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Abstract
In the aviation industry, predictive maintenance is vital to minimise Unsched-
uled faults and maintain the operational availability of aircraft. However, the
amount of open data available for research is limited due to the proprietary
nature of aircraft data. In this work, six time-series datasets are synthesised using
the DoppelGANger model trained on real Airbus datasets from landing gear sys-
tems. The synthesised datasets contain no proprietary information, but maintain
the shape and patterns present in the original, making them suitable for testing
novel PdM models. They can be used by researchers outside of the industry to
explore a more diverse selection of aircraft systems, and the proposed methodol-
ogy can be replicated by industry data scientists to synthesise and release more
data to the public. The results of this study demonstrate the feasibility and effec-
tiveness of using the DoppelGANger model from the Gretel.ai library to generate
new time series data that can be used to train predictive maintenance models
for industry problems. These synthetic datasets were subject to fidelity testing
using six metrics. The six datasets are available on the UWE Library service.
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1 INTRODUCTION

Over the past two decades, most aircraft accidents occurred during the take-off and landing flight phases.1 These phases
at the start and end of flights rely on not only the skill of the pilot but on the health and quality of the aircraft’s landing
gear, the failure of which made up to 60% of all recorded aircraft problems in 2012.2 Airlines implement maintenance,
repair and operation (MRO) to mitigate these accidents, and ensure the quality, safety and health of their aircraft, with
$69 billion spent globally on aircraft maintenance in 2018 alone.3 There has been a gradual shift from reactive to proac-
tive maintenance for aircraft, with predictive maintenance (PdM) gaining prominence as a vital practice in the aviation
industry. PdM focuses on analysing aircraft data to predict when and where systems will fail, assessing the health of air-
craft systems, and enabling proactive measures to maintain them. The goal of PdM is to reduce aircraft downtime,4 in
turn saving the airlines money with precision optimal maintenance and reduces the number of unscheduled faults and
failures. It however requires an experienced staff to build PdM models well suited for specific aircraft systems and relies
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heavily on a large quantity of high-quality data, which just is not always available within the industry, and even less so to
the public.

This lack of available data limits the research possible to academics outside of airlines and manufacturers, who face
many challenges in acquiring the data to build novel models. Firstly, to ensure the safety of passengers and crew and the
aircraft’s operational availability, aircraft systems regularly undergo MRO long before they can fail, resulting in a lack of
failure data to train models on. Secondly, in the public sector, this data is entirely unavailable due to the proprietary nature
of airline data. This limits researchers to using simulated datasets like Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) datasets.5 While these datasets are popular, researchers like Xiong et al. agree that datasets such
as these are inaccurate, and that papers that use alternative data do not disclose it.6 Finally, these simulated datasets cover
a minimal scope of aircraft systems. In a previously conducted state-of-the-art review, it was found that there was a large
bias towards turbofan engines for testing novel PdM models.7 Equally vital components such as landing gear or fuselage
are overlooked due to the lack of readily available data outside of the industry.

One solution to mitigate these problems is to synthesize new datasets, using models trained on data from existing
datasets provided by aircraft manufacturers. This would produce data that preserves the shape and patterns exhibited by
the original while anonymising it to be used more easily by researchers unaffiliated with manufacturers. In the last five
years, there have been many different models proposed for synthesising time series data, which is already being used for
automotive8 and electric vehicles.9 At the time of writing this paper, no example of synthetic aircraft data that was released
publicly using models trained on real datasets could be found. This paper focuses on utilising real industry data of aircraft
landing gear to train synthetic models using the DoppleGANger model in Gretel.ai to generate six new synthetic datasets
for aircraft landing gear subsystems.

1.1 Structure

The structure of this paper is as follows. Section 2 covers related works including what models are available for synthesis-
ing time series data and where they are being used in similar industries. Section 3 outlines the research methodology for
this research, including what metrics the quality of the synthetic data was measured against. Section 4 reviews datasets,
describing their primary features, shape and required preprocessing. Section 5 displays the results of the trained mod-
els against the selected validation metrics, and contains suggestions for how the synthetic data can be utilised. Finally,
Section 6 contains the conclusions that can be drawn and ideas for future work.

1.2 Contributions

The primary contribution of this paper is the six synthetic landing gear datasets built from models trained from exist-
ing data. With sufficient validation, these can be made available to the public for open use to provide data for a mix of
regression and classification problems. The non-proprietary data produced for this paper was published online by the
*University of the West of England’s Research Data Repository. These datasets will benefit researchers without access to
industry datasets to explore a more diverse range of aircraft systems for new PdM models. By demonstrating the feasibil-
ity of Gretel.ai, the methodology of this paper can be used by researchers within the industry to produce a greater number
of datasets in the future. These datasets could be used in conjunction with the original, to increase the size of the training
dataset to improve performance, which will be explored further in the future.

2 RELATED WORK

Synthetic data refers to artificially generated datasets that mimic the characteristics and statistical properties of real-world
data. Synthetic data can augment existing data to increase the size of training datasets. This can improve the perfor-
mance of machine learning models, or counter data scarcity where less data exists for certain classes. Synthetic data
also preserve the privacy of the original and can be generated without the need for complex simulators or tools. One
challenge is that Synthetic data only resembles the data it was trained on however, so outliers and anomalous results
that did not occur in the original, or even just not frequent enough to accurately be modelled will not be synthesised
correctly.
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Synthetic data can be generated using traditional models such as linear regression for Reference 10, and decision trees
for Reference 11. More recently machine learning algorithms have been employed to synthesise new data, particularly
Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN). As the need for deep learning grows,
so does the need for greater data, with different fields where privacy is of the utmost importance benefiting from data
synthesised, such as healthcare data using models such as SynSyn12 or, financial data.13

Synthetic data is already being used to generate data with greater privacy using recent advances in image generation.
To address privacy and ethical concerns of using face image datasets of real people,14 used StyleGAN2-ADA to gener-
ate their own dataset of synthetic face images named SFace. This was tested with multi-class classification models to
attain 99.13% validation accuracy and released the code and face image dataset publicly on GitHub.15 Developed a data
collector and labeller to generate synthetic crowd images. They then improved the performance of crowd counting by
pretraining the crowd counter using the synthetic data, and then fine-tuning it using the real data, achieving higher than
state-of-the-art performance. They also released the source code and datasets on GitHub.16 generated datasets of 52,500
images for UAV detection in images, and also fine-tune the models using real-world data near the end of training. They
improved the performance of aerial object detection under varying illumination conditions and determined the shape of
the UAV is more important for image detection than the texture.

Since their inception in 2014,17 Generative Adversarial Networks (GANs) have been used to generate new instances
of data, including images, music and synthetic data. The purpose of a GAN is to generate data similar to that in the
training datasets using unsupervised learning. GANs traditionally consist of a generator to generate data, and a discrim-
inator to determine how realistic it is against a training dataset. This way GANs can generate realistic synthetic data and
excel at generating data where high realism is required, such as computer vision and natural language processing. GANs
have shown promising results in synthesising images, audio, and text data, and their use has become widespread since
their proposal. Several novel variations of GANs have appeared in recent years for synthesising data, such as COT-Gan
for generating sequential data,18 or image generation with DCGAN19 and StackGAN.20 Time series data have temporal
dependencies that traditional GANs do not consider. Several models designed specifically to handle realistic time series
generation based on GANs have been developed. A systematic literature review was performed in Reference 21. The
paper highlights the challenges with Time Series GANs, maintaining training stability, difficulties in evaluating synthe-
sised data, the risk of a privacy breach and the lack of benchmark time series datasets. They also list a comprehensive list
of applications, architectures and evaluation metrics. RCGAN22 produces real-value multi-dimensional time series data
for medical data, using RNNs in the generator and discriminator condition on auxiliary information. A novel evaluation
measure was tested against the MNIST hand-written digit dataset,23 treating the 28 × 28 pixel images as a 28-parameter
time series across 28 timesteps, as it could be visually checked for similarity24 developed TimeGAN a network consist-
ing of embedding, recovery, sequence generator and sequence discriminator, simultaneously learning to encode features,
generate represent and iterate across time from the jointly trained adversarial components. This model aims to preserve
the temporal dynamics of the original data, and qualitatively and quantitatively outperformed benchmarks. The codebase
released on GitHub is currently outdated, but it is found in other open-source libraries such as ydata-synthetic†. Dop-
pelGANger25 has a focus on metadata, achieving a 43% better fidelity than the baseline. The model’s only drawback is
not resolving the privacy problem, however, it is used in open-source libraries such as Gretel-synthetics on GitHub‡ with
a responsive community on Discord. PART-GAN is another GAN, that prioritises preserving the privacy of the original
data.26 Compared to other models, it can enable the generation of an unlimited amount of data, provides robust privacy
and addresses the trade-off between utility and privacy using optimisation strategies.

3 METHOD

The methodology used for this paper is as follows:

1. Select Industry datasets fitting the research scope and model requirements.
2. Clean the data, removing anomalies not representative of the dataset.
3. Shape the data to (X , Y , Z) dimensions: X datasets, Y timesteps, Z features.
4. Train the chosen model for time series synthesis.
5. Evaluate the performance of each model using fidelity testing metrics.
6. Optimise the hyperparameters of the model using Bayesian optimisation provided by Optuna.
7. Generate final datasets using optimised models.
8. Gather final results using fidelity metrics and visual inspection.
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3.1 Research scope

The scope of the datasets used for training the GAN in this paper is outlined in the Venn diagram shown in Figure 1. As
the main goal of this paper is to produce datasets of similar quality to proprietary datasets from aircraft manufacturers,
only the industry datasets provided will be used to train the synthetic data model. These were taken directly from data
recorded by in-service aircraft manufactured by Airbus. This ensured the synthesised data reflects real-world data already
being analysed for PdM tasks. Most data recorded in aircraft is time series, with recordings at regular intervals during
flight, or at the start and end of specific flight phases. Therefore, the data type selected for use in this study was time series
data, with each time step representing either a flight cycle or a regular time step. Finally, there are a myriad of complex
aircraft systems that produce data and are vital to maintaining the operational availability of the aircraft, this paper will
focus on one of the most important, aircraft landing gear. All the training data sets were sourced from aircraft components
that make up or relate to aircraft landing gear. With this research scope established, the next step is to collect data that
adheres to it.

3.2 Data gathering

Airbus provided the data used in this research, collected from Aircraft Condition Monitoring Systems (ACMS), a PdM
enabling tool that consists of a high-capacity flight data unit and the associated sensors.27 These datasets vary in monitor-
ing period, ranging from the past 2–6 years. The length of each dataset varies based on the starting date of the recordings.
Therefore to maximise the number of training datasets available, the longer datasets were split down to size, the details
of which are described for each dataset. All the datasets were selected from components related to aircraft landing gear
belonging to Airbus aircraft. The location of where these aircraft were operated, their identifiers and the names of the
airlines using them have been removed, but they vary greatly across the datasets unless specified otherwise. The mainte-
nance protocols for each airline will differ in small ways, and aircraft in different geographical locations will encounter
different environmental factors affecting their operability. Each dataset varies in data gathering regime, set of sensors,
frequency of recording rate and operator environment. Of all the identified datasets, none had pre-established classes for
anomalous or failure data, limiting the analysis to unsupervised learning models. More details for how the real industry
datasets were selected are given at the start of Section 4.

3.3 Preprocessing

For the most part, the data was left aside from some rare instances of removing null values. Fundamentally the synthetic
data should maintain all the characteristics of the original. For example, noise in several noisier datasets could not be
removed, as the time series may fall below a threshold value from simply a noise spike. Even in this case, it would be a

F I G U R E 1 Venn diagram highlighting the research scope of this paper.
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protocol to consider that component approaching failure even if it doesn’t track with the average decline, and maintenance
would be conducted prematurely. It is up to the users of the synthetic datasets to clean the synthetic data themselves as
they see appropriate.

The DoppelGANger model requires the data to be shaped as a three-dimensional Numpy array. The original datasets
were reshaped into shape (X , Y , Z) where the X axis is for the unique sets of data, the Y axis is for the time step, and the Z
axis is for the feature. For example, (50, 100, 8) would be 50 unique sets of data, each of length 100 time steps, with eight
different features. All the original datasets are time series with multiple features, so splitting to Z features is simple. The
size of X and Y for each dataset was balanced to maximise the number of datasets for the training data to improve the
overall performance of the model while maintaining long enough sets of data to be usable for PdM problems. This was
done on a case-by-case basis and more details discussing this are discussed in Sections 4.1–4.6.

3.4 Synthetic method selection

A suitable model to synthesise the data was required, one that maintains the same relationship and properties of the orig-
inal without revealing the original dataset. The model must be able to produce enough variety to create enough datasets
for implementing a supervised learning approach for both regression and anomaly detection problems. The choice of
model for synthesising data depends on the nature of the data and the objectives of the research. For this research, the
model must be capable of synthesising time series data of up to 200 elements long, as well as being readily available with
ongoing support to new researchers.

Gretel.ai’s gretel-synthetics library was used as the library of choice for implementing DoppelGANger, offering several
advantages for this project. Firstly, it is an open-source library, providing flexibility, support from the community and
developers, and availability for reproducing the results. Additionally, an element of Gretel.ai’s novelty is incorporating
metadata such as the location, and then training a model. While not in use for the data in this research, it would prove
valuable for future analyses. Knowing the airport’s source and target allows for location, and even the environment and
weather by referencing available data from Meteorological Aerodrome Reports (METAR) recorded at respective airports.28

This integration enables a comprehensive understanding of the synthesised time series data. Therefore, Gretel.ai was used
to generate synthetic data for these datasets.

3.5 Evaluation and fidelity testing

The world is entering an era where synthetic and hybrid datasets are a necessity to augment existing datasets required for
deep learning tools. The validation of the synthetic data is just as vital, to ensure that it maintains the same recognisable
shape and patterns as the original, without containing any exact duplicate of the data. For this research, there are three
primary requirements that the synthetic data must meet to be successfully validated.

1. The synthesised data is indiscernible to the average viewer from the original data. Therefore the synthetic data had to
maintain the same overall shape, range and patterns.

2. No part of the original data is directly present in the synthesised data to maintain the airline’s privacy.
3. In recent years, several qualitative and quantitative evaluation techniques have been employed and developed to

successfully confirm the fidelity of the dataset. The following six metrics were used to validate the synthetic data.

The fidelity metrics used for this evaluation are as follows.

3.5.1 Autocorrelation

Autocorrelation measures the similarity between a time series and a shifted version of itself at different time lags, indi-
cating the presence and strength of any repeating patterns or trends in the data. It has been used to assess whether
original and synthetic data maintain the same shape and patterns in several recent publications. The two sets of data with
the least mean squared error (MSE) was selected and displayed alongside autocorrelation plots. These plots reveal the
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presence of any temporal dependencies or trends shared by either dataset. Comparing the autocorrelation patterns allows
us to determine whether the synthetic data captures the temporal dynamics exhibited by the original dataset.

3.5.2 Pearson correlation heatmap

The Pearson correlation coefficient can be used to quantify the linear relationships between variables in a dataset, and
has been widely employed in journals to analyse feature correlations. This method compares the features of the original
and synthetic datasets, to ensure they maintain the same correlation. A heatmap of correlations is generated using this
technique, with each row and column representing a different feature. The average correlation across each instance in
the original and synthetic datasets is then calculated, and the difference between them is used to populate the heatmap.
The aim is to minimize the difference and prove a similar correlation between the features, with a universal value near
zero indicating similar correlations in both the original and synthetic datasets. This method does require the assumption
that the features are not independent of each other.

3.5.3 Principle component analysis

Principle component analysis (PCA) is employed as a dimensionality reduction technique, which operates particularly
effectively with the linear data that the Airbus datasets exhibit. By analysing the principal components of both the original
and synthetic data, the similarity in their underlying structure can be assessed. If the shape and spread of the synthetic
PCA match the original, it indicates that the model has successfully captured the essential underlying structure and
variability present in the original dataset. An alternative method, the more recently introduced T-SNE which visualizes
and compare the data’s high-dimensional relationships, could have also been used. This is a nonlinear dimensionality
reduction method however, and as most of the data in these datasets are reasonably linear, the results are less likely to
provide any meaningful data.

3.5.4 Kullback Leibler

The Kullback-Leibler (KL) divergence is a mathematical measure that quantifies the distance between two probability
distributions, where a value of 0 indicates that the distributions are identical. The equation for calculating the divergence
between two probability distributions, P and Q, is shown in the following equation.

DKL(P|| Q) =
∑

i
P(i) ⋅ log

(
P(i)
Q(i)

)

(1)

By converting the training and original datasets into discrete probability distributions, the KL divergence can gauge
the similarity between their underlying data distributions. The mean and standard deviation of the KL divergence across
a random selection of training and synthetic instances were calculated, indicating the overlap between the dataset’s dis-
tributional patterns. This approach enables a more nuanced assessment of the synthesised data’s fidelity in capturing the
essential characteristics of the original dataset.

3.5.5 Train on synthetic, test on real

The Train on Synthetic Test on Real (TSTR) is a quantitative analysis approach to train a prediction model using synthetic
data and test it against the original data. The performance of this model can then be compared to one trained on real, and
tested on real (TRTR). For this evaluation, an LSTM model is trained using a TensorFlow sequential model to predict the
next step in the time series, with a random selection of datasets used for training, 25% of which was reserved for testing.
Additionally, a hybrid training setup can be explored by training on both synthetic and real data and testing solely on
the real data (TTSTR) however this will be explored in future work against Airbus’s previous methods for predictive and
classification models. This method aims to evaluate if a combined training dataset improves overall model performance.
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3.5.6 Time series classification

The synthetic data must be indistinguishable from the original data, and one last way to assess this is to use a classifi-
cation model and compare the performance of it between the original and synthetic data. If both datasets achieve high
performance when input into the model, they must both possess the same temporal properties making them difficult to
distinguish. A 2-layer LSTM model is trained using a TensorFlow sequential model to classify whether the input data
originated from the original dataset. The model is trained until it reaches a suitable performance against a test dataset
of the original data, measured on its precision and accuracy. The synthetic data is then input into the model, and the
performances can be compared.

3.6 Hyperparameter optimisation

Once the training data was reshaped, and the performance metrics were tested, the hyperparameters of the models were
optimised using Optuna.29 Optuna is an open-source optimisation framework for automated hyperparameter searching.
The Bayesian optimization it provided operated more efficiently to build the ideal model than a standard grid or random
search. Trials were conducted using a set of possible values for each hyperparameter selected through experimentation,
with each trial attempting a new combination of the hyperparameters. Some models took longer to train than others due
to the size of the training data, so each model was run through as many trials as possible in 48-h time slots for each model,
with no real improvement in performance witnessed in training runs longer than this. At the end of each training run,
the model with the lowest Kullback Leibler score was highlighted, and the remaining performance metrics were applied
to confirm it performed well across every metric. The optimisation tool and the hyperparameters of the model to tune
were both recommended by members of the Gretel.ai team.

4 REAL INDUSTRY DATASET OVERVIEW

In the pursuit of creating acceptable synthesized data for PdM problems, industrial datasets already being investigated
for PdM models were chosen. Provided the synthetic data maintains the same temporal behaviour, the output can be
used for the same PdM testing. Following an evaluation of Airbus-provided datasets, six were chosen for their diver-
sity in landing gear systems and ML problem types. The selection process for each dataset adhered to the following
guidelines:

1. The training data is assumed to be clean, and any visually anomalous data will be removed to produce a dataset of
“typical” training data.

2. The shape, that is the visual and statistical characteristics describing the overall pattern, trend, and seasonality, of each
set of training data is determined by the key parameters and the time length specified in Table 1.

3. There are no exact dates or times for each data point representing either a flight cycle or a time increment in live
monitoring, specified in Table 1.

T A B L E 1 An overview of the six industrial datasets used for training.

Dataset identifier System Size Parameters Problem type

Training Dataset 1 Bogie Pitch Trimmer [175, 200, 8] Oil Pressure Regression

Training Dataset 2 Tyre Pressure Indication System [40, 200, 8] Tyre Pressure Regression

Training Dataset 2 Tyre Pressure Indication System [9283, 180, 2] Tyre Pressure, Brake Temperature Classification

Training Dataset 3 Landing Gear Brakes [194, 100, 2] Brake Temperature, Wheel Speed Both

Training Dataset 5 Landing Gear Brakes [109, 100, 24] Brake Temperature, Tyre Pressure Classification

Training Dataset 6 Landing Gear Brakes [37, 50, 24] Brake Temperature, Deceleration Classification

Note: Size is formatted as [X , Y , Z] where X is the number of sets of data, Y is the number of time steps and Z is the number of parameters.
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Sections 4.1–4.6 give a detailed description of each training dataset. An overview of the details of each dataset is also
summarised in Table 1. Note that Figure 2E only display plots for 6 of their 24 parameters for ease of reading.

4.1 Training dataset 1: Bogie pitch trimmer

All aircraft incorporate hydraulically powered components, mechanisms that employ pressurized fluid to drive machinery
and facilitate the movement of mechanical elements such as brakes, flaps and landing gear. Over the course of many
flight cycles, there is a gradual loss of hydraulic fluid, necessitating maintenance to ensure that the fluid level remains
above a critical threshold, preventing potential system failures. The first dataset is a multivariate time series dataset for a
Bogie Pitch Trimmer, a hydraulic system responsible for adjusting the angle of the aircraft’s landing gear assemblies. The
dataset measures the decline in the system’s hydraulic fluid caused by leakage between flight cycles, across a selection of
aircraft of the same design. The primary parameters of this dataset are the oil pressure in the left and right landing gear,
which decreases in line with the fluid level. The dataset consists of 175 sets of data, each 200 flight cycles long, across 8
different parameters. The original datasets all contained 200 cycles of data or more but any exceeding 400 were cut down
to increase the size of the overall dataset to improve the performance of the model during training. This data is used to
predict the RUL of the system, with regression models predicting the decline of the pressure until it hits a known critical
threshold. Only the last 100 flight cycles are required to predict this, so the decrease in size does not affect its use in PdM
testing. Each dataset represents a slight general decline, with a lot of noise caused by static affecting the readings and
environmental factors (Ambient temperature, altitude of airport etc.). Some datasets will contain sharp spikes in pressure
where the fluid has been refilled. Figure 2A shows an example of this data.

4.2 Training dataset 2: Tyre pressure indicator

Ensuring proper tyre pressures through regular maintenance is crucial to alleviate overheating and wear problems. These
issues, if left unattended, can result in tyre deflation or even explosive break-up during critical flight phases like landing

F I G U R E 2 Typical example from the training datasets for each aircraft landing gear system.
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and takeoff. This is a multivariate time series dataset for a tyre pressure indication system. The datasets consist of pressure
readings from 8 sets of tyres from a set of Airbus aircraft after landing, and track the decline in tyre pressure due to leakage.
The dataset consists of 40 sets of data, each 200 flight cycles long, across 8 pressure parameters. Like with the Hydraulics
dataset, regression is used to estimate the RUL of each tyre, so they can be refilled. No changes were made to the original
data, as these datasets were not long enough to cut down. These datasets contain a lot of noise from environmental factors,
as ambient temperature and altitude can greatly impact the pressure in the tyres. Many of the datasets also contain a spike
in pressure somewhere in the data where tyres have been refilled. An example of this data can be seen in Figure 2B.

4.3 Training dataset 3: Tyre pressure indicator

Aircraft brakes play a pivotal role in ensuring safe landings and deceleration during the landing flight phase, with brake
temperatures reaching as high as 800◦C during intense braking. Regular maintenance is imperative to prevent potential
malfunctions that can lead to critical issues, such as decreased stopping power or even brake failure. This multivariate
dataset records brake temperature and tyre pressure for an Airbus aircraft as it lands. By classifying whether the rise
and fall in brake temperature of a set of data is normal or abnormal, damaged or failed brakes can be identified. The
dataset consists of 9283 sets of data, each 180 time steps long with each step representing a minute, with two parameters,
brake temperature and tyre pressure. The normality of the data can be classified using unsupervised models such as
Autoencoders. The original raw data consisted of a 9283-row, 360-column dataset where each column represented a brake
or pressure reading. This was reshaped to a suitable size, and the sets of data have not been cut down or normalised. Each
set of data shows the brake temperature sharply increases as the aircraft brakes and slowly decreases after the peak is
reached, with a small uptake in pressure. An example of this data can be seen in Figure 2C.

4.4 Training dataset 4: Landing gear brakes

Aircraft brake systems consist of intricate internal components like bearings, pads, and hydraulic mechanisms. These ele-
ments endure substantial mechanical stress during braking, making their maintenance crucial for optimal performance.
This multivariate time series dataset contains the brake temperatures for eight sets of brakes. Anomalies in brake temper-
ature or deceleration may not always indicate a fault with bearings, but when both are anomalous it indicates the bearings
are damaged and need replacing. This dataset can be used to train classification models to differentiate between normal
and anomalous readings, however, there is very little failure data available due to the rarity of its damaged bearing being
identified in the field. The dataset consists of 194 sets of data, each 500 flight cycles long, across eight parameters for brake
temperature. Clustering models like the K-Means clustering algorithm can be used to plot the mean brake temperature
to identify anomalous readings. Each set of data appears as a linear dataset suffering from a lot of noise. An example of
this data can be seen in Figure 2D.

4.5 Training dataset 5: Landing gear brakes

There is a physical and mechanical relationship between the brake temperature, pressure and wheel for each wheel on
the aircraft. Spikes in brake pressure will align with a sharp decrease in wheel speed as the brakes are applied, and by
observing the correlation between these three variables can be used to identify anomalies. Sometimes you can only identify
these anomalies when you have all the data together. This multivariate dataset records brake temperature, brake pressure
and wheel speed for an Airbus aircraft during the last 100 of takeoff. Currently, it is being used to calculate deceleration
to identify anomalies, which is reflected in Section 4.6. The dataset consists of 109 sets of data, each 100-time steps long
with each step representing a second during the landing phase. It was filtered so the 80th point in each dataset was the
max wheel speed to ensure a suitable capture of the wheel speed before and after was recorded. There is a unique ID for
each landing, a date/time stamp, as well as temperature, pressure, and wheel speed values for each of the 8 wheels on the
aircraft, with a total of 26 parameters. The original raw data consisted of a 58,000-row, 360-column dataset with several
identifier parameters which have been removed for anonymisation. Each set of data ends in a spike of brake temperature
as the wheels hit the tarmac, followed by a small spike in pressure indicating the brake has been applied which causes
the wheel speed to decrease. An example of this data can be seen in Figure 2E.
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4.6 Training dataset 6: Landing gear brakes

Some components, such as wheel bearings in aircraft landing gear wheels, are difficult to ascertain the health of directly as
they are inaccessible and direct measurements are difficult to take. However, an elevated max temperature and abnormal
deceleration during landing can be indicative of their degradation during landing, allowing for specific wheels or brakes
to be maintained post-landing. This multivariate dataset records the max brake temperature, max brake pressure, max
wheel speed and deceleration for each wheel on an Airbus aircraft as it lands. This dataset is essentially the calculated
values of the datasets from Section 4.5, where the max values for each parameter were identified, and the deceleration.
The deceleration was calculated using the following equation, where a is the acceleration, vf is the wheel speed at its peak,
vi is the wheel speed when the brakes are applied (spike in brake pressure detected), and t is the time taken between the
peak wheel speed and the brake being applied.

a =
vf − vi

t
(2)

The dataset consists of 37 sets of data, each 50-time steps long with each representing a flight cycle. There is a unique
ID for each landing, a date/time stamp taken from the first row of data for each respective landing, eight parameters each
for max temperature, pressure, wheel speed and calculated deceleration values, with a total of 34 parameters. Due to the
similar structure to Section 4.6, clustering models can also be used here to plot the parameters against the deceleration
values, and each set of data appears as a set of linear datasets suffering from noise. An example of this data can be seen
in Figure 2F.

5 RESULTS AND EVALUATION

Using the described methodology, DoppleGANger Models were trained for each of the six training sets. The hyperparam-
eters of the models were tuned to maximise the performance of the selected metrics, quantitatively by minimising the
KL divergence and TSTR error, and then with visual inspection using the qualitative methods. Using these tuned models,
datasets containing 200 separate sets of data were generated. Typical examples of showing all the features for each of the
new synthetic datasets generated from these models are displayed in Figure 3. The datasets are publicly available on the
UWE Bristol Research Data Repository.30

5.1 Autocorrelation

A qualitative evaluation of the autocorrelation was performed against the synthetic data. Firstly, the two datasets with
the least MSE between them were selected based on the assumption that these two datasets will have the closest shape
for comparison. The synthesised data aligns with the original data well in these cases, and the autocorrelation for each
of these dataset pairs was calculated and displayed alongside the original data comparison in Figure 4. Note that for
Figure 4E,F, only six out of 24 of the parameters are displayed to make it easier to interpret. Across all six selected datasets,
the autocorrelation of the synthetic data aligns with the original across most of the parameters but contains enough
diversity to not directly copy any of the original data. This result qualitatively confirms their statistical similarity. This
consistency in shape across different datasets indicates a common underlying pattern or trend in their temporal behaviour.

5.2 Pearson correlation heatmap

The Pearson correlation coefficient was calculated between each feature against every other feature to discern any dis-
parities in the correlation between various features. This was done for the original datasets and the synthetic dataset, and
then an absolute difference heatmap could be calculated by subtracting one from the other. The aim was to minimise the
difference between the correlation connection of the original to the synthetic and achieve a difference value as close to
zero as possible, with no values rising above 0.2 to account for some diversity within the datasets. The results of this analy-
sis are presented in Figure 5 for each dataset. Most of the results are highly accurate, with the mean coefficient difference
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F I G U R E 3 Typical synthesised data for each dataset.

values never approaching 0.1, or even exceeding 0.057 as shown in Table 2. There is a noticeable rise in this difference
value for feature 2 in Synthetic Dataset 1 indicating that the feature specifically was not captured as well. Despite this,
this final dataset scored the best across all metrics, and the values are still below 0.2, so it is acceptable. Despite this excep-
tion, these findings demonstrate the overall effectiveness of capturing the desired relationship and shape characteristics
within the analysed features.

5.3 Principal component analysis

An analysis of the six sets of data was conducted using PCA. The PCA across the random selection of test datasets is
shown in Figure 6. Due to the presence of noise and the linearity of the data, no specific shape could be discerned by the
PCA analysis for Synthetic datasets 2 and 4, however, it is important to note that the original and synthetic points are still
aligned in the plot, suggesting the existence of a shared underlying structure. All six synthetic datasets exhibited similar
patterns to the original training datasets in their respective PCA plots. While the specific shape might not be evident,
the alignment suggests a consistent representation of shared information. This finding underscores the robustness of the
synthesised data in capturing essential features of the original dataset, further substantiating the fidelity of the synthetic
data generation approach.

5.4 Kullback Leibler

The training data and the random selection of synthetic data were converted into discrete probability distributions. The
KL divergence between these distributions was calculated and recorded, with the average and standard deviation of each
listed in Table 3. Experimentation was conducted by comparing the training data to a noisy copy of itself, and it was
found that most datasets were still recognisable with uniformly distributed noise of size 10% of the maximum value in the
dataset, and a KL reading of less than 0.2. Minimising the KL score was one of the goals for tuning the hyperparameters
using Optuna as described in Section 3.6. The KL score for the training data against a small random sample of itself was
also calculated, to measure the diversity between the individual datasets in the training data. Both sets of calculated values
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F I G U R E 4 The autocorrelation of the mean features of typical data set from.
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STANTON et al. 13 of 19

F I G U R E 5 Difference in Pearson correlation coefficient heat maps for each synthetic dataset.

T A B L E 2 The correlation mean difference for each dataset.

Dataset identifier Mean correlation difference

Synthetic Dataset 1 0.057

Synthetic Dataset 2 0.021

Synthetic Dataset 3 0.056

Synthetic Dataset 4 0.062

Synthetic Dataset 5 0.017

Synthetic Dataset 6 0.029
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F I G U R E 6 The principle component analysis graphs for each of the training and synthetic datasets.

are shown in Table 3. The average mean KL score for each of the datasets stays in the region of 0.2, and the difference
in mean KL score for the synthetic and training values never exceeds 0.1, providing a quantitative assurance that even a
randomly selected set of data is similar to the original.

5.5 Train on synthetic, test on real

A pair of TensorFlow Sequential LSTM models were created and trained using the training data and randomly selected
synthetic data perspective, using 25% of each for validation testing as they trained. These trained models were both
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T A B L E 3 The mean and standard deviation of KL divergence for each dataset (S. for synthetic datasets, T. for training datasets).

Dataset identifier S. Mean KL S. Std KL T. Mean KL T. Std KL

Synthetic Dataset 1 0.232 0.230 0.301 0.198

Synthetic Dataset 2 0.215 0.125 0.265 0.150

Synthetic Dataset 3 0.321 0.164 0.389 0.346

Synthetic Dataset 4 0.267 0.239 0.222 0.274

Synthetic Dataset 5 0.504 0.508 0.530 0.527

Synthetic Dataset 6 0.241 0.161 0.194 0.203

T A B L E 4 The performance of an RNN for TRTR and TSTS tests.

Dataset identifier TRTR MAE TSTR MAE Difference

Synthetic Dataset 1 0.323 0.169 −0.154

Synthetic Dataset 2 0.332 0.402 0.070

Synthetic Dataset 3 0.111 0.189 0.078

Synthetic Dataset 4 0.293 0.301 0.008

Synthetic Dataset 5 0.155 0.192 0.037

Synthetic Dataset 6 0.300 0.341 0.041

T A B L E 5 The reproduction accuracy of the original and synthetic datasets.

Landing gear system Original Synthetic Difference

Synthetic Dataset 1 11.575% 20.046% 8.471%

Synthetic Dataset 2 18.709% 26.268% 7.559%

Synthetic Dataset 3 16.512% 20.004% 3.492%

Synthetic Dataset 4 27.034% 34.684% 7.650%

Synthetic Dataset 5 22.101% 23.049% 0.948%

Synthetic Dataset 6 26.838% 28.595% 1.757%

tested against the training data, predicting the next step in the series, and the MAE was recorded. The average
MAE for each dataset is shown in Table 4. In each case, the performance metric of the synthetic data was slightly
worse, however, they are within a comfortable threshold with no synthetic dataset having a higher MAE difference
than 0.078.

5.5.1 Time series classification

An LSTM Autoencoder was created using a TensorFlow Sequential model, to reconstruct the input and find the per-
centage difference between the original and reconstructed data. For each dataset, the model was trained on a randomly
selected 75% of the original data, and tested against the remaining 25%. From comparing the performance of the model
training of the training data to test data from the original, a prediction error of 20% was found to be a good indica-
tor of similarity to the original dataset, The synthetic data was then passed into the model, and the prediction error.
The prediction errors for the original and prediction data are shown in Table 5. For all six datasets, the prediction error
for the synthetic data is just above, or even above the original, giving a strong indication of similarity. This method
could potentially be used in the future to trim the dataset of low percentage error sets of data, to improve the overall
accuracy.
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5.6 Applications for synthetic datasets

This data can now be used to train models for PdM problems.

5.6.1 Synthetic datasets 1 and 2

The original purpose of the training datasets for Synthetic Datasets 1 and 2 was RUL estimation for the point at which
the data crossed an established failure threshold. While the real threshold for failure cannot be shared, an artificially
selected value could be used to build models. The data ranges between 1345.87 and 1544.97, so a suitable value for a failure
threshold would be 1400 for example. A model can now be generated to either predict how many steps are remaining
until this point is crossed, or whether the failure point is within the next 20 time steps. This could be performed using a
basic linear regression model, or ARIMA.

5.6.2 Synthetic dataset 3

The friction from landing heats aircraft landing gear tyres up, which spikes the tyre pressure for the period after landing.
Technicians performing maintenance need to record the standard tyre pressure once the temperature drops and steadies,
however, this process of cooling can take 3 h. So using only the first 5–10 data points, can an estimation of all of the
remaining data points, particularly the last one, be estimated? No changes or assumptions are required to build the same
type of model for this synthetic data.

5.6.3 Synthetic datasets 4 and 6

The original motivation for tracking the peak brake temperature and deceleration during takeoff was to identify faults
with the wheel bearings. The health of wheel bearings can be difficult to directly measure, so for instances when they do
fail, they have been linked to possible indicators such as anomalous brake and deceleration values. For the original data,
after a thorough analysis, an equation was written to indicate the regions of both high brake temperature and deceleration
which indicated bearing failure. Without known examples due to the too few examples of failure to synthesise data, an
unsupervised method such as k-means clustering or support vector machines can be used to identify a region of “normal
behaviour.”

5.6.4 Synthetic dataset 5

The raw data for the takeoff wheel speed, brake pressure and brake temperature can be used to identify landing gear
faults, even without calculating the max and deceleration values. While no examples of failures in the training data were
identified, unsupervised classification models such as an LSTM autoencoder can be trained on only “normal” data. The
reconstruction accuracy can be used to indicate “normal” data and anomalous data, indicating faults. In this instance,
artificially anomalous data (e.g., Normal example but with noise, flat increase in values etc.) will need to be used to test
the model. This method can just as easily be applied to the synthetic dataset.

6 CONCLUSION

The fidelity testing indicates that the synthetic data produced in this study resembles the original Airbus datasets in a way
that could be used by researchers and could be used for testing existing and novel PdM methods. This demonstrates the
feasibility and effectiveness of Gretel.ai as a tool for data augmentation for industry data. The six new multivariate datasets
have been made available to the public from the University of the West of England library service30 for researchers to test
novel PdM methods against. The names for each synthetic dataset can be seen in Table 6. This increases the diversity of
available datasets and can be used to improve the size of training data for improved performance of existing methods,
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T A B L E 6 The file names for each of the synthetic datasets.

Dataset identifier File name

Synthetic Dataset 1 BogiePitchTrimmer_PressureDrop_OverFlightCycles

Synthetic Dataset 2 TyrePressureIndicator_PressureDrop_OverFlightCycle

Synthetic Dataset 3 TyrePressureIndicator_TemperatureRise_DuringLandin

Synthetic Dataset 4 LandingGearBrakes_MaxTemperature_OverFlightCycles

Synthetic Dataset 5 LandingGearBrakes_Deceleration_DuringTakeof

Synthetic Dataset 6 LandingGearBrakes_Deceleration_OverFlightCycles

both within the industry and academic settings. The methodology presented in this paper answers all of the proposed
research questions and can be used as a framework for generating data in other industries, increasing the diversity of
available data to PdM researchers.

There is further work to be done in this field, exploring a greater diversity of aircraft systems and using these new
public datasets to compare novel models and frameworks. The landing gear system was selected due to its vital importance
for the operation of the aircraft, and the lack of existing public data. There are however many additional systems that
have been identified that lack existing public datasets, including pneumatics, fuselage and power units.7 More Airbus
datasets were available, and synthetic facsimiles for these could be released alongside this data in the future, but this paper
focuses on selecting and fine-tuning models to achieve high performances. The Validation metrics used for confirming
the similarity between the original and synthetic data were not intended to prove that data augmentation would improve
the performance of the original methods. In future work, these datasets will be combined with the original and tested
against the standard models being used by Airbus. The results of this study provide valuable insights into the potential of
Gretel.ai and other listed models for expanding the available open data in this field and improving predictive maintenance
for aircraft and other industries.
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