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Abstract—Drawing inspiration from the mechanism of human
skill acquisition, imitation learning has demonstrated remarkable
performance. Over recent years, model-based imitation learning
combined with machine learning and control theory has been con-
tinuously developed and adapted to unstructured environments.
However, most results for dual-arm tasks focus on relatively
safe and stable environments, which still lack robustness to
generalize skills. In this work, we propose a novel robust imitation
learning framework for dual-arm object-moving tasks. During
demonstration, we present a shared teleoperation strategy that
actively assists the operator in remotely executing dual-arm
tasks, aiming to reduce the operational difficulty and stress.
During modeling and generalization, we propose a Coupled
Linear Parameter Varying Dynamical System (CLPV-DS), which
possesses the ability to protect and restore states against possible
disturbances in the environment while maintaining good tracking
accuracy and stability. To address the risk of box slipping
caused by disturbances, we further introduce a mutual following
strategy, enabling the arms to compliantly follow each other while
maintaining appropriate contact force. Considering potential
obstacles in a complex generalization environment, we introduce
a reactive obstacle avoidance strategy in real time that ensures
global asymptotic stability. Finally, we verified the effectiveness of
the proposed framework through comprehensive testing in both
2D simulations and real-robot experiments.

Index Terms—Imitation learning, teleoperation, dynamic sys-
tem, obstacle avoidance

I. INTRODUCTION

AS new technologies advance, traditional industries have
become fully automated and intelligent. The widespread

adoption of robotic systems in intelligent manufacturing is
attributed to their efficiency and high-precision operational
capabilities. These systems allow humans to stay away from
dangerous front-line production environments, freeing them
from repetitive manual tasks. This grants individuals the time
and energy to participate in higher-level decision-making pro-
cesses. The study of these systems has been extensive over the

This work was supported in part by National Nature Science Foundation
of China (NSFC) under Grant U20A20200 and Grant 62003096, and Major
Research Grant No. 92148204, in part by Guangdong Basic and Applied Basic
Research Foundation under Grant 2023B1515120019, in part by Industrial
Key Technologies R & D Program of Foshan under Grant 2020001006308
and Grant 2020001006496.

Weiyong Wang is with College of Automation Science and Engineer-
ing, South China University of Technology, Guangzhou, China. Email:
202120117998@mail.scut.edu.cn.

Chao Zeng is with the Department of Informatics, Universität Hamburg.
Email: chaozeng@ieee.org.

Zhenyu Lu is with the Faculty of Environment and Technology, Bristol
Robotics Lab, University of the West of England, BS16 1QY Bristol, U.K.
Email: zhenyu.lu@uwe.ac.uk.

Chenguang Yang is with Department of Computer Science, University of
Liverpool, Liverpool, L69 3BX, UK. Email: cyang@ieee.org

years. Currently, the application scenarios for robotic systems
have naturally progressed from structured environments to
complex unstructured environments. This evolution brings
forth new demands for the development of task planners, such
as robustness, collision avoidance, and human-robot or robot-
robot cooperation [1]–[3].

Single-arm robots, with their simplicity, weak coupling,
and limited constraints, stand as a classic operating paradigm.
However, it has obvious limitations: a dedicated end-effector
is necessary, operating dexterity lacks a human-like quality,
and the load constraints are minimal. In contrast, a dual-
arm robot possesses all the aforementioned advantages but
introduces increased complexity in planning and control [4].
This arises from its high degree of hybridity, nonlinearity,
and redundancy. Dual-arm tasks are typically accompanied by
collaborative constraints, categorized into unity collaboration
and task-based collaboration. The former entails both arms
operating the same target object simultaneously, as seen in
tasks like flipping boxes [5] or folding clothes [6]. The latter,
on the other hand, entails the manipulation of different objects
independently, such as shaft-hole assembly [7] or cooking
[8]. Regardless of collaboration type, both arms are required
to follow specific collaboration constraints to successfully
execute the dual-arm task. Object-moving represents a classic
dual-arm collaboration task and has wide application prospects
in industry. For example, in logistics sorting, various boxes
need transportation from one assembly line to another; in
express delivery, boxes need to be moved from delivery trucks
to shelves. It requires proper contact distance and contact
force at the ends of both arms. Insufficient contact force risks
slippage and damage to the box, while excessive force may
result in over-squeezing and damage. It necessitates careful
design and application of appropriate contact force to achieve
smooth handling of objects.

Learning from demonstrations, commonly referred to as
imitation learning, entails a robot rapidly acquiring new skills
through human demonstration. Traditional skill learning re-
quires the involvement of a large number of professionals
and requires reprogramming whenever the environmental state
changes slightly. During once imitation learning, the operator
demonstrates specific task skills through kinesthetic, teleop-
eration or passive observation [9]–[11]. It is very intuitive
and easy to implement, thereby lowering the programming bar
for non-professionals and saving costs. Teleoperating systems
typically comprise human operators, master devices, follower
devices, operating environments and communication channels.
It allows the operator to remotely operate the follower arm
to complete specific tasks through the master device, thus
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avoiding the need to directly manipulate the end of the
robotic arm and improving operational flexibility. The control
signal from the master device and the haptic feedback signal
from the follower device are streamed through a bidirectional
communication channel. However, for dual-arm collaboration
tasks, simultaneously controlling both arms separately through
two master devices will cause a huge mental burden on the
operator and affect the smooth execution of the task. In
shared-control teleoperation, the robotic arm assumes partial
autonomy to assist the operator in completing tasks and
simplifying teleoperation [12]–[14]. [15] extracts task-level
behavior patterns on the master device and uses them to infer
various effective shared control strategies to assist the operator
in remote operation. [16] assists the operator in cutting by
imposing different kinematic constraints on the robot arm dy-
namics. These methods assist operators in performing specific
task skills by designing appropriate autonomous assistance
strategies.

In imitation learning, a basic behavior is often referred
to as a motion primitive, serving as the smallest unit for
modeling and generalization. It usually presents as a sensor-
detected motion sequence directed toward a specific goal.
Numerous efforts have been made to model demonstration data
using Dynamical Systems (DS) while ensuring stability. DS
is generally categorized into time-varying and time-invariant
forms, where the former explicitly evolves with time or phase,
and the latter is state-driven. The pioneering work by [17]
introduced a time-varying Dynamical Movement Primitives
(DMPs) with global asymptotic stability, which regarded the
motion sequence as a second-order spring-damping system and
a superposition of a nonlinear function. The former maintains
the convergence of the model, and the latter fits the complex
shape of the skill. However, it cannot simultaneously encode
high-dimensional motion sequences, and the fitting effect grad-
ually weakens over time. It can extend a lot of flexible scalabil-
ity by combining control theory, such as obstacle avoidance,
two-arm cooperation, upper and lower limit constraints and
other improvements [18]–[25]. These time-varying DS exhibit
flexibility in adjusting starting and ending points, but lack
spatio-temporal robustness due to their strong time depen-
dence, leading to unexpected behavior during disturbances.
As a stochastic modeling method, [26] proposed Gaussian
Mixture Model (GMM) to depict the probability distribution
of motion sequences. The conditional posterior distribution
is obtained through Gaussian Mixture Regression (GMR).
[27] proposed the Stable Estimator of Dynamical Systems
(SEDS) to convert the learned GMM into a Linear Parameter
Varying Dynamical System (LPV-DS) with global asymptotic
stability. [28] further introduces a physically consistent non-
parametric Bayesian prior for the mixing coefficient of SEDS,
allowing it to autonomously infer the appropriate number of
clusters from the motion sequences. [29] use neural networks
to approximate Lyapunov functions consistent with motion
sequences, thereby improving generalization accuracy. [30]
introduced contraction theory into SEDS, ensuring stability
by decreasing the distance between trajectories according to
a given matrix. [31] introduce diffeomorphisms to transform
a stable well-understood system into a complex nonlinear

system. Currently, these methods still sacrifice part of the
system’s complexity in exchange for stability.

In this paper, we propose a robust imitation learning
framework for dual-arm object-moving tasks to overcome the
limitations of traditional single-arm skill learning. Our work
has the following several contributions and innovations:
• We propose a teleoperation strategy to assist in mov-

ing the object. With the concept of shared control, it
provides an intuitive and user-friendly remote operation
demonstration experience by endowing the robot with
autonomous assistance capabilities.

• We propose a Coupled LPV-DS (CLPV-DS) with two
separative states. It effectively identifies disturbances
and has complete disturbance recovery capabilities while
maintaining global asymptotic stability. In order to pre-
vent the box from slipping during disturbances, we further
implement a mutual following strategy with compliant
control to consistently maintain object clamping.

• For obstacles appearing in new scenes, we propose a
reactive obstacle avoidance strategy to avoid unexpected
collisions in real time. The control strategy is designed
by simulating the Lorentz force, allowing flexibly change
the direction of the artificial magnetic field to adjust the
obstacle avoidance effect. Additionally, the strategy is
proven to maintain global asymptotic stability through
the application of Lyapunov stability theory.

• To verify the effectiveness of our proposed imitation
learning framework, we conducted a 2D simulation and
real robot scenarios to intuitively demonstrate the conver-
gence, fitting accuracy, anti-disturbance capabilities, as
well as obstacle avoidance performance.

II. METHODOLOGY

A. System description

The block diagram illustrating our proposed robust imi-
tation learning framework for dual-arm object-moving tasks
is shown in Fig. 1. Compared with traditional models that
explore the balance between stability and fitting accuracy, we
pay more attention to resist disturbances and avoid obstacles
in the environment. The entire system reveals the complete
learning process, including three parts: demonstration, robust
generalization, and reactive strategy.

Demonstration It allows for the transfer of skills by directly
operating a robot to complete a task. In our framework,
the operator remotely controls the movement of the follower
through the master, and records the motion trajectory of the
robot as an instance of the skill. Based on the characteristics of
dual-arm tasks, the shared teleoperation system actively assists
the follower arm in task completion, enhancing operation
intuitiveness and convenience.

Robust generalization We encode the dual-arm skills
through CLPV-DS. Different from the general modeling meth-
ods, we introduce a new follower state. When a disturbance
occurs, the separation of the two DS states enables the arms to
promptly protect and restore the state before the disturbance.
Disturbances applied to a single arm are easily detected
through the state difference of the CLPV-DS. Additionally,



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. XX, NO. XX, XX 2024 3

Fig. 1: The proposed imitation framework for dual-arm object-moving tasks includes three parts, i.e., demonstration (green),
robust generalization (red) and reactive strategy (blue). The demonstration part allows for an intuitive and user-friendly
skill acquisition. The robust generalization part encodes and generalizes dual-arm skills to new situations against uncertain
disturbances. The reactive strategy part enables the robot to avoid emerging obstacles during generalization.

we incorporate a mutual following strategy with compliant
control, ensuring two arms smoothly clamping the box to
prevent slipping or over-squeezing.

Reactive strategy In an unstructured environment, tradi-
tional path planning methods cannot respond to new and
unforeseen emergencies. We combine a reactive obstacle
avoidance strategy with motion planning to provide real-time
obstacle avoidance responses with lightweight calculations
during the skill generalization process, thereby ensuring the
smooth execution of tasks. Importantly, the introduction of
the reactive obstacle avoidance strategy does not compromise
the global asymptotic stability of CLPV-DS.

B. Dual-arm teleoperation

In the teleoperation system, the operator manipulates the
master device, and its terminal pose is recorded, stored, and
converted into control commands. These commands are then
transmitted to the remote follower arm through appropriate
teleoperation strategies, enabling remote and flexible control.
Given that the master and the follower often differ in structure,
with non-corresponding joints and positions, achieving user-
friendly one-to-one mapping in the task space interaction
proves challenging. For some master-side operations, such as a
180° rotation, it is inconvenient for the operator. Therefore, it
is necessary to consider an intuitive and easy-to-operate dual-
arm teleoperation strategy.

To enhance usability, we employ a relative position match-
ing between the end of the master and the follower, allowing
the operator to decompose this large-range movement into
multiple small-range movements to improve flexibility. The
relative end positions of the master and follower are respec-
tively defined as

∆pm = pm,t − pm,t0

∆pf = pf,t − pf,t0
, (1)

where pm(f),t, pm(f),t0 ∈ R3 are the absolute end position
of the master (follower) at time t and t0 respectively. The
follower’s relative position is designed as

∆pf = αRmf∆pm, (2)

where α is the scale factor, and Rmf ∈ R3×3 is the rota-
tion matrix from the master’s base coordinate system to the
follower’s.

To alleviate operational difficulty and mental burden on the
operator, we design a simpler and more convenient single-
master and dual-follower teleoperation strategy based on the
constraints of the object-moving task. Since clamping the
object typically requires force in one direction, for simplicity,
we assume that the robot only needs to clamp along the y-axis
of the robot’s base coordinate system. Specifically, the left arm
is used as the sole follower arm, while the right arm tracks
the right side of the box accordingly to ensure that the box is
securely grasped and transported

pr = pl − [0, L, 0]T = pf − [0, L, 0]T , (3)

where pl(r) ∈ R3 is the absolute end position of the left (right)
arm, L is the length of the box on the y-axis of the robot’s
base coordinate system.

During demonstration, the operator completes the teaching
process through our single-master and dual-follower teleoper-
ation system, recording and storing the motion trajectories of
both arms. We further select the midpoint of the absolute end
position of both arms as the demonstration data

p =
pl + pr

2
(4)

It is worth noting that if we choose to record and train the
absolute end positions of both arms separately, it involves
substantial redundant degrees of freedom. Moreover, the dis-
tance constraint between the arms cannot be guaranteed due
to training errors, causing the box to slip and the task to fail.
In order to fully ensure task constraints and computational
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efficiency, our solution is to refine and learn the midpoint,
then restore the two arms’ end position based on the object
parameters during generalization, thereby reestablishing the
task constraints.

C. Coupled LPV-DS

Since skills can be modeled as mapping functions, the goal
of skill learning is to transform limited motion skill observa-
tions into a concise set of function parameters. Autonomous
DS is a function from the state to its first-order differential,
pursuing global asymptotic convergence and spatio-temporal
robustness. In this paper, we use GMM-based LPV-DS with
quadratic Lyapunov (QLF) function constraints for the first DS
encoding. Similar to SEDS [27], GMM learning needs to be
introduced before learning LPV-DS

p(x) =

K∑
k=1

πkN (x|µk,Σk), (5)

where x and ẋ are position and velocity, K is the number
of the total mixture components. The component prior πk

(satisfying the constraint ΣK
k=1πk = 1), the mean µk and the

variance Σk collectively characterize the features of a GMM.
Traditional GMM learning requires manual selection of a wide
range of mixing component numbers K, with the optimal
K being selected after conducting multiple sets of learning
error tests. To address this problem, [32] further introduces
the physically consistent non-parametric Bayesian prior to
the GMM learning process. This integration automatically
infers the number of mixing components K based on the data
characteristics, avoiding blind manual selection and laborious
testing. In Dirichlet process sampling through the Chinese
Restaurant Process (CPR), physical consistency provides a
locality and directionality between sampled clusters, making
the spatial distribution of the clusters more reasonable.

A nonlinear LPV-DS can be expressed as a mixture of
multiple linear DSs

ẋ =

K∑
k=1

γk(x)(Akx+ bk)
def
= f(x), (6)

where {Ak, bk} is the parameter set of the k-th linear DS.
Its mixing coefficients are defined by the previously learned
GMM and the current state, that is γk(x) =

πkN (x|µk,Σk)
p(x) .

Assuming that we obtain N demonstration trajectories
{{p(n)d,t , ṗ

(n)
d,t }

Tn
t=1}Nn=1 from the teleoperation process, the pa-

rameters of LPV-DS can be solved through convex quadratic
optimization on minimizing the speed error

min
θ

J(θ) =

N∑
n=1

Tn∑
i=1

||f(x(i)
d,t)− ẋ

(i)
d,t|| (7)

To satisfy global asymptotic stability, each linear system
component needs to satisfy a conservative QLF constraint{

(Ak)
T +Ak = Qk, Qk = (Qk)

T ≺ 0

bk = −Akxg

, k = 1, ...,K, (8)

where Qk expands the search domain of parameter space, and
xg is the global convergence point. These conditions are not

difficult to derive from the Lyapunov function V (x) = (x −
xg)

T (x− xg).
Due to the simple Lyapunov function formula, the above

optimization of LPV-DS still encounters the dilemma of accu-
racy and stability. Although the generalization accuracy in the
demonstration range is high, it is still not ideal in other ranges.
To address the potential impact of possible disturbances that
may cause the motion to deviate from the demonstration range,
we consider a strategy for complete trajectory recovery. We
introduce a second DS

˙̂p = C(x− p̂), (9)

where C is a scaling factor to adjust the speed at which state
p̂ converges to state x. It is adaptively determined by

C = ˙̂pmax(1− e−kc||p̂−x||), (10)

where ˙̂pmax is the maximum speed allowed to execute, kc is
a hyperparameter used to adjust the convergence speed. (9)
depends on the state x evolved by (6), thus coupling two
different DS. We further modify (6) to

ẋ = f(x)δ(x, p̂) (11)

δ(x, p̂) =

{
1, x = p̂

0, x ̸= p̂
(12)

Here state x represents the desired generalized motion tra-
jectory, and state p̂ implements a virtual following planning.
When p̂ = x, x starts to evolve along the desired trajectory,
and then (9) will make p̂ converge to the new state x. This
coupling method serves to protect the task execution even
when a disturbance occurs. In the event of a disturbance
causing p̂ to deviate, x remains unchanged, and p̂ will return
to the original deviation position. It is worth mentioning that
CLPV-DS still has the ability to generalize skills based on
different initial positions; when suffering from disturbances,
CLPV-DS will improve generalization accuracy. The global
asymptotic stability of the final DS will be given in subsection
II-E with Lyapunov analysis.

D. Generalization with mutual following strategy
For the generalization of dual-arm tasks, a core concern lies

in fully accounting for the collaborative relationship between
the two arms, that is, maintaining task constraints between the
arms. For the task of object-moving, the ends of the arms need
to be kept at a suitable distance. Additionally, the box must
be grasped stably to avoid sliding or falling off, and must not
be damaged due to excessive force. During generalization, we
preserve the stability and spatio-temporal robustness provided
by the CLPV-DS modeling, and then recover the motion
trajectories of the arms according to the constraints.

Since the process of object-moving only involves position
constraints along a single degree of freedom, we assume that
the two opposing clamping surfaces of the box are located on
both sides of the y-axis in the robot base coordinate system.
The generalized positions of both arms are generalized as

p̂l = p̂+ [0,
L

2
, 0]T

p̂r = p̂− [0,
L

2
, 0]T

(13)
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Unfortunately, this midpoint-based generalization is not
fully robust to disturbances for the dual-arm collaboration
task. When a disturbance is applied to a single arm, the
task constraints will be directly destroyed. In fact, when the
disturbance occurs, the error in estimating the center of the
box through (4) will increase, and the desired positions of the
arms can no longer be restored through (13). Since the CLPV-
DS separates the states of the two DS, the disturbance can be
detected by the two-state deviation. At this point, we adopt
the mutual following strategy for both arms

p̂l =

pr + [0, L, 0]T , |x− p| > δ

p̂+ [0,
L

2
, 0]T , |x− p| <= δ

p̂r =

pl − [0, L, 0]T , |x− p| > δ

p̂− [0,
L

2
, 0]T , |x− p| <= δ

,

(14)

where δ is the deviation threshold, pl(r) is the actual end
positions of the left (right) arm.

In order to reduce the hysteresis impact of the disturbance
response and enable the arms to generate appropriate contact
force against the box, we introduce variable stiffness admit-
tance control. It regards the contact behavior of the end as a
second-order spring-damping system

Mëy,χ,+Dėy,χ +Kv,χey,χ = Fw,χ, (15)

where, M , D and Kv are the arm’s inertia matrix, Coriolis
and centrifugal matrices and gravity respectively. χ = {l, r}
represents left arm and right arm respectively. Fw,χ is the
interaction force between the left or right arm and the outside
world, and ey,χ is the position error of the left or right arm
along the y-axis. The variable stiffness is further designed as
[33]

Kv,χ =
kpef,χ + kdėf,χ

ey,χ
, (16)

where ef,χ = Fw,χ − Fd is the force error, Fd is the desired
contact force. Combining (15) and (16), we can get the
dynamic equation of the desired position yc on the y-axisÿc,χ(t) =

(kp + 1)ef,χ(t) + kdėf,χ(t) + Fd(t)−Dẏc,χ(t)

Mẏc,χ(t)

ẏc,χ(t+ 1) = yc,χ(t) + ẏc,χ(t)∆t

,

(17)
where ∆t is the discrete calculation step of the computer. We
get the final hybrid force-position controller

pc,χ =

1 0 0
0 0 0
0 0 1

 pχ +

01
0

 yc,chi (18)

The introduction of a hybrid force-position controller in the
end-effector coordinate system can enhance the compliance of
box contact and maintain human-like gripping ability. When
one arm experiences a disturbance, due to the sharp reduction
in contact force, the impedance control gives the other arm
more distance compensation on the y-axis, which greatly
alleviates the slip caused by state lag.

(a) (b)

(c) (d)

Fig. 2: Rollouts under disturbances at different time. (a), (c)
represent the learning results of the original LPV-DS, and (b),
(d) represents the learning results of the CLPV-DS.

E. Reactive collision avoidance

Skill generalization means the reproduction of skills in new
contexts. However, when a new obstacle is present in the
environment, the generalization of LPV-DS is not reactive
enough: its behavior only depends on the current state but does
not effectively respond to the new environment. In this section
we introduce a reactive obstacle avoidance strategy for CLPV-
DS, aiming to minimize the impact on global asymptotic
stability. When considering the motion of state x as the motion
of a charged particle, similar to the Lorentz force, we introduce
an additional control for obstacle avoidance

fo(x) =
xg − x

||xg − x||
×B, (19)

where B is the artificial magnetic field

B = c× ḋ, (20)

where c is the artificial current, and d = xo−x is the distance
between the box and the center of the obstacle xo. Its selection
is flexible and produces different obstacle avoidance effects.
Here we design as

c = ḋ− d

||d||
(

d

||d||
· ḋ) (21)

We incorporate (19) into CLPV-DS

ẋ = [f(x) + kofo(x)]δ(x, p̂) (22)

For the coefficient ko, we design as

ko =
||d||

||d|| − r
, (23)

where r is the safe distance from the center of the obstacle
xo. As the box approaches an obstacle, a greater magnitude
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Fig. 3: The generalization accuracy comparison between orig-
inal LPV-DS and CLPV-DS on the LASA dataset under three
types of disturbances.

of escape velocity will be superimposed in the deviation
direction.

We can easily verify the stability of the proposed DS using
Lyapunov stability theory. Consider a differentiable energy-
inspired Lyapunov candidate function of the following form

V (x) = (x− xg)
T (x− xg) + (p̂− x)T (p̂− x), (24)

where xg is the attractive equilibrium point. Its gradient can
be further derived

V̇ (x) =(x− xg)
T ẋ+ ẋT (x− xg)+

(p̂− x)T ( ˙̂p− ẋ) + ( ˙̂p− ẋ)T (p̂− x)

=(x− xg)
T ẋ+ ẋT (x− xg) + C(p̂− x)T (x− p̂)+

C(x− p̂)T (p̂− x)− (p̂− x)T ẋ− ẋT (p̂− x)

<(x− xg)
T ẋ+ ẋT (x− xg)

={(x− xg)
T [f(x) + kofo(x)]+

[f(x) + kofo(x)]
T (x− xg)}δ(x, p̂)

={(x− xg)
T

K∑
k=1

γk(x)(Akx+ bk)+

K∑
k=1

γk(x)(Akx+ bk)
T (x− xg)+

2ko
||xg − x||

(x− xg)
T [(xg − x)×B]}δ(x, p̂)

={(x− xg)
T

K∑
k=1

γk(x)(Ak +AT
k )(x− xg)}δ(x, p̂)

≤0
(25)

Therefore, our reactive obstacle avoidance strategy is globally
asymptotically stable for the attractive point xg .

III. EXPERIMENTS

A. Simulations

In this section, we verify the robust generalization and
reactive obstacle avoidance strategy of our proposed CLPV-
DS through 2D simulations. We validate the effectiveness
in the LASA handwriting dataset [34] and provide visual
representations of them.

(a) (b)

(c) (d)

Fig. 4: Rollouts under various number of obstacles. (a), (c)
represent the APF, and (b), (d) represent our reactive obstacle
avoidance strategy (ROAS).

Fig. 2 illustrates the learning effect of CLPV-DS on the
“Angle” group in LASA. The flow field indicates a high fitting
accuracy and global asymptotic stability of the model. Dis-
turbances of [0,−20]T (Fig. 2a,2b) and [20, 0]T (Fig. 2c,2d)
are applied to the original LPV-DS (left column) and CLPV-
DS (right column) respectively. The trajectory of the original
LPV-DS may be significantly distorted after encountering a
disturbance deviation (as shown in Fig. 2c), affecting its fitting
accuracy. In contrast, with the introduction of the coupling
formula, the state of the system is protected, fully restoring it
to the pre-disturbance state. CLPV-DS exhibits spatial gen-
eralization capabilities even with different initial positions,
protecting only the state where unexpected deviations occur
during generalization. Fig. 3 further shows the comparison
results between original LPV-DS and CLPV-DS across the en-
tire LASA dataset. Dynamic Time Warping Distance (DTWD)
[35] is employed to assess the similarity of trajectories with
different lengths

E =
1

Ti

Ti∑
t=1

S(x(i)
d,t, x

(i)
d,t+1, x

(i)
t , x

(i)
t+1), (26)

where S denotes the closed area between four vertices. Sim-
ilarly, we assess the error by applying the following three
types of disturbances with different amplitudes and directions
at the midpoint of the path: (Cond. 1) [0,−20]T ; (Cond. 2)
[0,−10]T ; (Cond. 3) [20, 0]T . The training set and test set
are divided in a 3:4 ratio. The results consistently show that
our method has good generalization accuracy under different
disturbances.

In Fig. 4, we compare the obstacle avoidance effects of the
Artificial Potential Field (APF) (Fig. 4a,4b) and our reactive
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(a) (b) (c)

(d) (e)

Fig. 5: (a) Experiment setup. (b) Demonstration and normal generalization. (c) Comparison of z-axis forces on motion control
and compliance control, including the left arm (top) and the right arm (bottom). (d) A generalization under a teleoperated
disturbance. (e) Shared teleoperation process during demonstration.

(a) (b)

Fig. 6: (a) A flowerpot is added to the scene to act as the
obstacle. (b) The comparison results of APF and ROAS.

obstacle avoidance strategy (Fig. 4c,4d). Obviously, APF only
considers the obstacle avoidance repulsion, which causes a
shift in the global attractive point. Our method still guarantees
the initial global attractive point and has less impact on the
trajectory.

B. Real-world box-moving task

In this section, we validate the effectiveness of our proposed
robust imitation learning framework through a dual-arm box-
moving task. The experimental setup, as shown in Fig. 5a,
includes the Baxter robot, Touch X, a box and a shelf platform
serving as the moving target. Touch X serves as the master for
shared teleoperation demonstrations, controlling the left arm of
the Baxter as the follower. The task involves moving the box to

the shelf platform safely. The process of shared teleoperation
is shown in Fig. 5e. As shown in Fig. 5b, 7 demonstrations are
performed, recording and storing the midpoints of both arms
for CLPV-DS learning. During generalization, we perform 7
rollouts and they all successfully moving the box to the shelf
platform, and the trajectories are smooth and stable. To achieve
smooth and fast tracking, we select ˙̂pmax = 10, kc = 100 in
CLPV-DS. Setting ˙̂pmax to an excessively large value may
lead to instabilities and unsafe motion. Conversely, if it is too
small, it will cause tracking to be too slow and affect the
execution time of the task. Compliance control with kp = 25,
kd = 2 and a desired force Fd = 5N is applied to ensure
secure clamping without damaging the box. Fig. 5c shows the
forces on the left and right arms during generalization. With
compliance control, the overall force on both arms remains
close to the desired force. But without compliance control,
the force on the arms is smaller, making the box prone to
rotation or falling during movement, leading to task failure.
To demonstrate the disturbance recovery capabilities of our
generalization, we apply disturbances to the left arm through
teleoperation, as shown in Fig. 5d. Despite the disturbance
causing the left arm to deviate, the mutual following strategy
allows the box to remain securely gripped. After releasing the
left arm, the box returns to its position before the deviation
occurs and continues to complete the task.

To assess the obstacle avoidance capability of our frame-
work, we added a flowerpot to block the original generalization
path, as shown in Fig. 6a. Without any obstacle avoidance
capabilities, the box must collide with the flowerpot. Taking
into account the volume of the flowerpot and the box, we
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set the radius of the safety sphere r = 0.23m, that is, the
trajectory of the box outside the sphere must not collide. Fig.
6b reveals the obstacle avoidance results between APF and
our Reactive Obstacle Avoidance Strategy (ROAS). Consistent
with the results in the simulations, the repulsive field of the
APF affected the equilibrium position, causing the box to fi-
nally fail to land on the shelf platform. For APF, setting a small
repulsion coefficient makes it challenging for the trajectory
to stay away from obstacles, while a large coefficient leads
to unstable pulses. ROAS enables CLPV-DS to plan a stable
obstacle avoidance trajectory with improved smoothness.

IV. CONCLUSION

In summary, this paper proposes a novel robust dual-arm
imitation learning framework capable of learning and general-
izing the box moving skill. For data acquisition, we designed
a shared teleoperation system based on task constraints to
provide a simple and user-friendly interface. To improve
robustness, we propose CLPV-DS capable of fast recovery
from disturbances and generalization to both arms based on
constraints. Incorporating the mutual following strategy with
compliance control, even in the face of strong disturbances, the
constraints between the arms and the appropriate contact force
can be ensured, ensuring the smooth completion of the task.
Finally, considering obstacles in complex environments, we
design a reactive obstacle avoidance strategy to achieve obsta-
cle avoidance while preserving global asymptotic stability. In
the experimental section, we validate and intuitively compare
the proposed imitation framework in the 2D simulation and the
dual-arm box-moving task in the real environment, achieving
good generalization effects.

However, our method still has limitations: the lack of
sensing modules for dynamic obstacle detection; reliance on
actual object parameters for box handling. In future work, we
aim to address these shortcomings by introducing visual pose
detection [36], [37] to actively identify and properties of the
box and obstacles in the environment, aiming to avoid dynamic
obstacles autonomously.
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