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Abstract

The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo
removal on primary human erythroblasts grown from peripheral blood CD34+ cells. The erythroblasts died rapidly from
apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive.
Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of
mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE
approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic
comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth
conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed
that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-
3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously.
We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90
alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global
changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire
of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective
erythropoiesis.
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Introduction

Red blood cell production in the bone marrow is maintained by

a delicate balance between erythroid cell proliferation, differen-

tiation and apoptosis. This process is regulated by Erythropoietin

(Epo), Stem Cell Factor (SCF) and glucocorticoids [1,2]. Epo is a

34 kD glycoprotein produced primarily by the kidney and its

production increases under hypoxic conditions [3]. It is essential

for erythropoiesis [4] and the availability of Epo is known to

facilitate the survival of erythroblasts during the Epo-dependent

stage of erythropoiesis [5]. Epo acts by binding to its cognate

receptor, the single transmembrane erythropoietin receptor

(EpoR) [6]. EpoR lacks kinase activity but Epo binding triggers

the activation of the Janus family protein tyrosine kinase 2 (JAK2)

[7], which in turn phosphorylates tyrosine residues in EpoR,

creating docking sites for intracellular signalling proteins such as

phosphatidylinositol 3-kinase [8], SHP1 [9] and STAT5 [10].

These events lead to the activation of multiple signal transduction

pathways and specific gene expression that result in the survival,

proliferation, and differentiation of erythroblasts [11].

During homeostatic bone marrow erythropoiesis 16% of the

erythroblasts die of apoptosis but this level of apoptosis is reduced

by increased Epo [12]. Determining the molecular mechanisms

behind the action of Epo is essential for our understanding of

erythropoiesis in the bone marrow, thereby helping to efficiently

reproduce erythropoiesis in vitro. It is also important for the

development of novel erythropoiesis-stimulating agents and for

understanding Epo’s cytoprotective action on other cell types [13].

It is also relevant to human disease since apoptotic mechanisms

are implicated in the development of anaemia in myelodysplasia

[12]. Understanding how Epo withdrawal induces apoptosis may

also help improve apoptosis-inducing treatments of erythroid and

non-erythroid leukaemia and identify the signalling pathways

important for leukemic progression of specific leukemic clones.

Several molecular pathways involved in the induction of

apoptosis in response to Epo withdrawal have been identified.

For instance, studies on mice have shown that Epo inhibits pro-

apoptotic Bim [14] and Bad [15] and induces anti-apoptotic

SERPINA-3G and TRB3 [16]. In primary human erythroblasts,

Epo inhibits pro-apoptotic GSK3 beta [17]. In addition,

chaperone proteins play an important role in human erythroblast

cell survival with Hsp70 preventing the transcription factor Gata-1

from being cleaved by Caspase 3 [18] and inhibiting the nuclear
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import of Apoptosis-inducing Factor (AIF) [19]. Another chaper-

one protein Mortalin has also been identified as a mediator of Epo

signalling [20].

To further our understanding of how Epo withdrawal induces

apoptosis, we adopted a 2 Dimensional fluorescence difference gel

electrophoresis (2D DIGE) proteomics approach coupled with

mass spectrometry to compare the proteomes of expanding

erythroblasts with that of erythroblasts undergoing apoptosis due

to Epo removal. Using this methodology we identified in an

unbiased fashion, novel key reproducible alterations in the

proteome of primary human erythroblasts +/2Epo. In particular,

our results highlight that within 12 hours of Epo withdrawal,

several multi-functional proteins are cleaved, including SET,

RPSA, Hsp90 and 14-3-3- proteins. The proteolysis of proteins

pivotal to many pro-survival cellular signalling cascades may be

vital to ensure that the cell enters apoptotic cell death, and

interestingly, aberrant regulation of these proteins is already

known to occur in human diseases.

Materials and Methods

Erythroid Cell Culture
Waste peripheral blood from anonymous donors was provided

with written informed consent for research use given in

accordance with the Declaration of Helsinki (NHSBT, Filton,

Bristol). The research into the mechanisms of erythropoiesis was

reviewed and approved by the Southmead Research Ethics

committee 08/05/2008 REC Number 08/H0102/26. Mononu-

clear cells (PBMCs) isolated from waste peripheral blood were

washed in PBS, and the CD34+ cells isolated using anti-CD34+-

ligated magnetic beads and the Magnetic Activated Cell Sorting

system (MiniMACS) according to the manufacturer’s instructions

(Miltenyi Biotech, UK). In order to minimise changes due to

donor variation, erythroblasts were expanded from four different

donors using culture conditions as described previously [21,22].

For the first 4 days, cells were maintained in Stemspan (Stemcell

Technologies) supplemented with 2 U/ml Epo (NeoRecormon,

Roche), 10 ng/ml recombinant SCF (R&D Systems), 1 mM

Dexamethasone (Sigma), 1:200 cholesterol-rich Lipids (Sigma),

1 ng/ml IL-3 (R&D Systems), and Penicillin/Streptomycin

(Sigma). Cells were then transferred to expansion medium ESDL

which was identical except for the omission of IL-3. For

comparison of the effects of Epo removal, CD34+ derived

erythroblasts at day 9 (i.e. 4 days in ESDL+IL-3 followed by 5

days in ESDL only) were washed three times in PBS, seeded at

1.26106 cells/ml in fresh expansion medium in ESDL or SDL

(expansion medium lacking EPO) and cultured for another 6 hour,

12 hour or 24 hour, as indicated. To obtain cell lysates for Western

blotting and 2D-DIGE analysis, the cells were harvested by

centrifugation, washed once with PBS, snap frozen in liquid

nitrogen and stored at -80uC until further processing.

Flow Cytometry
0.220.56106 cultured erythroid progenitors were washed in

ice-cold PBS containing 1% (w/v) BSA (PBS-1%BSA) and

incubated with the primary antibody for 1 hour. Primary

antibodies used include BRIC6 (Band 3, IBGRL, Bristol, UK),

BRIC 256 (Glycophorin A, IBGRL, Filton, Bristol), anti-Fas

(CD95; Monoclonal antibody LOB 3/17, Serotec), anti-FasL

(CD178; monoclonal antibody 10F2, Serotec) and suitable mouse

IgG control antibodies (Dako). Primary antibodies were washed in

ice-cold PBS-1% BSA and rabbit anti-mouse RPE-conjugated

antibodies (Dako) were added for 30 min in the dark at 4uC.

Directly conjugated antibodies used were anti-c-kit/CD117 (RPE-

conjugated, BD Pharmingen, 555714) and anti-CD71 (RPE or

APC-conjugated, BD Pharmingen, 555537). To measure apoptot-

ic cell death, cultured erythroblasts were labelled with Annexin V-

FITC, together with Propidium Iodide according to the manu-

facturer’s instructions (Arcus Biologicals). To measure mitochon-

drial membrane potential (DY), tetramethylrhodamine ethyl ester

perchlorate (TMRE, Sigma) was used. Erythroblasts were washed

in PBS, resuspended in PBS containing 25 nM TMRE. To

quantify caspase activation by flow cytometry, Caspase-3,

Caspase-8 and Caspase 9 detection kits were used according to

the manufacturer’s instructions (Calbiochem). Fluorescent signals

were measured using a Coulter EPICS XL-MCL flow cytometer

(Beckman Coulter, HighWycombe, UK) or a FACS CantoII-F60

machine (BD Biosciences). All data was analysed using the Flowjo

7.2.5 software (Flowjo, Ashland, OR, USA).

Cytospins
2.56104 cells were cytospun onto glass slides, fixed in methanol

and stained with May Grünwald/Giemsa stains according to the

manufacturer’s protocol. Images were taken with an Olympus

CX31 microscope coupled to an Olympus LC20 camera using a

50x (0.75NA) lens and processed using Adobe Photoshop 9.0

(Adobe).

Subcellular Fractionation to Detect Cytochrome C
Release into the Cytosol

Cytochrome c release into the cytosol was assessed as previously

described [23]. Cells (26106) were washed in PBS, resuspended in

50 ml of buffer (140 mM mannitol, 46 mM sucrose, 50 mM KCl,

1 mM KH2PO4, 5 mM MgCl2, 1 mM EGTA, 5 mM Tris,

pH 7.4) supplemented with a mixture of protease inhibitors

(Complete Mini-EDTA Free, Roche) and digitonin at a final

concentration of 40 mg/ml. Cells were permeabilised on ice for

10 min and centrifuged at 12,0006g for 10 min at 4uC.

Supernatant and pellet fractions were subjected to Western blot

analysis.

Western Blotting
5x106 cells were lysed for 10 min on ice in lysis buffer (20 mM

Tris-HCl, pH 8.0, 137 mM NaCl, 10 mM EDTA, 100 mM NaF,

1% (v/v) Nonidet P-40, 10% (v/v) glycerol, 10 mM Na3VO4,

2 mM PMSF and protease inhibitors, Calbiochem). Protein

concentration determined by Lowry assay (Bio-Rad). Lysates were

separated by SDS-PAGE and immunoblotted. Primary antibodies

used (with catalog numbers in brackets) were Caspase 8 (1C12,

9746), Caspase 9 (9502), cleaved Caspase 3 (9664), Hsp90beta

(5087) and Lamin A/C (2032) from Cell Signalling Technology;

Hsp90alpha (mAb 9D2, SPA-840) from Enzo/Stressgen; Actin (sc-

1616 rabbit), RPSA (Laminin-R (16), sc-101517) and SET

(I2PP2A, sc-5655) from Santa Cruz; Cytochrome C (Clone

7H8.2C12, 556443) from BD Pharmingen; Bax (anti-Bax NT,

06–499), 14-3-3 beta (AB9730), 14-3-3 epsilon (clone CG31-2B6,

05-639) and 14-3-3 gamma (AB9734) from Millipore/Upstate Cell

Signalling and Hsc70 (ab19136) from Abcam.

Immunofluorescence Microscopy
1.5-26105 erythroblasts were left to adhere on poly-L-lysine

coated coverslips (mol wt 70,000–150,000, 0.01% w/v solution;

Sigma) for 30 min at 37uC, 5% CO2 before fixation using 4%

formaldehyde (TAAB Laboratories Ltd, Aldermaston, England,

UK) in PBS for 15 min. For some experiments, 100 nM

MitoTrackerH Red CMXRos (Invitrogen) was included. Cells

were washed in PBS and then permeabilised with 0.2% (w/v)

Proteomic Analysis of Apoptotic Erythroblasts
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Triton X-100 in PBS for 5 min or ice-cold methanol for 1 min.

Cells were washed in PBS, blocked for 20 min in PBS-4%BSA and

incubated for 1 hour in primary antibodies diluted in PBS-1%

BSA. After further washes in PBS, cells were incubated for 1 hour

with secondary antibodies in PBS-1% BSA. After 365 min washes

in PBS, cells were stained with Hoechst (2 mg/ml, Invitrogen) for

5 min, washed and mounted over MOWIOL 4-88 (Calbiochem)

containing 0.6% 1,4-diazabicyclo-(2.2.2)octane (DABCO, Sigma)

as an anti-photobleaching agent. Confocal microscopy was

performed using a Leica AOBS SP2 confocal microscope (x63/

1.4 oil-immersion objective). A serial Z stack at 0.5 mm intervals

was taken and a projected image produced using Leica software.

The primary antibodies used include Bak-NT and Bax-NT

(Upstate Cell signalling), and BRIC256 (Glycophorin A). The

secondary antibodies were Goat anti-Mouse or anti-Rabbit, Alexa

488 or Alexa 594 (Invitrogen).

Sample Preparation for 2D- DIGE
Cell pellets (4.5-8606 erythroid progenitors per pellet) were

resuspended in 2D lysis buffer (7 M urea, 2 M thiourea, 4% (w/v)

CHAPS), sonicated in a water bath for 15 min and incubated for 2

hour at room temperature with intermittent vortexing. Solubilised

samples were then precipitated using a 2-D Clean-Up Kit (GE

Healthcare) according to the manufacturer’s instructions and the

resulting pellets were resuspended to a concentration of between 5

and 10 mg/ml in DIGE lysis buffer (30 mM Tris, pH 8.5, 7 M

Urea, 2 M Thiourea, 4% (w/v) CHAPS). 50 mg of each sample

was labeled for DIGE analysis using fluorescent cyanine dyes

according to the manufacturer’s guidelines (GE-Healthcare). In

brief, samples were labeled using Cy3 or Cy5 N-hydroxysuccina-

mide (NHS) ester DIGE dyes freshly dissolved in anhydrous

dimethylformamide by mixing 50 mg protein with 1 mL CyDye

(400 pmol/mL). An internal standard was generated by pooling all

samples in the experiment and labelling with a third dye, Cy2. In

each case, the labelling reaction was allowed to proceed on ice in

the dark for 30 min. The reaction was terminated by the addition

of 10 nmol lysine and subsequent incubation on ice in the dark for

an additional 10 min.

2D Gel Electrophoresis
Each Cy3- and Cy5-labelled sample pair was mixed with an

aliquot of the Cy2-labelled internal standard and Destreak

rehydration solution (GE Healthcare) containing 0.5% (v/v) IPG

Buffer pH3-11NL added to give a total volume of 450 mL. This

was loaded onto a 24 cm Immobiline DryStrip gel (pH 3–11 non-

linear) by passive rehydration for a minimum of 12hour. Following

rehydration, the DryStrip gel was transferred to an Ettan IPGPhor

3 system (GE Healthcare) and isoelectric focusing performed

according to the manufacturer’s instructions (in brief, by applying

500 Volts for 1 hour, increasing to 1,000 Volts over 1 hour, and

then to 10,000 Volts over 3 hours and held at 10,000V for a

further 2.5 hour). After isoelectric focusing, strips were equilibrat-

ed in SDS equilibration buffer (50 mM Tris-HCl, pH 8.8, 6 M

urea, 30% (v/v) glycerol, 2% (w/v) SDS, and 0.002% (w/v)

bromphenol blue) containing 1% (w/v) DTT for 15 min at room

temperature followed by a second incubation in SDS equilibration

buffer containing 2.5% (w/v) iodoacetemide for 15 min at room

temperature. After equilibration, strips were applied to 12.5% (w/

v) SDS-PAGE gels and run at 5 mA per gel for 1 hour, 8 mA per

gel for an additional hour and then at 13 Watts/gel until

completion on an Ettan DALT-6 separation unit (GE Healthcare).

Each gel was scanned at three separate wavelengths using a

Typhoon 9400 variable mode imager (GE Healthcare) to generate

Cy3, Cy5 and Cy2 images. Determination of protein spot

abundance and analysis of protein expression changes between

samples was conducted on DeCyder V6.5 software (GE Health-

care). Spots which were present in all samples and which showed a

change in average ratio of +1.3 or -1.3 fold with a t-test of p,0.05

were chosen for identification by mass spectrometry. Analysis of

the DIGE gels using the DeCyder software identified 2437 spots in

the master gel; of these, 1569 were reproducibly detected and

quantified in all 4 gels used in the experiment. Only spots that

were detected in all 4 gels (i.e. in all 4 independent DIGE

experiments) were selected for identification by mass spectrometry.

Proteolytic Digestion and Mass Spectrometry
For preparative gels, pooled samples were generated by

combining 100 mg of each SDL or ESDL sample prior to DIGE

labelling. Following 2D-PAGE (as above), the resulting gels were

stained using SYPROH Ruby total protein stain (Invitrogen) and

visualised using a Typhoon 9400 variable mode imager (GE

Healthcare). Spots selected for Mass spectrometry were picked

using the Investigator ProPic Automated 2-D spot picker and

digested with trypsin using the ProGest automated digestion unit

(both from Digilab UK Ltd). The resulting peptides were then

subjected to Mass Spectrometry. Mass spectra were recorded in

positive ion mode on an Applied Biosystems 4700 MALDI mass

spectrometer. MS spectra were recorded in reflector mode. For

MSMS analysis the top 5 most intense, non-tryptic, precursors

were selected for fragmentation by collision induced dissociation.

Neither baseline subtraction nor smoothing were applied to

recorded spectra. MS and MSMS data were analyzed using GPS

Explorer 3.5 (Applied Biosystems). MS peaks were filtered with a

minimum signal to noise ratio of 35 and to exclude masses derived

from trypsin autolysis. MSMS peaks were filtered to exclude peaks

with a signal to noise ratio less than 35 over a mass range of

50Dalton to 20Dalton below the precursor mass. The mass

spectral data for each spot was subjected to a combined analysis

using the MASCOT algorithm (Matrix Science) against the

NCBInr Human database. The combined analysis uses the initial

MS spectra as a peptide mass fingerprint with supporting sequence

data provided by up to 5 MSMS spectra per spot. A maximum

number of missed cleavages of 1 and a charge state of +1 were

assumed for precursor ions. A precursor tolerance of 100 ppm and

an MSMS fragment tolerance of 0.15Dalton were used in the

database search. Routinely, samples were analysed with methio-

nine oxidation considered as a variable modification and

carbamidomethylation of cysteine as a fixed modification.

Protein Phosphorylation
To analyse changes in protein phosphorylation between control

(ESDL) and test (SDL) samples, two 2D preparative gels were

prepared as above containing pooled protein (100 mg each) of the

4 ESDL or SDL cultures. These were stained for phosphoproteins

using Pro-Q Diamond phosphoprotein stain (Invitrogen) and

imaged using a Typhoon 9400 Variable Mode Imager (GE

Healthcare). Gels were then stained for total protein using

SYPROH Ruby protein gel stain (Invitrogen) and imaged again.

Differences in the pattern of protein phosphorylation were

identified using ImageQuant v5.2 software and the corresponding

spots were excised from the SYPROH Ruby stained gel and

identified by mass spectrometry (as described above). The 12 hour

SDL 2D PAGE gels were reproduced again in duplicate, using

400 mg protein loaded per gel from two further independent

experiments. The equivalent spots were then subjected to Nano

LC Mass Spectrometry. Briefly, selected spots were excised and

subjected to in-gel tryptic digestion using a ProGest automated

digestion unit (Digilab UK). The resulting peptides were

Proteomic Analysis of Apoptotic Erythroblasts
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Figure 1. Epo removal induces apoptosis of erythroblasts. A) Cytospins of 2 separate erythroblast cultures obtained after 9 days in culture in
ESDL medium and of erythroblasts after 24 hour in ESDL or SDL (scale bar is 20 mM). B) Flow cytometry analysis of cell surface markers expressed by
erythroblasts after 8 days in culture in ESDL medium. FL2 fluorescence (x axis) versus cell number (y axis) of cells labelled with the isotype control
antibody (dotted grey line) and antibodies against CD117/c-kit, CD71, GPA (BRIC256) and Band 3 (BRIC6) (thick black line). C) Flow cytometry analysis
of Annexin V (FL1) and Propidium Iodide (PI, FL3) labelling of erythroblasts kept for 24 hour in ESDL or SDL. In this representative experiment, 90% of
the cells kept in ESDL are alive (Annexin V and PI negative) compared to only 28% in SDL. D) Graph showing the average percentage of live
erythroblasts kept for 24 hour in ESDL or SDL, normalised to the percentage of live cells in ESDL. After 24 hour, only 37% of the cells in SDL are live
(AnV/PI negative, with a standard deviation of +/215%, n = 15). E) Flow cytometry analysis of mitochondrial membrane potential (DY) using TMRE. In
this representative experiment, the FL2 fluorescence for erythroblasts cultured for 24 hour in ESDL (thick black line) is overlayed with that of cells
cultured for 24 hour in SDL (dotted grey line). The loss of TMRE fluorescence indicates a loss of mitochondrial membrane potential (DY). F)
Cytochrome C release into the cytosol. Western blots against cytochrome c and total Bax were carried out on the cytosolic fraction depleted of all
organelles, obtained from erythroblasts kept for 24 hour in ESDL or SDL. Beta actin was used as a loading control. G) Overlay projections of confocal
images taken from erythroblasts grown for 24 hour in ESDL or SDL (blue: DAPI; green: 488 Phalloidin; red: GPA) showing that cells cultured for 24
hour in the absence of Epo have lost their plasma membrane integrity and have fragmented nuclei. H) Translocation of Bax to the mitochondria in
cells kept for 24 hour in SDL. Overlay projections of confocal images taken from erythroblasts grown for 24 hour in SDL (blue: DAPI; green: Bax; red:
Mito-tracker). Scale bar on images represents 5 mm.
doi:10.1371/journal.pone.0038356.g001
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fractionated using a Dionex Ultimate 3000 nanoHPLC system. In

brief, peptides in 1% (v/v) formic acid were injected onto an

Acclaim PepMap C18 nano-trap column (Dionex). After washing

with 0.5% (v/v) acetonitrile 0.1% (v/v) formic acid peptides were

resolved on a 250 mm 6 75 mm Acclaim PepMap C18 reverse

phase analytical column (Dionex) over a 120 min organic gradient

with a flow rate of 300 nl min21. Peptides were ionised by nano-

electrospray ionisation at 2.0 kV using a stainless steel emitter with

an internal diameter of 30 mm (Thermo Scientific). Tandem mass

spectrometry analysis was carried out on a LTQ-Orbitrap Velos

mass spectrometer (Thermo Scientific). The Nano LC was set to

analyse the survey scans at 60,000 resolution and the top twenty

ions in each duty cycle selected for MSMS in the LTQ linear ion

trap. Data was acquired using the Xcalibar v2.1 software (Thermo

Scientific). The raw data files were processed using Proteome

Discoverer software v1.2 (Thermo Scientific) with searches

performed against the SwissProt Human database (54523 entries)

using the Mascot search engine v1.9 (Matrix Science) with the

following criteria; peptide tolerance = 10 ppm, trypsin as the

enzyme, carbamidomethylation of cysteine as a fixed modification

and oxidation of methionine and phosphorylation of serine,

threonine and tyrosine as variable modifications. Individual ions

with Mascot scores higher than 20 were used, making sure the

average peptide scores of all identified proteins exceeded 20, a

threshold commonly used for confident protein identification from

tandem MS data [24]. The reverse database search option was

enabled and all data was filtered to satisfy false discovery rate

(FDR) of less than 5%.

Results

Apoptosis Occurs in Response to Epo Withdrawal in
Cultured Primary Human Erythroblasts

Primary human erythroblasts were cultured from CD34+ cells

isolated from human peripheral blood in presence of Epo, SCF,

Dexamethasone and lipids (ESDL) [21]. This expansion medium

Figure 2. Caspase activation after Epo removal. Western blotting (A) of total cell lysates from one independent culture, harvested after 6 hour,
12 hour and 24 hour in ESDL (+Epo) and SDL (-Epo) using an antibody against cleaved caspase 3, caspase 9, caspase 8, and hsc70 was used as a
loading control. 20 mg of protein lysate was loaded in each well (B) Flow Cytometry analysis of active caspase 8, active caspase 3 and active caspase 9
for ESDL (thick black line) grown cells and SDL (dotted grey line) after 24 hours. Active caspase 9 was detected on a separate culture from the caspase
3 and caspase 9 and using a different flow cytometer.
doi:10.1371/journal.pone.0038356.g002
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(ESDL) allows CD34+ cells to expand and differentiate to the pro-

erythroblast stage, whilst limiting pro-erythroblast terminal

differentiation. During culture in ESDL, expanding erythroblasts

become progressively GPA positive but maintain low or no

expression of the early to late differentiation marker band 3

(Figure S1A). Importantly, throughout the ESDL culture condi-

tions, the cells remained highly sensitive to Epo withdrawal (Figure

S1B). The day 9 time point of expansion was chosen as this

maximised the number of cells for our 2D DIGE experiments but

limited the degree of spontaneous differentiation. At day 9 the

majority of cells had the morphology of pro-erythroblasts

(Figure 1A; counting 40 fields of view from each of two

representative cultures; 2–4% pre-pro-erythroblasts, 79–80%

pro-erythroblasts, and 16–19% basophilic erythroblasts) and are

c-kit+ positive, CD71high, GPAlow/med and band 3low/neg (Figure 1B

and Figure S1A). The cells are also Fas positive but Fas ligand

negative, which is consistent with them being immature erythro-

blasts [25] (Figure S2).

To monitor i) specific alterations in Epo signalling that cannot

be compensated by SCF or dexamethasone and ii) the effect of

Epo withdrawal on cellular processes, day 9 cells were either

maintained in ESDL (+Epo) or SDL (no Epo). Apoptosis and loss

of mitochondrial membrane potential was measured by flow

cytometry using annexin V/PI and TMRE, respectively

(Figure 1C,1D and 1E). After 24 hour of Epo withdrawal, 63%

(+/215%, n = 15) of the cells were Annexin V positive and a sharp

decrease in mitochondrial potential was observed, indicative of

apoptosis (Figure 1D and 1E). Loss of mitochondrial membrane

potential was accompanied by cytochrome c release from the

mitochondria into the cytosol (Figure 1F) and by translocation of

cytosolic Bax to the mitochondria (Figure 1H). Epo removal

further induced DNA condensation and nuclei fragmentation as

well as reduced cortical actin and Glycophorin A staining

(Figure 1G), indicating that these cells have lost the integrity of

their plasma membrane. We also confirmed by Western blotting

and flow cytometry that caspase 3, caspase 8 and caspase 9 were

activated upon 24 hours of Epo removal (Figure 2) [26].

Figure 3. 2D gels and spots identified after Epo removal. (A) 2D gel analysis of total cell lysates harvested after 12 hour in ESDL (+Epo) and
SDL (-Epo). The 11 spots circled on the SDL 2D gel (right gel) were found to be consistently up-regulated in SDL (change of average ratio .2, t-test of
p,0.05) when comparing the four SDL with the four ESDL 2D gels. These 11 spots are described in Table 1. The blue square depicts the region of the
gel shown in Figure 3B. (B) Typical example of a protein differentially represented in the 2 culture conditions, ESDL and SDL. 3D views of spot 5 in
Figure 3A and identified by mass spectrometry as a proteolytic fragment of Hsp90 alpha (see Table 1). The difference in intensity of spot 5 on one SDL
and one ESDL gel is visible by eye on the 2D gels (spot marked with the red boundary) and on the corresponding 3D views. (C) Example graph
showing the amount of protein for spot 5 in all 8 gels (4 SDL gels and 4 ESDL gels), together with the average ratios linked by the blue line.
doi:10.1371/journal.pone.0038356.g003
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Figure 4. Western blot confirmation of protein proteolysis under SDL conditions. Western blotting of total cell lysates harvested from one
independent culture after 6 hour, 12 hour and 24 hour in ESDL (+Epo) and SDL (-Epo) using antibodies against SET, 14-3-3 b, 14-3-3 c, 14-3-3 e, RPSA,
Hsp90 isofoms alpha and beta. 20 mg of protein lysate was loaded per lane. Beta Actin and Hsc70 were used as loading controls. The arrows point to
the smaller proteolytic fragments that occur in apoptotic erythroblasts.
doi:10.1371/journal.pone.0038356.g004
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Furthermore, no Fas Ligand was detectable on pro-erythroblasts

by flow cytometry after 24 hours Epo removal (Figure S2).

2D DIGE Analysis of Primary Human Erythroid Cells 12
Hour After Epo Withdrawal

Proteins identified with a change in average intensity

ratio of .2. To identify global proteome alterations in

erythroblasts after Epo removal, a 2D DIGE approach was

adopted. Late apoptotic events involve the proteolysis of many

proteins and signalling events not directly involved in the initial

induction of apoptosis. After 12 hours in SDL (no Epo), the first

signs of apoptosis were observed by flow cytometry as the cells

become Annexin V positive but are not yet TMRElow or PI+ve

(Figure S3). Therefore, to study the early events leading to

apoptosis, rather than the later downstream events, we studied

proteome changes after 12 hours of Epo removal by comparing

the proteomes of erythroblasts kept in expansion medium (ESDL,

12 hours) with those switched to medium lacking Epo for 12 hours

(SDL, 12 hours).

By comparing 4 independent 2D DIGE experiments, 12 spots

were consistently found to be up-regulated in SDL (apoptotic cells)

with a change in average intensity ratio of .2 and a t-test of

p,0.05. All 12 spots were picked from the gels (SDL, Figure 3A),

and the identities of 11 of these spots were confirmed by mass

spectrometry (Table 1 and Table S1). These include SET, 14-3-3

isoforms (beta, gamma and epsilon), Hsp90 alpha (Figure 3B) and

beta, 40S ribosomal protein SA (RPSA) and non-muscle myosin

heavy chain (myosin 9). Figure 3C illustrates the reproducibility of

the observed alterations in abundance, showing the quantification

of Hsp90 alpha isoform 2 (spot 5). For specific spots (e.g. spots 5

(Hsp90 alpha), 7 (Hsp90 beta) and 9 (Myosin 9)), the molecular

weight of the spot picked for MS analysis was significantly smaller

than the theoretical molecular weight of the full-length protein

(Table 1), possibly as a result of caspase cleavage. Indeed, 9 out of

the 11 proteins identified are known caspase substrates. Western

blot analysis of total cell lysates from a different independent

experiment validated the 2D DIGE proteomic results confirming

the proteolysis of SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon,

Hsp90 alpha, Hsp90 beta and RPSA upon Epo withdrawal

(Figure 4).

Proteins identified with a change in average intensity

ratio of . +/21.3. When the cut-off value of change in average

intensity ratio was lowered to . +1.3 (t-test of p,0.05) an

additional 19 spots exhibited an increased abundance in SDL. Of

these, 14 were picked from the gels (the 5 other spots were deemed

too faint to pick) and 11 were identified by mass spectrometry

(Table 2 and Table S2). These include splicing factors, actin and

actin binding protein cofilin-1, lamin A/C (cleaved), peptidyl-

propyl cis trans isomerase FKBP4 and carbonic anhydrase.

Western blot analysis confirmed proteolysis of lamin A/C during

Epo withdrawal (Figure 4). 13 spots were found to be up-regulated

in ESDL with a change in average ratio below ,-1.3 and a t-test of

p,0.05. Of these, 6 were picked and identified by mass

spectrometry, including BTF3, a SUMO activating enzyme,

RPSA (full length), polypyrimidine tract binding protein1 and

Hsp105 (Table S3).

By monitoring the intensity of each spot across the 4

independent 2D DIGE experiments, we observed that spots from

one sample pair (SDL and ESDL) were consistently outliers (see

Figure 3C for an example of the Hsp90 alpha result). After

exclusion of one sample pair, an additional 10 spots were found to

be up-regulated in SDL with a change in average ratio above .1.3

and a t-test of p,0.05. Of these, 7 were picked and identified by

mass spectrometry (Table 4 and Table S4) including several

enzymes, ubiquitin-conjugating E2 enzymes, and the serine/

threonine protein phosphatase PP1-alpha catalytic subunit.

Furthermore, after exclusion of this sample pair, an extra 20

spots had increased abundance in ESDL with a change in average

ratio below ,-1.3 and a t-test of p,0.05. Of these, 18 spots were

picked from the gels, of which 14 were identified by mass

spectrometry (Table 5 and Table S5) including secretory pathway

proteins (clathrin and dynactin), Hsp70, the Hsp90 co-chaperone

p23, lamin A/C (full length), splicing and ribonuclear proteins,

and the serine/threonine protein kinase PAK2.

Investigating the changes in protein phosphorylation within the

proteome after Epo withdrawal revealed 13 phospho-protein

changes between ESDL and SDL (Figure 5). Of these 13 spots, 9

had increased phosphorylation in SDL compared to ESDL and

these were identified by mass spectrometry (Table 6 and Table

S6). The proteins detected as having potentially increased

phosphorylation in SDL conditions included nascent polypeptide

Figure 5. ESDL and SDL 2D gels stained for phosphoproteins. 2D gels of total cell lysates pooled from the 4 experiments harvested in 12 hour
ESDL (+Epo) or SDL (no Epo) were stained with Pro-Q Diamond to detect phosphoproteins. Changes in protein phosphorylation between the two
culture conditions were identified using Image Quant v5.2 software analysis and the corresponding spots (4 spots in ESDL circled in blue and 9 spots
in SDL circled in red), were picked and analysed by mass spectrometry and are listed in Table 6 and Table 7.
doi:10.1371/journal.pone.0038356.g005
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associated complex alpha subunit (NACA), Hsp27, Hsp90 alpha

and beta, and lamin A/C. The other 4 spots with altered

phosphorylation profiles were increased in ESDL and from these 5

proteins were identified by mass spectrometry (Table 7 and Table

S7) including matrin-3, nucleolin, splicing factor 1 and an

initiation factor.

To confirm phosphorylation and identify possible phospho-sites

on Hsp90 alpha and beta proteins, and nascent polypeptide

associated complex alpha protein after Epo withdrawal, 2

additional independent 12 hour SDL samples were run on

separate preparative 2D gels. Spots corresponding to NACA (spot

1), Hsp90 alpha (spot 4) and Hsp90 beta (spot 6) were picked,

pooled, digested and analysed by Nano LC mass spectrometry.

This technique confirmed the phosphorylated status of these

proteins and we were able to identify several known and novel

phospho-peptides (Table 8). It should be noted that for some

peptides there was more than one possible phosphorylation site, so

we have included all possibilities and the known phosphorylation

site within the peptide has been indicated in Table 8.

Discussion

In this study we sought to determine the global proteome

alterations that occur in erythroblasts during Epo withdrawal. We

have shown that Fas-L independent cell death occurs in immature

erythroblasts during Epo withdrawal and observed activation of

both caspase 8 and caspase 9, alongside other classical features of

the ‘‘intrinsic’’ apoptosis pathway. Caspase activation and

apoptosis proceed through one of two major pathways, namely

the ‘extrinsic’ pathway triggered by death receptor ligation and

activation of the initiator caspase 8, or the ‘intrinsic’ pathway

characterised by mitochondrial outer membrane permeabilisation

(MOMP), cytochrome c release into the cytosol and activation of

the initiator caspase 9 [27]. Both pathways then converge on

activating executioner caspases, such as caspase 3 [27]. There is

evidence that crosstalk can occur, as caspase 8 activation leads to

cytochrome c release into the cytosol via tBid [28]. Conversely,

caspase 8 activation downstream of caspase 9 has been reported

[29]. Growth factor withdrawal from haematopoietic cells is

generally thought to result in the activation of the mitochondrial

pathway [30,31] and our studies are supportive of this. Further

studies are required to determine the exact sequence of caspase

activation, to specifically delineate which apoptotic pathway

(extrinsic or intrinsic) is activated first and whether caspase 8 is

activated downstream of caspase 9 or by a death receptor ligand

(other than Fas-L) which is yet to be identified.

We used a 2D DIGE proteomic approach to provide a snapshot

of the key differences in the proteomes of erythroblasts under

continual expansion and erythroblasts undergoing apoptosis due

to Epo deprivation. Overall we observed more alterations in

protein abundance in apoptotic cells, probably because in this state

cellular proteins are undergoing proteolytic cleavage by caspases

or putative unknown proteases, and the resulting shift in size

makes these proteins more evident in apoptotic cells. Indeed

proteins known to be caspase targets were highly represented in

our analysis (59% of the proteins identified (i.e. 34 proteins out of

57 in total, Tables 1–7) are known to be cleaved by caspases [32]).

It is possible that proteolysis is not solely caspase-mediated but also

due to cleavage by other types of proteases activated during

apoptosis. However, caspases are the main proteolytic enzymes

activated during apoptosis [33] and we confirmed activation of

caspases in our culture system upon Epo withdrawal (Figure 3).

Furthermore, the molecular weights of the proteolytic fragments

detected in the lysates of apoptotic cells (Figure 4) match the
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theoretical molecular weight of the protein fragments that would

be generated by cleavage at the mapped caspase cleavage site. For

example, the caspase cleavage site identified in Hsp90 beta [34] is

conserved in both Hsp90 isoforms. Western blotting conducted on

apoptotic cell lysates detected a proteolytic fragment of ,37 kD

for Hsp90 alpha (N-terminus) and of ,50 kD (C-terminus) for

Hsp90 beta (Figure 4) consistent with the sizes predicted for

caspase cleavage. For 14-3-3 beta, gamma and epsilon, the

molecular weight of the cleaved form was only marginally smaller

than that of the full length proteins, mirroring what has already

been described for caspase-mediated cleavage of 14-3-3 proteins

[35].

It should be noted that although we have identified many

cleaved proteins more abundant in apoptotic cells, we only

detected the equivalent full length protein in the living cells for

RPSA (spot 6 in Table 1 and spot 33 Table 4), Lamin A/C (spot

14 Table 2 and spot 46 Table 5) and Ribonucleoprotein C1/C2.

Moreover, we have identified a range of known caspase substrates

but candidates such as the GATA-1 [18] were not detected by our

analysis. One explanation for this may be that some key changes

are obscured or masked by other proteins present on the 2D gel,

and it is also likely that alterations in low abundant proteins might

not be detected. In addition, approximately 30% of the spots

detected as altered in our experiments were not confidently

identified by mass spectrometry and this may explain some

omissions. Also, the kinetics of proteolysis in response to Epo

withdrawal might vary from protein to protein, such that certain

proteomic changes might not be detected at the 12 hour time point

but could occur earlier or later.

Many of the changes in protein abundance on Epo withdrawal

observed here in our 2D DIGE comparison with living cells, are

consistent with the known characteristic alterations that occur

during apoptosis, reflecting the universal nature of this fundamen-

tal process. Hence, the observed changes in cellular morphology

that occur during apoptosis require alterations in actin and myosin

cytoskeleton and nuclear lamins, whilst essential house keeping

functions such as transcription, translation and the secretory

pathway are targeted for destruction (reviewed by [36]). There-

fore, the observed alterations in the abundance/cleavage of

cytoskeletal proteins (myosin 9, actins, cofilin) and nuclear lamins

(lamin A/C), b-NAC (protein translocation to the ER), transcrip-

tion factors (EIF4A) and secretory pathway proteins were to be

expected. However, it is highly significant that many of the novel

changes in proteins reported here which were detected as more

abundant upon Epo withdrawal are multifunctional proteins such

as Hsp90, 14-3-3 isoforms, SET and RPSA that have undergone

proteolysis (Table 1). These proteins regulate diverse cellular

processes, including cell proliferation. Thus abrogating the

function of these proteins through proteolysis would influence

multiple signaling pathways simultaneously, blocking proliferation

and ensuring a rapid execution of cell death. It is also important to

note that Hsp90, SET, RPSA have all been implicated in

myeloproliferative neoplasms. Hsp90 is a therapeutic target in

JAK2-dependent myeloproliferative neoplasms [37], RPSA is

highly expressed in Acute Myeloid Leukaemia (AML) [38] and

SET expression is induced in Chronic Myelogenous Leukemia

(CML) [39].

The Hsp90 proteins are chaperones to a multitude of client

proteins, most of which are involved in signal transduction (i.e.

Jak2, Pim-1, Akt/PKB) and inhibition of Hsp90 disrupts multiple

pathways essential to cell survival [40]. Of interest, Hsp90 protects

the pro-survival protein Pim-1 from proteasomal degradation [41]

and we also found that Epo-withdrawal in our system leads to loss

of the Pim-1 (data not shown). Caspase cleavage of Hsp90 has

T
a

b
le

6
.

C
o

n
t.

S
p

o
t

N
o

.
Id

e
n

ti
fi

e
d

P
ro

te
in

s
A

cc
e

si
o

n
n

u
m

b
e

r(
G

e
n

e
ID

)
M

o
le

cu
la

r
m

a
ss

(k
D

)
p

I
N

o
o

f
P

e
p

ti
d

e
s

m
a

tc
h

e
d

M
a

sc
o

t
P

ro
te

in
S

co
re

(.
6

6
)

P
re

cu
rs

o
r

io
n

m
a

ss
M

S
M

S
P

e
p

ti
d

e
se

q
u

e
n

ce
Io

n
sc

o
re

E
T

E
T

1
8

0
8

.9
5

8
1

H
SQ

FI
G

Y
P

IT
LY

LE
K

2
3

2
0

1
5

.0
4

4
3

V
IL

H
LK

ED
Q

T
EY

LE
ER

1
6

8
ac

id
ic

le
u

ci
n

e
-r

ic
h

n
u

cl
e

ar
p

h
o

sp
h

o
p

ro
te

in
3

2
fa

m
ily

m
e

m
b

e
r

B

g
i|5

4
5

4
0

8
8

(A
N

P
3

2
B

,
1

0
5

4
1

)
,

1
5

kD
2

8
.8

,
5

3
.8

1
0

9
2

1
5

6
6

.8
1

6
3

LL
P

Q
LT

Y
LD

G
Y

D
R

1
2

1
9

7
2

.9
0

6
9

SL
D

LF
N

C
EV

T
N

LN
D

Y
R

6

9
6

0
S

ac
id

ic
ri

b
o

so
m

al
p

ro
te

in
P

0
g

i|4
5

0
6

6
6

7
(R

P
LP

0
,

6
1

7
5

)
,

3
5

kD
3

4
.3

,
5

.6
5

.8
1

2
1

0
4

1
3

1
3

.7
1

T
SF

FQ
A

LG
IT

T
K

1
6

C
h

ar
ac

te
ri

za
ti

o
n

o
f

p
ro

te
in

s
fr

ac
ti

o
n

at
e

d
b

y
2

D
-P

A
G

E,
st

ai
n

e
d

w
it

h
P

ro
-Q

D
ia

m
o

n
d

p
h

o
sp

h
o

p
ro

te
in

st
ai

n
an

d
id

e
n

ti
fi

e
d

b
y

Im
ag

e
Q

u
an

t
v5

.2
so

ft
w

ar
e

an
al

ys
is

as
b

e
in

g
h

yp
e

r-
p

h
o

sp
h

o
ry

la
te

d
in

SD
L

an
d

th
e

n
id

e
n

ti
fi

e
d

b
y

M
as

s
Sp

e
ct

ro
m

e
tr

y.
Fr

o
m

th
e

9
sp

o
ts

p
ic

ke
d

,
9

d
if

fe
re

n
t

p
ro

te
in

s
w

e
re

id
e

n
ti

fi
e

d
b

y
M

S.
A

fu
ll

lis
t

o
f

al
l

th
e

p
e

p
ti

d
e

s
id

e
n

ti
fi

e
d

fo
r

e
ac

h
sp

o
t

is
g

iv
e

n
in

T
ab

le
S6

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

3
8

3
5

6
.t

0
0

6

Proteomic Analysis of Apoptotic Erythroblasts

PLoS ONE | www.plosone.org 19 June 2012 | Volume 7 | Issue 6 | e38356



T
a

b
le

7
.

P
h

o
sp

h
o

ry
la

te
d

sp
o

ts
u

p
-r

e
g

u
la

te
d

in
ES

D
L.

S
p

o
t

N
o

.
Id

e
n

ti
fi

e
d

P
ro

te
in

s
A

cc
e

si
o

n
n

u
m

b
e

r
(G

e
n

e
ID

)
M

o
le

cu
la

r
m

a
ss

(k
D

)
p

I
N

o
o

f
P

e
p

ti
d

e
s

m
a

tc
h

e
d

M
a

sc
o

t
P

ro
te

in
S

co
re

(.
6

6
)

P
re

cu
rs

o
r

io
n

m
a

ss
M

S
M

S
P

e
p

ti
d

e
se

q
u

e
n

ce
Io

n
sc

o
re

E
T

E
T

1
M

at
ri

n
-3

is
o

fo
rm

a
g

i|2
1

6
2

6
4

6
6

(M
A

T
R

3
,

9
7

8
2

)
,

1
2

5
9

5
,

5
.6

6
.1

2
5

1
6

6
1

3
2

4
.6

7
1

6
G

N
LG

A
G

N
G

N
LQ

G
P

R
2

2
N

u
cl

e
o

lin
g

i|5
5

9
5

6
7

8
8

(N
C

L,
4

6
9

1
)

,
1

0
0

7
7

,
5

.6
5

4
.5

2
1

1
8

9
1

1
6

0
.5

8
3

4
SI

SL
Y

Y
T

G
EK

2

1
1

7
8

.5
6

8
7

EV
FE

D
A

A
EI

R
2

5

1
5

6
1

.6
8

0
5

G
FG

FV
D

FN
SE

ED
A

K
2

0

1
5

9
4

.7
4

2
3

G
Y

A
FI

EF
A

SF
ED

A
K

5

3
Sp

lic
in

g
Fa

ct
o

r
1

g
i|2

4
6

3
1

9
8

*
(g

i|4
2

5
4

4
1

3
0

;
g

i|4
2

5
4

4
1

2
5

;
g

i|4
2

5
4

4
1

2
3

;
g

i|2
9

5
8

4
2

3
0

7
)

(S
F1

,
7

5
3

6
)

,
7

0
3

3
.4

(5
9

.7
–

6
8

.6
)

,
9

9
.1

(9
–

9
.5

)
9

7
1

1
5

6
1

.8
5

8
4

A
Y

IV
Q

LQ
IE

D
LT

R
1

1

4
Eu

ka
ry

o
ti

c
tr

an
sl

at
io

n
in

it
ia

ti
o

n
fa

ct
o

r
4

E
ty

p
e

2
g

i|4
7

5
7

7
0

2
(E

IF
4

E2
,

9
4

7
0

)
,

2
7

2
8

.4
,

8
.3

8
.9

9
6

8
1

5
6

8
.7

8
5

5
Q

IG
T

FA
SV

EQ
FW

R
2

4
Ly

so
p

h
o

sp
h

o
lip

as
e

-
lik

e
1

g
i|2

0
2

7
0

3
4

1
(L

Y
P

LA
L1

,
1

2
7

0
1

8
)

,
2

7
2

6
.3

,
8

.3
7

.8
9

6
8

1
1

5
0

.5
6

4
G

G
IS

N
V

W
FD

R
1

1
9

3
8

.9
7

8
H

SA
SL

IF
LH

G
SG

D
SG

Q
G

LR
1

C
h

ar
ac

te
ri

za
ti

o
n

o
f

p
ro

te
in

s
fr

ac
ti

o
n

at
e

d
b

y
2

D
-P

A
G

E,
st

ai
n

e
d

w
it

h
P

ro
-Q

D
ia

m
o

n
d

p
h

o
sp

h
o

p
ro

te
in

st
ai

n
an

d
id

e
n

ti
fi

e
d

b
y

Im
ag

e
Q

u
an

t
v5

.2
so

ft
w

ar
e

an
al

ys
is

as
b

e
in

g
h

yp
e

r-
p

h
o

sp
h

o
ry

la
te

d
in

ES
D

L
an

d
th

e
n

id
e

n
ti

fi
e

d
b

y
M

as
s

Sp
e

ct
ro

m
e

tr
y.

Fr
o

m
th

e
4

sp
o

ts
p

ic
ke

d
,

5
d

if
fe

re
n

t
p

ro
te

in
s

w
e

re
id

e
n

ti
fi

e
d

b
y

M
S.

A
fu

ll
lis

t
o

f
al

l
th

e
p

e
p

ti
d

e
s

id
e

n
ti

fi
e

d
fo

r
e

ac
h

sp
o

t
is

g
iv

e
n

in
T

ab
le

S7
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
3

8
3

5
6

.t
0

0
7

Proteomic Analysis of Apoptotic Erythroblasts

PLoS ONE | www.plosone.org 20 June 2012 | Volume 7 | Issue 6 | e38356



been reported previously [34] but never for Epo withdrawal. To

our knowledge Hsp90 beta isoform cleavage during apoptosis has

never been reported. Furthermore, our observation that both

Hsp90 isoforms are phosphorylated upon Epo withdrawal is

significant because phosphorylation is reported to negatively

regulate Hsp90 client protein interactions [42]. Additional studies

are required to determine the role of Hsp90 alpha and beta

phosphorylation sites during Epo withdrawal and to establish

whether phosphorylation is important for inducing caspase-

mediated cleavage of Hsp90 or occurs post-caspase cleavage.

One possibility is that Hsp90 phosphorylation couples the caspase

cleavage to proteasomal degradation, similar to nascent polypep-

tide associated complex alpha subunit phosphorylation [43].

The 14-3-3 proteins also regulate diverse cellular processes

including cell cycle progression, proliferation and apoptosis by

functioning as chaperones and adaptors targeting more than 200

proteins [44]. Mechanistically, 14-3-3 proteins can contribute to

suppression of apoptosis by sequestration of pro-apoptotic client

proteins. For instance 14-3-3 proteins bind phosphorylated Bad,

promoting cell survival [45]. In addition, 14-3-3 proteins also

regulate FOXO protein localisation, which in the absence of 14-3-

3 binding would migrate to the nucleus and initiate transcription

of pro-apoptotic proteins [46]. Thus cleavage of multiple 14-3-3

proteins as seen here during Epo withdrawal may initiate or

potentiate other pro-apoptotic pathways.

The SET and RPSA proteins are less well studied but both

proteins are involved in a broad range of cellular processes and

were cleaved after Epo withdrawal. SET is also known as the

inhibitor of protein phosphatase 2A (I2PP2A, [47] or the myeloid

leukaemia associated oncoprotein SET/TAF-1b [48]). It is a

potent inhibitor of phosphatase 2A (PP2A) and interacts with

several proteins involved in the regulation of cell cycle [49].

Interestingly, the abundance of the SET binding protein

ribonucleoprotein A2 (spot 4, Table 1) increased in SDL but we

did not confirm whether this protein was cleaved. Ribonucleo-

protein A2 protein is also overexpressed in a variety of human

tumours and is a potent inhibitor of phosphatase 2A [50]. RPSA is

Table 8. Confirmation of protein phosphorylation during 12 hour SDL.

Protein name Accession Number Peptide sequence
Potential site of
phosphorylation Ion score

Heat shock protein HSP
90-alpha

P07900 ELIsNSSDALDKIR Ser 50 35

ELISNsSDALDKIR Ser 52 51

ELISNSsDALDKIR Ser 53 45

ADLINNLGtIAK Thr 104 33

EVsDDEAEEKEDK Ser 231 39

DKEVsDDEAEEK Ser 231 53

EsEDKPEIEDVGSDEEEEK Ser 252 30

EsEDKPEIEDVGSDEEEEKK Ser 252 30

EEKEsEDKPEIEDVGSDEEEEK Ser 252 36

ESEDKPEIEDVGsDEEEEK Ser 263* 49

EEKESEDKPEIEDVGsDEEEEK Ser 263* 44

Heat shock protein HSP
90-beta

PO8238 ADLINNLGtIAK Thr 104 33

EKEIsDDEAEEEK Ser 226 56

EIsDDEAEEEKGEK Ser 226* 28

Nascent polypeptide-
associated complex subunit
alpha

Q13765 VQGEAVSNIQENtQTPTVQEESEEEEVDETGVEVK Thr 157 24

VQGEAVSNIQENTQtPTVQEESEEEEVDETGVEVK Thr 159 32

VQGEAVSNIQENTQTPtVQEESEEEEVDETGVEVK Thr 161* 38

VQGEAVSNIQENTQTPTVQEEsEEEEVDETGVEVK Ser 166 52

VQGEAVSNIQENTQTPTVQEESEEEEVDEtGVEVK Thr 174 23

12 hour SDL samples were fractionated by 2D PAGE and then hyper-phosphorylated spots previously identified by mass spectrometry as HSP90 alpha, Hsp90 beta and
nascent polypeptide associated complex alpha subunit were subjected to Nano LC mass spectrometry to detect phosphopeptides as outlined in the materials and
methods. It should be noted that for some peptides there may be more than one possible phosphorylation site, so we have included all possibilities and known
phosphorylation sites within the peptide has been indicated with an *. For some peptides there are more than one possible phosphorylation site and so all matched
options are presented. *Indicates a known reported phosphorylation site [43,61].
doi:10.1371/journal.pone.0038356.t008
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a protein of the 40S ribosomal subunit as well as a cell surface

protein that binds laminin, prion proteins and viruses [51].

Apart from our novel observation here that both Hsp90 alpha

and Hsp90 beta are cleaved in pro-erythroblasts deprived of Epo,

we also report that several Hsp90 co-chaperones have altered

abundance in living and apoptotic pro-erythroblasts. p23/PTGE23,

a member of the Hsp90 chaperone complex suggested to stabilise

the Hsp90-ATP form [52] is more abundant in cells maintained in

the presence of Epo (spot 43, Table 5). In contrast, cells deprived of

Epo exhibit an increase in full length or cleaved peptidyl-proyl cis–

trans isomerase (PPIase) immunophilin FKBP4/FKBP52 (spots 15

and 20, Table 2), which is known to bind Hsp90 and Hsp70 and is

important for the intracellular trafficking of the steroid hormone

receptors [53]. Cells cultured in ESDL have a higher abundance of

Hsp105 (HspH1) and Hsp70 (HspA4) (spot 35, Table 4 and spot 38

Table 5, respectively). Hsp70 prevents Gata-1 cleavage by caspase 3

[18] and AIF translocation to the nucleus [19]. On the other hand,

phosphorylation of Hsp27 is induced in cells deprived of Epo (spot

2, Table 6). Although we did not confirm the phosphorylation or

identity of the specific phosphorylation site(s) on Hsp27, it is notable

that Hsp27 phosphorylation is required for its association with

GATA-1 and for inducing GATA-1 degradation [54]. Taken

together these results provide further evidence that chaperone

proteins play an essential role in the regulation of Epo-induced

survival in erythroblasts.

Commitment to apoptosis is post-translationally regulated by

reversible phosphorylation of apoptotic signalling proteins. The

abundance of several signalling proteins are altered between the

two conditions some of which have already been mentioned

above. In ESDL, the serine/threonine kinase p21 protein (Cdc42/

Rac)-activated kinase 2 (PAK2, spot 52, Table 5) was up-

regulated. PAK2 is cleaved by caspases during apoptosis [55]

and its up-regulation in living cells in this study might result from

loss of full length PAK2 by proteolysis in dying cells (although a

smaller fragment was not identified in SDL). In apoptotic

erythroblasts, the serine/threonine phosphatase PP1alpha

(PPP1CA, spot 25, Table 4) increased in abundance. PP1alpha

is known to be pro-apoptotic because it dephosphorylates the pro-

apoptotic protein Bad [56].

Finally, several proteins involved in mRNA processing, transla-

tion and post-translational modifications were altered in presence or

absence of Epo (see Tables 1–5). Interestingly, the heterogeneous

nuclear ribonucleoprotein K (hnRNPK) which is detected as less

abundant upon Epo withdrawal (spot 41, Table 5) has been shown

to prevent the production of the pro-apoptotic BclXs splice isoform

[57] and BclX is well documented to be an Epo-responsive protein

important for the survival of erythroblasts at the later stages of

erythropoiesis [58]. Ribonucleoprotein C1/C2 detected both in

ESDL (Spot 42, Table 5,) and SDL (smaller Spot 16, Table 2) is

reported to be induced by stimulators of apoptosis and p53, and has

been proposed to regulate p53 mRNA during apoptosis [59].

Furthermore, Polypyrimidine tract binding protein 1 was increased

in ESDL (spot 34 Table 4, and spot 39 Table 5) and this protein is

reported to regulate apoptotic genes and susceptibility to caspase

dependent apoptosis in differentiating cardiac myocytes [60].

Further work will need to be carried out to determine the roles of

these proteins in survival and death of erythroblasts.

In summary, we have conducted the first ever comparison of the

proteomes of expanding primary human erythroblasts and primary

human erythroblasts undergoing the early phase of apoptotic death

due to Epo withdrawal. This study has dramatically increased the

repertoire of proteins that alter abundance during Epo withdrawal.

In particular we report for the first time that several key multi-

functional proteins are cleaved in response to Epo withdrawal from

erythroblasts. Two of these proteins, Hsp90 alpha and Hsp90 beta,

were also shown to be phosphorylated in apoptotic cells and we

have identified these phosphorylation sites. This study validates the

use of 2D DIGE to gain a comprehensive insight into cellular events

leading to apoptosis in erythroblasts and as a means of identifying

proteins whose aberrant regulation may contribute to human blood

diseases. Furthermore, we provide an exciting new resource of

candidate proteins, which will form the foundation for further

studies on the mechanism of apoptosis caused by Epo withdrawal

and also for studies on human diseases where there is ineffective

erythropoiesis.

Supporting Information

Figure S1 A) Flow cytometry analysis of cell surface markers

expressed by erythroblasts between day 6 and day 10 in culture in

ESDL medium. FL2 fluorescence (x axis) versus cell number (y axis)

of cells labelled with the isotype control antibody (grey line) and

antibodies against CD117/c-kit, CD71, GPA (BRIC256) and

band3 (BRIC6). By day 9 the majority of cells are are c-kit+

positive, CD71high, GPAlow/med and band 3low/neg B) Graph

showing the average percentage of live erythroblasts after 24 h in

ESDL or SDL, normalised to the percentage of live cells in ESDL

between day 7 and day 10. This shows that similar level of cell death

is achieved irrespective of the number of days expanding in culture.

(TIF)

Figure S2 The expression of Fas and FasL was analyzed
by flow cytometry for Fas and FasL expression on day 9
erythroblasts after 24 hours in the presence (ESDL) or
absence (SDL) of Epo. The figure shows that erythroblasts

from both treatments express Fas. In contrast, the expression of

FasL in these cells was absent and this did not change upon

withdrawal of Epo.

(TIF)

Figure S3 Erythroblasts kept in expansion medium
(ESDL, +Epo, green histograms) and erythroblasts
switched to SDL (no Epo, pink histograms) were
analysed by flow cytometry using Annexin V, TMRE
and propidium iodide at 6 hours, 12 hour and 24 hour.
After 12 hour, the cells switched to SDL start showing signs of

apoptosis and this time point was chosen for proteomic analyses by

2D DIGE. (TIF)
Table S1. Table S1 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 1.

(DOCX)

Table S2 Table S2 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 2.
(DOCX)

Table S3 Table S3 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 3.
(DOCX)

Table S4 Table S4 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 4.
(DOCX)

Table S5 Table S5 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 5.
(DOCX)

Proteomic Analysis of Apoptotic Erythroblasts

PLoS ONE | www.plosone.org 22 June 2012 | Volume 7 | Issue 6 | e38356



Table S6 Table S6 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 6.
(DOCX)

Table S7 Table S7 lists all peptides identified by mass
spectrometry from each individual spot detailed in
Table 7.
(DOCX)
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