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Abstract

The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo
removal on primary human erythroblasts grown from peripheral blood CD34" cells. The erythroblasts died rapidly from
apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive.
Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of
mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE
approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic
comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth
conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed
that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-
3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously.
We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90
alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global
changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire
of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective
erythropoiesis.
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Introduction by increased Epo [12]. Determining the molecular mechanisms
behind the action of Epo is essential for our understanding of
erythropoiesis in the bone marrow, thereby helping to efficiently
reproduce erythropoiesis @ wvitro. It 1s also important for the
development of novel erythropoiesis-stimulating agents and for
understanding Epo’s cytoprotective action on other cell types [13].
It is also relevant to human disease since apoptotic mechanisms
are implicated in the development of anaemia in myelodysplasia
[12]. Understanding how Epo withdrawal induces apoptosis may
also help improve apoptosis-inducing treatments of erythroid and
non-erythroid leukaemia and identify the signalling pathways

Red blood cell production in the bone marrow is maintained by
a delicate balance between erythroid cell proliferation, differen-
tiation and apoptosis. This process is regulated by Erythropoietin
(Epo), Stem Cell Factor (SCF) and glucocorticoids [1,2]. Epo is a
34 kD glycoprotein produced primarily by the kidney and its
production increases under hypoxic conditions [3]. It is essential
for erythropoiesis [4] and the availability of Epo is known to
facilitate the survival of erythroblasts during the Epo-dependent
stage of erythropoiesis [5]. Epo acts by binding to its cognate
receptor, the single transmembrane erythropoietin receptor
(EpoR) [6]. EpoR lacks kinase activity but Epo binding triggers
the activation of the Janus family protein tyrosine kinase 2 (JAK?2)
[7], which in turn phosphorylates tyrosine residues in EpoR,
creating docking sites for intracellular signalling proteins such as
phosphatidylinositol 3-kinase [8], SHP1 [9] and STAT5 [10].
These events lead to the activation of multiple signal transduction
pathways and specific gene expression that result in the survival,
proliferation, and differentiation of erythroblasts [11].

During homeostatic bone marrow erythropoiesis 16% of the
erythroblasts die of apoptosis but this level of apoptosis is reduced

important for leukemic progression of specific leukemic clones.
Several molecular pathways involved in the induction of
apoptosis in response to Epo withdrawal have been identified.
For instance, studies on mice have shown that Epo inhibits pro-
apoptotic Bim [14] and Bad [15] and induces anti-apoptotic
SERPINA-3G and TRB3 [16]. In primary human erythroblasts,
Epo inhibits pro-apoptotic GSK3 beta [17]. In addition,
chaperone proteins play an important role in human erythroblast
cell survival with Hsp70 preventing the transcription factor Gata-1
from being cleaved by Caspase 3 [18] and inhibiting the nuclear
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import of Apoptosis-inducing Factor (AIF) [19]. Another chaper-
one protein Mortalin has also been identified as a mediator of Epo
signalling [20].

To further our understanding of how Epo withdrawal induces
apoptosis, we adopted a 2 Dimensional fluorescence difference gel
electrophoresis (2D DIGE) proteomics approach coupled with
mass spectrometry to compare the proteomes of expanding
erythroblasts with that of erythroblasts undergoing apoptosis due
to Epo removal. Using this methodology we identified in an
unbiased fashion, novel key reproducible alterations in the
proteome of primary human erythroblasts +/ —Epo. In particular,
our results highlight that within 12 hours of Epo withdrawal,
several multi-functional proteins are cleaved, including SET,
RPSA, Hsp90 and 14-3-3- proteins. The proteolysis of proteins
pivotal to many pro-survival cellular signalling cascades may be
vital to ensure that the cell enters apoptotic cell death, and
interestingly, aberrant regulation of these proteins is already
known to occur in human diseases.

Materials and Methods
Erythroid Cell Culture

Waste peripheral blood from anonymous donors was provided
with written informed consent for research use given in
accordance with the Declaration of Helsinki (NHSBT, Filton,
Bristol). The research into the mechanisms of erythropoiesis was
reviewed and approved by the Southmead Research Ethics
committee 08/05/2008 REC Number 08/H0102/26. Mononu-
clear cells (PBMCs) isolated from waste peripheral blood were
washed in PBS, and the CD34+ cells isolated using anti-CD34-
ligated magnetic beads and the Magnetic Activated Cell Sorting
system (MiniMACS) according to the manufacturer’s instructions
(Miltenyi Biotech, UK). In order to minimise changes due to
donor variation, erythroblasts were expanded from four different
donors using culture conditions as described previously [21,22].
For the first 4 days, cells were maintained in Stemspan (Stemcell
Technologies) supplemented with 2 U/ml Epo (NeoRecormon,
Roche), 10 ng/ml recombinant SCF (R&D Systems), 1 uM
Dexamethasone (Sigma), 1:200 cholesterol-rich Lipids (Sigma),
I ng/ml IL-3 (R&D Systems), and Penicillin/Streptomycin
(Sigma). Cells were then transferred to expansion medium ESDL
which was identical except for the omission of IL-3. For
comparison of the effects of Epo removal, CGD34" derived
erythroblasts at day 9 (i.e. 4 days in ESDL+IL-3 followed by 5
days in ESDL only) were washed three times in PBS, sceded at
1.2x10° cells/ml in fresh expansion medium in ESDL or SDL
(expansion medium lacking EPO) and cultured for another 6 hour,
12 hour or 24 hour, as indicated. To obtain cell lysates for Western
blotting and 2D-DIGE analysis, the cells were harvested by
centrifugation, washed once with PBS, snap frozen in liquid
nitrogen and stored at -80°C until further processing.

Flow Cytometry

0.2—0.5x10° cultured erythroid progenitors were washed in
ice-cold PBS containing 1% (w/v) BSA (PBS-1%BSA) and
incubated with the primary antibody for 1 hour. Primary
antibodies used include BRIC6 (Band 3, IBGRL, Bristol, UK),
BRIC 256 (Glycophorin A, IBGRL, Filton, Bristol), anti-Fas
(CDY95; Monoclonal antibody LOB 3/17, Serotec), anti-FasL
(CD178; monoclonal antibody 10F2, Serotec) and suitable mouse
IgG control antibodies (Dako). Primary antibodies were washed in
ice-cold PBS-1% BSA and rabbit anti-mouse RPE-conjugated
antibodies (Dako) were added for 30 min in the dark at 4°C.
Directly conjugated antibodies used were anti-c-kit/CD117 (RPE-
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conjugated, BD Pharmingen, 555714) and anti-CD71 (RPE or
APC-conjugated, BD Pharmingen, 555537). To measure apoptot-
ic cell death, cultured erythroblasts were labelled with Annexin V-
FITC, together with Propidium Iodide according to the manu-
facturer’s instructions (Arcus Biologicals). To measure mitochon-
drial membrane potential (AW), tetramethylrhodamine ethyl ester
perchlorate (TMRE, Sigma) was used. Erythroblasts were washed
i PBS, resuspended in PBS containing 25 nM TMRE. To
quantify caspase activation by flow cytometry, Caspase-3,
Caspase-8 and Caspase 9 detection kits were used according to
the manufacturer’s instructions (Calbiochem). Fluorescent signals
were measured using a Coulter EPICS XL-MCL flow cytometer
(Beckman Coulter, HighWycombe, UK) or a FACS CantolI-F60
machine (BD Biosciences). All data was analysed using the Flowjo
7.2.5 software (Flowjo, Ashland, OR, USA).

Cytospins

2.5x10" cells were cytospun onto glass slides, fixed in methanol
and stained with May Griinwald/Giemsa stains according to the
manufacturer’s protocol. Images were taken with an Olympus
(CX31 microscope coupled to an Olympus LC20 camera using a
50x (0.75NA) lens and processed using Adobe Photoshop 9.0
(Adobe).

Subcellular Fractionation to Detect Cytochrome C
Release into the Cytosol

Cytochrome c release into the cytosol was assessed as previously
described [23]. Cells (2x10° were washed in PBS, resuspended in
50 ul of buffer (140 mM mannitol, 46 mM sucrose, 50 mM KCI,
1 mM KHyPO,, 5 mM MgCl,, 1 mM EGTA, 5 mM Tris,
pH 7.4) supplemented with a mixture of protease inhibitors
(Complete Mini-EDTA Free, Roche) and digitonin at a final
concentration of 40 mg/ml. Cells were permeabilised on ice for
10 min and centrifuged at 12,000xg for 10 min at 4°C.
Supernatant and pellet fractions were subjected to Western blot
analysis.

Western Blotting

5x10° cells were lysed for 10 min on ice in lysis buffer (20 mM
Tris-HCL, pH 8.0, 137 mM NaCl, 10 mM EDTA, 100 mM NaF,
1% (v/v) Nonidet P-40, 10% (v/v) glycerol, 10 mM NazVOu,
2 mM PMSF and protease inhibitors, Calbiochem). Protein
concentration determined by Lowry assay (Bio-Rad). Lysates were
separated by SDS-PAGE and immunoblotted. Primary antibodies
used (with catalog numbers in brackets) were Caspase 8 (1C12,
9746), Caspase 9 (9502), cleaved Caspase 3 (9664), Hsp90beta
(5087) and Lamin A/C (2032) from Cell Signalling Technology;
Hsp90alpha (mAb 9D2, SPA-840) from Enzo/Stressgen; Actin (sc-
1616 rabbit), RPSA (Laminin-R (16), sc-101517) and SET
(I2PP2A, sc-5655) from Santa Cruz; Cytochrome C (Clone
7H8.2C12, 556443) from BD Pharmingen; Bax (anti-Bax NT,
06-499), 14-3-3 beta (AB9730), 14-3-3 epsilon (clone CG31-2B6,
05-639) and 14-3-3 gamma (AB9734) from Millipore/Upstate Cell
Signalling and Hsc70 (ab19136) from Abcam.

Immunofluorescence Microscopy

1.5-2x10° erythroblasts were left to adhere on poly-L-lysine
coated coverslips (mol wt 70,000-150,000, 0.01% w/v solution;
Sigma) for 30 min at 37°C, 5% COy before fixation using 4%
formaldehyde (TAAB Laboratories Ltd, Aldermaston, England,
UK) in PBS for 15 min. For some experiments, 100 nM
MitoTracker® Red CMXRos (Invitrogen) was included. Cells
were washed in PBS and then permeabilised with 0.2% (w/v)
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Triton X-100 in PBS for 5 min or ice-cold methanol for 1 min.
Cells were washed in PBS, blocked for 20 min in PBS-4%BSA and
incubated for 1 hour in primary antibodies diluted in PBS-1%
BSA. After further washes in PBS, cells were incubated for 1 hour
with secondary antibodies in PBS-1% BSA. After 3 x5 min washes
in PBS, cells were stained with Hoechst (2 mg/ml, Invitrogen) for
5 min, washed and mounted over MOWIOL 4-88 (Calbiochem)
containing 0.6% 1,4-diazabicyclo-(2.2.2)octane (DABCO, Sigma)
as an anti-photobleaching agent. Confocal microscopy was
performed using a Leica AOBS SP2 confocal microscope (x63/
1.4 oil-immersion objective). A serial Z stack at 0.5 um intervals
was taken and a projected image produced using Leica software.
The primary antibodies used include Bak-NT and Bax-NT
(Upstate Cell signalling), and BRIC256 (Glycophorin A). The
secondary antibodies were Goat anti-Mouse or anti-Rabbit, Alexa
488 or Alexa 594 (Invitrogen).

Sample Preparation for 2D- DIGE

Cell pellets (4.5-8x0° erythroid progenitors per pellet) were
resuspended in 2D lysis buffer (7 M urea, 2 M thiourea, 4% (w/v)
CHAPS), sonicated in a water bath for 15 min and incubated for 2
hour at room temperature with intermittent vortexing. Solubilised
samples were then precipitated using a 2-D Clean-Up Kit (GE
Healthcare) according to the manufacturer’s instructions and the
resulting pellets were resuspended to a concentration of between 5
and 10 mg/ml in DIGE lysis buffer (30 mM Tris, pH 8.5, 7 M
Urea, 2 M Thiourea, 4% (w/v) CHAPS). 50 ug of each sample
was labeled for DIGE analysis using fluorescent cyanine dyes
according to the manufacturer’s guidelines (GE-Healthcare). In
brief, samples were labeled using Cy3 or Cy5 N-hydroxysuccina-
mide (NHS) ester DIGE dyes freshly dissolved in anhydrous
dimethylformamide by mixing 50 pg protein with 1 pL. CyDye
(400 pmol/pL). An internal standard was generated by pooling all
samples in the experiment and labelling with a third dye, Cy2. In
each case, the labelling reaction was allowed to proceed on ice in
the dark for 30 min. The reaction was terminated by the addition
of 10 nmol lysine and subsequent incubation on ice in the dark for
an additional 10 min.

2D Gel Electrophoresis

Each Cy3- and Cy5-labelled sample pair was mixed with an
aliquot of the Cy2-labelled internal standard and Destreak
rehydration solution (GE Healthcare) containing 0.5% (v/v) IPG
Buffer pH3-11NL added to give a total volume of 450 pL. This
was loaded onto a 24 cm Immobiline DryStrip gel (pH 3-11 non-
linear) by passive rehydration for a minimum of 12hour. Following
rehydration, the DryStrip gel was transferred to an Ettan IPGPhor
3 system (GE Healthcare) and isoelectric focusing performed
according to the manufacturer’s instructions (in brief, by applying
500 Volts for 1 hour, increasing to 1,000 Volts over 1 hour, and
then to 10,000 Volts over 3 hours and held at 10,000V for a
further 2.5 hour). After isoelectric focusing, strips were equilibrat-
ed in SDS equilibration buffer (50 mM Tris-HCI, pH 8.8, 6 M
urea, 30% (v/v) glycerol, 2% (w/v) SDS, and 0.002% (w/v)
bromphenol blue) containing 1% (w/v) DTT for 15 min at room
temperature followed by a second incubation in SDS equilibration
buffer containing 2.5% (w/v) iodoacetemide for 15 min at room
temperature. After equilibration, strips were applied to 12.5% (w/
v) SDS-PAGE gels and run at 5 mA per gel for 1 hour, 8 mA per
gel for an additional hour and then at 13 Watts/gel until
completion on an Ettan DALT-6 separation unit (GE Healthcare).
Each gel was scanned at three separate wavelengths using a
Typhoon 9400 variable mode imager (GE Healthcare) to generate
Cy3, Cyb and Cy2 images. Determination of protein spot
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abundance and analysis of protein expression changes between
samples was conducted on DeCyder V6.5 software (GE Health-
care). Spots which were present in all samples and which showed a
change in average ratio of +1.3 or -1.3 fold with a #-test of p<<0.05
were chosen for identification by mass spectrometry. Analysis of
the DIGE gels using the DeCyder software identified 2437 spots in
the master gel; of these, 1569 were reproducibly detected and
quantified in all 4 gels used in the experiment. Only spots that
were detected in all 4 gels (ie. in all 4 independent DIGE
experiments) were selected for identification by mass spectrometry.

Proteolytic Digestion and Mass Spectrometry

For preparative gels, pooled samples were generated by
combining 100 pg of each SDL or ESDL sample prior to DIGE
labelling. Following 2D-PAGE (as above), the resulting gels were
stained using SYPRO® Ruby total protein stain (Invitrogen) and
visualised using a Typhoon 9400 variable mode imager (GE
Healthcare). Spots selected for Mass spectrometry were picked
using the Investigator ProPic Automated 2-D spot picker and
digested with trypsin using the ProGest automated digestion unit
(both from Digilab UK Ltd). The resulting peptides were then
subjected to Mass Spectrometry. Mass spectra were recorded in
positive ion mode on an Applied Biosystems 4700 MALDI mass
spectrometer. MS spectra were recorded in reflector mode. For
MSMS analysis the top 5 most intense, non-tryptic, precursors
were selected for fragmentation by collision induced dissociation.
Neither baseline subtraction nor smoothing were applied to
recorded spectra. MS and MSMS data were analyzed using GPS
Explorer 3.5 (Applied Biosystems). MS peaks were filtered with a
minimum signal to noise ratio of 35 and to exclude masses derived
from trypsin autolysis. MSMS peaks were filtered to exclude peaks
with a signal to noise ratio less than 35 over a mass range of
50Dalton to 20Dalton below the precursor mass. The mass
spectral data for each spot was subjected to a combined analysis
using the MASCOT algorithm (Matrix Science) against the
NCBInr Human database. The combined analysis uses the initial
MS spectra as a peptide mass fingerprint with supporting sequence
data provided by up to 5 MSMS spectra per spot. A maximum
number of missed cleavages of 1 and a charge state of +1 were
assumed for precursor ions. A precursor tolerance of 100 ppm and
an MSMS fragment tolerance of 0.15Dalton were used in the
database search. Routinely, samples were analysed with methio-
nine oxidation considered as a variable modification and
carbamidomethylation of cysteine as a fixed modification.

Protein Phosphorylation

To analyse changes in protein phosphorylation between control
(ESDL) and test (SDL) samples, two 2D preparative gels were
prepared as above containing pooled protein (100 ug each) of the
4 ESDL or SDL cultures. These were stained for phosphoproteins
using Pro-Q) Diamond phosphoprotein stain (Invitrogen) and
imaged using a Typhoon 9400 Variable Mode Imager (GE
Healthcare). Gels were then stained for total protein using
SYPRO® Ruby protein gel stain (Invitrogen) and imaged again.
Differences in the pattern of protein phosphorylation were
identified using ImageQuant v5.2 software and the corresponding
spots were excised from the SYPRO® Ruby stained gel and
identified by mass spectrometry (as described above). The 12 hour
SDL 2D PAGE gels were reproduced again in duplicate, using
400 pug protein loaded per gel from two further independent
experiments. The equivalent spots were then subjected to Nano
LC Mass Spectrometry. Briefly, selected spots were excised and
subjected to in-gel tryptic digestion using a ProGest automated
digestion unit (Digilab UK). The resulting peptides were
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Figure 1. Epo removal induces apoptosis of erythroblasts. A) Cytospins of 2 separate erythroblast cultures obtained after 9 days in culture in
ESDL medium and of erythroblasts after 24 hour in ESDL or SDL (scale bar is 20 uM). B) Flow cytometry analysis of cell surface markers expressed by
erythroblasts after 8 days in culture in ESDL medium. FL2 fluorescence (x axis) versus cell number (y axis) of cells labelled with the isotype control
antibody (dotted grey line) and antibodies against CD117/c-kit, CD71, GPA (BRIC256) and Band 3 (BRIC6) (thick black line). C) Flow cytometry analysis
of Annexin V (FL1) and Propidium lodide (PI, FL3) labelling of erythroblasts kept for 24 hour in ESDL or SDL. In this representative experiment, 90% of
the cells kept in ESDL are alive (Annexin V and Pl negative) compared to only 28% in SDL. D) Graph showing the average percentage of live
erythroblasts kept for 24 hour in ESDL or SDL, normalised to the percentage of live cells in ESDL. After 24 hour, only 37% of the cells in SDL are live
(AnV/PI negative, with a standard deviation of +/—15%, n = 15). E) Flow cytometry analysis of mitochondrial membrane potential (A¥) using TMRE. In
this representative experiment, the FL2 fluorescence for erythroblasts cultured for 24 hour in ESDL (thick black line) is overlayed with that of cells
cultured for 24 hour in SDL (dotted grey line). The loss of TMRE fluorescence indicates a loss of mitochondrial membrane potential (AY). F)
Cytochrome C release into the cytosol. Western blots against cytochrome c and total Bax were carried out on the cytosolic fraction depleted of all
organelles, obtained from erythroblasts kept for 24 hour in ESDL or SDL. Beta actin was used as a loading control. G) Overlay projections of confocal
images taken from erythroblasts grown for 24 hour in ESDL or SDL (blue: DAPI; green: 488 Phalloidin; red: GPA) showing that cells cultured for 24
hour in the absence of Epo have lost their plasma membrane integrity and have fragmented nuclei. H) Translocation of Bax to the mitochondria in
cells kept for 24 hour in SDL. Overlay projections of confocal images taken from erythroblasts grown for 24 hour in SDL (blue: DAPI; green: Bax; red:
Mito-tracker). Scale bar on images represents 5 um.

doi:10.1371/journal.pone.0038356.g001
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doi:10.1371/journal.pone.0038356.g002

fractionated using a Dionex Ultimate 3000 nanoHPLC system. In
brief, peptides in 1% (v/v) formic acid were injected onto an
Acclaim PepMap C18 nano-trap column (Dionex). After washing
with 0.5% (v/v) acetonitrile 0.1% (v/v) formic acid peptides were
resolved on a 250 mm X 75 um Acclaim PepMap C18 reverse
phase analytical column (Dionex) over a 120 min organic gradient
with a flow rate of 300 nl min~". Peptides were ionised by nano-
electrospray ionisation at 2.0 kV using a stainless steel emitter with
an internal diameter of 30 um (Thermo Scientific). Tandem mass
spectrometry analysis was carried out on a LTQ-Orbitrap Velos
mass spectrometer (Thermo Scientific). The Nano LC was set to
analyse the survey scans at 60,000 resolution and the top twenty
lons in each duty cycle selected for MSMS in the LTQ) linear ion
trap. Data was acquired using the Xcalibar v2.1 software (Thermo
Scientific). The raw data files were processed using Proteome
Discoverer software v1.2 (Thermo Scientific) with searches
performed against the SwissProt Human database (54523 entries)
using the Mascot search engine v1.9 (Matrix Science) with the
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following criteria; peptide tolerance =10 ppm, trypsin as the
enzyme, carbamidomethylation of cysteine as a fixed modification
and oxidation of methionine and phosphorylation of serine,
threonine and tyrosine as variable modifications. Individual ions
with Mascot scores higher than 20 were used, making sure the
average peptide scores of all identified proteins exceeded 20, a
threshold commonly used for confident protein identification from
tandem MS data [24]. The reverse database search option was
enabled and all data was filtered to satisfy false discovery rate
(FDR) of less than 5%.

Results

Apoptosis Occurs in Response to Epo Withdrawal in
Cultured Primary Human Erythroblasts

Primary human erythroblasts were cultured from CD34" cells
isolated from human peripheral blood in presence of Epo, SCF,
Dexamethasone and lipids (ESDL) [21]. This expansion medium

June 2012 | Volume 7 | Issue 6 | 38356



""""""""""""""""""""""""""""""""""""""""""""""" 250
150
100
75
< 50

37

/ 25
20

15

10

ESDL

SDL

Proteomic Analysis of Apoptotic Erythroblasts

3 5 5.5 6.25 8.5 1
. | I | 1__ L .

= T <250
pH3 : -l pH11 150
- 100
i 8 - 75
i _ 50
% s 37
/>
| 20
} 15
10

Standardized Log Abundance

»
e
I
—
()
w
L

SDL—
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gel shown in Figure 3B. (B) Typical example of a protein differentially represented in the 2 culture conditions, ESDL and SDL. 3D views of spot 5 in
Figure 3A and identified by mass spectrometry as a proteolytic fragment of Hsp90 alpha (see Table 1). The difference in intensity of spot 5 on one SDL
and one ESDL gel is visible by eye on the 2D gels (spot marked with the red boundary) and on the corresponding 3D views. (C) Example graph
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doi:10.1371/journal.pone.0038356.9003

(ESDL) allows CD34" cells to expand and differentiate to the pro-
erythroblast stage, whilst limiting pro-erythroblast terminal
differentiation. During culture in ESDL, expanding erythroblasts
become progressively GPA positive but maintain low or no
expression of the early to late differentiation marker band 3
(Figure S1A). Importantly, throughout the ESDL culture condi-
tions, the cells remained highly sensitive to Epo withdrawal (Figure
S1B). The day 9 time point of expansion was chosen as this
maximised the number of cells for our 2D DIGE experiments but
limited the degree of spontaneous differentiation. At day 9 the
majority of cells had the morphology of pro-erythroblasts
(Figure 1A; counting 40 fields of view from each of two
representative cultures; 2-4% pre-pro-erythroblasts, 79-80%
pro-erythroblasts, and 16-19% basophilic erythroblasts) and are
c-kit" positive, CD71"8" GPA"/™ and band 3"/"°¢ (Figure 1B
and Figure S1A). The cells are also Fas positive but Fas ligand
negative, which is consistent with them being immature erythro-

blasts [25] (Figure S2).
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To monitor 1) specific alterations in Epo signalling that cannot
be compensated by SCF or dexamethasone and ii) the effect of
Epo withdrawal on cellular processes, day 9 cells were either
maintained in ESDL (+Epo) or SDL (no Epo). Apoptosis and loss
of mitochondrial membrane potential was measured by flow
cytometry using annexin V/PI and TMRE, respectively
(Figure 1C,1D and 1E). After 24 hour of Epo withdrawal, 63%
(+/—15%, n=15) of the cells were Annexin V positive and a sharp
decrease in mitochondrial potential was observed, indicative of
apoptosis (Figure 1D and 1E). Loss of mitochondrial membrane
potential was accompanied by cytochrome c release from the
mitochondria into the cytosol (Figure 1F) and by translocation of
cytosolic Bax to the mitochondria (Figure 1H). Epo removal
further induced DNA condensation and nuclei fragmentation as
well as reduced cortical actin and Glycophorin A staining
(Figure 1G), indicating that these cells have lost the integrity of
their plasma membrane. We also confirmed by Western blotting
and flow cytometry that caspase 3, caspase 8 and caspase 9 were
activated upon 24 hours of Epo removal (Figure 2) [26].
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Figure 4. Western blot confirmation of protein proteolysis under SDL conditions. Western blotting of total cell lysates harvested from one
independent culture after 6 hour, 12 hour and 24 hour in ESDL (+Epo) and SDL (-Epo) using antibodies against SET, 14-3-3 3, 14-3-3 vy, 14-3-3 g, RPSA,
Hsp90 isofoms alpha and beta. 20 ug of protein lysate was loaded per lane. Beta Actin and Hsc70 were used as loading controls. The arrows point to
the smaller proteolytic fragments that occur in apoptotic erythroblasts.

doi:10.1371/journal.pone.0038356.9004
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Figure 5. ESDL and SDL 2D gels stained for phosphoproteins. 2D gels of total cell lysates pooled from the 4 experiments harvested in 12 hour
ESDL (+Epo) or SDL (no Epo) were stained with Pro-Q Diamond to detect phosphoproteins. Changes in protein phosphorylation between the two
culture conditions were identified using Image Quant v5.2 software analysis and the corresponding spots (4 spots in ESDL circled in blue and 9 spots
in SDL circled in red), were picked and analysed by mass spectrometry and are listed in Table 6 and Table 7.

doi:10.1371/journal.pone.0038356.9005

Furthermore, no Fas Ligand was detectable on pro-erythroblasts
by flow cytometry after 24 hours Epo removal (Figure S2).

2D DIGE Analysis of Primary Human Erythroid Cells 12
Hour After Epo Withdrawal

Proteins identified with a change in average intensity
ratio of >2. To identify global proteome alterations in
erythroblasts after Epo removal, a 2D DIGE approach was
adopted. Late apoptotic events involve the proteolysis of many
proteins and signalling events not directly involved in the initial
induction of apoptosis. After 12 hours in SDL (no Epo), the first
signs of apoptosis were observed by flow cytometry as the cells
become Annexin V positive but are not yet TMRE'™ or PI*™*
(Figure S3). Therefore, to study the early events leading to
apoptosis, rather than the later downstream events, we studied
proteome changes after 12 hours of Epo removal by comparing
the proteomes of erythroblasts kept in expansion medium (ESDL,
12 hours) with those switched to medium lacking Epo for 12 hours
(SDL, 12 hours).

By comparing 4 independent 2D DIGE experiments, 12 spots
were consistently found to be up-regulated in SDL (apoptotic cells)
with a change in average intensity ratio of >2 and a #test of
$<<0.05. All 12 spots were picked from the gels (SDL, Figure 3A),
and the identities of 11 of these spots were confirmed by mass
spectrometry (Table 1 and Table S1). These include SET, 14-3-3
isoforms (beta, gamma and epsilon), Hsp90 alpha (Figure 3B) and
beta, 40S ribosomal protein SA (RPSA) and non-muscle myosin
heavy chain (myosin 9). Figure 3C illustrates the reproducibility of
the observed alterations in abundance, showing the quantification
of Hsp90 alpha isoform 2 (spot 5). For specific spots (e.g. spots 5
(Hsp90 alpha), 7 (Hsp90 beta) and 9 (Myosin 9)), the molecular
weight of the spot picked for MS analysis was significantly smaller
than the theoretical molecular weight of the full-length protein
(Table 1), possibly as a result of caspase cleavage. Indeed, 9 out of
the 11 proteins identified are known caspase substrates. Western
blot analysis of total cell lysates from a different independent
experiment validated the 2D DIGE proteomic results confirming
the proteolysis of SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon,
Hsp90 alpha, Hsp90 beta and RPSA upon Epo withdrawal
(Figure 4).
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Proteins identified with a change in average intensity
ratio of > +/—1.3. When the cut-off value of change in average
intensity ratio was lowered to > +1.3 (t-test of p<<0.05) an
additional 19 spots exhibited an increased abundance in SDL. Of
these, 14 were picked from the gels (the 5 other spots were deemed
too faint to pick) and 11 were identified by mass spectrometry
(Table 2 and Table S2). These include splicing factors, actin and
actin binding protein cofilin-1, lamin A/C (cleaved), peptidyl-
propyl cis trans isomerase FKBP4 and carbonic anhydrase.
Western blot analysis confirmed proteolysis of lamin A/C during
Epo withdrawal (Figure 4). 13 spots were found to be up-regulated
in ESDL with a change in average ratio below <-1.3 and a ttest of
$<0.05. Of these, 6 were picked and identified by mass
spectrometry, including BTF3, a SUMO activating enzyme,
RPSA (full length), polypyrimidine tract binding proteinl and
Hsp105 (Table S3).

By monitoring the intensity of each spot across the 4
independent 2D DIGE experiments, we observed that spots from
one sample pair (SDL and ESDL) were consistently outliers (see
Figure 3C for an example of the Hsp90 alpha result). After
exclusion of one sample pair, an additional 10 spots were found to
be up-regulated in SDL with a change in average ratio above >1.3
and a #test of p<<0.05. Of these, 7 were picked and identified by
mass spectrometry (Table 4 and Table S4) including several
enzymes, ubiquitin-conjugating E2 enzymes, and the serine/
threonine protein phosphatase PPl-alpha catalytic subunit.
Furthermore, after exclusion of this sample pair, an extra 20
spots had increased abundance in ESDL with a change in average
ratio below <-1.3 and a #test of p<<0.05. Of these, 18 spots were
picked from the gels, of which 14 were identified by mass
spectrometry (Table 5 and Table S5) including secretory pathway
proteins (clathrin and dynactin), Hsp70, the Hsp90 co-chaperone
p23, lamin A/C (full length), splicing and ribonuclear proteins,
and the serine/threonine protein kinase PAK2.

Investigating the changes in protein phosphorylation within the
proteome after Epo withdrawal revealed 13 phospho-protein
changes between ESDL and SDL (Figure 5). Of these 13 spots, 9
had increased phosphorylation in SDL compared to ESDL and
these were identified by mass spectrometry (Table 6 and Table
S6). The proteins detected as having potentially increased
phosphorylation in SDL conditions included nascent polypeptide
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associated complex alpha subunit (NACA), Hsp27, Hsp90 alpha
and beta, and lamin A/C. The other 4 spots with altered
phosphorylation profiles were increased in ESDL and from these 5
proteins were identified by mass spectrometry (Table 7 and Table
S7) including matrin-3, nucleolin, splicing factor 1 and an
initiation factor.

To confirm phosphorylation and identify possible phospho-sites
on Hsp90 alpha and beta proteins, and nascent polypeptide
associated complex alpha protein after Epo withdrawal, 2
additional independent 12 hour SDL samples were run on
separate preparative 2D gels. Spots corresponding to NACA (spot
1), Hsp90 alpha (spot 4) and Hsp90 beta (spot 6) were picked,
pooled, digested and analysed by Nano LC mass spectrometry.
This technique confirmed the phosphorylated status of these
proteins and we were able to identify several known and novel
phospho-peptides (Table 8). It should be noted that for some
peptides there was more than one possible phosphorylation site, so
we have included all possibilities and the known phosphorylation
site within the peptide has been indicated in Table 8.

Discussion

In this study we sought to determine the global proteome
alterations that occur in erythroblasts during Epo withdrawal. We
have shown that Fas-L independent cell death occurs in immature
erythroblasts during Epo withdrawal and observed activation of
both caspase 8 and caspase 9, alongside other classical features of
the “intrinsic” apoptosis pathway. Caspase activation and
apoptosis proceed through one of two major pathways, namely
the ‘extrinsic’ pathway triggered by death receptor ligation and
activation of the initiator caspase 8, or the ‘intrinsic’ pathway
characterised by mitochondrial outer membrane permeabilisation
(MOMP), cytochrome ¢ release into the cytosol and activation of
the initiator caspase 9 [27]. Both pathways then converge on
activating executioner caspases, such as caspase 3 [27]. There is
evidence that crosstalk can occur, as caspase 8 activation leads to
cytochrome c release into the cytosol via tBid [28]. Conversely,
caspase 8 activation downstream of caspase 9 has been reported
[29]. Growth factor withdrawal from haematopoietic cells is
generally thought to result in the activation of the mitochondrial
pathway [30,31] and our studies are supportive of this. Further
studies are required to determine the exact sequence of caspase
activation, to specifically delineate which apoptotic pathway
(extrinsic or intrinsic) is activated first and whether caspase 8 is
activated downstream of caspase 9 or by a death receptor ligand
(other than Fas-L) which is yet to be identified.

We used a 2D DIGE proteomic approach to provide a snapshot
of the key differences in the proteomes of erythroblasts under
continual expansion and erythroblasts undergoing apoptosis due
to Epo deprivation. Overall we observed more alterations in
protein abundance in apoptotic cells, probably because in this state
cellular proteins are undergoing proteolytic cleavage by caspases
or putative unknown proteases, and the resulting shift in size
makes these proteins more evident in apoptotic cells. Indeed
proteins known to be caspase targets were highly represented in
our analysis (59% of the proteins identified (i.e. 34 proteins out of
57 in total, Tables 1-7) are known to be cleaved by caspases [32]).
It is possible that proteolysis is not solely caspase-mediated but also
due to cleavage by other types of proteases activated during
apoptosis. However, caspases are the main proteolytic enzymes
activated during apoptosis [33] and we confirmed activation of
caspases in our culture system upon Epo withdrawal (Figure 3).
Furthermore, the molecular weights of the proteolytic fragments
detected in the lysates of apoptotic cells (Figure 4) match the
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theoretical molecular weight of the protein fragments that would
be generated by cleavage at the mapped caspase cleavage site. For
example, the caspase cleavage site identified in Hsp90 beta [34] is
conserved in both Hsp90 isoforms. Western blotting conducted on
apoptotic cell lysates detected a proteolytic fragment of ~37 kD
for Hsp90 alpha (N-terminus) and of ~50 kD (C-terminus) for
Hsp90 beta (Figure 4) consistent with the sizes predicted for
caspase cleavage. For 14-3-3 beta, gamma and epsilon, the
molecular weight of the cleaved form was only marginally smaller
than that of the full length proteins, mirroring what has already
been described for caspase-mediated cleavage of 14-3-3 proteins
[35].

It should be noted that although we have identified many
cleaved proteins more abundant in apoptotic cells, we only
detected the equivalent full length protein in the living cells for
RPSA (spot 6 in Table 1 and spot 33 Table 4), Lamin A/C (spot
14 Table 2 and spot 46 Table 5) and Ribonucleoprotein C1/C2.
Moreover, we have identified a range of known caspase substrates
but candidates such as the GATA-1 [18] were not detected by our
analysis. One explanation for this may be that some key changes
are obscured or masked by other proteins present on the 2D gel,
and it 1s also likely that alterations in low abundant proteins might
not be detected. In addition, approximately 30% of the spots
detected as altered in our experiments were not confidently
identified by mass spectrometry and this may explain some
omissions. Also, the kinetics of proteolysis in response to Epo
withdrawal might vary from protein to protein, such that certain
proteomic changes might not be detected at the 12 hour time point
but could occur earlier or later.

Many of the changes in protein abundance on Epo withdrawal
observed here in our 2D DIGE comparison with living cells, are
consistent with the known characteristic alterations that occur
during apoptosis, reflecting the universal nature of this fundamen-
tal process. Hence, the observed changes in cellular morphology
that occur during apoptosis require alterations in actin and myosin
cytoskeleton and nuclear lamins, whilst essential house keeping
functions such as transcription, translation and the secretory
pathway are targeted for destruction (reviewed by [36]). There-
fore, the observed alterations in the abundance/cleavage of
cytoskeletal proteins (myosin 9, actins, cofilin) and nuclear lamins
(lamin A/C), B-NAC (protein translocation to the ER), transcrip-
tion factors (EIF4A) and secretory pathway proteins were to be
expected. However, it 1s highly significant that many of the novel
changes in proteins reported here which were detected as more
abundant upon Epo withdrawal are multifunctional proteins such
as Hsp90, 14-3-3 isoforms, SET and RPSA that have undergone
proteolysis (Table 1). These proteins regulate diverse cellular
processes, including cell proliferation. Thus abrogating the
function of these proteins through proteolysis would influence
multiple signaling pathways simultaneously, blocking proliferation
and ensuring a rapid execution of cell death. It is also important to
note that Hsp90, SET, RPSA have all been implicated in
myeloproliferative neoplasms. Hsp90 is a therapeutic target in
JAK2-dependent myeloproliferative neoplasms [37], RPSA is
highly expressed in Acute Myeloid Leukaemia (AML) [38] and
SET expression is induced in Chronic Myelogenous Leukemia
(CML) [39].

The Hsp90 proteins are chaperones to a multitude of client
proteins, most of which are involved in signal transduction (i.e.
Jak2, Pim-1, Akt/PKB) and inhibition of Hsp90 disrupts multiple
pathways essential to cell survival [40]. Of interest, Hsp90 protects
the pro-survival protein Pim-1 from proteasomal degradation [41]
and we also found that Epo-withdrawal in our system leads to loss
of the Pim-1 (data not shown). Caspase cleavage of Hsp90 has
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been reported previously [34] but never for Epo withdrawal. To
our knowledge Hsp90 beta isoform cleavage during apoptosis has
never been reported. Furthermore, our observation that both
Hsp90 isoforms are phosphorylated upon Epo withdrawal is
significant because phosphorylation is reported to negatively
regulate Hsp90 client protein interactions [42]. Additional studies
are required to determine the role of Hsp90 alpha and beta
phosphorylation sites during Epo withdrawal and to establish
whether phosphorylation is important for inducing caspase-
mediated cleavage of Hsp90 or occurs post-caspase cleavage.
One possibility is that Hsp90 phosphorylation couples the caspase
cleavage to proteasomal degradation, similar to nascent polypep-
tide associated complex alpha subunit phosphorylation [43].

The 14-3-3 proteins also regulate diverse cellular processes
including cell cycle progression, proliferation and apoptosis by
functioning as chaperones and adaptors targeting more than 200
proteins [44]. Mechanistically, 14-3-3 proteins can contribute to
suppression of apoptosis by sequestration of pro-apoptotic client
proteins. For instance 14-3-3 proteins bind phosphorylated Bad,
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Table 8. Confirmation of protein phosphorylation during 12 hour SDL.
Potential site of
Protein name Accession Number Peptide sequence phosphorylation lon score
Heat shock protein HSP P07900 ELISNSSDALDKIR Ser 50 35
90-alpha
ELISNsSDALDKIR Ser 52 51
ELISNSsDALDKIR Ser 53 45
ADLINNLGtIAK Thr 104 33
EVsDDEAEEKEDK Ser 231 39
DKEVsDDEAEEK Ser 231 53
EsEDKPEIEDVGSDEEEEK Ser 252 30
ESEDKPEIEDVGSDEEEEKK Ser 252 30
EEKESEDKPEIEDVGSDEEEEK Ser 252 36
ESEDKPEIEDVGsDEEEEK Ser 263* 49
EEKESEDKPEIEDVGsDEEEEK Ser 263* 44
Heat shock protein HSP P0O8238 ADLINNLGtIAK Thr 104 33
90-beta
EKEIsDDEAEEEK Ser 226 56
EISDDEAEEEKGEK Ser 226* 28
Nascent polypeptide- Q13765 VQGEAVSNIQENtQTPTVQEESEEEEVDETGVEVK Thr 157 24
associated complex subunit
alpha
VQGEAVSNIQENTQtPTVQEESEEEEVDETGVEVK Thr 159 32
VQGEAVSNIQENTQTPtVQEESEEEEVDETGVEVK Thr 161* 38
VQGEAVSNIQENTQTPTVQEESEEEEVDETGVEVK Ser 166 52
VQGEAVSNIQENTQTPTVQEESEEEEVDEtGVEVK Thr 174 23
12 hour SDL samples were fractionated by 2D PAGE and then hyper-phosphorylated spots previously identified by mass spectrometry as HSP90 alpha, Hsp90 beta and
nascent polypeptide associated complex alpha subunit were subjected to Nano LC mass spectrometry to detect phosphopeptides as outlined in the materials and
methods. It should be noted that for some peptides there may be more than one possible phosphorylation site, so we have included all possibilities and known
phosphorylation sites within the peptide has been indicated with an *. For some peptides there are more than one possible phosphorylation site and so all matched
options are presented. *Indicates a known reported phosphorylation site [43,61].
doi:10.1371/journal.pone.0038356.t008

promoting cell survival [45]. In addition, 14-3-3 proteins also
regulate FOXO protein localisation, which in the absence of 14-3-
3 binding would migrate to the nucleus and initiate transcription
of pro-apoptotic proteins [46]. Thus cleavage of multiple 14-3-3
proteins as seen here during Epo withdrawal may initiate or
potentiate other pro-apoptotic pathways.

The SET and RPSA proteins are less well studied but both
proteins are involved in a broad range of cellular processes and
were cleaved after Epo withdrawal. SET is also known as the
inhibitor of protein phosphatase 2A (I2PP2A, [47] or the myeloid
leukaemia associated oncoprotein SET/TAF-18 [48]). It is a
potent inhibitor of phosphatase 2A (PP2A) and interacts with
several proteins involved in the regulation of cell cycle [49].
Interestingly, the abundance of the SET binding protein
ribonucleoprotein A2 (spot 4, Table 1) increased in SDL but we
did not confirm whether this protein was cleaved. Ribonucleo-
protein A2 protein is also overexpressed in a variety of human
tumours and is a potent inhibitor of phosphatase 2A [50]. RPSA is
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a protein of the 40S ribosomal subunit as well as a cell surface
protein that binds laminin, prion proteins and viruses [51].

Apart from our novel observation here that both Hsp90 alpha
and Hsp90 beta are cleaved in pro-erythroblasts deprived of Epo,
we also report that several Hsp90 co-chaperones have altered
abundance in living and apoptotic pro-erythroblasts. p23/PTGE23,
a member of the Hsp90 chaperone complex suggested to stabilise
the Hsp90-ATP form [52] is more abundant in cells maintained in
the presence of Epo (spot 43, Table 5). In contrast, cells deprived of
Epo exhibit an increase in full length or cleaved peptidyl-proyl cis—
trans isomerase (PPlase) immunophilin FKBP4/FKBP52 (spots 15
and 20, Table 2), which is known to bind Hsp90 and Hsp70 and is
important for the intracellular trafficking of the steroid hormone
receptors [53]. Cells cultured in ESDL have a higher abundance of
Hspl105 (HspH1) and Hsp70 (HspA4) (spot 35, Table 4 and spot 38
Table 5, respectively). Hsp70 prevents Gata-1 cleavage by caspase 3
[18] and AIF translocation to the nucleus [19]. On the other hand,
phosphorylation of Hsp27 is induced in cells deprived of Epo (spot
2, Table 6). Although we did not confirm the phosphorylation or
identity of the specific phosphorylation site(s) on Hsp27, it is notable
that Hsp27 phosphorylation is required for its association with
GATA-1 and for inducing GATA-1 degradation [54]. Taken
together these results provide further evidence that chaperone
proteins play an essential role in the regulation of Epo-induced
survival in erythroblasts.

Commitment to apoptosis is post-translationally regulated by
reversible phosphorylation of apoptotic signalling proteins. The
abundance of several signalling proteins are altered between the
two conditions some of which have already been mentioned
above. In ESDL, the serine/threonine kinase p21 protein (Cdc42/
Rac)-activated kinase 2 (PAK2, spot 52, Table 5) was up-
regulated. PAK?2 is cleaved by caspases during apoptosis [53]
and its up-regulation in living cells in this study might result from
loss of full length PAK2 by proteolysis in dying cells (although a
smaller fragment was not identified in SDL). In apoptotic
erythroblasts, the serine/threonine phosphatase PPlalpha
(PPP1CA, spot 25, Table 4) increased in abundance. PPlalpha
is known to be pro-apoptotic because it dephosphorylates the pro-
apoptotic protein Bad [56].

Finally, several proteins involved in mRNA processing, transla-
tion and post-translational modifications were altered in presence or
absence of Epo (see Tables 1-5). Interestingly, the heterogeneous
nuclear ribonucleoprotein K (hnRNPK) which is detected as less
abundant upon Epo withdrawal (spot 41, Table 5) has been shown
to prevent the production of the pro-apoptotic BclXs splice isoform
[57] and BclX is well documented to be an Epo-responsive protein
important for the survival of erythroblasts at the later stages of
erythropoiesis [58]. Ribonucleoprotein C1/C2 detected both in
ESDL (Spot 42, Table 5,) and SDL (smaller Spot 16, Table 2) is
reported to be induced by stimulators of apoptosis and p53, and has
been proposed to regulate p5>3 mRNA during apoptosis [59].
Furthermore, Polypyrimidine tract binding protein 1 was increased
in ESDL (spot 34 Table 4, and spot 39 Table 5) and this protein is
reported to regulate apoptotic genes and susceptibility to caspase
dependent apoptosis in differentiating cardiac myocytes [60].
Further work will need to be carried out to determine the roles of
these proteins in survival and death of erythroblasts.

In summary, we have conducted the first ever comparison of the
proteomes of expanding primary human erythroblasts and primary
human erythroblasts undergoing the early phase of apoptotic death
due to Epo withdrawal. This study has dramatically increased the
repertoire of proteins that alter abundance during Epo withdrawal.
In particular we report for the first time that several key multi-
functional proteins are cleaved in response to Epo withdrawal from
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erythroblasts. Two of these proteins, Hsp90 alpha and Hsp90 beta,
were also shown to be phosphorylated in apoptotic cells and we
have identified these phosphorylation sites. This study validates the
use of 2D DIGE to gain a comprehensive insight into cellular events
leading to apoptosis in erythroblasts and as a means of identifying
proteins whose aberrant regulation may contribute to human blood
diseases. Furthermore, we provide an exciting new resource of
candidate proteins, which will form the foundation for further
studies on the mechanism of apoptosis caused by Epo withdrawal
and also for studies on human diseases where there is ineffective
erythropoiesis.

Supporting Information

Figure S1 A) Flow cytometry analysis of cell surface markers
expressed by erythroblasts between day 6 and day 10 in culture in
ESDL medium. FL2 fluorescence (x axis) versus cell number (y axis)
of cells labelled with the isotype control antibody (grey line) and
antibodies against CD117/c-kit, CD71, GPA (BRIC256) and
band3 (BRIC6). By day 9 the majority of cells are are c-kit"
positive, CD71"8" GPA*"/™4 and band 3°*/"¢ B) Graph
showing the average percentage of live erythroblasts after 24 h in
ESDL or SDL, normalised to the percentage of live cells in ESDL
between day 7 and day 10. This shows that similar level of cell death
is achieved irrespective of the number of days expanding in culture.
(TIF)
Figure $2 The expression of Fas and FasL was analyzed
by flow cytometry for Fas and FasL expression on day 9
erythroblasts after 24 hours in the presence (ESDL) or
absence (SDL) of Epo. The figure shows that erythroblasts
from both treatments express Fas. In contrast, the expression of
FasL in these cells was absent and this did not change upon
withdrawal of Epo.
(TIF)
Figure S3 Erythroblasts kept in expansion medium
(ESDL, +Epo, green histograms) and erythroblasts
switched to SDL (no Epo, pink histograms) were
analysed by flow cytometry using Annexin V, TMRE
and propidium iodide at 6 hours, 12 hour and 24 hour.
After 12 hour, the cells switched to SDL start showing signs of
apoptosis and this time point was chosen for proteomic analyses by
2D DIGE. (TIF)
Table S1. Table S1 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 1.

DOCX)

Table S2 Table S2 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 2.
(DOCX)

Table S3 Table S3 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 3.
DOCX)

Table S4 Table S4 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 4.
DOCX)

Table S5 Table S5 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 5.
DOCX)
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Table S6 Table S6 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 6.
(DOCX)

Table S7 Table S7 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 7.
(DOCX)
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