast with Browne who undertook 2000
replicatesper cell)
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 the expected error value at differentpercentageintervals
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                         for coverage   

Results supports Browne s procedure of pilot
samplesize determination. However the data
reveals that the procedureunderestimatesand
overestimates sample size. Table 2 shows
massive overestimation and underestimation
of samplesizes, Table 3 showsexpected error
value at different percentage intervals. Fig. 1
shows  and have no practical effect on
degreeof excess which increasesas coverage
increasesfrom and diminisheswith increasing
pilot sample size. This information can assist
researchers make better decisions in
determiningpilot samplesize.

Browne, R.H., (1995 ). On the use of a pilot sample for sample size

determination .  t ti ti  i  edi i e ,   (17 ),.1933 -1940 .

In, J., 2017 . Introduction of a pilot study .  o e   o    l o 

  e t e iolo  ,  0(6), p.601 .

Lancaster, G.A., Dodd, S. and Williamson, P.R., 2004. Design and

analysis of pilot studies: recommendations for good practice.  o    l

o  ev l  tio  i   li i  l     ti e ,  0 (2), pp.307 -312.Alpha( ) and Beta ( ) are Type I and Type II error rates for the
planned definitive study, effect size ( ) relates to the true state of
nature (both in pilot and maintrial) and coverage (1  ) is the desired
(probability)of not beingunderpowered

    

     

     

    

     

    

    

     

     

    

    

     

 

  .   0.  1 .   1.  1 .  11.10 

  .    .  1 .   1.0  . 1 .1  

  .    .    .    .1   .  1 .    

  .    .1   .    . 0  .  1 .    

 1.    .    .    .    .    .10  

  .    .0  0.    . 1  .    .    

  .    .    .0   .    .    .1   

  .    .    .    .0  0.    . 0  

  .    .   0.0   .    .    . 1  

  .   0.    .    .0   .    .0   

 1.    .    . 0  .   0.    .    

  .    . 0  .1   .    .0   .    

  .    .    . 1 1.    .   1. 1  

  .    .    .00  .    .1   . 0   



151 
 

A5 

Three minutes thesis feedback 

 
 

UWE Bristol 
Three Minute Thesis 2023 
Feedback to participants 

 
The panel was impressed by your evident enthusiasm for your research topic, and your presentation 
style was crystal clear and highly engaging.  
 
We were also impressed by the clarity with which you articulated your research question. You 
showed in-depth, constructive engagement with a research topic which very much needs to be 
done. 
 
We really liked how you anchored your research in a real-life example – this is a great way of making 
your research relatable, especially for non-specialist audiences. When talking about your research to 
non-specialists (especially non-scientists!) do also remember to explain any technical terms.  
 
Overall, a very clear and well delivered presentation in which passion and energy were to the fore. 
 
Thank you very much for giving us the opportunity to hear your presentation, and we hope this 
feedback helps you feel encouraged and equipped to talk about your research to a wide range of 
different audiences.  
 
With best wishes, 
 
 
The Judging Panel 
29 March 2023 

 

 

 

 

 

 

 



152 
 

Appendix B: R codes for study 1 to 3 

Study 1 

set. seed(462)   #set value for replication 

k21<- 1   r=1    #where r is ratio of allocation 

Niter<-100000       #for 100000 iterations 

Effect sizes<-c (.1,.4,.75) 

Coverage<-c (.8,.9) 

ALPHA<-c (.05,.01) 

BETA<-c (.1,.2) 

SampleSizes<-c (5,10,30,50,100) 

For (a in 1: length (ALPHA)) { 

alpha<-ALPHA[a] 

k22<- qnorm(1-(alpha/2)) 

for (b in 1: length (BETA)) { 

beta<-BETA[b] 

k23<-qnorm(1-beta) 

for (l1 in 1: length (Coverage)) { 

 coverage<-Coverage[l1] 

for (l in 1: length (SampleSizes)) {   

 m<-SampleSizes[l] 

  k25<- (2*m-2)/qchisq (1-coverage, df=(2*m-2)) 

  for (j in 1: length (Effect sizes)) { 

  effect size<-Effect sizes[j] 

  Ntrue<- 2*(k22+k23) *(k22+k23)/(effect size*effect size)        

 # rep (NA, Niter) 

creates a vector of Niter 

(e.g. 100000) NAs 

ready to take values 

later 

SamplePooledVariance<-rep (NA, Niter)  

Nestimated<-rep (NA, Niter) 

GreaterThanNtrue<-rep (NA, Niter) 

GreaterThanM20percent<- rep (NA, Niter) 
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GreaterThanM10percent<- rep (NA, Niter) 

GreaterThanP10percent<- rep (NA, Niter) 

GreaterThanP20percent<- rep (NA, Niter) 

GreaterThanP30percent<-rep (NA, Niter) 

GreaterThanP40percent<-rep (NA, Niter) 

GreaterThanP50percent<-rep (NA, Niter) 

GreaterThanP75percent<-rep (NA, Niter) 

GreaterThanP100percent<-rep (NA, Niter) 

GreaterThanP125percent<-rep (NA, Niter) 

GreaterThanP150percent<-rep (NA, Niter) 

GreaterThanP175percent<-rep (NA, Niter) 

GreaterThanP200percent<-rep (NA, Niter) 

 

For (i in 1:Niter) { 

                   Sample1<-rnorm (m, mean = 0, sd=1) # sample m observations from a 

normal distribution with mean=0, sd=1 

                   Sample2<-rnorm (m, mean=effect size, sd=1) # sample m observations 

from a Normal distribution with mean=k24 (effect size), sd=1 

                   sd1<-sd (Sample1) # calculate the standard deviation of Sample 1 

                   sd2<-sd (Sample2) 

                   pooledvar<-(sd1*sd1+sd2*sd2)/2 # TO DO comment 

                   SamplePooledVariance[i]<-pooledvar         

                   Nest<- ((1+k20) *(1+k21)/k21) *(((k22+k23)/effect size)^2)*k25*pooledvar  

                   Nestimated[i]<-Nest #estimated N           

                     GreaterThanNTrue[i]<-ifelse (Nest<NTrue,0,1) # if estimated N is less 

than Ntrue, record 0, else record 1 

                     k31<-ceiling (0.8*Ntrue) 

                     GreaterThanM20percent[i]<-ifelse (Nest<k31,0,1)  

                     k32<-ceiling (0.9*NTrue) 

                     GreaterThanM10percent[i]<-ifelse (Nest<k32,0,1) 

                     k33<-ceiling (1.1*NTrue) 

                     GreaterThanP10percent[i]<-ifelse (Nest<k33,0,1) 

                     k34<-ceiling (1.2*NTrue) 

                     GreaterThanP20percent[i]<-ifelse (Nest<k34,0,1) 
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                     k35<-ceiling (1.3*NTrue) 

                     GreaterThanP30percent[i]<-ifelse (Nest<k35,0,1) 

                     k36<-ceiling (1.4*NTrue) 

                     GreaterThanP40percent[i]<-ifelse (Nest<k36,0,1) 

                     k37<-ceiling (1.5*NTrue) 

                     GreaterThanP50percent[i]<-ifelse (Nest<k37,0,1) 

                     k38<-ceiling (1.75*NTrue) 

                     GreaterThanP75percent[i]<-ifelse (Nest<k38,0,1) 

                     k39<-ceiling(2*NTrue) 

                     GreaterThanP100percent[i]<-ifelse (Nest<k39,0,1) 

                     k40<-ceiling (2.25*NTrue) 

                     GreaterThanP125percent[i]<-ifelse (Nest<k40,0,1) 

                     k41<-ceiling (2.5*NTrue) 

                     GreaterThanP150percent[i]<-ifelse (Nest<k41,0,1) 

                     k42<-ceiling (2.75*NTrue) 

                     GreaterThanP175percent[i]<-ifelse (Nest<k42,0,1) 

                     k43<-ceiling(3*NTrue) 

                     GreaterThanP200percent[i]<-ifelse (Nest<k43,0,1) 

                   } 

 Ntrue 

 results<-data.frame(GreaterThanM20percent, GreaterThanM10percent, 

                     GreaterThanNTrue, GreaterThanP10percent, 

                     GreaterThanP20percent,GreaterThanP30percent, 

                     GreaterThanP40percent,GreaterThanP50percent, 

                     GreaterThanP75percent,GreaterThanP100percent, 

                     GreaterThanP125percent, GreaterThanP150percent, 

                     GreaterThanP175percent, GreaterThanP200percent) 

          #View(results) 

 colMeans(results) 

  

 ForFile<-t(c(alpha,beta,m,effect 

size,coverage,colMeans(results),min(SamplePooledVariance),max(SamplePooledVa

riance))) 

 Colnames(ForFile)[1:5]<-c("alpha","beta","m","effect size","coverage") 
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 colnames(ForFile)[20:21]<-c("minPooledVar", "minPooledVar") 

 write.table(ForFile, 

             "H:/Test_all.csv",sep = ",", 

             append=TRUE,col.names = FALSE,row.names = FALSE) 

} # effect size 

} # samplesize 

} # coverage 

} # beta 

} # alpha 

  

 

Study 2 

set.seed(101) 

k20<- 0 # q=0 

k21<- 1 # r=1 

Niter<-100,000 

# effect size 

SampleSizes<-c(8,16,32,64,128) 

effect sizes<-c(0.1,.4,.75) 

G<-c(.8,.9) # coverage, used with Chisq distribution. 

alpha<-c(.01,.05)  

B<-c(.1,.2) 

For (a in 1: length (ALPHA)) { 

  alpha<-ALPHA[a] 

  k22<- qnorm(1-(alpha)) 

  for (b in 1: length(B)) { 

    beta<-B[b] 

    k23<-qnorm(1-beta) 

     

       for (l1 in 1:length(G)) {  

      coverage<-G[l1] 

      for (l in 1: length(SampleSizes)){ 
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        m<-SampleSizes[l] 

        k25<- (2*m-2)/qchisq(1-coverage,df=(2*m-2)) 

        for (j in 1: length (Effect sizes)) { 

          effect size<-Effect sizes[j] 

          Ntrue<- ceiling(2*(k22+k23) *(k22+k23)/(effect size*effect size) # calculate 

Ntrue 

          h<- (1- (3/((8*m)-9))) 

          NNC<-NBC<-NNH<-NBH<-rep (NA, Niter) 

          for (i in 1: Niter) { 

            Sample1<-rnorm (m, mean = 0, sd=1) # sample m observations from a normal 

       distribution with mean=0, sd=1 

            Sample2<-rnorm(m, mean=effect size, sd=1) # sample m observations from a

     normal distribution with mean=k24 (effect size), sd=1 

            sd1<-sd (Sample1) # calculate the standard deviation of Sample 1 

            sd2<-sd (Sample2) 

            pooledvar<-(sd1*sd1+sd2*sd2)/2 # To do comment 

            SamplePooledVariance[i]<-pooledvar 

            diffsamplemeans<-mean (Sample2)-mean (Sample1) # xbar_2 - xbar_1 

            d <- (diffsamplemeans)/sqrt(pooledvar) 

            dh<-d*h 

            #NNC is N where d is cohen's d Naive, Cohen 

            NNC[i]<-ceiling(2*((k22+k23) ^2)/(d^2)) 

            #NBC is N where Browne's approach is used, Cohen's formula, Browns 

scaling. 

            NBC[i]<-ceiling(2*k25*((k22+k23) ^2)/(d^2)   

            #NNH is where Hedges h is used instead of Cohen’s d, Hedges naively 

            NNH[i]<-ceiling(2*((k22+k23) ^2)/(dh^2)) 

            #NBH is where Hedges h is used instead of cohen's d; Hedges, Browns 

scaling. 

            NBH[i]<-ceiling(2*k25*((k22+k23) ^2)/(dh^2)) 

          } # closes i  

          results<-data. frame(Ntrue,NNC,NBC,NNH,NBH) #View(results) 

          results$alpha<-alpha 

          results$beta<-beta 
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          results$m<-m 

          results$coverage<-coverage 

          results$effect size<-effect size  #   summaryResults<-t(apply(results,2,median)      

          t1<-100*apply((results[,2:5]-results[,1])/results[,1],2,mean) # mean percentage 

error 

          t2<-100*apply((results[,2:5]-results[,1])/results[,1],2,median)#Median 

percentage Error # results [,1] is NTrue 

          t3<-100*colMeans(results[,2:5]>results[,1])  

          t4<-100*colMeans(results[,2:5]<.9*results[,1])  

          t5<-100*colMeans(results [,2:5]>1.1*results [,1])  

          t6<-100*colMeans(results[,2:5]>1.2*results [,1])  

          names(t1) <- paste0(names(t1),"_MeanPE") 

          names(t2) <- paste0(names(t2),"_MedianPE") 

          names(t3) <- paste0(names(t3),"_PercentGreaterNTrue") 

          names(t4) <- paste0(names(t4),"_PercentLess.9NTrue") 

          names(t5) <- paste0(names(t5),"_PercentGreater1.1NTrue") 

          names(t6) <- paste0(names(t6),"_PercentGreater1.2NTrue") 

           

           

          t1<-t(t1) 

          t2<-t(t2) 

          t3<-t(t3) 

          t4<-t(t4) 

          t5<-t(t5) 

          t6<-t(t6) 

          summaryResults<-data. frame (Ntrue, results [1,6:10], t1, t2, t3, t4, t5, t6) 

          if(j==1&l==1&l1==1&b==1&a==1) { 

            write.table(results,"std2Naive_and_Brown_fullresults.csv”, sep = ",", 

                        col. names = TRUE, row. names = FALSE) 

            write. table (summaryResults,"Naive_and_Brown_summaryresults.csv”, sep = 

",", 

                        col. names = TRUE, row.names = FALSE) 

          } else { 
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write.table(summaryResults,"std2Naive_and_Brown_summaryresults.csv",sep = ",", 

                        col. names = FALSE, row. names = FALSE, append = TRUE) 

          }       

        } # closes j 

      } # closes l 

    } # closes l1 

  } # closes b 

} # closes a 

 

Study 3 

Standard Coefficient of variation 

set.seed(100) 

Niter<-100000 

SampleSizes<-c (8,16,32,64,128)      # loop over l 

Effect sizes<-c (.1,.4,.75)                    # loop over e 

Coverage<-c (0.8)                               # coverage loop over l1 

Alpha<-c (.01,.05)                                # loop over a 

Beta<-c (.1,.2)                                     # loop over b 

for (e in 1: length (Effect sizes)) { 

  effect size<-Effect sizes[e] 

for (a in 1: length (Alpha)) { 

    alpha<-Alpha[a] 

    k1<- qnorm(1-(alpha/2),0,1)         # z_(1-alpha/2) 

for (b in 1: length (Beta)) { 

      beta<-Beta[b] 

      k2<-qnorm(1-beta,0,1)           # z_(1-beta)  

for (l1 in 1: length (Coverage)) { 

        coverage<-Coverage[l1] 

for (l in 1: length (SampleSizes)) { 

          m<-SampleSizes[l]      

          tcritical<-qt(coverage,2*m-2) 

          NTrue<- ceiling(2*(k1+k2) *(k1+k2)/(effect size*effect size)) #Ntrue calculation 
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          #kount1<-0 

          Nestimated<-rep (NA, Niter) 

         GreaterThanNTrue<-rep (NA, Niter) 

         GreaterThanM20percent<-rep (NA, Niter) 

         GreaterThanM10percent<-rep (NA, Niter) 

         GreaterThanP10percent<-rep (NA, Niter) 

         GreaterThanP20percent<-rep (NA, Niter) 

         GreaterThanP30percent<-rep (NA, Niter) 

         GreaterThanP40percent<-rep (NA, Niter) 

         GreaterThanP50percent<-rep (NA, Niter) 

         GreaterThanP75percent<-rep (NA, Niter) 

         GreaterThanP100percent<-rep (NA, Niter) 

         GreaterThanP125percent<-rep (NA, Niter) 

         GreaterThanP150percent<-rep (NA, Niter)    

         GreaterThanP175percent<-rep (NA, Niter) 

         GreaterThanP200percent<-rep (NA, Niter) 

          For (i in 1: Niter) { 

            Sample1<-rnorm (m, mean = 0, sd=1)  

            Sample2<-rnorm (m, mean=effect size, sd=1)  

            var1<-var (Sample1)  

            var2<-var (Sample2) 

            pooledvar<-((m-1) *var1+(m-1) *var2)/(m+m-2)  

            diffsamplemeans<-abs (mean (Sample2)-mean (Sample1)) # xbar_2 - xbar_1 

            cy<-sqrt(2*pooledvar/m)/diffsamplemeans 

            cu<-cy+tcritical*(1+1/(8*m))/(2*sqrt(m)) 

            cusquared<-cu^2 

            Nest<-ceiling((k1+k2) ^2*m*cusquared)                           #Nest calculation 

           # To Do: comment 

            Nestimated[i]<-Nest 

            GreaterThanNTrue[i]<-ifelse (Nest<NTrue,0,1)                #if (nest>NT) kount1

          <-kount1+1 

            k31<-ceiling (0.8*NTrue)  

            GreaterThanM20percent[i]<-ifelse (Nest<k31,0,1) 

            k32<-ceiling (0.9*NTrue) 
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            GreaterThanM10percent[i]<-ifelse (Nest<k32,0,1) 

            k33<-ceiling (1.1*NTrue) 

            GreaterThanP10percent[i]<-ifelse (Nest<k33,0,1) 

            k34<-ceiling (1.2*NTrue) 

            GreaterThanP20percent[i]<-ifelse (Nest<k34,0,1) 

            k35<-ceiling (1.3*NTrue) 

            GreaterThanP30percent[i]<-ifelse (Nest<k35,0,1) 

            k36<-ceiling (1.4*NTrue) 

            GreaterThanP40percent[i]<-ifelse (Nest<k36,0,1) 

            k37<-ceiling (1.5*NTrue) 

            GreaterThanP50percent[i]<-ifelse (Nest<k37,0,1) 

            k38<-ceiling (1.75*NTrue) 

            GreaterThanP75percent[i]<-ifelse (Nest<k38,0,1) 

            k39<-ceiling(2*NTrue) 

            GreaterThanP100percent[i]<-ifelse (Nest<k39,0,1) 

            k40<-ceiling (2.25*NTrue) 

            GreaterThanP125percent[i]<-ifelse (Nest<k40,0,1) 

            k41<-ceiling (2.5*NTrue) 

            GreaterThanP150percent[i]<-ifelse (Nest<k41,0,1) 

            k42<-ceiling (2.75*NTrue) 

            GreaterThanP175percent[i]<-ifelse (Nest<k42,0,1) 

            k43<-ceiling(3*NTrue) 

            GreaterThanP200percent[i]<-ifelse (Nest<k43,0,1) 

            #print(kount1) 

          } # closes i 

          NTrue 

          results<-data.frame(GreaterThanM20percent, GreaterThanM10percent, 

                              GreaterThanNTrue, GreaterThanP10percent,     

                              GreaterThanP20percent, GreaterThanP30percent, 

                              GreaterThanP40percent, GreaterThanP50percent, 

                              GreaterThanP75percent, GreaterThanP100percent, 

                              GreaterThanP125percent, GreaterThanP150percent,          

                              GreaterThanP175percent, GreaterThanP200percent) 

          colMeans(results) 
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          ForFile<- 

            t (c (alpha, beta, m,effect size,coverage,colMeans(results))) 

          colnames (ForFile) [1:5] <-c("alpha","beta","m","effect size","coverage") 

                  write. table (ForFile,"C:/Users/sc-obodo/Documents/Test81.csv”, sep = 

 ",”, append=TRUE, col. names = FALSE, row. names = FALSE) 

        } # closes l 

      } # closes l1 

    } # closes b 

  } # closes a 

} # closes e 

 

McKay formula 

set. seed (101) 

Niter<-100000 

SampleSizes<-c (8,16,32,64,128)       # loop over l 

Effect sizes<-c (0.1,0.4,0.75)          # loop over e 

Coverage<-c (0.8)     # coverage, used with Chisq distribution.  

Alpha<-c (0.01,0.05)    # loop over a 

Beta<-c (0.1,0.2)     # loop over b 

 

for (e in 1: length (Effect sizes)) { 

  effect size<-Effect sizes[e] 

  for (a in 1: length (Alpha)) { 

    alpha<-Alpha[a] 

    k1<- qnorm(1-(alpha/2),0,1) # z_(1-alpha/2) 

    for (b in 1: length (Beta)) { 

      beta<-Beta[b] 

      k2<-qnorm(1-beta,0,1) # z_(1-beta)  

      for (l1 in 1: length (Coverage)) { 

        coverage<-Coverage[l1]   

        for (l in 1: length (SampleSizes)) { 

          m<-SampleSizes[l] 

          k3<-(k1+k2) ^2 
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          u2<-qchisq (1-coverage, df=(2*m-2)) 

          NTrue<- ceiling(2*(k1+k2) *(k1+k2)/(effect size*effect size))           

          Nestimated<-rep (NA, Niter) 

          GreaterThanNTrue<-rep (NA, Niter) 

          GreaterThanM20percent<-rep (NA, Niter) 

          GreaterThanM10percent<-rep (NA, Niter) 

          GreaterThanP10percent<-rep (NA, Niter) 

          GreaterThanP20percent<-rep (NA, Niter) 

          GreaterThanP30percent<-rep (NA, Niter) 

          GreaterThanP40percent<-rep (NA, Niter) 

          GreaterThanP50percent<-rep (NA, Niter) 

          GreaterThanP75percent<-rep (NA, Niter) 

          GreaterThanP100percent<-rep (NA, Niter) 

          GreaterThanP125percent<-rep (NA, Niter) 

          GreaterThanP150percent<-rep (NA, Niter) 

          GreaterThanP175percent<-rep (NA, Niter) 

          GreaterThanP200percent<-rep (NA, Niter) 

          

          for (i in 1: Niter) { 

            Sample1<-rnorm (m, mean = 0, sd=1)  

            Sample2<-rnorm (m, mean=effect size, sd=1)  

            var1<-var (Sample1)  

            var2<-var (Sample2) 

            pooledvar<-((m-1) *var1+(m-1) *var2)/(m+m-2)   

            diffsamplemeans<-abs (mean (Sample2)-mean (Sample1)) # xbar_2 - xbar_1 

            csquared<-(2*pooledvar)/ (m* diffsamplemeans^2) 

            k4<- csquared 

            k8<-((u2)/(2*m)-1) 

            k9<-k8*(k4) 

            k10<-(u2/(2*m-2)) 

            k11<-(k4/(k9+k10)) 

            Nest<-ceiling(k3*m*k11)             #Mckay Nest 

            Nestimated[i]<-Nest 

            GreaterThanNTrue[i]<-ifelse (Nest<NTrue,0,1) #if (nest>NT) kount1 
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<-kount1+1 

                k31<-ceiling (0.8*NTrue) 

                        GreaterThanM20percent[i]<-ifelse (Nest<k31,0,1) 

                        k32<-ceiling (0.9*NTrue) 

                        GreaterThanM10percent[i]<-ifelse (Nest<k32,0,1) 

                        k33<-ceiling (1.1*NTrue) 

                        GreaterThanP10percent[i]<-ifelse (Nest<k33,0,1) 

                        k34<-ceiling (1.2*NTrue) 

               GreaterThanP20percent[i]<-ifelse (Nest<k34,0,1) 

                        k35<-ceiling (1.3*NTrue) 

                        GreaterThanP30percent[i]<-ifelse (Nest<k35,0,1) 

                        k36<-ceiling (1.4*NTrue) 

                       GreaterThanP40percent[i]<-ifelse (Nest<k36,0,1) 

                       k37<-ceiling (1.5*NTrue) 

             GreaterThanP50percent[i]<-ifelse (Nest<k37,0,1) 

                        k38<-ceiling (1.75*NTrue) 

                        GreaterThanP75percent[i]<-ifelse (Nest<k38,0,1) 

                        k39<-ceiling(2*NTrue) 

                        GreaterThanP100percent[i]<-ifelse (Nest<k39,0,1) 

                        k40<-ceiling (2.25*NTrue) 

                        GreaterThanP125percent[i]<-ifelse (Nest<k40,0,1) 

                        k41<-ceiling (2.5*NTrue) 

                        GreaterThanP150percent[i]<-ifelse (Nest<k41,0,1) 

                        k42<-ceiling (2.75*NTrue) 

                        GreaterThanP175percent[i]<-ifelse (Nest<k42,0,1) 

              k43<-ceiling(3*NTrue) 

            GreaterThanP200percent[i]<-ifelse (Nest<k43,0,1) 

          } # closes i 

          NTrue 

          results<-data. frame (GreaterThanM20percent, GreaterThanM10percent,  

                              GreaterThanNTrue, GreaterThanP10percent, 

                              GreaterThanP20percent, GreaterThanP30percent, 

                              GreaterThanP40percent, GreaterThanP50percent, 

                              GreaterThanP75percent, GreaterThanP100percent, 
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                              GreaterThanP125percent, GreaterThanP150percent, 

                              GreaterThanP175percent, GreaterThanP200percent) 

          colMeans(results) 

          ForFile<- 

            t (c (alpha, beta, m, effect size, coverage, colMeans(results))) 

          colnames (ForFile) [1:5] <-c("alpha","beta","m","effect size","coverage") 

          write. table (ForFile,"C:/Users/sc-obodo/Documents/Test64.csv”, sep = ",", 

                      append=TRUE, col. names = FALSE, row.names = FALSE) 

        } # closes l 

      } # closes l1 

    } # closes b 

  } # closes a 

} # closes e 
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Appendix C: Other result from study one  

Table C1: Percentage of time estimated sample size exceeds Ntrue +/- error at 𝛼= 0.01, 

𝛽=0.2,  𝛾=0.9 

Sample 

size 

Effect 

size 

>-20% >N True >+20% >+30% >+50% >+100% >+150% 

5 .10 .947 .900 .839 .805 .732 .541 .368 

10 .10 .965 .898 .790 .721 .572 .244 .076 

30 .10 .990 .901 .640 .472 .195 .005 .000 

50 .10 .997 .901 .520 .303 .058 .000 .000 

‘100 .10 1.000 .899 .310 .092 .002 .000 .000 

5 .40 .947 .901 .838 .806 .733 .541 .369 

10 .40 .966 .899 .786 .720 .571 .245 .077 

30 .40 .990 .900 .629 .467 .193 .005 .000 

50 .40 .996 .901 .506 .299 .059 .000 .000 

100 .40 .999 .901 .292 .093 .002 .000 .000 

5 .75 .943 .901 .839 .806 .726 .529 .366 

10 .75 .962 .899 .785 .720 .559 .233 .075 

30 .75 .987 .899 .630 .468 .178 .004 .000 

50 .75 .994 .900 .512 .306 .049 .000 .000 

100 .75 .999 .900 .298 .093 .002 .000 .000 
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Appendix  D 

Other achievements and Awards during the PhD 

March 2020- Presented -Telling your research story-UWE Bristol event.  

October 2021-Attended-7th Trial Methodology Symposium Ireland and UK (online) 

October 2022-Attended- Black heroes of mathematics conference. 

October 2022- Attended- Royal Statistical Society conference. 

 

Awards 

Black Hall of Fame recipient in 2020-2021 for instrumental contribution to UWE Bristol 

community and the wider society. 

 

Nominated for committee member of the year in 2021 for outstanding support to 

fellow students as a committee President. 

 

Organizing committee member and chair of session for 2021 South West Doctoral 

Training Partnership (SWDTP) Conference 2021- Getting Through It: Uncertainty in 

research. https://www.swdtp.ac.uk/our-students/student-conferences/swdtp-

conference-2021-getting-through-it-uncertainty-in-research/  

 

2020 – 2021- President of SU society. UWE Bristol 

 

2020 – 2021 -Student council Member. UWE Bristol  

 

2021 - 2023-Interview shared Tips for RD1 and RD2 success featured as resource 

material in Research Skills development programme on UWE Blackboard. 

 

2021-202- Associate lecturer – Supporting tutorial sessions at UWE Bristol. 

 

https://www.swdtp.ac.uk/our-students/student-conferences/swdtp-conference-2021-getting-through-it-uncertainty-in-research/
https://www.swdtp.ac.uk/our-students/student-conferences/swdtp-conference-2021-getting-through-it-uncertainty-in-research/

